Learning using privileged information for HRRP-based radar target recognition
A novel machine learning method named extended support vector data description with negative examples (ESVDD-neg) is developed to classify the fast Fourier transform-magnitude feature of complex high-resolution range profile (HRRP), motivated by the problem of radar automatic target recognition. The...
Saved in:
Published in | IET signal processing Vol. 12; no. 2; pp. 188 - 197 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
The Institution of Engineering and Technology
01.04.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1751-9675 1751-9683 1751-9683 |
DOI | 10.1049/iet-spr.2016.0625 |
Cover
Abstract | A novel machine learning method named extended support vector data description with negative examples (ESVDD-neg) is developed to classify the fast Fourier transform-magnitude feature of complex high-resolution range profile (HRRP), motivated by the problem of radar automatic target recognition. The proposed method not only inherits the close non-linear boundary advantage of support vector data description with negative examples model but also incorporates a new learning paradigm named learning using privileged information into the model. It leads to the appealing application with no assumptions regarding the distribution of data and needs less training samples and prior information. Besides, the second order central moment is selected as privileged information for better recognition performance, weakening the effect of translation sensitivity, and the normalisation contributes to eliminating the amplitude sensitivity. Hence, there will be a remarkable improvement of recognition accuracy not only with small training dataset but also under the condition of low signal-to-noise ratio. Numerical experiments based on two publicly UCI datasets and HRRPs of four aircrafts demonstrate the feasibility and superiority of the proposed method. The noise robust ESVDD-neg is ideal for HRRP-based radar target recognition. |
---|---|
AbstractList | A novel machine learning method named extended support vector data description with negative examples (ESVDD-neg) is developed to classify the fast Fourier transform-magnitude feature of complex high-resolution range profile (HRRP), motivated by the problem of radar automatic target recognition. The proposed method not only inherits the close non-linear boundary advantage of support vector data description with negative examples model but also incorporates a new learning paradigm named learning using privileged information into the model. It leads to the appealing application with no assumptions regarding the distribution of data and needs less training samples and prior information. Besides, the second order central moment is selected as privileged information for better recognition performance, weakening the effect of translation sensitivity, and the normalisation contributes to eliminating the amplitude sensitivity. Hence, there will be a remarkable improvement of recognition accuracy not only with small training dataset but also under the condition of low signal-to-noise ratio. Numerical experiments based on two publicly UCI datasets and HRRPs of four aircrafts demonstrate the feasibility and superiority of the proposed method. The noise robust ESVDD-neg is ideal for HRRP-based radar target recognition. |
Author | Guo, Yu Fu, Qiang Kan, Yingzhi Xiao, Huaitie |
