Particle‐resolved simulations of methane steam reforming in multilayered packed beds
Particle‐resolved CFD simulations of multilayered packed beds containing 30 particles of different particle shapes (trilobe, daisy, hollow cylinder, cylcut, and 7‐hole cylinder) with a tube to particle diameter ratio of 5, were performed to understand the effect of particle shape on pressure drop (Δ...
Saved in:
Published in | AIChE journal Vol. 64; no. 11; pp. 4162 - 4176 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.11.2018
American Institute of Chemical Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Particle‐resolved CFD simulations of multilayered packed beds containing 30 particles of different particle shapes (trilobe, daisy, hollow cylinder, cylcut, and 7‐hole cylinder) with a tube to particle diameter ratio of 5, were performed to understand the effect of particle shape on pressure drop (ΔP), dispersion, CH4 conversion and effectiveness factors for methane steam reforming reactions. The effect of different boundary conditions and particle modeling approaches were analyzed in detail. The empirical correlations (Ergun and Zhavoronkov et al.) over‐predicted the ΔP and a modified correlation was developed to predict ΔP for the particles with different shapes. Overall, the externally shaped particles (trilobe and daisy) offered lower ΔP and higher dispersion because of the lower surface area and higher back flow regions, whereas the internally shaped particles (cylcut, hollow, and 7‐hole cylinder) offered higher CH4 conversion and effectiveness factors because of the better access for the reactants. The cylcut‐shape offered the highest CH4 conversion/ΔP. © 2018 American Institute of Chemical Engineers AIChE J, 64: 4162–4176, 2018 |
---|---|
AbstractList | Particle‐resolved CFD simulations of multilayered packed beds containing 30 particles of different particle shapes (trilobe, daisy, hollow cylinder, cylcut, and 7‐hole cylinder) with a tube to particle diameter ratio of 5, were performed to understand the effect of particle shape on pressure drop (ΔP), dispersion, CH4 conversion and effectiveness factors for methane steam reforming reactions. The effect of different boundary conditions and particle modeling approaches were analyzed in detail. The empirical correlations (Ergun and Zhavoronkov et al.) over‐predicted the ΔP and a modified correlation was developed to predict ΔP for the particles with different shapes. Overall, the externally shaped particles (trilobe and daisy) offered lower ΔP and higher dispersion because of the lower surface area and higher back flow regions, whereas the internally shaped particles (cylcut, hollow, and 7‐hole cylinder) offered higher CH4 conversion and effectiveness factors because of the better access for the reactants. The cylcut‐shape offered the highest CH4 conversion/ΔP. © 2018 American Institute of Chemical Engineers AIChE J, 64: 4162–4176, 2018 Particle‐resolved CFD simulations of multilayered packed beds containing 30 particles of different particle shapes (trilobe, daisy, hollow cylinder, cylcut, and 7‐hole cylinder) with a tube to particle diameter ratio of 5, were performed to understand the effect of particle shape on pressure drop ( ΔP ), dispersion, CH 4 conversion and effectiveness factors for methane steam reforming reactions. The effect of different boundary conditions and particle modeling approaches were analyzed in detail. The empirical correlations (Ergun and Zhavoronkov et al.) over‐predicted the ΔP and a modified correlation was developed to predict ΔP for the particles with different shapes. Overall, the externally shaped particles (trilobe and daisy) offered lower ΔP and higher dispersion because of the lower surface area and higher back flow regions, whereas the internally shaped particles (cylcut, hollow, and 7‐hole cylinder) offered higher CH 4 conversion and effectiveness factors because of the better access for the reactants. The cylcut‐shape offered the highest CH 4 conversion/ ΔP . © 2018 American Institute of Chemical Engineers AIChE J , 64: 4162–4176, 2018 |
Author | Buwa, Vivek V. G. M., Karthik |
Author_xml | – sequence: 1 givenname: Karthik surname: G. M. fullname: G. M., Karthik organization: Indian Institute of Technology Delhi – sequence: 2 givenname: Vivek V. orcidid: 0000-0003-2335-6379 surname: Buwa fullname: Buwa, Vivek V. email: vvbuwa@iitd.ac.in organization: Indian Institute of Technology Delhi |
BookMark | eNp1kE1OwzAQhS1UJEphwQ0isWIRsJ04cZdVxU-lSrAAttYkGYNLEhfbBXXHETgjJ8G0XSFYjWb0vZl575AMetsjISeMnjNK-QWY-pwVmSz2yJCJvEzFmIoBGVJKWRoH7IAcer-IHS8lH5LHO3DB1C1-fXw69LZ9wybxplu1EIztfWJ10mF4hh4THxC6xKG2rjP9U2L6JHLBtLBGF2VLqF9iqbDxR2RfQ-vxeFdH5OHq8n56k85vr2fTyTytsywv0qZiVQbY5FoClUxTLONnUIAoGi055SKnnAtOs3EuOc8rCbpkWshKVKClyEbkdLt36ezrCn1QC7tyfTypOGNCUlbycaQutlTtrPfRgKpN2PgLDkyrGFU_4akYntqEFxVnvxRLZzpw6z_Z3fZ30-L6f1BNZtOt4huu0IFT |
CitedBy_id | crossref_primary_10_1016_j_ces_2022_117917 crossref_primary_10_1515_revce_2020_0038 crossref_primary_10_1016_j_cej_2023_145445 crossref_primary_10_1016_j_powtec_2023_118664 crossref_primary_10_1016_j_icheatmasstransfer_2021_105109 crossref_primary_10_1016_j_cjche_2021_02_030 crossref_primary_10_1016_j_ces_2024_120235 crossref_primary_10_1016_j_powtec_2019_05_067 crossref_primary_10_1016_j_applthermaleng_2020_115141 crossref_primary_10_1016_j_cej_2021_134299 crossref_primary_10_1016_j_fuproc_2019_106314 crossref_primary_10_1146_annurev_chembioeng_092319_075328 crossref_primary_10_1016_j_ces_2023_118871 crossref_primary_10_1002_aic_18454 crossref_primary_10_1016_j_partic_2023_01_012 crossref_primary_10_1002_aic_17980 crossref_primary_10_1016_j_powtec_2023_119099 crossref_primary_10_1002_aic_18216 crossref_primary_10_1016_j_cej_2019_05_053 crossref_primary_10_1016_j_jgsce_2025_205581 crossref_primary_10_1021_acs_energyfuels_4c01180 crossref_primary_10_1016_j_fuel_2020_119399 crossref_primary_10_1016_j_ces_2024_120181 crossref_primary_10_1016_j_cep_2023_109581 crossref_primary_10_3390_catal10030352 crossref_primary_10_1016_j_fuel_2025_134906 crossref_primary_10_1021_acs_iecr_9b03537 crossref_primary_10_1016_j_cej_2024_153581 crossref_primary_10_1016_j_powtec_2019_05_012 crossref_primary_10_1039_C9RE00240E crossref_primary_10_1016_j_applthermaleng_2024_124585 crossref_primary_10_1016_j_cej_2018_10_101 crossref_primary_10_1016_j_energy_2023_127988 crossref_primary_10_1016_j_ces_2019_115410 crossref_primary_10_1016_j_cej_2022_136888 crossref_primary_10_1002_aic_18520 crossref_primary_10_1016_j_enconman_2019_04_052 crossref_primary_10_1002_eng2_12093 crossref_primary_10_1021_acs_iecr_1c04955 crossref_primary_10_1016_j_powtec_2021_02_052 crossref_primary_10_1016_j_ces_2020_116305 crossref_primary_10_1016_j_cej_2024_149133 |
Cites_doi | 10.1021/ie100298q 10.1021/ie801548h 10.1205/cherd06226 10.1016/j.cej.2007.03.035 10.2514/3.12149 10.1016/S1385-8947(00)00367-3 10.1016/j.ces.2004.07.088 10.1021/acs.iecr.6b03596 10.1016/j.ces.2017.06.003 10.1021/ie800315d 10.1016/j.ces.2008.01.017 10.1016/j.cej.2008.07.033 10.1021/ie00055a004 10.1002/aic.15520 10.1021/ie202694m 10.1016/j.ces.2014.09.007 10.1016/S0065-2377(06)31005-8 10.1016/S1385-8947(03)00004-4 10.1016/S0009-2509(00)00400-0 10.1016/j.cej.2003.08.026 10.1016/S1385-8947(00)00360-0 10.1021/ie302028s 10.1016/j.partic.2009.04.010 10.1016/j.cej.2012.07.038 10.1016/j.powtec.2014.11.001 10.1016/j.ces.2009.09.059 10.1016/j.powtec.2017.09.009 10.1016/j.cej.2010.10.053 10.1016/S0009-2509(02)00622-X 10.1002/aic.11806 10.1002/aic.15542 10.1021/ie1003619 10.1016/j.ces.2006.11.052 |
ContentType | Journal Article |
Copyright | 2018 American Institute of Chemical Engineers |
Copyright_xml | – notice: 2018 American Institute of Chemical Engineers |
DBID | AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI |
DOI | 10.1002/aic.16386 |
DatabaseName | CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1547-5905 |
EndPage | 4176 |
ExternalDocumentID | 10_1002_aic_16386 AIC16386 |
Genre | article |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHHS AAHQN AAIHA AAIKC AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 S0X SAMSI SUPJJ TAE TN5 TUS UAO UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABJIA ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT 7ST 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K L7M SOI |
ID | FETCH-LOGICAL-c3346-db1b3aed4f8a081f0e7001a6a56df8202540225203948224b8af71f58b5baf853 |
IEDL.DBID | DR2 |
ISSN | 0001-1541 |
IngestDate | Fri Jul 25 10:50:16 EDT 2025 Thu Apr 24 23:10:16 EDT 2025 Tue Jul 01 01:40:41 EDT 2025 Wed Jan 22 16:34:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3346-db1b3aed4f8a081f0e7001a6a56df8202540225203948224b8af71f58b5baf853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2335-6379 |
PQID | 2115801729 |
PQPubID | 7879 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2115801729 crossref_citationtrail_10_1002_aic_16386 crossref_primary_10_1002_aic_16386 wiley_primary_10_1002_aic_16386_AIC16386 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2018 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: New York |
PublicationTitle | AIChE journal |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc American Institute of Chemical Engineers |
Publisher_xml | – name: John Wiley & Sons, Inc – name: American Institute of Chemical Engineers |
References | 2017; 63 2006; 31 2015; 122 1991; 30 2003; 58 2017; 172 2003; 94 2008; 144 2003; 96 2009; 48 2012; 207 2012; 51 2009; 55 2007; 134 2010; 65 2001; 82 2015; 271 1949; 23 2010; 49 1952; 48 2004; 59 2013; 52 2017; 56 2008; 47 2016; 62 2008; 63 2007; 62 2007; 85 2013 2001; 56 2017; 322 2011; 166 1998; 14 1994; 32 2010; 8 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 Ergun S (e_1_2_6_2_1) 1952; 48 Zhavoronkov NM (e_1_2_6_3_1) 1949; 23 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_23_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 Sie ST (e_1_2_6_4_1) 1998; 14 e_1_2_6_26_1 |
References_xml | – volume: 49 start-page: 9012 issue: 19 year: 2010 end-page: 9025 article-title: CFD method to couple three‐dimensional transport and reaction inside catalyst particles to the fixed bed flow field publication-title: Ind Eng Chem Res – volume: 32 start-page: 1598 issue: 8 year: 1994 end-page: 1605 article-title: Two‐equation eddy‐viscosity turbulence models for engineering applications publication-title: AIAA J – volume: 82 start-page: 311 issue: 1–3 year: 2001 end-page: 328 article-title: The kinetics of methane steam reforming over a catalyst publication-title: Chem Eng J – volume: 23 start-page: 342 year: 1949 end-page: 361 article-title: Hydraulic resistance and density of packing of a granular bed publication-title: J Phys Chem – volume: 144 start-page: 476 issue: 3 year: 2008 end-page: 482 article-title: Modeling and CFD simulation of flow behavior and dispersivity through randomly packed bed reactors publication-title: Chem Eng J – volume: 48 start-page: 4060 issue: 8 year: 2009 end-page: 4074 article-title: A coupled DEM and CFD simulation of flow field and pressure drop in fixed bed reactor with randomly packed catalyst particles publication-title: Ind Eng Chem Res – volume: 172 start-page: 1 year: 2017 end-page: 12 article-title: Heat transfer to a gas from densely packed beds of cylindrical particles publication-title: Chem Eng Sci – volume: 56 start-page: 1713 issue: 4 year: 2001 end-page: 1720 article-title: CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing publication-title: Chem Eng Sci – volume: 166 start-page: 324 issue: 1 year: 2011 end-page: 331 article-title: DEM‐CFD simulations of fixed bed reactors with small tube to particle diameter ratios publication-title: Chem Eng J – volume: 96 start-page: 3 issue: 1–3 year: 2003 end-page: 13 article-title: CFD modelling and experimental validation of particle‐to‐fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio publication-title: Chem Eng J – volume: 134 start-page: 228 issue: 1 year: 2007 end-page: 234 article-title: Optimum dimensions of shaped steam reforming catalysts publication-title: Chem Eng J – volume: 271 year: 2015 article-title: Pressure drop investigations in packings of arbitrary shaped particles publication-title: Powder Technol – volume: 122 start-page: 197 year: 2015 end-page: 209 article-title: Detailed numerical simulations of catalytic fixed‐bed reactors: heterogeneous dry reforming of methane publication-title: Chem Eng Sci – volume: 48 start-page: 89 issue: 2 year: 1952 end-page: 94 article-title: Fluid flow through packed columns publication-title: Chem Eng Prog – volume: 62 start-page: 4436 issue: 12 year: 2016 end-page: 4452 article-title: Investigating dry reforming of methane with spatial reactor profiles and particle‐resolved CFD simulations publication-title: AIChE J – volume: 8 start-page: 37 issue: 1 year: 2010 end-page: 43 article-title: CFD modeling of pressure drop and drag coefficient in fixed beds: wall effects publication-title: Particuology – volume: 94 start-page: 29 issue: 1 year: 2003 end-page: 40 article-title: Use of a heterogeneous two‐dimensional model to improve the primary steam reformer performance publication-title: Chem Eng J – volume: 30 start-page: 1428 issue: 7 year: 1991 end-page: 1433 article-title: Effective diffusion coefficients and tortuosity factors for commercial catalysts publication-title: Ind Eng Chem Res – volume: 56 start-page: 87 issue: 1 year: 2017 end-page: 99 article-title: Contact modifications for CFD simulations of fixed‐bed reactors: cylindrical particles publication-title: Ind Eng Chem Res – volume: 49 start-page: 9026 issue: 19 year: 2010 end-page: 9037 article-title: Flow, transport, and reaction interactions for cylindrical particles with strongly endothermic reactions publication-title: Ind Eng Chem Res – volume: 63 start-page: 366 issue: 1 year: 2017 end-page: 377 article-title: Effect of particle shape on fluid flow and heat transfer for methane steam reforming reactions in a packed bed publication-title: AIChE J – volume: 82 start-page: 231 issue: 1–3 year: 2001 end-page: 246 article-title: Comparison of CFD simulations to experiment for convective heat transfer in a gas–solid fixed bed publication-title: Chem Eng J – volume: 63 start-page: 2219 issue: 8 year: 2008 end-page: 2224 article-title: Wall‐to‐particle heat transfer in steam reformer tubes: CFD comparison of catalyst particles publication-title: Chem Eng Sci – volume: 14 start-page: 159 issue: 3 year: 1998 article-title: Process development and scale up: II publication-title: Catalyst design strategy AIChE J – volume: 85 start-page: 1539 issue: 11 year: 2007 end-page: 1552 article-title: Application of a CFD code (FLUENT) to formulate models of catalytic gas phase reactions in porous catalyst pellets publication-title: Chem Eng Res Des – volume: 47 start-page: 5966 issue: 16 year: 2008 end-page: 5975 article-title: CFD study of the influence of catalyst particle design on steam reforming reaction heat effects in narrow packed tubes publication-title: Ind Eng Chem Res – volume: 51 start-page: 15839 issue: 49 year: 2012 end-page: 15854 article-title: Flow, transport, and reaction interactions in shaped cylindrical particles for steam methane reforming publication-title: Ind Eng Chem Res – volume: 62 start-page: 4963 issue: 18–20 year: 2007 end-page: 4966 article-title: 3D CFD simulations of steam reforming with resolved intraparticle reaction and gradients publication-title: Chem Eng Sci – volume: 52 start-page: 12041 issue: 34 year: 2013 end-page: 12058 article-title: A 3D CFD‐DEM methodology for simulating industrial scale packed bed chemical looping combustion reactors publication-title: Ind Eng Chem Res – volume: 58 start-page: 903 issue: 3–6 year: 2003 end-page: 910 article-title: Numerical simulations of single phase reacting flows in randomly packed fixed‐bed reactors and experimental validation publication-title: Chem Eng Sci – volume: 31 start-page: 307 year: 2006 end-page: 389 article-title: Packed tubular reactor modeling and catalyst design using computational fluid dynamics publication-title: Adv Chem Eng – volume: 55 start-page: 849 issue: 4 year: 2009 end-page: 867 article-title: Pore‐scale simulations of unsteady flow and heat transfer in tubular fixed beds publication-title: AIChE J – volume: 59 start-page: 5185 issue: 22–23 year: 2004 end-page: 5191 article-title: Catalyst design by CFD for heat transfer and reaction in steam reforming publication-title: Chem Eng Sci – volume: 65 start-page: 1055 issue: 3 year: 2010 end-page: 1064 article-title: Numerical simulations of transfer and transport properties inside packed beds of spherical particles publication-title: Chem Eng Sci – volume: 322 start-page: 258 year: 2017 end-page: 272 article-title: An integrated workflow for resolved‐particle packed bed models with complex particle shapes publication-title: Powder Technol – volume: 207 start-page: 690 year: 2012 end-page: 700 article-title: Comparison of CFD simulations to experiment under methane steam reforming reacting conditions publication-title: Chem Eng J – year: 2013 – ident: e_1_2_6_28_1 doi: 10.1021/ie100298q – ident: e_1_2_6_16_1 doi: 10.1021/ie801548h – ident: e_1_2_6_27_1 doi: 10.1205/cherd06226 – ident: e_1_2_6_6_1 doi: 10.1016/j.cej.2007.03.035 – ident: e_1_2_6_32_1 doi: 10.2514/3.12149 – volume: 23 start-page: 342 year: 1949 ident: e_1_2_6_3_1 article-title: Hydraulic resistance and density of packing of a granular bed publication-title: J Phys Chem – ident: e_1_2_6_35_1 doi: 10.1016/S1385-8947(00)00367-3 – volume: 14 start-page: 159 issue: 3 year: 1998 ident: e_1_2_6_4_1 article-title: Process development and scale up: II publication-title: Catalyst design strategy AIChE J – ident: e_1_2_6_11_1 doi: 10.1016/j.ces.2004.07.088 – ident: e_1_2_6_19_1 doi: 10.1021/acs.iecr.6b03596 – ident: e_1_2_6_20_1 doi: 10.1016/j.ces.2017.06.003 – ident: e_1_2_6_21_1 doi: 10.1021/ie800315d – ident: e_1_2_6_22_1 doi: 10.1016/j.ces.2008.01.017 – ident: e_1_2_6_33_1 – ident: e_1_2_6_7_1 doi: 10.1016/j.cej.2008.07.033 – ident: e_1_2_6_34_1 doi: 10.1021/ie00055a004 – ident: e_1_2_6_29_1 doi: 10.1002/aic.15520 – ident: e_1_2_6_13_1 doi: 10.1021/ie202694m – ident: e_1_2_6_10_1 doi: 10.1016/j.ces.2014.09.007 – ident: e_1_2_6_31_1 doi: 10.1016/S0065-2377(06)31005-8 – ident: e_1_2_6_5_1 doi: 10.1016/S1385-8947(03)00004-4 – ident: e_1_2_6_14_1 doi: 10.1016/S0009-2509(00)00400-0 – ident: e_1_2_6_15_1 doi: 10.1016/j.cej.2003.08.026 – ident: e_1_2_6_36_1 doi: 10.1016/S1385-8947(00)00360-0 – ident: e_1_2_6_9_1 doi: 10.1021/ie302028s – ident: e_1_2_6_38_1 doi: 10.1016/j.partic.2009.04.010 – volume: 48 start-page: 89 issue: 2 year: 1952 ident: e_1_2_6_2_1 article-title: Fluid flow through packed columns publication-title: Chem Eng Prog – ident: e_1_2_6_23_1 doi: 10.1016/j.cej.2012.07.038 – ident: e_1_2_6_37_1 doi: 10.1016/j.powtec.2014.11.001 – ident: e_1_2_6_17_1 doi: 10.1016/j.ces.2009.09.059 – ident: e_1_2_6_24_1 doi: 10.1016/j.powtec.2017.09.009 – ident: e_1_2_6_18_1 doi: 10.1016/j.cej.2010.10.053 – ident: e_1_2_6_25_1 doi: 10.1016/S0009-2509(02)00622-X – ident: e_1_2_6_8_1 doi: 10.1002/aic.11806 – ident: e_1_2_6_30_1 doi: 10.1002/aic.15542 – ident: e_1_2_6_12_1 doi: 10.1021/ie1003619 – ident: e_1_2_6_26_1 doi: 10.1016/j.ces.2006.11.052 |
SSID | ssj0012782 |
Score | 2.460173 |
Snippet | Particle‐resolved CFD simulations of multilayered packed beds containing 30 particles of different particle shapes (trilobe, daisy, hollow cylinder, cylcut,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4162 |
SubjectTerms | Boundary conditions catalyst shape CFD simulation Computer simulation Conversion Correlation analysis Cylinders effectiveness factor Empirical analysis Methane methane steam reforming Organic chemistry packed bed Packed beds Particle shape Particle size Pressure drop Reforming Shape effects |
Title | Particle‐resolved simulations of methane steam reforming in multilayered packed beds |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.16386 https://www.proquest.com/docview/2115801729 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMeXUi968C1Wa1nEg5e0eTfBU6mWKiqiVnoQwm52I6VtIqYV9ORH8DP6SZzJq1UUxFNy2Dx2dzb7m83sfwg5YKaGfjRX3KCp4tKNULjOLEX3pfBN3NwpkijfS7vbM8_6Vr9EjvK9MKk-RLHghiMj-V7jAGc8bsxEQ9nAryNMoNw2xmohEF0X0lGa3nRSpXBwlwETtFxVSNUbxZVf56IZYM5jajLPdFbIff6GaXjJsD6d8Lr_-k288Z9VWCXLGX_SVmowa6Qkw3WyNKdKuEHurjJz-nh7B2c8Gj1LQePBOEv0FdMooJh4moWSoo2MKdQswpiaBzoIaRKiOGIvmASUgkc-hAOXIt4kvc7JbburZOkXFN8wTFsRXOMGk8IMHAbgEKgS_1Ezm1m2CAAcwLUEALB01XBNjEXlDguaWmA53OIsAAzYIuUwCuU2oaYunKZEXR6bIYIxoETHFYwDnVlSlRVymHeE52fa5JgiY-Slqsq6B03lJU1VIftF0cdUkOOnQtW8N71sTMYeuLqWgy6vC49LuuX3G3it03ZysvP3ortkEWjKSTcqVkl58jSVe0AsE14jC63ji_ObWmKin8Pv6Fo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT8JAEMcniAf14NuIom6MBy_FtrSlJF4ISsAHMQaMF9PsdreGAMUImOjJj-Bn9JM40weo0cR4ag_bx-7Odn-znf0PwAG3DPKjhVYOSjot3UhNmNzWTF9J36LNnTKK8m069bZ1dmvfZuA43QsT60NMFtxoZETfaxrgtCB9NFUN5R2_QDThzMAsZfQm5fyT64l4lGGW3FgrHB1mBAUj1RXSzaPJpV9noylifgbVaKapLcFd-o5xgEm3MB6Jgv_yTb7xv5VYhsUEQVkltpkVyKhwFRY-CROuwc1VYlHvr2_ojw96T0qyYaef5PoaskHAKPc0DxUjM-kzrNqAwmruWSdkUZRijz9THlCGTnkXD0LJ4Tq0a6etal1LMjBofrFoOZoUhihyJa3A5cgOga7oNzV3uO3IANkBvUtkANvUi2WLwlGFy4OSEdiusAUPkAQ2IBsOQrUJzDKlW1IkzeNwojCOoOiWJRcIaLbSVQ4O057w_ESenLJk9LxYWNn0sKm8qKlysD8p-hBrcvxUKJ92p5cMy6GH3q7tktdbxsdF_fL7DbxKoxqdbP296B7M1VuXF95Fo3m-DfMIV268bzEP2dHjWO0gwIzEbmSnH_YV6uI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JSwMxFMcfLiB6cBeXqkE8eJl29s7gqbSWuiAiVnoQhmSSSLFOxVZBT34EP6OfxPdmqQsK4mnmkFmSvEx-L_PyfwC73LXIjxZGqKsmLd1IQ9jcM-xYydilzZ0yjfI99Vtt96jjdcZgv9gLk-lDjBbcaGSk32sa4HdSVz5EQ3k3LhNM-OMw6fpmSHkbGucj7SjLrgaZVDj6y8gJViErZNqV0aVfJ6MPwvzMqelE05yDq-IVs_iSm_LDUJTj52_qjf-swzzM5gDKapnFLMCYShZh5pMs4RJcnuX29Pbyit54v_eoJBt0b_NMXwPW14wyT_NEMTKSW4Y161NQzTXrJiyNUezxJ8oCytAlv8GDUHKwDO3mwUW9ZeT5F4zYcVzfkMISDlfS1QFHctCmop_U3OeeLzWSA_qWSACebTqhS8GoIuC6amkvEJ7gGjlgBSaSfqJWgbm2DKqKhHl8TgzGERODUHKBeOYpU63BXtERUZyLk1OOjF6UySrbETZVlDbVGuyMit5lihw_FSoVvRnlg3IQoa_rBeTzhvi4tFt-v0FUO6ynJ-t_L7oNU2eNZnRyeHq8AdNIVkG2abEEE8P7B7WJ9DIUW6mVvgNMc-mR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle%E2%80%90resolved+simulations+of+methane+steam+reforming+in+multilayered+packed+beds&rft.jtitle=AIChE+journal&rft.au=Karthik%2C+G+M&rft.au=Buwa%2C+Vivek+V&rft.date=2018-11-01&rft.pub=American+Institute+of+Chemical+Engineers&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=64&rft.issue=11&rft.spage=4162&rft.epage=4176&rft_id=info:doi/10.1002%2Faic.16386&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |