Voltage stability constrained line-wise optimal power flow
The purpose of optimal power flow (OPF) is to optimise an objective function subject to a set of operating constraints. It remains an active research area because of using the bus-wise power balance equations, which leads to a non-linear solution space, resulting in OPF yielding local optimal soluti...
Saved in:
Published in | IET generation, transmission & distribution Vol. 13; no. 8; pp. 1332 - 1338 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
The Institution of Engineering and Technology
23.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The purpose of optimal power flow (OPF) is to optimise an objective function subject to a set of operating constraints. It remains an active research area because of using the bus-wise power balance equations, which leads to a non-linear solution space, resulting in OPF yielding local optimal solutions, thereby causing significant economic loss. In this study, first, a new line-wise OPF (LWOPF) formulation is proposed. Thereafter, a maximum loadability factor, as a voltage collapse indicator, is derived and combined with LWOPF constraints to form a voltage stability constrained LWOPF (VSCLWOPF) model. As the line-wise power balance equations are based upon the square of voltage magnitudes, it results in significant improvement in the solution space and lower-order terms in all computational steps. The LWOPF and VSCLWOPF formulations, are solved using non-linear optimisation technique, tested on several benchmark and real power systems. Results show that the proposed LWOPF is accurate, provides monotonic convergence, and scales well for large systems. It provides a better solution and is consistently faster, up to twice the speed of MATPOWER, due to reduced computational needs. Results of VSCLWOPF show that, for the same voltage stability level, the solution costs less than that obtained by classical bus-wise OPF. |
---|---|
AbstractList | The purpose of optimal power flow (OPF) is to optimise an objective function subject to a set of operating constraints. It remains an active research area because of using the bus‐wise power balance equations, which leads to a non‐linear solution space, resulting in OPF yielding local optimal solutions, thereby causing significant economic loss. In this study, first, a new line‐wise OPF (LWOPF) formulation is proposed. Thereafter, a maximum loadability factor, as a voltage collapse indicator, is derived and combined with LWOPF constraints to form a voltage stability constrained LWOPF (VSCLWOPF) model. As the line‐wise power balance equations are based upon the square of voltage magnitudes, it results in significant improvement in the solution space and lower‐order terms in all computational steps. The LWOPF and VSCLWOPF formulations, are solved using non‐linear optimisation technique, tested on several benchmark and real power systems. Results show that the proposed LWOPF is accurate, provides monotonic convergence, and scales well for large systems. It provides a better solution and is consistently faster, up to twice the speed of MATPOWER, due to reduced computational needs. Results of VSCLWOPF show that, for the same voltage stability level, the solution costs less than that obtained by classical bus‐wise OPF. |
Author | Mohamed, Amr Adel Venkatesh, Bala |
Author_xml | – sequence: 1 givenname: Amr Adel orcidid: 0000-0002-6637-4588 surname: Mohamed fullname: Mohamed, Amr Adel email: amr.adel@ryerson.ca organization: Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada – sequence: 2 givenname: Bala surname: Venkatesh fullname: Venkatesh, Bala organization: Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada |
BookMark | eNqFkM1OAjEQgBuDiYA-gLd9gWJ_ttsuN0VBExIv6LUp2y4pqVvS1mx4e7uBePCAl5k5zDc_3wSMOt8ZAO4xmmFU1g_WJLhLekYQFjNWMnIFxpgzDEVVs9FvLfgNmMS4R4ixquRjMP_0LqmdKWJSW-tsOhaN72IKynZGFy5H2NtoCn9I9ku54uB7E4rW-f4WXLfKRXN3zlPwsXzZLF7h-n31tnhcw4bSksNWKNEYzmtVbWmFNScV1WarS00Q0rSqBNGN1owLxIgSWmtSI6xIS1omhCnpFPDT3Cb4GINpZWOTStZ3w5VOYiQHBTIrkFmBHBTIQUEm8R_yEPIT4XiRmZ-Y3jpz_B-Qq80zeVoiQjHPMDzBQ9vef4cui7mw7AdbPITD |
CitedBy_id | crossref_primary_10_1007_s42835_020_00521_7 crossref_primary_10_1109_TPWRS_2022_3183549 crossref_primary_10_1049_gtd2_12717 crossref_primary_10_1049_iet_gtd_2019_1956 crossref_primary_10_1109_TPWRS_2022_3200970 crossref_primary_10_1007_s00202_021_01471_7 crossref_primary_10_1109_TPWRS_2024_3442088 crossref_primary_10_1016_j_epsr_2022_107784 crossref_primary_10_1007_s13198_021_01588_9 crossref_primary_10_1109_ACCESS_2022_3233633 crossref_primary_10_1109_TPWRS_2024_3402081 |
Cites_doi | 10.1109/TPWRS.2013.2279263 10.1016/S0142-0615(01)00067-9 10.1109/TPWRS.1986.4334888 10.1109/TPWRS.2004.841157 10.1109/PESS.1999.787422 10.1109/PESS.1999.787402 10.1109/PESS.2001.970328 10.1049/iet-gtd.2013.0724 10.1109/TPAS.1984.318568 10.1109/TPWRS.2003.811006 10.1109/TCSI.2016.2529281 10.1109/TPWRS.2005.856985 10.1109/TPAS.1968.292150 10.1002/9781119115243.ch14 10.1109/TPWRS.2015.2402640 10.1109/TAC.2014.2357112 10.1109/TPAS.1969.292463 10.1109/TPAS.1982.317057 10.1109/PES.2011.6039543 10.1016/j.ijepes.2007.12.003 10.1109/TCNS.2017.2722818 10.1109/TPWRS.2018.2801286 10.1109/TPWRS.2006.879234 10.1109/TPAS.1973.293590 10.1109/TAC.2014.2332712 10.1109/TPWRS.2011.2160974 10.1109/TPWRS.2010.2051168 10.1109/TPWRS.2002.1007886 10.1109/TPWRS.2015.2505508 10.1109/TPAS.1974.293972 10.1049/cp:19971842 10.1109/TPWRS.2016.2594298 10.1109/TPWRS.2017.2787752 10.1109/TPAS.1974.293853 10.1109/PSCC.2016.7540907 10.1109/TSG.2016.2614904 10.1016/j.egypro.2016.10.148 10.1016/S0142-0615(96)00051-8 10.1109/TPWRS.2015.2504870 10.1109/TPWRS.2017.2749303 10.1109/TPWRS.2013.2288009 10.1109/TPWRS.1987.4335064 10.1109/ISGT-Asia.2015.7387167 |
ContentType | Journal Article |
Copyright | The Institution of Engineering and Technology 2019 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2019 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
DBID | AAYXX CITATION |
DOI | 10.1049/iet-gtd.2018.5452 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-8695 |
EndPage | 1338 |
ExternalDocumentID | 10_1049_iet_gtd_2018_5452 GTD2BF02317 |
Genre | article |
GroupedDBID | 0R 24P 29I 4IJ 6IK 8VB AAJGR ABPTK ACIWK ALMA_UNASSIGNED_HOLDINGS BFFAM ESX HZ IFIPE IPLJI JAVBF LAI LOTEE LXI M43 MS NADUK NXXTH O9- OCL QWB RIE RNS RUI U5U UNMZH UNR ZL0 .DC 0R~ 0ZK 1OC 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AIWBW AJBDE ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU EBS EJD F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IGS ITC K1G L6V M7S MCNEO MS~ OK1 P62 PTHSS ROL S0W AAYXX CITATION IDLOA PHGZM PHGZT |
ID | FETCH-LOGICAL-c3347-f8a8ce779a6b361d7263debd4d200d36682dcdd578052a8ddd2901a2f2f588e43 |
IEDL.DBID | 24P |
ISSN | 1751-8687 |
IngestDate | Thu Apr 24 22:55:02 EDT 2025 Sun Jul 06 05:11:03 EDT 2025 Wed Jan 22 16:32:36 EST 2025 Tue Jan 05 21:44:06 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | power system stability simple line-wise OPF bus voltage magnitudes power system optimal power flow nonlinear solution space line-wise power balance equations operating constraints bus-wise power balance equations optimisation voltage stability constrained line-wise power system dynamic stability power markets load flow |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3347-f8a8ce779a6b361d7263debd4d200d36682dcdd578052a8ddd2901a2f2f588e43 |
ORCID | 0000-0002-6637-4588 |
PageCount | 7 |
ParticipantIDs | iet_journals_10_1049_iet_gtd_2018_5452 crossref_citationtrail_10_1049_iet_gtd_2018_5452 crossref_primary_10_1049_iet_gtd_2018_5452 wiley_primary_10_1049_iet_gtd_2018_5452_GTD2BF02317 |
ProviderPackageCode | RUI |
PublicationCentury | 2000 |
PublicationDate | 2019-04-23 |
PublicationDateYYYYMMDD | 2019-04-23 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-23 day: 23 |
PublicationDecade | 2010 |
PublicationTitle | IET generation, transmission & distribution |
PublicationYear | 2019 |
Publisher | The Institution of Engineering and Technology |
Publisher_xml | – name: The Institution of Engineering and Technology |
References | Chavez-Lugo, M.; Fuerte-Esquivel, C.R.; Canizares, C.A. (C40) 2016; 31 Huang, S.; Wu, Q.; Wang, J. (C29) 2017; 32 Lavaei, J.; Low, S.H. (C22) 2012; 27 Todescato, M.; Simpson-Porco, J.W.; Dörfler, F. (C36) 2018; 5 Zabaiou, T.; Dessaint, L.A.; Kamwa, I. (C41) 2014; 8 Rashed, A.; Kelly, D. (C6) 1974; PAS-93 Gill, S.; Kockar, I.; Ault, G.W. (C32) 2014; 29 Mohamed, A.A.; Venkatesh, B. (C45) 2018; 33 Dommel, H.W.; Tinney, W.F. (C4) 1968; PAS-87 Jabr, R.A. (C19) 2005; 20 Sasson, A.M.; Viloria, F.; Aboytes, F. (C5) 1973; PAS-92 Molzahn, D.K.; Hiskens, I.A. (C26) 2016; 63 Kargarian, A.; Mohammadi, J.; Guo, J. (C34) 2018; 9 Fuentes-Loyola, R.; Quintana, V.H. (C18) 2003; 18 Li, Q.; Vittal, V. (C30) 2017; 32 Molzahn, D.K.; Lesieutre, B.C.; DeMarco, C.L. (C23) 2014; 29 Aoki, K.; Nishikori, A.; Yokoyama, R. (C10) 1987; 2 Jabr, R.A.; Džafić, I. (C27) 2016; 31 Bahrami, S.; Wong, V.W.S. (C44) 2018; 33 Burchett, R.; Happ, H.; Vierath, D. (C9) 1984; PAS-103 BCui, B.; Sun, X.A. (C42) 2018; 33 Lai, L.L.; Ma, J.; Yokoyama, R. (C12) 1997; 19 Kocuk, B.; Dey, S.S.; Sun, X.A. (C31) 2016; 31 Contaxis, G.; Delkis, C.; Korres, G. (C11) 1986; 1 Bai, X.; Wei, H.; Fujisawa, K. (C21) 2008; 30 Bakirtzis, A.G.; Biskas, P.N.; Zoumas, C.E. (C15) 2002; 17 Jabr, R.A. (C20) 2006; 21 Zimmerman, R.D.; Murillo-Sanchez, C.E.; Thomas, R.J. (C46) 2011; 26 El-abiad, A.H.; Jaimes, F.J. (C3) 1969; PAS-88 Bose, S.; Low, S.H.; Teeraratkul, T. (C25) 2015; 60 Milano, F.; Canizares, C.A.; Conejo, A.J. (C39) 2005; 20 Abido, M. (C14) 2002; 24 Gan, L.; Li, N.; Topcu, U. (C24) 2015; 60 Hermann, A.; Wu, Q.; Huang, S. (C28) 2016; 100 Alsac, O.; Stott, B. (C7) 1974; PAS-93 Burchett, R.; Happ, H.; Wirgau, K. (C8) 1982; PAS-101 2002; 17 1987; 2 1973; PAS‐92 2011 1974; PAS‐93 1997 2016; 31 2005; 20 2016; 100 2003; 18 2008; 30 2014; 29 1984; PAS‐103 1999 1986; 1 2018; 9 2018; 5 2015; 60 2001 2006; 21 2002; 24 2017; 32 1997; 19 1982; PAS‐101 2016; 63 1962 2016 2015 2012; 27 2011; 26 1969; PAS‐88 1968; PAS‐87 2014; 8 2018; 33 e_1_2_9_10_2 e_1_2_9_33_2 e_1_2_9_34_2 e_1_2_9_12_2 e_1_2_9_31_2 e_1_2_9_11_2 e_1_2_9_32_2 e_1_2_9_14_2 e_1_2_9_37_2 e_1_2_9_13_2 e_1_2_9_38_2 e_1_2_9_16_2 e_1_2_9_35_2 e_1_2_9_15_2 e_1_2_9_36_2 e_1_2_9_18_2 e_1_2_9_17_2 e_1_2_9_39_2 e_1_2_9_19_2 e_1_2_9_40_2 e_1_2_9_41_2 e_1_2_9_21_2 e_1_2_9_44_2 e_1_2_9_20_2 e_1_2_9_45_2 e_1_2_9_23_2 e_1_2_9_42_2 e_1_2_9_22_2 e_1_2_9_43_2 e_1_2_9_7_2 e_1_2_9_6_2 e_1_2_9_5_2 e_1_2_9_4_2 e_1_2_9_3_2 e_1_2_9_2_2 e_1_2_9_9_2 e_1_2_9_8_2 e_1_2_9_25_2 e_1_2_9_24_2 e_1_2_9_27_2 e_1_2_9_46_2 e_1_2_9_26_2 e_1_2_9_47_2 e_1_2_9_29_2 e_1_2_9_28_2 Huang S. (e_1_2_9_30_2) 2017; 32 |
References_xml | – volume: 9 start-page: 2574 issue: 4 year: 2018 end-page: 2594 ident: C34 article-title: Toward distributed/decentralized DC optimal power flow implementation in future electric power systems publication-title: IEEE Trans. Smart Grid – volume: 33 start-page: 2717 issue: 3 year: 2018 end-page: 2732 ident: C44 article-title: Security-constrained unit commitment for AC–DC grids with generation and load uncertainty publication-title: IEEE Trans. Power Syst. – volume: 21 start-page: 1458 issue: 3 year: 2006 end-page: 1459 ident: C20 article-title: Radial distribution load flow using conic programming publication-title: IEEE Trans. Power Syst. – volume: 27 start-page: 92 issue: 1 year: 2012 end-page: 107 ident: C22 article-title: Zero duality gap in optimal power flow problem publication-title: IEEE Trans. Power Syst. – volume: 18 start-page: 1515 issue: 4 year: 2003 end-page: 1522 ident: C18 article-title: Medium-term hydrothermal coordination by semidefinite programming publication-title: IEEE Trans. Power Syst. – volume: 19 start-page: 287 issue: 5 year: 1997 end-page: 292 ident: C12 article-title: Improved genetic algorithms for optimal power flow under both normal and contingent operation states publication-title: J. Electr. Power Energy Syst. – volume: 63 start-page: 650 issue: 5 year: 2016 end-page: 660 ident: C26 article-title: Convex relaxations of optimal power flow problems: an illustrative example publication-title: IEEE Trans. Circuits Syst. I: Regular Papers – volume: 24 start-page: 563 issue: 7 year: 2002 end-page: 571 ident: C14 article-title: Optimal power flow using particle swarm optimization publication-title: Int. J. Electr. Power Energy Syst. – volume: 31 start-page: 642 issue: 1 year: 2016 end-page: 651 ident: C31 article-title: Inexactness of SDP relaxation and valid inequalities for optimal power flow publication-title: IEEE Trans. Power Syst. – volume: 29 start-page: 978 issue: 2 year: 2014 end-page: 979 ident: C23 article-title: A sufficient condition for global optimality of solutions to the optimal power flow problem publication-title: IEEE Trans. Power Syst. – volume: 29 start-page: 121 issue: 1 year: 2014 end-page: 131 ident: C32 article-title: Dynamic optimal power flow for active distribution networks publication-title: IEEE Trans. Power Syst. – volume: 33 start-page: 3768 issue: 4 year: 2018 end-page: 3778 ident: C45 article-title: Line-wise power flow and voltage collapse publication-title: IEEE Trans. Power Syst. – volume: PAS-101 start-page: 3722 issue: 10 year: 1982 end-page: 3732 ident: C8 article-title: Large scale optimal power flow publication-title: IEEE Trans. Power Appar. Syst. – volume: PAS-103 start-page: 3267 issue: 11 year: 1984 end-page: 3275 ident: C9 article-title: Quadratically convergent optimal power flow publication-title: IEEE Trans. Power Appar. Syst. – volume: 31 start-page: 3358 issue: 5 year: 2016 end-page: 3368 ident: C40 article-title: Practical security boundary-constrained DC optimal power flow for electricity markets publication-title: IEEE Trans. Power Syst. – volume: 20 start-page: 505 year: 2005 end-page: 506 ident: C19 article-title: Modeling network losses using quadratic cones publication-title: IEEE Trans. Power Syst. – volume: 32 start-page: 1359 issue: 2 year: 2017 end-page: 1368 ident: C29 article-title: A sufficient condition on convex relaxation of AC optimal power flow in distribution networks publication-title: IEEE Trans. Power Syst. – volume: 2 start-page: 8 issue: 1 year: 1987 end-page: 16 ident: C10 article-title: Constrained load flow using recursive quadratic programming publication-title: IEEE Trans. Power Syst. – volume: PAS-93 start-page: 745 issue: 3 year: 1974 end-page: 751 ident: C7 article-title: Optimal load flow with steady-state security publication-title: IEEE Trans. Power Appar. Syst. – volume: 60 start-page: 729 issue: 1 year: 2015 end-page: 742 ident: C25 article-title: Equivalent relaxations of optimal power flow publication-title: IEEE Trans. Autom. Control – volume: 17 start-page: 229 issue: 2 year: 2002 end-page: 236 ident: C15 article-title: Optimal power flow by enhanced genetic algorithm publication-title: IEEE Trans. Power Syst. – volume: 30 start-page: 383 issue: 6-7 year: 2008 end-page: 392 ident: C21 article-title: Semidefinite programming for optimal power flow problems publication-title: Int. J. Electr. Power Energy Syst. – volume: 20 start-page: 2051 issue: 4 year: 2005 end-page: 2060 ident: C39 article-title: Sensitivity-based security-constrained OPF market clearing model publication-title: IEEE Trans. Power Syst. – volume: 1 start-page: 1 issue: 2 year: 1986 end-page: 7 ident: C11 article-title: Decoupled optimal load flow using linear or quadratic programming publication-title: IEEE Trans. Power Syst. – volume: PAS-87 start-page: 1866 issue: 10 year: 1968 end-page: 1876 ident: C4 article-title: Optimal power flow solutions publication-title: IEEE Trans. Power Appar. Syst. – volume: 32 start-page: 1721 issue: 3 year: 2017 end-page: 1732 ident: C30 article-title: Non-iterative enhanced SDP relaxations for optimal scheduling of distributed energy storage in distribution systems publication-title: IEEE Trans. Power Syst. – volume: PAS-92 start-page: 31 issue: 1 year: 1973 end-page: 41 ident: C5 article-title: Optimal load flow solution using the Hessian matrix publication-title: IEEE Trans. Power Appar. Syst. – volume: 60 start-page: 72 issue: 1 year: 2015 end-page: 87 ident: C24 article-title: Exact convex relaxation of optimal power flow in radial networks publication-title: IEEE Trans. Autom. Control – volume: 100 start-page: 43 year: 2016 end-page: 49 ident: C28 article-title: Convex relaxation of optimal power flow in distribution feeders with embedded solar power publication-title: Energy Procedia – volume: 33 start-page: 5092 issue: 5 year: 2018 end-page: 5102 ident: C42 article-title: A New voltage stability-constrained optimal power flow model: sufficient condition, SOCP representation, and relaxation publication-title: IEEE Trans. Power Syst. – volume: 8 start-page: 924 issue: 5 year: 2014 end-page: 934 ident: C41 article-title: Preventive control approach for voltage stability improvement using voltage stability constrained optimal power flow based on static line voltage stability indices publication-title: IET Gener. Trans. Distrib. – volume: 26 start-page: 12 issue: 1 year: 2011 end-page: 19 ident: C46 article-title: MATPOWER: steady-state operations, planning and analysis tools for power systems research and education publication-title: IEEE Trans. Power Syst. – volume: 31 start-page: 4167 issue: 5 year: 2016 end-page: 4168 ident: C27 article-title: A compensation-based conic OPF for weakly meshed networks publication-title: IEEE Trans. Power Syst. – volume: 5 start-page: 1467 issue: 3 year: 2018 end-page: 1478 ident: C36 article-title: Online distributed voltage stress minimization by optimal feedback reactive power control publication-title: IEEE Trans. Control Netw. Syst. – volume: PAS-88 start-page: 413 issue: 4 year: 1969 end-page: 422 ident: C3 article-title: A method for optimum scheduling of power and voltage magnitude publication-title: IEEE Trans. Power Appar. Syst. – volume: PAS-93 start-page: 1292 issue: 5 year: 1974 end-page: 1297 ident: C6 article-title: Optimal load flow solution using Lagrangian multipliers and the Hessian matrix publication-title: IEEE Trans. Power Appar. Syst. – volume: 5 start-page: 1467 issue: 3 year: 2018 end-page: 1478 article-title: Online distributed voltage stress minimization by optimal feedback reactive power control publication-title: IEEE Trans. Control Netw. Syst. – volume: 2 start-page: 8 issue: 1 year: 1987 end-page: 16 article-title: Constrained load flow using recursive quadratic programming publication-title: IEEE Trans. Power Syst. – volume: 31 start-page: 3358 issue: 5 year: 2016 end-page: 3368 article-title: Practical security boundary‐constrained DC optimal power flow for electricity markets publication-title: IEEE Trans. Power Syst. – volume: 33 start-page: 3768 issue: 4 year: 2018 end-page: 3778 article-title: Line‐wise power flow and voltage collapse publication-title: IEEE Trans. Power Syst. – volume: 27 start-page: 92 issue: 1 year: 2012 end-page: 107 article-title: Zero duality gap in optimal power flow problem publication-title: IEEE Trans. Power Syst. – volume: 17 start-page: 229 issue: 2 year: 2002 end-page: 236 article-title: Optimal power flow by enhanced genetic algorithm publication-title: IEEE Trans. Power Syst. – volume: 32 start-page: 1359 issue: 2 year: 2017 end-page: 1368 article-title: A sufficient condition on convex relaxation of AC optimal power flow in distribution networks publication-title: IEEE Trans. Power Syst. – start-page: 293 year: 2016 end-page: 313 – volume: PAS‐93 start-page: 1292 issue: 5 year: 1974 end-page: 1297 article-title: Optimal load flow solution using Lagrangian multipliers and the Hessian matrix publication-title: IEEE Trans. Power Appar. Syst. – volume: 60 start-page: 72 issue: 1 year: 2015 end-page: 87 article-title: Exact convex relaxation of optimal power flow in radial networks publication-title: IEEE Trans. Autom. Control – volume: 24 start-page: 563 issue: 7 year: 2002 end-page: 571 article-title: Optimal power flow using particle swarm optimization publication-title: Int. J. Electr. Power Energy Syst. – volume: 20 start-page: 2051 issue: 4 year: 2005 end-page: 2060 article-title: Sensitivity‐based security‐constrained OPF market clearing model publication-title: IEEE Trans. Power Syst. – volume: 8 start-page: 924 issue: 5 year: 2014 end-page: 934 article-title: Preventive control approach for voltage stability improvement using voltage stability constrained optimal power flow based on static line voltage stability indices publication-title: IET Gener. Trans. Distrib. – volume: 30 start-page: 383 issue: 6‐7 year: 2008 end-page: 392 article-title: Semidefinite programming for optimal power flow problems publication-title: Int. J. Electr. Power Energy Syst. – volume: 21 start-page: 1458 issue: 3 year: 2006 end-page: 1459 article-title: Radial distribution load flow using conic programming publication-title: IEEE Trans. Power Syst. – volume: PAS‐87 start-page: 1866 issue: 10 year: 1968 end-page: 1876 article-title: Optimal power flow solutions publication-title: IEEE Trans. Power Appar. Syst. – start-page: 697 year: 1999 end-page: 702 article-title: Semidefinite programming relaxations for {0, 1}‐power dispatch problems – volume: 33 start-page: 2717 issue: 3 year: 2018 end-page: 2732 article-title: Security‐constrained unit commitment for AC–DC grids with generation and load uncertainty publication-title: IEEE Trans. Power Syst. – volume: 33 start-page: 5092 issue: 5 year: 2018 end-page: 5102 article-title: A New voltage stability‐constrained optimal power flow model: sufficient condition, SOCP representation, and relaxation publication-title: IEEE Trans. Power Syst. – volume: 20 start-page: 505 year: 2005 end-page: 506 article-title: Modeling network losses using quadratic cones publication-title: IEEE Trans. Power Syst. – volume: 19 start-page: 287 issue: 5 year: 1997 end-page: 292 article-title: Improved genetic algorithms for optimal power flow under both normal and contingent operation states publication-title: J. Electr. Power Energy Syst. – volume: PAS‐101 start-page: 3722 issue: 10 year: 1982 end-page: 3732 article-title: Large scale optimal power flow publication-title: IEEE Trans. Power Appar. Syst. – volume: PAS‐93 start-page: 745 issue: 3 year: 1974 end-page: 751 article-title: Optimal load flow with steady‐state security publication-title: IEEE Trans. Power Appar. Syst. – volume: 31 start-page: 642 issue: 1 year: 2016 end-page: 651 article-title: Inexactness of SDP relaxation and valid inequalities for optimal power flow publication-title: IEEE Trans. Power Syst. – start-page: 820 year: 1999 end-page: 825 article-title: Optimal power flow incorporating voltage collapse constraints – volume: PAS‐103 start-page: 3267 issue: 11 year: 1984 end-page: 3275 article-title: Quadratically convergent optimal power flow publication-title: IEEE Trans. Power Appar. Syst. – volume: 29 start-page: 978 issue: 2 year: 2014 end-page: 979 article-title: A sufficient condition for global optimality of solutions to the optimal power flow problem publication-title: IEEE Trans. Power Syst. – start-page: 431 year: 1962 end-page: 447 – volume: 9 start-page: 2574 issue: 4 year: 2018 end-page: 2594 article-title: Toward distributed/decentralized DC optimal power flow implementation in future electric power systems publication-title: IEEE Trans. Smart Grid – start-page: 1 year: 2015 end-page: 6 article-title: Distributed security constrained economic dispatch – start-page: 1 year: 2011 end-page: 8 article-title: Simulated annealing metaheuristic to solve the optimal power flow – volume: 18 start-page: 1515 issue: 4 year: 2003 end-page: 1522 article-title: Medium‐term hydrothermal coordination by semidefinite programming publication-title: IEEE Trans. Power Syst. – start-page: 1680 issue: 3 year: 2001 end-page: 1685 article-title: Comparison of voltage security constrained optimal power flow techniques – volume: 1 start-page: 1 issue: 2 year: 1986 end-page: 7 article-title: Decoupled optimal load flow using linear or quadratic programming publication-title: IEEE Trans. Power Syst. – volume: PAS‐88 start-page: 413 issue: 4 year: 1969 end-page: 422 article-title: A method for optimum scheduling of power and voltage magnitude publication-title: IEEE Trans. Power Appar. Syst. – volume: 100 start-page: 43 year: 2016 end-page: 49 article-title: Convex relaxation of optimal power flow in distribution feeders with embedded solar power publication-title: Energy Procedia – volume: PAS‐92 start-page: 31 issue: 1 year: 1973 end-page: 41 article-title: Optimal load flow solution using the Hessian matrix publication-title: IEEE Trans. Power Appar. Syst. – volume: 63 start-page: 650 issue: 5 year: 2016 end-page: 660 article-title: Convex relaxations of optimal power flow problems: an illustrative example publication-title: IEEE Trans. Circuits Syst. I: Regular Papers – volume: 29 start-page: 121 issue: 1 year: 2014 end-page: 131 article-title: Dynamic optimal power flow for active distribution networks publication-title: IEEE Trans. Power Syst. – volume: 32 start-page: 1721 issue: 3 year: 2017 end-page: 1732 article-title: Non‐iterative enhanced SDP relaxations for optimal scheduling of distributed energy storage in distribution systems publication-title: IEEE Trans. Power Syst. – start-page: 1 year: 2016 end-page: 7 article-title: Optimal power flow with wind power control and limited expected risk of overloads – volume: 26 start-page: 12 issue: 1 year: 2011 end-page: 19 article-title: MATPOWER: steady‐state operations, planning and analysis tools for power systems research and education publication-title: IEEE Trans. Power Syst. – volume: 60 start-page: 729 issue: 1 year: 2015 end-page: 742 article-title: Equivalent relaxations of optimal power flow publication-title: IEEE Trans. Autom. Control – volume: 31 start-page: 4167 issue: 5 year: 2016 end-page: 4168 article-title: A compensation‐based conic OPF for weakly meshed networks publication-title: IEEE Trans. Power Syst. – start-page: 266 year: 1997 end-page: 271 article-title: Neural network optimal‐power‐flow – ident: e_1_2_9_33_2 doi: 10.1109/TPWRS.2013.2279263 – ident: e_1_2_9_2_2 – ident: e_1_2_9_15_2 doi: 10.1016/S0142-0615(01)00067-9 – ident: e_1_2_9_12_2 doi: 10.1109/TPWRS.1986.4334888 – ident: e_1_2_9_20_2 doi: 10.1109/TPWRS.2004.841157 – ident: e_1_2_9_38_2 doi: 10.1109/PESS.1999.787422 – ident: e_1_2_9_18_2 doi: 10.1109/PESS.1999.787402 – ident: e_1_2_9_39_2 doi: 10.1109/PESS.2001.970328 – ident: e_1_2_9_42_2 doi: 10.1049/iet-gtd.2013.0724 – ident: e_1_2_9_10_2 doi: 10.1109/TPAS.1984.318568 – ident: e_1_2_9_19_2 doi: 10.1109/TPWRS.2003.811006 – ident: e_1_2_9_27_2 doi: 10.1109/TCSI.2016.2529281 – ident: e_1_2_9_40_2 doi: 10.1109/TPWRS.2005.856985 – ident: e_1_2_9_5_2 doi: 10.1109/TPAS.1968.292150 – ident: e_1_2_9_36_2 doi: 10.1002/9781119115243.ch14 – ident: e_1_2_9_32_2 doi: 10.1109/TPWRS.2015.2402640 – ident: e_1_2_9_26_2 doi: 10.1109/TAC.2014.2357112 – ident: e_1_2_9_4_2 doi: 10.1109/TPAS.1969.292463 – ident: e_1_2_9_9_2 doi: 10.1109/TPAS.1982.317057 – ident: e_1_2_9_17_2 doi: 10.1109/PES.2011.6039543 – ident: e_1_2_9_22_2 doi: 10.1016/j.ijepes.2007.12.003 – ident: e_1_2_9_37_2 doi: 10.1109/TCNS.2017.2722818 – ident: e_1_2_9_43_2 doi: 10.1109/TPWRS.2018.2801286 – ident: e_1_2_9_21_2 doi: 10.1109/TPWRS.2006.879234 – ident: e_1_2_9_6_2 doi: 10.1109/TPAS.1973.293590 – ident: e_1_2_9_25_2 doi: 10.1109/TAC.2014.2332712 – ident: e_1_2_9_23_2 doi: 10.1109/TPWRS.2011.2160974 – ident: e_1_2_9_47_2 doi: 10.1109/TPWRS.2010.2051168 – ident: e_1_2_9_16_2 doi: 10.1109/TPWRS.2002.1007886 – ident: e_1_2_9_28_2 doi: 10.1109/TPWRS.2015.2505508 – ident: e_1_2_9_8_2 doi: 10.1109/TPAS.1974.293972 – ident: e_1_2_9_14_2 doi: 10.1049/cp:19971842 – ident: e_1_2_9_3_2 – volume: 32 start-page: 1359 issue: 2 year: 2017 ident: e_1_2_9_30_2 article-title: A sufficient condition on convex relaxation of AC optimal power flow in distribution networks publication-title: IEEE Trans. Power Syst. – ident: e_1_2_9_31_2 doi: 10.1109/TPWRS.2016.2594298 – ident: e_1_2_9_46_2 doi: 10.1109/TPWRS.2017.2787752 – ident: e_1_2_9_7_2 doi: 10.1109/TPAS.1974.293853 – ident: e_1_2_9_34_2 doi: 10.1109/PSCC.2016.7540907 – ident: e_1_2_9_35_2 doi: 10.1109/TSG.2016.2614904 – ident: e_1_2_9_29_2 doi: 10.1016/j.egypro.2016.10.148 – ident: e_1_2_9_13_2 doi: 10.1016/S0142-0615(96)00051-8 – ident: e_1_2_9_41_2 doi: 10.1109/TPWRS.2015.2504870 – ident: e_1_2_9_45_2 doi: 10.1109/TPWRS.2017.2749303 – ident: e_1_2_9_24_2 doi: 10.1109/TPWRS.2013.2288009 – ident: e_1_2_9_11_2 doi: 10.1109/TPWRS.1987.4335064 – ident: e_1_2_9_44_2 doi: 10.1109/ISGT-Asia.2015.7387167 |
SSID | ssj0055647 |
Score | 2.3099833 |
Snippet | The purpose of optimal power flow (OPF) is to optimise an objective function subject to a set of operating constraints. It remains an active research area... |
SourceID | crossref wiley iet |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1332 |
SubjectTerms | bus voltage magnitudes bus‐wise power balance equations line‐wise power balance equations load flow nonlinear solution space operating constraints optimal power flow optimisation power markets power system power system dynamic stability power system stability Research Article simple line‐wise OPF voltage stability constrained line‐wise |
SummonAdditionalLinks | – databaseName: IET Digital Library (Open Access) dbid: IDLOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60vehBfGJ9kYN4ENY2-643tdYq6qmV3kKyj1KoTdFI8d-7k6TVglRvIZkM4dtl9svOznwInXpGr0D-BmunBGYhS3BsQ46TBoeyAcGEhuLkp2fR6bGHPu9_l0eb4QC0MvBsxw12y21ReQBHt30crpcYF4Iknt_WvQEeZND1M1QXIJm9iqpEypBXUPW-9Qi_WEVk5lzkgmN-xQyxEkrOs5y_OFlYp1b940X2mi8_7U20UfLG4KoY6C20YsfbaP1HN8EddPmSjjIfHgJP-PIjr5-BBvYHIhDWBMAn8XT4boPUh4lX72wCCmmBG6XTXdRr33ZvOriURsCaUo-sU7HSVspmLBIqQiOJoMYmhhk_6w0VQhGjjeG5YkGsjDGQL42JI44rZRndQ5VxOrb7KGgorbUizYTFlklmFdPOSO0oaxjHDa2hxgyISJd9w-HLR1Gev2bNyIMTeewiwC4C7GrofP7KpGiascz4DO7NhnWZIc0H4G-X0V23Ra7b0NpOHvzX_SFa89d5pojQI1TJ3j7ssSccWXJSzqMvLL7QYw priority: 102 providerName: Institution of Engineering and Technology |
Title | Voltage stability constrained line-wise optimal power flow |
URI | http://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2018.5452 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-gtd.2018.5452 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF76uOhBfGJ9lBzEgxBNspvNBrzU1lrF16GV3kKyDynUpthI8eZP8Df6S9zZpMUiVPC62R2SmZ3Zj8zOfAgdaUTPgP7G5opRm7gksWPp-nbi-FA2QAnlUJx8d087PXLT9_sl1JzVwuT9IeY_3MAzTLwGB4-TnIVEg1ptxIHM7OcMmn267BSYssuoCiW2cK_PI4-zcOz71LCM6WPStRllwTy1GZ79ErFwOJX140XIas6c9jpaK8Ci1citu4FKcrSJVn-0ENxC50_pMNMxwdIoz9xzfbc4QD5gfpDCgs_8-vicDibSSnV0eNHixkCMZqlhOt1GvfZlt9mxC0YEm2OsFapYzLgMgjCmCaauCDyKhUwEEXqzC0wp8wQXwjdEBTETQkCaNPaUp3zGJME7qDJKR3IXWQ7jnDMvTEgsSUAkI1yJgCtMHKF8gWvImaki4kW7cHj3YWTS1iSMtHoirb0ItBeB9mroZL5knPfKWDb5GMYKj5ksm4iNCf4WGV11W95FGzraBXv_WrWPVvS4yRZ5-ABVstc3eahBR5bUzaaqo-p16_ah8Q1-bNHA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELW6HIADYhVlzQFxQDI0seM4EpdCKQXanpqq4hIltoMqlaaiQRU3PoFv5EvwJGlFhVQkrok9Ssae8Ysnfg-hU43oOcjfYBFxhqlJQxwo08Zh1YZjA4wyAYeT2x3W9OhD3-4XUH12Fibjh5hvuEFkpPkaAhw2pLMPTgokmQOV4OcE2D5NfgFS2UVUBnSj53a51vOevFlGtm2WCo3pldLEnHFnXt10L38ZWVifivr2ImpNl53GBlrP8aJRywZ4ExXUaAut_WAR3EZXvXiY6LRgaKCX_ur6bghAfSD-oKQBb_r18TkdTJQR6wTxos2NQRvNiIbxdAd5jdvuTRPnoghYEKJ9GvGAC-U4bsBCwkzpWIxIFUoq9XyXhDFuSSGlnWoVBFxKCZXSwIqsyOZcUbKLSqN4pPaQUeVCCG65IQ0UdajiVETSERGhVRnZklRQdeYKX-SM4fDsQz-tXFPX1-7xtfd88J4P3qug83mXcUaXsazxGVzLg2ayrCFJh-Bvk_5dt25dN4DUztn_V68TtNLstlt-677zeIBWdZu0eGSRQ1RKXt_UkcYgSXicT7FvX1bVbw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5sBdGD-MT6zEE8CNEk-8gWvNTW-i4e2lK8hGQfItS2aKR48yf4G_0l7qRpUYQKXpPdIZndeWQn830A-zajF0h_40ojuEt9mrix9pmbeAzbBjjlEpuTbxv8okWvOqwzA9VxL8wIH2Jy4IaWkflrNPCBMqPvTYoYmY86dR9SBPv0xREyZRdgltno5BVhttJu3bfGDpkxnvGM2UDpu4KLcFLcLB__EvIjPBXs7Z9JaxZ16kuwmKeLTmW0vsswo3srsPANRHAVTtr9bmq9gmPzvOxP1zdHYtKH3A9aOfiin-8fw8cX7fStf3iy4gZIjeaYbn-4Bq36WbN64eacCK4kxKrUiFhIHYblmCeE-yoMOFE6UVTZ7a4I5yJQUimWURXEQimFhdI4MIFhQmhK1qHY6_f0BjiekFKKoJzQWNOQakGlUaE0hHrKMEVK4I1VEckcMByfvRtlhWtajqx6Iqu9CLUXofZKcDiZMhihZUwbfIDXcpt5mTaQZEvwt8jovFkLTuuIaRdu_mvWHszd1erRzWXjegvm7ZCsdBSQbSimz696x2YgabKb77AvGPzUjw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voltage+stability+constrained+line%E2%80%90wise+optimal+power+flow&rft.jtitle=IET+generation%2C+transmission+%26+distribution&rft.au=Mohamed%2C+Amr+Adel&rft.au=Venkatesh%2C+Bala&rft.date=2019-04-23&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8687&rft.eissn=1751-8695&rft.volume=13&rft.issue=8&rft.spage=1332&rft.epage=1338&rft_id=info:doi/10.1049%2Fiet-gtd.2018.5452&rft.externalDBID=10.1049%252Fiet-gtd.2018.5452&rft.externalDocID=GTD2BF02317 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8687&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8687&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8687&client=summon |