Author_xml | – sequence: 1 givenname: Yu surname: Guo fullname: Guo, Yu organization: Science and Technology on Automatic Target Recognition Laboratory, National University of Defense Technology, 47 Yanwachi Street, Changsha, People's Republic of China – sequence: 2 givenname: Huaitie surname: Xiao fullname: Xiao, Huaitie email: htxiao@126.com organization: Science and Technology on Automatic Target Recognition Laboratory, National University of Defense Technology, 47 Yanwachi Street, Changsha, People's Republic of China – sequence: 3 givenname: Yingzhi surname: Kan fullname: Kan, Yingzhi organization: Science and Technology on Automatic Target Recognition Laboratory, National University of Defense Technology, 47 Yanwachi Street, Changsha, People's Republic of China – sequence: 4 givenname: Qiang surname: Fu fullname: Fu, Qiang organization: Science and Technology on Automatic Target Recognition Laboratory, National University of Defense Technology, 47 Yanwachi Street, Changsha, People's Republic of China |
BookMark | eNqFkN9OwjAUhxuDiYA-gHd7gWH_b3inRIRkRoN63Zx13VICHWmHhre3E-OFF3jTc5L-vp6eb4QGrnUGoWuCJwTz6Y01XRp2fkIxkRMsqThDQ5IJkk5lzga_fSYu0CiENcZCCkKH6Kkw4J11TbIP_bnz9sNuTGOqxLq69VvobOuS2CWL1eolLSHEKw8V-KQD35gu8Ua3jbN97hKd17AJ5uqnjtH7_OFttkiL58fl7K5INWNcplPNc4Cs5mUGAgjLayFpZkrKja4141PJNLCKV0CJKfPSAOZQlboyWFBW1WyMsuO72rcheFMrbbvvn3Ye7EYRrHorKlpR0YrqrajeSiTJHzJuvAV_OMncHpnPaObwP6BelwW9n0fHmYxweoT72LrdexfFnBj2BQH1jP0 |
CitedBy_id | crossref_primary_10_18287_2412_6179_CO_789 crossref_primary_10_1007_s00500_023_07884_9 crossref_primary_10_1007_s13042_022_01709_1 crossref_primary_10_1016_j_ins_2022_08_088 crossref_primary_10_1186_s13638_018_1224_0 crossref_primary_10_3390_s19235112 crossref_primary_10_1016_j_ins_2021_05_069 crossref_primary_10_1049_iet_rsn_2018_5598 crossref_primary_10_1109_ACCESS_2019_2891594 crossref_primary_10_1016_j_sigpro_2024_109391 crossref_primary_10_3390_s19092008 crossref_primary_10_1080_09205071_2021_1923068 |
Cites_doi | 10.1016/j.patcog.2010.08.025 10.1023/B:MACH.0000008084.60811.49 10.1109/TSP.2010.2088391 10.1016/j.jbi.2014.12.009 10.1049/iet-spr.2009.0301 10.1049/iet-spr.2010.0311 10.1016/j.ins.2011.04.025 10.1016/j.neucom.2014.03.072 10.1016/j.patrec.2016.08.017 10.1016/j.knosys.2015.02.009 10.1016/j.neunet.2009.06.042 10.1109/JSEN.2015.2501850 10.1016/j.neunet.2014.02.002 10.1016/j.knosys.2015.09.025 10.1049/el.2014.4483 10.1109/TNN.2010.2053853 10.1007/s10044-015-0455-5 10.1109/TSMCB.2009.2013962 10.1109/TIP.2014.2324290 10.1049/iet-spr.2013.0281 10.1016/j.eswa.2013.11.025 10.1049/iet-rsn.2015.0244 10.1109/TAMD.2015.2463113 10.1109/LGRS.2012.2213234 10.1016/j.patcog.2008.07.003 10.1109/TSP.2012.2191965 10.1007/s10044-011-0208-z 10.1016/S0167-8655(99)00087-2 |
ContentType | Journal Article |
Copyright | The Institution of Engineering and Technology 2021 The Institution of Engineering and Technology |
Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2021 The Institution of Engineering and Technology |
DBID | AAYXX CITATION |
DOI | 10.1049/iet-spr.2016.0625 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-9683 |
EndPage | 197 |
ExternalDocumentID | 10_1049_iet_spr_2016_0625 SIL2BF00576 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61372159 – fundername: National Natural Science Foundation of China funderid: 61372159 |
GroupedDBID | 0R 24P 29I 4.4 5GY 6IK 8FE 8FG AAJGR ABJCF ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BFFAM BGLVJ CS3 DU5 EBS EJD HCIFZ HZ IFIPE IPLJI J9A JAVBF K6V K7- L6V LAI LOTEE LXI LXU M43 M7S NADUK NXXTH O9- OCL P2P P62 PTHSS RIE RNS RUI S0W UNMZH UNR ZZ .DC 0R~ 0ZK 1OC AAHHS AAHJG ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AIAGR AIWBW AJBDE ALUQN AVUZU CCPQU GROUPED_DOAJ HZ~ IAO IGS ITC MCNEO OK1 ~ZZ AAYXX CITATION IDLOA PHGZM PHGZT |
ID | FETCH-LOGICAL-c3346-9c48aa7f4b7a5a138f5627eb24ecfc34963ca3d4da21eb8bea04adbcde0523df3 |
IEDL.DBID | IDLOA |
ISSN | 1751-9675 1751-9683 |
IngestDate | Thu Apr 24 23:03:41 EDT 2025 Tue Jul 01 02:39:43 EDT 2025 Wed Jan 22 16:31:10 EST 2025 Tue Jan 05 21:45:54 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | fast Fourier transforms fast Fourier transform-magnitude feature classification ESVDD-neg UCI datasets extended support vector data description-with-negative examples HRRP-based radar target recognition machine learning method low signal-to-noise ratio radar signal processing signal classification translation sensitivity radar computing radar target recognition learning paradigm close nonlinear boundary advantage complex high-resolution range profile learning (artificial intelligence) radar automatic target recognition problem |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3346-9c48aa7f4b7a5a138f5627eb24ecfc34963ca3d4da21eb8bea04adbcde0523df3 |
PageCount | 10 |
ParticipantIDs | wiley_primary_10_1049_iet_spr_2016_0625_SIL2BF00576 crossref_citationtrail_10_1049_iet_spr_2016_0625 crossref_primary_10_1049_iet_spr_2016_0625 iet_journals_10_1049_iet_spr_2016_0625 |
ProviderPackageCode | RUI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180400 April 2018 2018-04-00 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 4 year: 2018 text: 20180400 |
PublicationDecade | 2010 |
PublicationTitle | IET signal processing |
PublicationYear | 2018 |
Publisher | The Institution of Engineering and Technology |
Publisher_xml | – name: The Institution of Engineering and Technology |
References | Du, L.; He, H.; Zhao, L. (C5) 2016; 16 Vapnik, V.; Izmailov, R. (C22) 2015; 16 Li, Y.; Zhang, L.; Liu, B. (C2) 2011; 5 Liu, Y.; Liu, Y.; Chen, Y. (C10) 2010; 21 Jo, Q.H.; Chang, J.H.; Shin, J.W. (C13) 2008; 3 Pan, M.; Du, L.; Wang, P. (C6) 2013; 10 Guo, S.M.; Chen, L.C.; Tsai, J.S.H. (C8) 2009; 42 Wang, Z.; Zhao, Z.; Weng, S. (C16) 2015; 149 Chen, G.; Zhang, X.; Wang, Z.J. (C9) 2015; 90 Lei, L.; Xiao-Dan, W.; Xi, L. (C12) 2016; 19 Shi, L.; Wang, P.; Liu, H. (C4) 2011; 59 Cha, M.; Kim, J.S.; Baek, J. (C19) 2014; 41 Mu, T.; Nandi, A.K. (C28) 2009; 39 Tax, D.M.J.; Duin, R.P.W. (C14) 1999; 20 Shrivastava, A.; Patel, V.M.; Chelappa, R. (C27) 2014; 23 Forghani, Y.; Sadoghi Yazdi, H.; Effati, S. (C18) 2012; 15 Zhai, S.; Jiang, T. (C3) 2014; 8 Wang, S.; Zhu, Y.; Yue, L. (C23) 2015; 7 Tomar, D.; Agarwal, S. (C29) 2015; 81 Manikandan, J.; Venkataramani, B. (C30) 2011; 5 Feyereisl, J.; Aickelin, U. (C24) 2012; 194 Vapnik, V.; Vashist, A. (C20) 2009; 22 Liu, J.; Fang, N.; Xie, Y.J. (C7) 2016; 10 Zhang, W. (C25) 2015; 51 Du, L.; Liu, H.; Wang, P. (C1) 2012; 60 Huang, G.; Chen, H.; Zhou, Z. (C17) 2011; 44 Cui, M.; Prasad, S. (C26) 2016; 84 Cao, J.; Zhang, L.; Wang, B. (C11) 2015; 53 Tax, D.M.J.; Duin, R.P.W. (C15) 2004; 54 Lapin, M.; Heinb, M.; Schiele, B. (C21) 2014; 53 2012; 60 2009; 22 2015; 16 2009; 42 2016; 19 2015; 149 2015; 51 2015; 53 2016; 10 1999; 20 2011; 59 2008; 3 2012; 15 2014; 41 2016; 16 2011; 5 2015; 7 2014; 23 2004; 54 2012; 194 2010; 21 2013; 10 2015; 81 2011; 44 2016; 84 2015; 90 2014; 8 2014; 53 2009; 39 Cha M. (e_1_2_8_20_2) 2014; 41 e_1_2_8_29_2 Manikandan J. (e_1_2_8_31_2) 2011; 5 e_1_2_8_25_2 e_1_2_8_26_2 Wang S. (e_1_2_8_24_2) 2015; 7 Jo Q.H. (e_1_2_8_14_2) 2008; 3 Du L. (e_1_2_8_2_2) 2012; 60 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_8_2 Huang G. (e_1_2_8_18_2) 2011; 44 e_1_2_8_21_2 Shi L. (e_1_2_8_5_2) 2011; 59 e_1_2_8_22_2 e_1_2_8_16_2 e_1_2_8_17_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_15_2 Pan M. (e_1_2_8_7_2) 2013; 10 Vapnik V. (e_1_2_8_23_2) 2015; 16 Guo S.M. (e_1_2_8_9_2) 2009; 42 Shrivastava A. (e_1_2_8_28_2) 2014; 23 e_1_2_8_10_2 Tomar D. (e_1_2_8_30_2) 2015; 81 e_1_2_8_11_2 Lei L. (e_1_2_8_13_2) 2016; 19 Cui M. (e_1_2_8_27_2) 2016; 84 |
References_xml | – volume: 5 start-page: 506 year: 2011 end-page: 513 ident: C30 article-title: Evaluation of multiclass support vector machine classifiers using optimum threshold-based pruning technique publication-title: IET Signal Process. – volume: 20 start-page: 1191 year: 1999 end-page: 1199 ident: C14 article-title: Support vector domain description publication-title: Pattern Recognit. Lett. – volume: 5 start-page: 632 issue: 7 year: 2011 end-page: 642 ident: C2 article-title: Stepped-frequency inverse synthetic aperture radar imaging based on adjacent pulse correlation integration and coherent processing publication-title: IET Signal Process. – volume: 59 start-page: 610 issue: 2 year: 2011 end-page: 617 ident: C4 article-title: Radar HRRP statistical recognition with local factor analysis by automatic Bayesian ying-Yang harmony learning publication-title: IEEE Trans. Signal Process. – volume: 54 start-page: 45 year: 2004 end-page: 66 ident: C15 article-title: Support vector data description publication-title: Mach. Learn. – volume: 7 start-page: 189 issue: 3 year: 2015 end-page: 200 ident: C23 article-title: Emotion recognition with the help of privileged information publication-title: IEEE Trans. Auton. Ment. Dev. – volume: 21 start-page: 1296 issue: 8 year: 2010 end-page: 1313 ident: C10 article-title: Fast support vector data descriptions for novelty detection publication-title: IEEE Trans. Neural Netw. – volume: 10 start-page: 370 issue: 2 year: 2016 end-page: 378 ident: C7 article-title: Multi-scale feature-based fuzzy-support vector machine classification using radar range profiles publication-title: IET Radar Sonar Navig. – volume: 41 start-page: 3343 issue: 7 year: 2014 end-page: 3350 ident: C19 article-title: Density weighted support vector data description publication-title: Expert Syst. Appl. – volume: 60 start-page: 3546 issue: 7 year: 2012 end-page: 3559 ident: C1 article-title: Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size publication-title: IEEE Trans. Signal Process. – volume: 51 start-page: 1075 issue: 14 year: 2015 end-page: 1076 ident: C25 article-title: Support vector data description using privileged information publication-title: Electron. Lett. – volume: 8 start-page: 458 issue: 5 year: 2014 end-page: 466 ident: C3 article-title: Sparse representation-based feature extraction combined with support vector machine for sense-through-foliage target detection and recognition publication-title: IET Signal Process. – volume: 149 start-page: 100 year: 2015 end-page: 105 ident: C16 article-title: Solving one-class problem with outlier examples by SVM publication-title: Neurocomputing – volume: 90 start-page: 129 year: 2015 end-page: 137 ident: C9 article-title: Robust support vector data description for outlier detection with noise or uncertain data publication-title: Knowl.-Based Syst. – volume: 194 start-page: 4 year: 2012 end-page: 23 ident: C24 article-title: Privileged information for data clustering publication-title: Inf. Sci. – volume: 19 start-page: 163 year: 2016 end-page: 171 ident: C12 article-title: Hierarchical error-correcting output codes based on SVDD publication-title: Pattern Anal. Appl. – volume: 23 start-page: 3013 issue: 7 year: 2014 end-page: 3024 ident: C27 article-title: Multiple kernel learning for sparse representation-based classification publication-title: IEEE Trans. Image Process. – volume: 81 start-page: 131 year: 2015 end-page: 147 ident: C29 article-title: A comparison on multi-class classification methods based on least squares twin support vector machine publication-title: Knowl.-Based Syst. – volume: 10 start-page: 558 issue: 3 year: 2013 end-page: 562 ident: C6 article-title: Noise-robust modification method for Gaussian-based models with application to radar HRRP recognition publication-title: IEEE Geosci. Remote Sensing – volume: 3 start-page: 205 year: 2008 end-page: 210 ident: C13 article-title: Statistical model-based voice activity detection using support vector machine publication-title: IET Signal Process. – volume: 16 start-page: 1743 issue: 6 year: 2016 end-page: 1753 ident: C5 article-title: Noise robust radar HRRP target recognition based on scatterer matching algorithm publication-title: IEEE Sens. J. – volume: 16 start-page: 2023 year: 2015 end-page: 2049 ident: C22 article-title: Learning using privileged information: similarity control and knowledge transfer publication-title: J. Mach. Learn. Res. – volume: 15 start-page: 237 issue: 3 year: 2012 end-page: 247 ident: C18 article-title: An extension to fuzzy support vector data description (FSVDD*) publication-title: Pattern Anal. Appl. – volume: 39 start-page: 1206 issue: 5 year: 2009 end-page: 1216 ident: C28 article-title: Multiclass classification based on extended support vector data description publication-title: IEEE Trans. Syst. Man Cybern. B – volume: 22 start-page: 544 issue: 5-6 year: 2009 end-page: 557 ident: C20 article-title: A new learning paradigm: learning using privileged information publication-title: Neural Netw. – volume: 42 start-page: 77 issue: 1 year: 2009 end-page: 83 ident: C8 article-title: A boundary method for outlier detection based on support vector domain description publication-title: Pattern Recognit. – volume: 84 start-page: 120 year: 2016 end-page: 126 ident: C26 article-title: Sparse representation-based classification: orthogonal least squares or orthogonal matching pursuit ? publication-title: Pattern Recognit. Lett. – volume: 53 start-page: 95 year: 2014 end-page: 108 ident: C21 article-title: Learning using privileged information: SVM+ and weighted SVM publication-title: Neural Netw. – volume: 53 start-page: 381 year: 2015 end-page: 389 ident: C11 article-title: A fast gene selection method for multi-cancer classification using multiple support vector data description publication-title: J. Biomed. Inf. – volume: 44 start-page: 320 issue: 2 year: 2011 end-page: 329 ident: C17 article-title: Two-class support vector data description publication-title: Pattern Recognit. – volume: 10 start-page: 558 issue: 3 year: 2013 end-page: 562 article-title: Noise‐robust modification method for Gaussian‐based models with application to radar HRRP recognition publication-title: IEEE Geosci. Remote Sensing – volume: 15 start-page: 237 issue: 3 year: 2012 end-page: 247 article-title: An extension to fuzzy support vector data description (FSVDD*) publication-title: Pattern Anal. Appl. – volume: 60 start-page: 3546 issue: 7 year: 2012 end-page: 3559 article-title: Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size publication-title: IEEE Trans. Signal Process. – volume: 8 start-page: 458 issue: 5 year: 2014 end-page: 466 article-title: Sparse representation‐based feature extraction combined with support vector machine for sense‐through‐foliage target detection and recognition publication-title: IET Signal Process. – volume: 16 start-page: 1743 issue: 6 year: 2016 end-page: 1753 article-title: Noise robust radar HRRP target recognition based on scatterer matching algorithm publication-title: IEEE Sens. J. – volume: 59 start-page: 610 issue: 2 year: 2011 end-page: 617 article-title: Radar HRRP statistical recognition with local factor analysis by automatic Bayesian ying‐Yang harmony learning publication-title: IEEE Trans. Signal Process. – volume: 194 start-page: 4 year: 2012 end-page: 23 article-title: Privileged information for data clustering publication-title: Inf. Sci. – volume: 54 start-page: 45 year: 2004 end-page: 66 article-title: Support vector data description publication-title: Mach. Learn. – volume: 7 start-page: 189 issue: 3 year: 2015 end-page: 200 article-title: Emotion recognition with the help of privileged information publication-title: IEEE Trans. Auton. Ment. Dev. – volume: 5 start-page: 632 issue: 7 year: 2011 end-page: 642 article-title: Stepped‐frequency inverse synthetic aperture radar imaging based on adjacent pulse correlation integration and coherent processing publication-title: IET Signal Process. – volume: 53 start-page: 381 year: 2015 end-page: 389 article-title: A fast gene selection method for multi‐cancer classification using multiple support vector data description publication-title: J. Biomed. Inf. – volume: 90 start-page: 129 year: 2015 end-page: 137 article-title: Robust support vector data description for outlier detection with noise or uncertain data publication-title: Knowl.‐Based Syst. – volume: 20 start-page: 1191 year: 1999 end-page: 1199 article-title: Support vector domain description publication-title: Pattern Recognit. Lett. – volume: 149 start-page: 100 year: 2015 end-page: 105 article-title: Solving one‐class problem with outlier examples by SVM publication-title: Neurocomputing – volume: 53 start-page: 95 year: 2014 end-page: 108 article-title: Learning using privileged information: SVM+ and weighted SVM publication-title: Neural Netw. – volume: 41 start-page: 3343 issue: 7 year: 2014 end-page: 3350 article-title: Density weighted support vector data description publication-title: Expert Syst. Appl. – volume: 81 start-page: 131 year: 2015 end-page: 147 article-title: A comparison on multi‐class classification methods based on least squares twin support vector machine publication-title: Knowl.‐Based Syst. – volume: 3 start-page: 205 year: 2008 end-page: 210 article-title: Statistical model‐based voice activity detection using support vector machine publication-title: IET Signal Process. – volume: 39 start-page: 1206 issue: 5 year: 2009 end-page: 1216 article-title: Multiclass classification based on extended support vector data description publication-title: IEEE Trans. Syst. Man Cybern. B – volume: 42 start-page: 77 issue: 1 year: 2009 end-page: 83 article-title: A boundary method for outlier detection based on support vector domain description publication-title: Pattern Recognit. – volume: 10 start-page: 370 issue: 2 year: 2016 end-page: 378 article-title: Multi‐scale feature‐based fuzzy‐support vector machine classification using radar range profiles publication-title: IET Radar Sonar Navig. – volume: 5 start-page: 506 year: 2011 end-page: 513 article-title: Evaluation of multiclass support vector machine classifiers using optimum threshold‐based pruning technique publication-title: IET Signal Process. – volume: 22 start-page: 544 issue: 5‐6 year: 2009 end-page: 557 article-title: A new learning paradigm: learning using privileged information publication-title: Neural Netw. – volume: 16 start-page: 2023 year: 2015 end-page: 2049 article-title: Learning using privileged information: similarity control and knowledge transfer publication-title: J. Mach. Learn. Res. – volume: 84 start-page: 120 year: 2016 end-page: 126 article-title: Sparse representation‐based classification: orthogonal least squares or orthogonal matching pursuit ? publication-title: Pattern Recognit. Lett. – volume: 19 start-page: 163 year: 2016 end-page: 171 article-title: Hierarchical error‐correcting output codes based on SVDD publication-title: Pattern Anal. Appl. – volume: 44 start-page: 320 issue: 2 year: 2011 end-page: 329 article-title: Two‐class support vector data description publication-title: Pattern Recognit. – volume: 23 start-page: 3013 issue: 7 year: 2014 end-page: 3024 article-title: Multiple kernel learning for sparse representation‐based classification publication-title: IEEE Trans. Image Process. – volume: 21 start-page: 1296 issue: 8 year: 2010 end-page: 1313 article-title: Fast support vector data descriptions for novelty detection publication-title: IEEE Trans. Neural Netw. – volume: 51 start-page: 1075 issue: 14 year: 2015 end-page: 1076 article-title: Support vector data description using privileged information publication-title: Electron. Lett. – volume: 44 start-page: 320 issue: 2 year: 2011 ident: e_1_2_8_18_2 article-title: Two‐class support vector data description publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2010.08.025 – ident: e_1_2_8_16_2 doi: 10.1023/B:MACH.0000008084.60811.49 – volume: 59 start-page: 610 issue: 2 year: 2011 ident: e_1_2_8_5_2 article-title: Radar HRRP statistical recognition with local factor analysis by automatic Bayesian ying‐Yang harmony learning publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2088391 – ident: e_1_2_8_12_2 doi: 10.1016/j.jbi.2014.12.009 – ident: e_1_2_8_3_2 doi: 10.1049/iet-spr.2009.0301 – volume: 5 start-page: 506 year: 2011 ident: e_1_2_8_31_2 article-title: Evaluation of multiclass support vector machine classifiers using optimum threshold‐based pruning technique publication-title: IET Signal Process. doi: 10.1049/iet-spr.2010.0311 – ident: e_1_2_8_25_2 doi: 10.1016/j.ins.2011.04.025 – ident: e_1_2_8_17_2 doi: 10.1016/j.neucom.2014.03.072 – volume: 84 start-page: 120 year: 2016 ident: e_1_2_8_27_2 article-title: Sparse representation‐based classification: orthogonal least squares or orthogonal matching pursuit ? publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2016.08.017 – volume: 81 start-page: 131 year: 2015 ident: e_1_2_8_30_2 article-title: A comparison on multi‐class classification methods based on least squares twin support vector machine publication-title: Knowl.‐Based Syst. doi: 10.1016/j.knosys.2015.02.009 – ident: e_1_2_8_21_2 doi: 10.1016/j.neunet.2009.06.042 – ident: e_1_2_8_6_2 doi: 10.1109/JSEN.2015.2501850 – ident: e_1_2_8_22_2 doi: 10.1016/j.neunet.2014.02.002 – ident: e_1_2_8_10_2 doi: 10.1016/j.knosys.2015.09.025 – ident: e_1_2_8_26_2 doi: 10.1049/el.2014.4483 – ident: e_1_2_8_11_2 doi: 10.1109/TNN.2010.2053853 – volume: 19 start-page: 163 year: 2016 ident: e_1_2_8_13_2 article-title: Hierarchical error‐correcting output codes based on SVDD publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-015-0455-5 – ident: e_1_2_8_29_2 doi: 10.1109/TSMCB.2009.2013962 – volume: 23 start-page: 3013 issue: 7 year: 2014 ident: e_1_2_8_28_2 article-title: Multiple kernel learning for sparse representation‐based classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2324290 – volume: 3 start-page: 205 year: 2008 ident: e_1_2_8_14_2 article-title: Statistical model‐based voice activity detection using support vector machine publication-title: IET Signal Process. – ident: e_1_2_8_4_2 doi: 10.1049/iet-spr.2013.0281 – volume: 41 start-page: 3343 issue: 7 year: 2014 ident: e_1_2_8_20_2 article-title: Density weighted support vector data description publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.11.025 – ident: e_1_2_8_8_2 doi: 10.1049/iet-rsn.2015.0244 – volume: 16 start-page: 2023 year: 2015 ident: e_1_2_8_23_2 article-title: Learning using privileged information: similarity control and knowledge transfer publication-title: J. Mach. Learn. Res. – volume: 7 start-page: 189 issue: 3 year: 2015 ident: e_1_2_8_24_2 article-title: Emotion recognition with the help of privileged information publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2463113 – volume: 10 start-page: 558 issue: 3 year: 2013 ident: e_1_2_8_7_2 article-title: Noise‐robust modification method for Gaussian‐based models with application to radar HRRP recognition publication-title: IEEE Geosci. Remote Sensing doi: 10.1109/LGRS.2012.2213234 – volume: 42 start-page: 77 issue: 1 year: 2009 ident: e_1_2_8_9_2 article-title: A boundary method for outlier detection based on support vector domain description publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2008.07.003 – volume: 60 start-page: 3546 issue: 7 year: 2012 ident: e_1_2_8_2_2 article-title: Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2191965 – ident: e_1_2_8_19_2 doi: 10.1007/s10044-011-0208-z – ident: e_1_2_8_15_2 doi: 10.1016/S0167-8655(99)00087-2 |
SSID | ssj0056512 |
Score | 2.1930175 |
Snippet | A novel machine learning method named extended support vector data description with negative examples (ESVDD-neg) is developed to classify the fast Fourier... A novel machine learning method named extended support vector data description with negative examples (ESVDD‐neg) is developed to classify the fast Fourier... |
SourceID | crossref wiley iet |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 188 |
SubjectTerms | close nonlinear boundary advantage complex high‐resolution range profile ESVDD‐neg extended support vector data description‐with‐negative examples fast Fourier transforms fast Fourier transform‐magnitude feature classification HRRP‐based radar target recognition learning (artificial intelligence) learning paradigm low signal‐to‐noise ratio machine learning method radar automatic target recognition problem radar computing radar signal processing radar target recognition Research Article signal classification translation sensitivity UCI datasets |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvehBfGJ9sQfxIESb7GaTHLVYqvgo1UJvYfaRUpC0pNWzP8Hf6C9xJ0mDRajgLWx29zCzu_Ptzsw3hJwaNDugIwfNh8M903SkZOC4rvKV8Y0QHJOTHx5Fp8_vBv6gRlrzXJiCH6J6cMOdkZ_XuMFBFlVILKi1ShyZmTOdIKWnKy6aFsavkFVMscX6DR7vzo9jC1gKl2eA9eRFyCrXZnT5a4oF47Rify9C1tzmtDfJRgkW6VWh3S1SM-k2Wf9BIbhDnkqC1CHFCPYhnWSj9xE-BWhacqKi5Kn9op1er_v18Yl2S9MMNGS0iAOnVRTRON0l_fbNS6vjlEUSHMUYF06keAgQJFwG4IPLwsQimsDel7lRiUI6eKaAaa7Bc40MpYEmBy2VNvggrBO2R-rpODX7hCoQrmbChKHiXFsVgtASEmVvKIZ7gdcgzbl0YlUyiGMhi9c492TzKLYSi61AYxRojAJtkPNqyKSgz1jW-Qzbyk00XdaR5Vr5e8r4-fbeu25jyq04-NeoQ7Jm28MiWOeI1GfZmzm2OGQmT_J19g0gbNkN priority: 102 providerName: Wiley-Blackwell |
Title | Learning using privileged information for HRRP-based radar target recognition |
URI | http://digital-library.theiet.org/content/journals/10.1049/iet-spr.2016.0625 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-spr.2016.0625 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4IXPRgfEZ8kD0YDyYrbXe7LUd8EDBgCFpjvDTb3S0hMYUg-vvdoQUlMeht027nMNPsfDuPbwDODbodqRsU3QflnnFokjBJXVf5yvhGCI7Nyb0H0Y74_Yv_8t0erUdDnJVBFxE3jJabvPMAS7ftOVwvdJwPJLH4tm430PcJcnu64sqxeL4EFS8InLAMlc5tF69Y-clssUue_QxwtLxFysss5y9CVvxUyb5eRa9z99Page0CN5Jmbuhd2DDZHmz9YBPch17BlTokWMw-JJPp6HOEUQFNCnpUNAKxK9IeDPoUHZgmU6nllOQF4WRZTjTODiBq3T3dtGkxLYEqxrigDcVDKYOUJ4H0pcvC1EKbwF6cuVGpQl54piTTXEvPNUmYGOlwqROlDUaGdcoOoZyNM3MEREnhaiZMGCrOtbWlFDqRqbJXFcO9wKuCs9BNrAoqcZxo8RbPU9q8EVt9xVadMaozRnVW4XL5ySTn0Vi3-QKfLSy9biOb2-RvkfFjp-tdt7D3Vhz_V_wJbNp1mBfqnEJ5Nv0wZxaDzJIalDzer0Gl-Ry9RrXiR_sCQOzbyw |
linkProvider | Institution of Engineering and Technology |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOQAHxCrK6gPigBRIYsdJjmxVCm2pSiv1Fjm2U1VCaZUWznwC38iX4EnSiAqpSNyiZOzDm9jzPB4_I3SuIOxw6RsQPgxqK9OIIsINyxKOUI5ijMLh5FabBX36OHAGFXQ_PwuT60OUCTcYGdl8DQMcEtL5gpOCSOZIzYzpBDQ9LXZlah6_glap5udQ2GfTznw-1owl3_N04UJ55pFyb9O__tXFQnRa0Z8XOWsWdOpbaLNgi_gmd-82qqhkB2380BDcRc-FQuoQQwn7EE_S0fsIcgESF6KoAD3WTzjodjtfH58QuCROueQpzgvBcVlGNE72UL_-0LsLjOKWBEMQQpnhC-px7sY0crnDLeLFmtK4esFMlYgF6METwYmkktuWirxIcZNyGQmpICMsY7KPqsk4UQcIC84sSZjyPEGp1D7kTEY8FnqJoqjt2jVkztEJRSEhDjdZvIbZVjb1Q41YqAENAdAQAK2hy7LJJNfPWGZ8Ae-KUTRdZkgyr_zdZfjSaNq3dThzyw7_1eoMrQW9VjNsNtpPR2hd23h55c4xqs7SN3WiScksOs3-uW_xxdyA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA67gOiDeMV5zYP4IFTXJk27xzktm845ppPhS0mTdAxkK9302Z_gb_SXmNN2xSFM8K2kJ3k4Jyfn5Fy-IHSqwOxwWTPAfBjUUlUjCAg3TFPYQtmKMQrNyfcd1uzT24E9KKDGvBcmxYfIA26gGcl5DQoeyTC9b1LAyBypmTGNANLTZBdV7cYXURnQ8vRmL9ef-y_9-YGsXZY06enAi_LMJXlys3b5a5EF81TUvxed1sTqeBtoPXMXcT2V7yYqqPEWWvsBIriNHjKI1CGGGvYhjuLR-wiCARJnqKjAe6y_cLPX6359fILlkjjmksc4rQTHeR3RZLyD-t7NU6NpZM8kGIIQyoyaoC7nTkgDh9vcJG6ofRpH35ipEqEAQHgiOJFUcstUgRsoXqVcBkIqCAnLkOyi0ngyVnsIC85MSZhyXUGp1ELkTAY8FPqOoqjlWBVUnXPHFxmGODxl8eonuWxa8zXHfM1QHxjqA0Mr6DyfEqUAGsuIz2AsU6PpMkKSSOXvJf3HVtu68qDplu3_a9YJWulee3671bk7QKuaxE0rdw5RaRa_qSPtlMyC42zTfQPZf91v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+using+privileged+information+for+HRRP%E2%80%90based+radar+target+recognition&rft.jtitle=IET+signal+processing&rft.au=Guo%2C+Yu&rft.au=Xiao%2C+Huaitie&rft.au=Kan%2C+Yingzhi&rft.au=Fu%2C+Qiang&rft.date=2018-04-01&rft.issn=1751-9675&rft.eissn=1751-9683&rft.volume=12&rft.issue=2&rft.spage=188&rft.epage=197&rft_id=info:doi/10.1049%2Fiet-spr.2016.0625&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_spr_2016_0625 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon |