Particle‐resolved simulations of methane steam reforming in multilayered packed beds

Particle‐resolved CFD simulations of multilayered packed beds containing 30 particles of different particle shapes (trilobe, daisy, hollow cylinder, cylcut, and 7‐hole cylinder) with a tube to particle diameter ratio of 5, were performed to understand the effect of particle shape on pressure drop (Δ...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 64; no. 11; pp. 4162 - 4176
Main Authors G. M., Karthik, Buwa, Vivek V.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.11.2018
American Institute of Chemical Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Particle‐resolved CFD simulations of multilayered packed beds containing 30 particles of different particle shapes (trilobe, daisy, hollow cylinder, cylcut, and 7‐hole cylinder) with a tube to particle diameter ratio of 5, were performed to understand the effect of particle shape on pressure drop (ΔP), dispersion, CH4 conversion and effectiveness factors for methane steam reforming reactions. The effect of different boundary conditions and particle modeling approaches were analyzed in detail. The empirical correlations (Ergun and Zhavoronkov et al.) over‐predicted the ΔP and a modified correlation was developed to predict ΔP for the particles with different shapes. Overall, the externally shaped particles (trilobe and daisy) offered lower ΔP and higher dispersion because of the lower surface area and higher back flow regions, whereas the internally shaped particles (cylcut, hollow, and 7‐hole cylinder) offered higher CH4 conversion and effectiveness factors because of the better access for the reactants. The cylcut‐shape offered the highest CH4 conversion/ΔP. © 2018 American Institute of Chemical Engineers AIChE J, 64: 4162–4176, 2018
AbstractList Particle‐resolved CFD simulations of multilayered packed beds containing 30 particles of different particle shapes (trilobe, daisy, hollow cylinder, cylcut, and 7‐hole cylinder) with a tube to particle diameter ratio of 5, were performed to understand the effect of particle shape on pressure drop (ΔP), dispersion, CH4 conversion and effectiveness factors for methane steam reforming reactions. The effect of different boundary conditions and particle modeling approaches were analyzed in detail. The empirical correlations (Ergun and Zhavoronkov et al.) over‐predicted the ΔP and a modified correlation was developed to predict ΔP for the particles with different shapes. Overall, the externally shaped particles (trilobe and daisy) offered lower ΔP and higher dispersion because of the lower surface area and higher back flow regions, whereas the internally shaped particles (cylcut, hollow, and 7‐hole cylinder) offered higher CH4 conversion and effectiveness factors because of the better access for the reactants. The cylcut‐shape offered the highest CH4 conversion/ΔP. © 2018 American Institute of Chemical Engineers AIChE J, 64: 4162–4176, 2018
Particle‐resolved CFD simulations of multilayered packed beds containing 30 particles of different particle shapes (trilobe, daisy, hollow cylinder, cylcut, and 7‐hole cylinder) with a tube to particle diameter ratio of 5, were performed to understand the effect of particle shape on pressure drop ( ΔP ), dispersion, CH 4 conversion and effectiveness factors for methane steam reforming reactions. The effect of different boundary conditions and particle modeling approaches were analyzed in detail. The empirical correlations (Ergun and Zhavoronkov et al.) over‐predicted the ΔP and a modified correlation was developed to predict ΔP for the particles with different shapes. Overall, the externally shaped particles (trilobe and daisy) offered lower ΔP and higher dispersion because of the lower surface area and higher back flow regions, whereas the internally shaped particles (cylcut, hollow, and 7‐hole cylinder) offered higher CH 4 conversion and effectiveness factors because of the better access for the reactants. The cylcut‐shape offered the highest CH 4 conversion/ ΔP . © 2018 American Institute of Chemical Engineers AIChE J , 64: 4162–4176, 2018
Author Buwa, Vivek V.
G. M., Karthik
Author_xml – sequence: 1
  givenname: Karthik
  surname: G. M.
  fullname: G. M., Karthik
  organization: Indian Institute of Technology Delhi
– sequence: 2
  givenname: Vivek V.
  orcidid: 0000-0003-2335-6379
  surname: Buwa
  fullname: Buwa, Vivek V.
  email: vvbuwa@iitd.ac.in
  organization: Indian Institute of Technology Delhi
BookMark eNp1kE1OwzAQhS1UJEphwQ0isWIRsJ04cZdVxU-lSrAAttYkGYNLEhfbBXXHETgjJ8G0XSFYjWb0vZl575AMetsjISeMnjNK-QWY-pwVmSz2yJCJvEzFmIoBGVJKWRoH7IAcer-IHS8lH5LHO3DB1C1-fXw69LZ9wybxplu1EIztfWJ10mF4hh4THxC6xKG2rjP9U2L6JHLBtLBGF2VLqF9iqbDxR2RfQ-vxeFdH5OHq8n56k85vr2fTyTytsywv0qZiVQbY5FoClUxTLONnUIAoGi055SKnnAtOs3EuOc8rCbpkWshKVKClyEbkdLt36ezrCn1QC7tyfTypOGNCUlbycaQutlTtrPfRgKpN2PgLDkyrGFU_4akYntqEFxVnvxRLZzpw6z_Z3fZ30-L6f1BNZtOt4huu0IFT
CitedBy_id crossref_primary_10_1016_j_ces_2022_117917
crossref_primary_10_1515_revce_2020_0038
crossref_primary_10_1016_j_cej_2023_145445
crossref_primary_10_1016_j_powtec_2023_118664
crossref_primary_10_1016_j_icheatmasstransfer_2021_105109
crossref_primary_10_1016_j_cjche_2021_02_030
crossref_primary_10_1016_j_ces_2024_120235
crossref_primary_10_1016_j_powtec_2019_05_067
crossref_primary_10_1016_j_applthermaleng_2020_115141
crossref_primary_10_1016_j_cej_2021_134299
crossref_primary_10_1016_j_fuproc_2019_106314
crossref_primary_10_1146_annurev_chembioeng_092319_075328
crossref_primary_10_1016_j_ces_2023_118871
crossref_primary_10_1002_aic_18454
crossref_primary_10_1016_j_partic_2023_01_012
crossref_primary_10_1002_aic_17980
crossref_primary_10_1016_j_powtec_2023_119099
crossref_primary_10_1002_aic_18216
crossref_primary_10_1016_j_cej_2019_05_053
crossref_primary_10_1016_j_jgsce_2025_205581
crossref_primary_10_1021_acs_energyfuels_4c01180
crossref_primary_10_1016_j_fuel_2020_119399
crossref_primary_10_1016_j_ces_2024_120181
crossref_primary_10_1016_j_cep_2023_109581
crossref_primary_10_3390_catal10030352
crossref_primary_10_1016_j_fuel_2025_134906
crossref_primary_10_1021_acs_iecr_9b03537
crossref_primary_10_1016_j_cej_2024_153581
crossref_primary_10_1016_j_powtec_2019_05_012
crossref_primary_10_1039_C9RE00240E
crossref_primary_10_1016_j_applthermaleng_2024_124585
crossref_primary_10_1016_j_cej_2018_10_101
crossref_primary_10_1016_j_energy_2023_127988
crossref_primary_10_1016_j_ces_2019_115410
crossref_primary_10_1016_j_cej_2022_136888
crossref_primary_10_1002_aic_18520
crossref_primary_10_1016_j_enconman_2019_04_052
crossref_primary_10_1002_eng2_12093
crossref_primary_10_1021_acs_iecr_1c04955
crossref_primary_10_1016_j_powtec_2021_02_052
crossref_primary_10_1016_j_ces_2020_116305
crossref_primary_10_1016_j_cej_2024_149133
Cites_doi 10.1021/ie100298q
10.1021/ie801548h
10.1205/cherd06226
10.1016/j.cej.2007.03.035
10.2514/3.12149
10.1016/S1385-8947(00)00367-3
10.1016/j.ces.2004.07.088
10.1021/acs.iecr.6b03596
10.1016/j.ces.2017.06.003
10.1021/ie800315d
10.1016/j.ces.2008.01.017
10.1016/j.cej.2008.07.033
10.1021/ie00055a004
10.1002/aic.15520
10.1021/ie202694m
10.1016/j.ces.2014.09.007
10.1016/S0065-2377(06)31005-8
10.1016/S1385-8947(03)00004-4
10.1016/S0009-2509(00)00400-0
10.1016/j.cej.2003.08.026
10.1016/S1385-8947(00)00360-0
10.1021/ie302028s
10.1016/j.partic.2009.04.010
10.1016/j.cej.2012.07.038
10.1016/j.powtec.2014.11.001
10.1016/j.ces.2009.09.059
10.1016/j.powtec.2017.09.009
10.1016/j.cej.2010.10.053
10.1016/S0009-2509(02)00622-X
10.1002/aic.11806
10.1002/aic.15542
10.1021/ie1003619
10.1016/j.ces.2006.11.052
ContentType Journal Article
Copyright 2018 American Institute of Chemical Engineers
Copyright_xml – notice: 2018 American Institute of Chemical Engineers
DBID AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.16386
DatabaseName CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Solid State and Superconductivity Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage 4176
ExternalDocumentID 10_1002_aic_16386
AIC16386
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABJIA
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
7ST
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
L7M
SOI
ID FETCH-LOGICAL-c3346-db1b3aed4f8a081f0e7001a6a56df8202540225203948224b8af71f58b5baf853
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Fri Jul 25 10:50:16 EDT 2025
Thu Apr 24 23:10:16 EDT 2025
Tue Jul 01 01:40:41 EDT 2025
Wed Jan 22 16:34:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3346-db1b3aed4f8a081f0e7001a6a56df8202540225203948224b8af71f58b5baf853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2335-6379
PQID 2115801729
PQPubID 7879
PageCount 15
ParticipantIDs proquest_journals_2115801729
crossref_citationtrail_10_1002_aic_16386
crossref_primary_10_1002_aic_16386
wiley_primary_10_1002_aic_16386_AIC16386
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2018
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle AIChE journal
PublicationYear 2018
Publisher John Wiley & Sons, Inc
American Institute of Chemical Engineers
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Institute of Chemical Engineers
References 2017; 63
2006; 31
2015; 122
1991; 30
2003; 58
2017; 172
2003; 94
2008; 144
2003; 96
2009; 48
2012; 207
2012; 51
2009; 55
2007; 134
2010; 65
2001; 82
2015; 271
1949; 23
2010; 49
1952; 48
2004; 59
2013; 52
2017; 56
2008; 47
2016; 62
2008; 63
2007; 62
2007; 85
2013
2001; 56
2017; 322
2011; 166
1998; 14
1994; 32
2010; 8
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
Ergun S (e_1_2_6_2_1) 1952; 48
Zhavoronkov NM (e_1_2_6_3_1) 1949; 23
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_23_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
Sie ST (e_1_2_6_4_1) 1998; 14
e_1_2_6_26_1
References_xml – volume: 49
  start-page: 9012
  issue: 19
  year: 2010
  end-page: 9025
  article-title: CFD method to couple three‐dimensional transport and reaction inside catalyst particles to the fixed bed flow field
  publication-title: Ind Eng Chem Res
– volume: 32
  start-page: 1598
  issue: 8
  year: 1994
  end-page: 1605
  article-title: Two‐equation eddy‐viscosity turbulence models for engineering applications
  publication-title: AIAA J
– volume: 82
  start-page: 311
  issue: 1–3
  year: 2001
  end-page: 328
  article-title: The kinetics of methane steam reforming over a catalyst
  publication-title: Chem Eng J
– volume: 23
  start-page: 342
  year: 1949
  end-page: 361
  article-title: Hydraulic resistance and density of packing of a granular bed
  publication-title: J Phys Chem
– volume: 144
  start-page: 476
  issue: 3
  year: 2008
  end-page: 482
  article-title: Modeling and CFD simulation of flow behavior and dispersivity through randomly packed bed reactors
  publication-title: Chem Eng J
– volume: 48
  start-page: 4060
  issue: 8
  year: 2009
  end-page: 4074
  article-title: A coupled DEM and CFD simulation of flow field and pressure drop in fixed bed reactor with randomly packed catalyst particles
  publication-title: Ind Eng Chem Res
– volume: 172
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Heat transfer to a gas from densely packed beds of cylindrical particles
  publication-title: Chem Eng Sci
– volume: 56
  start-page: 1713
  issue: 4
  year: 2001
  end-page: 1720
  article-title: CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing
  publication-title: Chem Eng Sci
– volume: 166
  start-page: 324
  issue: 1
  year: 2011
  end-page: 331
  article-title: DEM‐CFD simulations of fixed bed reactors with small tube to particle diameter ratios
  publication-title: Chem Eng J
– volume: 96
  start-page: 3
  issue: 1–3
  year: 2003
  end-page: 13
  article-title: CFD modelling and experimental validation of particle‐to‐fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio
  publication-title: Chem Eng J
– volume: 134
  start-page: 228
  issue: 1
  year: 2007
  end-page: 234
  article-title: Optimum dimensions of shaped steam reforming catalysts
  publication-title: Chem Eng J
– volume: 271
  year: 2015
  article-title: Pressure drop investigations in packings of arbitrary shaped particles
  publication-title: Powder Technol
– volume: 122
  start-page: 197
  year: 2015
  end-page: 209
  article-title: Detailed numerical simulations of catalytic fixed‐bed reactors: heterogeneous dry reforming of methane
  publication-title: Chem Eng Sci
– volume: 48
  start-page: 89
  issue: 2
  year: 1952
  end-page: 94
  article-title: Fluid flow through packed columns
  publication-title: Chem Eng Prog
– volume: 62
  start-page: 4436
  issue: 12
  year: 2016
  end-page: 4452
  article-title: Investigating dry reforming of methane with spatial reactor profiles and particle‐resolved CFD simulations
  publication-title: AIChE J
– volume: 8
  start-page: 37
  issue: 1
  year: 2010
  end-page: 43
  article-title: CFD modeling of pressure drop and drag coefficient in fixed beds: wall effects
  publication-title: Particuology
– volume: 94
  start-page: 29
  issue: 1
  year: 2003
  end-page: 40
  article-title: Use of a heterogeneous two‐dimensional model to improve the primary steam reformer performance
  publication-title: Chem Eng J
– volume: 30
  start-page: 1428
  issue: 7
  year: 1991
  end-page: 1433
  article-title: Effective diffusion coefficients and tortuosity factors for commercial catalysts
  publication-title: Ind Eng Chem Res
– volume: 56
  start-page: 87
  issue: 1
  year: 2017
  end-page: 99
  article-title: Contact modifications for CFD simulations of fixed‐bed reactors: cylindrical particles
  publication-title: Ind Eng Chem Res
– volume: 49
  start-page: 9026
  issue: 19
  year: 2010
  end-page: 9037
  article-title: Flow, transport, and reaction interactions for cylindrical particles with strongly endothermic reactions
  publication-title: Ind Eng Chem Res
– volume: 63
  start-page: 366
  issue: 1
  year: 2017
  end-page: 377
  article-title: Effect of particle shape on fluid flow and heat transfer for methane steam reforming reactions in a packed bed
  publication-title: AIChE J
– volume: 82
  start-page: 231
  issue: 1–3
  year: 2001
  end-page: 246
  article-title: Comparison of CFD simulations to experiment for convective heat transfer in a gas–solid fixed bed
  publication-title: Chem Eng J
– volume: 63
  start-page: 2219
  issue: 8
  year: 2008
  end-page: 2224
  article-title: Wall‐to‐particle heat transfer in steam reformer tubes: CFD comparison of catalyst particles
  publication-title: Chem Eng Sci
– volume: 14
  start-page: 159
  issue: 3
  year: 1998
  article-title: Process development and scale up: II
  publication-title: Catalyst design strategy AIChE J
– volume: 85
  start-page: 1539
  issue: 11
  year: 2007
  end-page: 1552
  article-title: Application of a CFD code (FLUENT) to formulate models of catalytic gas phase reactions in porous catalyst pellets
  publication-title: Chem Eng Res Des
– volume: 47
  start-page: 5966
  issue: 16
  year: 2008
  end-page: 5975
  article-title: CFD study of the influence of catalyst particle design on steam reforming reaction heat effects in narrow packed tubes
  publication-title: Ind Eng Chem Res
– volume: 51
  start-page: 15839
  issue: 49
  year: 2012
  end-page: 15854
  article-title: Flow, transport, and reaction interactions in shaped cylindrical particles for steam methane reforming
  publication-title: Ind Eng Chem Res
– volume: 62
  start-page: 4963
  issue: 18–20
  year: 2007
  end-page: 4966
  article-title: 3D CFD simulations of steam reforming with resolved intraparticle reaction and gradients
  publication-title: Chem Eng Sci
– volume: 52
  start-page: 12041
  issue: 34
  year: 2013
  end-page: 12058
  article-title: A 3D CFD‐DEM methodology for simulating industrial scale packed bed chemical looping combustion reactors
  publication-title: Ind Eng Chem Res
– volume: 58
  start-page: 903
  issue: 3–6
  year: 2003
  end-page: 910
  article-title: Numerical simulations of single phase reacting flows in randomly packed fixed‐bed reactors and experimental validation
  publication-title: Chem Eng Sci
– volume: 31
  start-page: 307
  year: 2006
  end-page: 389
  article-title: Packed tubular reactor modeling and catalyst design using computational fluid dynamics
  publication-title: Adv Chem Eng
– volume: 55
  start-page: 849
  issue: 4
  year: 2009
  end-page: 867
  article-title: Pore‐scale simulations of unsteady flow and heat transfer in tubular fixed beds
  publication-title: AIChE J
– volume: 59
  start-page: 5185
  issue: 22–23
  year: 2004
  end-page: 5191
  article-title: Catalyst design by CFD for heat transfer and reaction in steam reforming
  publication-title: Chem Eng Sci
– volume: 65
  start-page: 1055
  issue: 3
  year: 2010
  end-page: 1064
  article-title: Numerical simulations of transfer and transport properties inside packed beds of spherical particles
  publication-title: Chem Eng Sci
– volume: 322
  start-page: 258
  year: 2017
  end-page: 272
  article-title: An integrated workflow for resolved‐particle packed bed models with complex particle shapes
  publication-title: Powder Technol
– volume: 207
  start-page: 690
  year: 2012
  end-page: 700
  article-title: Comparison of CFD simulations to experiment under methane steam reforming reacting conditions
  publication-title: Chem Eng J
– year: 2013
– ident: e_1_2_6_28_1
  doi: 10.1021/ie100298q
– ident: e_1_2_6_16_1
  doi: 10.1021/ie801548h
– ident: e_1_2_6_27_1
  doi: 10.1205/cherd06226
– ident: e_1_2_6_6_1
  doi: 10.1016/j.cej.2007.03.035
– ident: e_1_2_6_32_1
  doi: 10.2514/3.12149
– volume: 23
  start-page: 342
  year: 1949
  ident: e_1_2_6_3_1
  article-title: Hydraulic resistance and density of packing of a granular bed
  publication-title: J Phys Chem
– ident: e_1_2_6_35_1
  doi: 10.1016/S1385-8947(00)00367-3
– volume: 14
  start-page: 159
  issue: 3
  year: 1998
  ident: e_1_2_6_4_1
  article-title: Process development and scale up: II
  publication-title: Catalyst design strategy AIChE J
– ident: e_1_2_6_11_1
  doi: 10.1016/j.ces.2004.07.088
– ident: e_1_2_6_19_1
  doi: 10.1021/acs.iecr.6b03596
– ident: e_1_2_6_20_1
  doi: 10.1016/j.ces.2017.06.003
– ident: e_1_2_6_21_1
  doi: 10.1021/ie800315d
– ident: e_1_2_6_22_1
  doi: 10.1016/j.ces.2008.01.017
– ident: e_1_2_6_33_1
– ident: e_1_2_6_7_1
  doi: 10.1016/j.cej.2008.07.033
– ident: e_1_2_6_34_1
  doi: 10.1021/ie00055a004
– ident: e_1_2_6_29_1
  doi: 10.1002/aic.15520
– ident: e_1_2_6_13_1
  doi: 10.1021/ie202694m
– ident: e_1_2_6_10_1
  doi: 10.1016/j.ces.2014.09.007
– ident: e_1_2_6_31_1
  doi: 10.1016/S0065-2377(06)31005-8
– ident: e_1_2_6_5_1
  doi: 10.1016/S1385-8947(03)00004-4
– ident: e_1_2_6_14_1
  doi: 10.1016/S0009-2509(00)00400-0
– ident: e_1_2_6_15_1
  doi: 10.1016/j.cej.2003.08.026
– ident: e_1_2_6_36_1
  doi: 10.1016/S1385-8947(00)00360-0
– ident: e_1_2_6_9_1
  doi: 10.1021/ie302028s
– ident: e_1_2_6_38_1
  doi: 10.1016/j.partic.2009.04.010
– volume: 48
  start-page: 89
  issue: 2
  year: 1952
  ident: e_1_2_6_2_1
  article-title: Fluid flow through packed columns
  publication-title: Chem Eng Prog
– ident: e_1_2_6_23_1
  doi: 10.1016/j.cej.2012.07.038
– ident: e_1_2_6_37_1
  doi: 10.1016/j.powtec.2014.11.001
– ident: e_1_2_6_17_1
  doi: 10.1016/j.ces.2009.09.059
– ident: e_1_2_6_24_1
  doi: 10.1016/j.powtec.2017.09.009
– ident: e_1_2_6_18_1
  doi: 10.1016/j.cej.2010.10.053
– ident: e_1_2_6_25_1
  doi: 10.1016/S0009-2509(02)00622-X
– ident: e_1_2_6_8_1
  doi: 10.1002/aic.11806
– ident: e_1_2_6_30_1
  doi: 10.1002/aic.15542
– ident: e_1_2_6_12_1
  doi: 10.1021/ie1003619
– ident: e_1_2_6_26_1
  doi: 10.1016/j.ces.2006.11.052
SSID ssj0012782
Score 2.460173
Snippet Particle‐resolved CFD simulations of multilayered packed beds containing 30 particles of different particle shapes (trilobe, daisy, hollow cylinder, cylcut,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4162
SubjectTerms Boundary conditions
catalyst shape
CFD simulation
Computer simulation
Conversion
Correlation analysis
Cylinders
effectiveness factor
Empirical analysis
Methane
methane steam reforming
Organic chemistry
packed bed
Packed beds
Particle shape
Particle size
Pressure drop
Reforming
Shape effects
Title Particle‐resolved simulations of methane steam reforming in multilayered packed beds
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.16386
https://www.proquest.com/docview/2115801729
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMeXUi968C1Wa1nEg5e0eTfBU6mWKiqiVnoQwm52I6VtIqYV9ORH8DP6SZzJq1UUxFNy2Dx2dzb7m83sfwg5YKaGfjRX3KCp4tKNULjOLEX3pfBN3NwpkijfS7vbM8_6Vr9EjvK9MKk-RLHghiMj-V7jAGc8bsxEQ9nAryNMoNw2xmohEF0X0lGa3nRSpXBwlwETtFxVSNUbxZVf56IZYM5jajLPdFbIff6GaXjJsD6d8Lr_-k288Z9VWCXLGX_SVmowa6Qkw3WyNKdKuEHurjJz-nh7B2c8Gj1LQePBOEv0FdMooJh4moWSoo2MKdQswpiaBzoIaRKiOGIvmASUgkc-hAOXIt4kvc7JbburZOkXFN8wTFsRXOMGk8IMHAbgEKgS_1Ezm1m2CAAcwLUEALB01XBNjEXlDguaWmA53OIsAAzYIuUwCuU2oaYunKZEXR6bIYIxoETHFYwDnVlSlRVymHeE52fa5JgiY-Slqsq6B03lJU1VIftF0cdUkOOnQtW8N71sTMYeuLqWgy6vC49LuuX3G3it03ZysvP3ortkEWjKSTcqVkl58jSVe0AsE14jC63ji_ObWmKin8Pv6Fo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT8JAEMcniAf14NuIom6MBy_FtrSlJF4ISsAHMQaMF9PsdreGAMUImOjJj-Bn9JM40weo0cR4ag_bx-7Odn-znf0PwAG3DPKjhVYOSjot3UhNmNzWTF9J36LNnTKK8m069bZ1dmvfZuA43QsT60NMFtxoZETfaxrgtCB9NFUN5R2_QDThzMAsZfQm5fyT64l4lGGW3FgrHB1mBAUj1RXSzaPJpV9noylifgbVaKapLcFd-o5xgEm3MB6Jgv_yTb7xv5VYhsUEQVkltpkVyKhwFRY-CROuwc1VYlHvr2_ojw96T0qyYaef5PoaskHAKPc0DxUjM-kzrNqAwmruWSdkUZRijz9THlCGTnkXD0LJ4Tq0a6etal1LMjBofrFoOZoUhihyJa3A5cgOga7oNzV3uO3IANkBvUtkANvUi2WLwlGFy4OSEdiusAUPkAQ2IBsOQrUJzDKlW1IkzeNwojCOoOiWJRcIaLbSVQ4O057w_ESenLJk9LxYWNn0sKm8qKlysD8p-hBrcvxUKJ92p5cMy6GH3q7tktdbxsdF_fL7DbxKoxqdbP296B7M1VuXF95Fo3m-DfMIV268bzEP2dHjWO0gwIzEbmSnH_YV6uI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JSwMxFMcfLiB6cBeXqkE8eJl29s7gqbSWuiAiVnoQhmSSSLFOxVZBT34EP6OfxPdmqQsK4mnmkFmSvEx-L_PyfwC73LXIjxZGqKsmLd1IQ9jcM-xYydilzZ0yjfI99Vtt96jjdcZgv9gLk-lDjBbcaGSk32sa4HdSVz5EQ3k3LhNM-OMw6fpmSHkbGucj7SjLrgaZVDj6y8gJViErZNqV0aVfJ6MPwvzMqelE05yDq-IVs_iSm_LDUJTj52_qjf-swzzM5gDKapnFLMCYShZh5pMs4RJcnuX29Pbyit54v_eoJBt0b_NMXwPW14wyT_NEMTKSW4Y161NQzTXrJiyNUezxJ8oCytAlv8GDUHKwDO3mwUW9ZeT5F4zYcVzfkMISDlfS1QFHctCmop_U3OeeLzWSA_qWSACebTqhS8GoIuC6amkvEJ7gGjlgBSaSfqJWgbm2DKqKhHl8TgzGERODUHKBeOYpU63BXtERUZyLk1OOjF6UySrbETZVlDbVGuyMit5lihw_FSoVvRnlg3IQoa_rBeTzhvi4tFt-v0FUO6ynJ-t_L7oNU2eNZnRyeHq8AdNIVkG2abEEE8P7B7WJ9DIUW6mVvgNMc-mR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle%E2%80%90resolved+simulations+of+methane+steam+reforming+in+multilayered+packed+beds&rft.jtitle=AIChE+journal&rft.au=Karthik%2C+G+M&rft.au=Buwa%2C+Vivek+V&rft.date=2018-11-01&rft.pub=American+Institute+of+Chemical+Engineers&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=64&rft.issue=11&rft.spage=4162&rft.epage=4176&rft_id=info:doi/10.1002%2Faic.16386&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon