Learning using privileged information for HRRP-based radar target recognition

A novel machine learning method named extended support vector data description with negative examples (ESVDD-neg) is developed to classify the fast Fourier transform-magnitude feature of complex high-resolution range profile (HRRP), motivated by the problem of radar automatic target recognition. The...

Full description

Saved in:
Bibliographic Details
Published inIET signal processing Vol. 12; no. 2; pp. 188 - 197
Main Authors Guo, Yu, Xiao, Huaitie, Kan, Yingzhi, Fu, Qiang
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 01.04.2018
Subjects
Online AccessGet full text
ISSN1751-9675
1751-9683
1751-9683
DOI10.1049/iet-spr.2016.0625

Cover

Abstract A novel machine learning method named extended support vector data description with negative examples (ESVDD-neg) is developed to classify the fast Fourier transform-magnitude feature of complex high-resolution range profile (HRRP), motivated by the problem of radar automatic target recognition. The proposed method not only inherits the close non-linear boundary advantage of support vector data description with negative examples model but also incorporates a new learning paradigm named learning using privileged information into the model. It leads to the appealing application with no assumptions regarding the distribution of data and needs less training samples and prior information. Besides, the second order central moment is selected as privileged information for better recognition performance, weakening the effect of translation sensitivity, and the normalisation contributes to eliminating the amplitude sensitivity. Hence, there will be a remarkable improvement of recognition accuracy not only with small training dataset but also under the condition of low signal-to-noise ratio. Numerical experiments based on two publicly UCI datasets and HRRPs of four aircrafts demonstrate the feasibility and superiority of the proposed method. The noise robust ESVDD-neg is ideal for HRRP-based radar target recognition.
AbstractList A novel machine learning method named extended support vector data description with negative examples (ESVDD-neg) is developed to classify the fast Fourier transform-magnitude feature of complex high-resolution range profile (HRRP), motivated by the problem of radar automatic target recognition. The proposed method not only inherits the close non-linear boundary advantage of support vector data description with negative examples model but also incorporates a new learning paradigm named learning using privileged information into the model. It leads to the appealing application with no assumptions regarding the distribution of data and needs less training samples and prior information. Besides, the second order central moment is selected as privileged information for better recognition performance, weakening the effect of translation sensitivity, and the normalisation contributes to eliminating the amplitude sensitivity. Hence, there will be a remarkable improvement of recognition accuracy not only with small training dataset but also under the condition of low signal-to-noise ratio. Numerical experiments based on two publicly UCI datasets and HRRPs of four aircrafts demonstrate the feasibility and superiority of the proposed method. The noise robust ESVDD-neg is ideal for HRRP-based radar target recognition.
Author Guo, Yu
Fu, Qiang
Kan, Yingzhi
Xiao, Huaitie
Author_xml – sequence: 1
  givenname: Yu
  surname: Guo
  fullname: Guo, Yu
  organization: Science and Technology on Automatic Target Recognition Laboratory, National University of Defense Technology, 47 Yanwachi Street, Changsha, People's Republic of China
– sequence: 2
  givenname: Huaitie
  surname: Xiao
  fullname: Xiao, Huaitie
  email: htxiao@126.com
  organization: Science and Technology on Automatic Target Recognition Laboratory, National University of Defense Technology, 47 Yanwachi Street, Changsha, People's Republic of China
– sequence: 3
  givenname: Yingzhi
  surname: Kan
  fullname: Kan, Yingzhi
  organization: Science and Technology on Automatic Target Recognition Laboratory, National University of Defense Technology, 47 Yanwachi Street, Changsha, People's Republic of China
– sequence: 4
  givenname: Qiang
  surname: Fu
  fullname: Fu, Qiang
  organization: Science and Technology on Automatic Target Recognition Laboratory, National University of Defense Technology, 47 Yanwachi Street, Changsha, People's Republic of China
BookMark eNqFkN9OwjAUhxuDiYA-gHd7gWH_b3inRIRkRoN63Zx13VICHWmHhre3E-OFF3jTc5L-vp6eb4QGrnUGoWuCJwTz6Y01XRp2fkIxkRMsqThDQ5IJkk5lzga_fSYu0CiENcZCCkKH6Kkw4J11TbIP_bnz9sNuTGOqxLq69VvobOuS2CWL1eolLSHEKw8V-KQD35gu8Ua3jbN97hKd17AJ5uqnjtH7_OFttkiL58fl7K5INWNcplPNc4Cs5mUGAgjLayFpZkrKja4141PJNLCKV0CJKfPSAOZQlboyWFBW1WyMsuO72rcheFMrbbvvn3Ye7EYRrHorKlpR0YrqrajeSiTJHzJuvAV_OMncHpnPaObwP6BelwW9n0fHmYxweoT72LrdexfFnBj2BQH1jP0
CitedBy_id crossref_primary_10_18287_2412_6179_CO_789
crossref_primary_10_1007_s00500_023_07884_9
crossref_primary_10_1007_s13042_022_01709_1
crossref_primary_10_1016_j_ins_2022_08_088
crossref_primary_10_1186_s13638_018_1224_0
crossref_primary_10_3390_s19235112
crossref_primary_10_1016_j_ins_2021_05_069
crossref_primary_10_1049_iet_rsn_2018_5598
crossref_primary_10_1109_ACCESS_2019_2891594
crossref_primary_10_1016_j_sigpro_2024_109391
crossref_primary_10_3390_s19092008
crossref_primary_10_1080_09205071_2021_1923068
Cites_doi 10.1016/j.patcog.2010.08.025
10.1023/B:MACH.0000008084.60811.49
10.1109/TSP.2010.2088391
10.1016/j.jbi.2014.12.009
10.1049/iet-spr.2009.0301
10.1049/iet-spr.2010.0311
10.1016/j.ins.2011.04.025
10.1016/j.neucom.2014.03.072
10.1016/j.patrec.2016.08.017
10.1016/j.knosys.2015.02.009
10.1016/j.neunet.2009.06.042
10.1109/JSEN.2015.2501850
10.1016/j.neunet.2014.02.002
10.1016/j.knosys.2015.09.025
10.1049/el.2014.4483
10.1109/TNN.2010.2053853
10.1007/s10044-015-0455-5
10.1109/TSMCB.2009.2013962
10.1109/TIP.2014.2324290
10.1049/iet-spr.2013.0281
10.1016/j.eswa.2013.11.025
10.1049/iet-rsn.2015.0244
10.1109/TAMD.2015.2463113
10.1109/LGRS.2012.2213234
10.1016/j.patcog.2008.07.003
10.1109/TSP.2012.2191965
10.1007/s10044-011-0208-z
10.1016/S0167-8655(99)00087-2
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-spr.2016.0625
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9683
EndPage 197
ExternalDocumentID 10_1049_iet_spr_2016_0625
SIL2BF00576
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61372159
– fundername: National Natural Science Foundation of China
  funderid: 61372159
GroupedDBID 0R
24P
29I
4.4
5GY
6IK
8FE
8FG
AAJGR
ABJCF
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
CS3
DU5
EBS
EJD
HCIFZ
HZ
IFIPE
IPLJI
J9A
JAVBF
K6V
K7-
L6V
LAI
LOTEE
LXI
LXU
M43
M7S
NADUK
NXXTH
O9-
OCL
P2P
P62
PTHSS
RIE
RNS
RUI
S0W
UNMZH
UNR
ZZ
.DC
0R~
0ZK
1OC
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AIAGR
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
IGS
ITC
MCNEO
OK1
~ZZ
AAYXX
CITATION
IDLOA
PHGZM
PHGZT
ID FETCH-LOGICAL-c3346-9c48aa7f4b7a5a138f5627eb24ecfc34963ca3d4da21eb8bea04adbcde0523df3
IEDL.DBID IDLOA
ISSN 1751-9675
1751-9683
IngestDate Thu Apr 24 23:03:41 EDT 2025
Tue Jul 01 02:39:43 EDT 2025
Wed Jan 22 16:31:10 EST 2025
Tue Jan 05 21:45:54 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords fast Fourier transforms
fast Fourier transform-magnitude feature classification
ESVDD-neg
UCI datasets
extended support vector data description-with-negative examples
HRRP-based radar target recognition
machine learning method
low signal-to-noise ratio
radar signal processing
signal classification
translation sensitivity
radar computing
radar target recognition
learning paradigm
close nonlinear boundary advantage
complex high-resolution range profile
learning (artificial intelligence)
radar automatic target recognition problem
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3346-9c48aa7f4b7a5a138f5627eb24ecfc34963ca3d4da21eb8bea04adbcde0523df3
PageCount 10
ParticipantIDs wiley_primary_10_1049_iet_spr_2016_0625_SIL2BF00576
crossref_citationtrail_10_1049_iet_spr_2016_0625
crossref_primary_10_1049_iet_spr_2016_0625
iet_journals_10_1049_iet_spr_2016_0625
ProviderPackageCode RUI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180400
April 2018
2018-04-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 4
  year: 2018
  text: 20180400
PublicationDecade 2010
PublicationTitle IET signal processing
PublicationYear 2018
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Du, L.; He, H.; Zhao, L. (C5) 2016; 16
Vapnik, V.; Izmailov, R. (C22) 2015; 16
Li, Y.; Zhang, L.; Liu, B. (C2) 2011; 5
Liu, Y.; Liu, Y.; Chen, Y. (C10) 2010; 21
Jo, Q.H.; Chang, J.H.; Shin, J.W. (C13) 2008; 3
Pan, M.; Du, L.; Wang, P. (C6) 2013; 10
Guo, S.M.; Chen, L.C.; Tsai, J.S.H. (C8) 2009; 42
Wang, Z.; Zhao, Z.; Weng, S. (C16) 2015; 149
Chen, G.; Zhang, X.; Wang, Z.J. (C9) 2015; 90
Lei, L.; Xiao-Dan, W.; Xi, L. (C12) 2016; 19
Shi, L.; Wang, P.; Liu, H. (C4) 2011; 59
Cha, M.; Kim, J.S.; Baek, J. (C19) 2014; 41
Mu, T.; Nandi, A.K. (C28) 2009; 39
Tax, D.M.J.; Duin, R.P.W. (C14) 1999; 20
Shrivastava, A.; Patel, V.M.; Chelappa, R. (C27) 2014; 23
Forghani, Y.; Sadoghi Yazdi, H.; Effati, S. (C18) 2012; 15
Zhai, S.; Jiang, T. (C3) 2014; 8
Wang, S.; Zhu, Y.; Yue, L. (C23) 2015; 7
Tomar, D.; Agarwal, S. (C29) 2015; 81
Manikandan, J.; Venkataramani, B. (C30) 2011; 5
Feyereisl, J.; Aickelin, U. (C24) 2012; 194
Vapnik, V.; Vashist, A. (C20) 2009; 22
Liu, J.; Fang, N.; Xie, Y.J. (C7) 2016; 10
Zhang, W. (C25) 2015; 51
Du, L.; Liu, H.; Wang, P. (C1) 2012; 60
Huang, G.; Chen, H.; Zhou, Z. (C17) 2011; 44
Cui, M.; Prasad, S. (C26) 2016; 84
Cao, J.; Zhang, L.; Wang, B. (C11) 2015; 53
Tax, D.M.J.; Duin, R.P.W. (C15) 2004; 54
Lapin, M.; Heinb, M.; Schiele, B. (C21) 2014; 53
2012; 60
2009; 22
2015; 16
2009; 42
2016; 19
2015; 149
2015; 51
2015; 53
2016; 10
1999; 20
2011; 59
2008; 3
2012; 15
2014; 41
2016; 16
2011; 5
2015; 7
2014; 23
2004; 54
2012; 194
2010; 21
2013; 10
2015; 81
2011; 44
2016; 84
2015; 90
2014; 8
2014; 53
2009; 39
Cha M. (e_1_2_8_20_2) 2014; 41
e_1_2_8_29_2
Manikandan J. (e_1_2_8_31_2) 2011; 5
e_1_2_8_25_2
e_1_2_8_26_2
Wang S. (e_1_2_8_24_2) 2015; 7
Jo Q.H. (e_1_2_8_14_2) 2008; 3
Du L. (e_1_2_8_2_2) 2012; 60
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_8_2
Huang G. (e_1_2_8_18_2) 2011; 44
e_1_2_8_21_2
Shi L. (e_1_2_8_5_2) 2011; 59
e_1_2_8_22_2
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_15_2
Pan M. (e_1_2_8_7_2) 2013; 10
Vapnik V. (e_1_2_8_23_2) 2015; 16
Guo S.M. (e_1_2_8_9_2) 2009; 42
Shrivastava A. (e_1_2_8_28_2) 2014; 23
e_1_2_8_10_2
Tomar D. (e_1_2_8_30_2) 2015; 81
e_1_2_8_11_2
Lei L. (e_1_2_8_13_2) 2016; 19
Cui M. (e_1_2_8_27_2) 2016; 84
References_xml – volume: 5
  start-page: 506
  year: 2011
  end-page: 513
  ident: C30
  article-title: Evaluation of multiclass support vector machine classifiers using optimum threshold-based pruning technique
  publication-title: IET Signal Process.
– volume: 20
  start-page: 1191
  year: 1999
  end-page: 1199
  ident: C14
  article-title: Support vector domain description
  publication-title: Pattern Recognit. Lett.
– volume: 5
  start-page: 632
  issue: 7
  year: 2011
  end-page: 642
  ident: C2
  article-title: Stepped-frequency inverse synthetic aperture radar imaging based on adjacent pulse correlation integration and coherent processing
  publication-title: IET Signal Process.
– volume: 59
  start-page: 610
  issue: 2
  year: 2011
  end-page: 617
  ident: C4
  article-title: Radar HRRP statistical recognition with local factor analysis by automatic Bayesian ying-Yang harmony learning
  publication-title: IEEE Trans. Signal Process.
– volume: 54
  start-page: 45
  year: 2004
  end-page: 66
  ident: C15
  article-title: Support vector data description
  publication-title: Mach. Learn.
– volume: 7
  start-page: 189
  issue: 3
  year: 2015
  end-page: 200
  ident: C23
  article-title: Emotion recognition with the help of privileged information
  publication-title: IEEE Trans. Auton. Ment. Dev.
– volume: 21
  start-page: 1296
  issue: 8
  year: 2010
  end-page: 1313
  ident: C10
  article-title: Fast support vector data descriptions for novelty detection
  publication-title: IEEE Trans. Neural Netw.
– volume: 10
  start-page: 370
  issue: 2
  year: 2016
  end-page: 378
  ident: C7
  article-title: Multi-scale feature-based fuzzy-support vector machine classification using radar range profiles
  publication-title: IET Radar Sonar Navig.
– volume: 41
  start-page: 3343
  issue: 7
  year: 2014
  end-page: 3350
  ident: C19
  article-title: Density weighted support vector data description
  publication-title: Expert Syst. Appl.
– volume: 60
  start-page: 3546
  issue: 7
  year: 2012
  end-page: 3559
  ident: C1
  article-title: Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size
  publication-title: IEEE Trans. Signal Process.
– volume: 51
  start-page: 1075
  issue: 14
  year: 2015
  end-page: 1076
  ident: C25
  article-title: Support vector data description using privileged information
  publication-title: Electron. Lett.
– volume: 8
  start-page: 458
  issue: 5
  year: 2014
  end-page: 466
  ident: C3
  article-title: Sparse representation-based feature extraction combined with support vector machine for sense-through-foliage target detection and recognition
  publication-title: IET Signal Process.
– volume: 149
  start-page: 100
  year: 2015
  end-page: 105
  ident: C16
  article-title: Solving one-class problem with outlier examples by SVM
  publication-title: Neurocomputing
– volume: 90
  start-page: 129
  year: 2015
  end-page: 137
  ident: C9
  article-title: Robust support vector data description for outlier detection with noise or uncertain data
  publication-title: Knowl.-Based Syst.
– volume: 194
  start-page: 4
  year: 2012
  end-page: 23
  ident: C24
  article-title: Privileged information for data clustering
  publication-title: Inf. Sci.
– volume: 19
  start-page: 163
  year: 2016
  end-page: 171
  ident: C12
  article-title: Hierarchical error-correcting output codes based on SVDD
  publication-title: Pattern Anal. Appl.
– volume: 23
  start-page: 3013
  issue: 7
  year: 2014
  end-page: 3024
  ident: C27
  article-title: Multiple kernel learning for sparse representation-based classification
  publication-title: IEEE Trans. Image Process.
– volume: 81
  start-page: 131
  year: 2015
  end-page: 147
  ident: C29
  article-title: A comparison on multi-class classification methods based on least squares twin support vector machine
  publication-title: Knowl.-Based Syst.
– volume: 10
  start-page: 558
  issue: 3
  year: 2013
  end-page: 562
  ident: C6
  article-title: Noise-robust modification method for Gaussian-based models with application to radar HRRP recognition
  publication-title: IEEE Geosci. Remote Sensing
– volume: 3
  start-page: 205
  year: 2008
  end-page: 210
  ident: C13
  article-title: Statistical model-based voice activity detection using support vector machine
  publication-title: IET Signal Process.
– volume: 16
  start-page: 1743
  issue: 6
  year: 2016
  end-page: 1753
  ident: C5
  article-title: Noise robust radar HRRP target recognition based on scatterer matching algorithm
  publication-title: IEEE Sens. J.
– volume: 16
  start-page: 2023
  year: 2015
  end-page: 2049
  ident: C22
  article-title: Learning using privileged information: similarity control and knowledge transfer
  publication-title: J. Mach. Learn. Res.
– volume: 15
  start-page: 237
  issue: 3
  year: 2012
  end-page: 247
  ident: C18
  article-title: An extension to fuzzy support vector data description (FSVDD*)
  publication-title: Pattern Anal. Appl.
– volume: 39
  start-page: 1206
  issue: 5
  year: 2009
  end-page: 1216
  ident: C28
  article-title: Multiclass classification based on extended support vector data description
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 22
  start-page: 544
  issue: 5-6
  year: 2009
  end-page: 557
  ident: C20
  article-title: A new learning paradigm: learning using privileged information
  publication-title: Neural Netw.
– volume: 42
  start-page: 77
  issue: 1
  year: 2009
  end-page: 83
  ident: C8
  article-title: A boundary method for outlier detection based on support vector domain description
  publication-title: Pattern Recognit.
– volume: 84
  start-page: 120
  year: 2016
  end-page: 126
  ident: C26
  article-title: Sparse representation-based classification: orthogonal least squares or orthogonal matching pursuit ?
  publication-title: Pattern Recognit. Lett.
– volume: 53
  start-page: 95
  year: 2014
  end-page: 108
  ident: C21
  article-title: Learning using privileged information: SVM+ and weighted SVM
  publication-title: Neural Netw.
– volume: 53
  start-page: 381
  year: 2015
  end-page: 389
  ident: C11
  article-title: A fast gene selection method for multi-cancer classification using multiple support vector data description
  publication-title: J. Biomed. Inf.
– volume: 44
  start-page: 320
  issue: 2
  year: 2011
  end-page: 329
  ident: C17
  article-title: Two-class support vector data description
  publication-title: Pattern Recognit.
– volume: 10
  start-page: 558
  issue: 3
  year: 2013
  end-page: 562
  article-title: Noise‐robust modification method for Gaussian‐based models with application to radar HRRP recognition
  publication-title: IEEE Geosci. Remote Sensing
– volume: 15
  start-page: 237
  issue: 3
  year: 2012
  end-page: 247
  article-title: An extension to fuzzy support vector data description (FSVDD*)
  publication-title: Pattern Anal. Appl.
– volume: 60
  start-page: 3546
  issue: 7
  year: 2012
  end-page: 3559
  article-title: Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size
  publication-title: IEEE Trans. Signal Process.
– volume: 8
  start-page: 458
  issue: 5
  year: 2014
  end-page: 466
  article-title: Sparse representation‐based feature extraction combined with support vector machine for sense‐through‐foliage target detection and recognition
  publication-title: IET Signal Process.
– volume: 16
  start-page: 1743
  issue: 6
  year: 2016
  end-page: 1753
  article-title: Noise robust radar HRRP target recognition based on scatterer matching algorithm
  publication-title: IEEE Sens. J.
– volume: 59
  start-page: 610
  issue: 2
  year: 2011
  end-page: 617
  article-title: Radar HRRP statistical recognition with local factor analysis by automatic Bayesian ying‐Yang harmony learning
  publication-title: IEEE Trans. Signal Process.
– volume: 194
  start-page: 4
  year: 2012
  end-page: 23
  article-title: Privileged information for data clustering
  publication-title: Inf. Sci.
– volume: 54
  start-page: 45
  year: 2004
  end-page: 66
  article-title: Support vector data description
  publication-title: Mach. Learn.
– volume: 7
  start-page: 189
  issue: 3
  year: 2015
  end-page: 200
  article-title: Emotion recognition with the help of privileged information
  publication-title: IEEE Trans. Auton. Ment. Dev.
– volume: 5
  start-page: 632
  issue: 7
  year: 2011
  end-page: 642
  article-title: Stepped‐frequency inverse synthetic aperture radar imaging based on adjacent pulse correlation integration and coherent processing
  publication-title: IET Signal Process.
– volume: 53
  start-page: 381
  year: 2015
  end-page: 389
  article-title: A fast gene selection method for multi‐cancer classification using multiple support vector data description
  publication-title: J. Biomed. Inf.
– volume: 90
  start-page: 129
  year: 2015
  end-page: 137
  article-title: Robust support vector data description for outlier detection with noise or uncertain data
  publication-title: Knowl.‐Based Syst.
– volume: 20
  start-page: 1191
  year: 1999
  end-page: 1199
  article-title: Support vector domain description
  publication-title: Pattern Recognit. Lett.
– volume: 149
  start-page: 100
  year: 2015
  end-page: 105
  article-title: Solving one‐class problem with outlier examples by SVM
  publication-title: Neurocomputing
– volume: 53
  start-page: 95
  year: 2014
  end-page: 108
  article-title: Learning using privileged information: SVM+ and weighted SVM
  publication-title: Neural Netw.
– volume: 41
  start-page: 3343
  issue: 7
  year: 2014
  end-page: 3350
  article-title: Density weighted support vector data description
  publication-title: Expert Syst. Appl.
– volume: 81
  start-page: 131
  year: 2015
  end-page: 147
  article-title: A comparison on multi‐class classification methods based on least squares twin support vector machine
  publication-title: Knowl.‐Based Syst.
– volume: 3
  start-page: 205
  year: 2008
  end-page: 210
  article-title: Statistical model‐based voice activity detection using support vector machine
  publication-title: IET Signal Process.
– volume: 39
  start-page: 1206
  issue: 5
  year: 2009
  end-page: 1216
  article-title: Multiclass classification based on extended support vector data description
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 42
  start-page: 77
  issue: 1
  year: 2009
  end-page: 83
  article-title: A boundary method for outlier detection based on support vector domain description
  publication-title: Pattern Recognit.
– volume: 10
  start-page: 370
  issue: 2
  year: 2016
  end-page: 378
  article-title: Multi‐scale feature‐based fuzzy‐support vector machine classification using radar range profiles
  publication-title: IET Radar Sonar Navig.
– volume: 5
  start-page: 506
  year: 2011
  end-page: 513
  article-title: Evaluation of multiclass support vector machine classifiers using optimum threshold‐based pruning technique
  publication-title: IET Signal Process.
– volume: 22
  start-page: 544
  issue: 5‐6
  year: 2009
  end-page: 557
  article-title: A new learning paradigm: learning using privileged information
  publication-title: Neural Netw.
– volume: 16
  start-page: 2023
  year: 2015
  end-page: 2049
  article-title: Learning using privileged information: similarity control and knowledge transfer
  publication-title: J. Mach. Learn. Res.
– volume: 84
  start-page: 120
  year: 2016
  end-page: 126
  article-title: Sparse representation‐based classification: orthogonal least squares or orthogonal matching pursuit ?
  publication-title: Pattern Recognit. Lett.
– volume: 19
  start-page: 163
  year: 2016
  end-page: 171
  article-title: Hierarchical error‐correcting output codes based on SVDD
  publication-title: Pattern Anal. Appl.
– volume: 44
  start-page: 320
  issue: 2
  year: 2011
  end-page: 329
  article-title: Two‐class support vector data description
  publication-title: Pattern Recognit.
– volume: 23
  start-page: 3013
  issue: 7
  year: 2014
  end-page: 3024
  article-title: Multiple kernel learning for sparse representation‐based classification
  publication-title: IEEE Trans. Image Process.
– volume: 21
  start-page: 1296
  issue: 8
  year: 2010
  end-page: 1313
  article-title: Fast support vector data descriptions for novelty detection
  publication-title: IEEE Trans. Neural Netw.
– volume: 51
  start-page: 1075
  issue: 14
  year: 2015
  end-page: 1076
  article-title: Support vector data description using privileged information
  publication-title: Electron. Lett.
– volume: 44
  start-page: 320
  issue: 2
  year: 2011
  ident: e_1_2_8_18_2
  article-title: Two‐class support vector data description
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.08.025
– ident: e_1_2_8_16_2
  doi: 10.1023/B:MACH.0000008084.60811.49
– volume: 59
  start-page: 610
  issue: 2
  year: 2011
  ident: e_1_2_8_5_2
  article-title: Radar HRRP statistical recognition with local factor analysis by automatic Bayesian ying‐Yang harmony learning
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2088391
– ident: e_1_2_8_12_2
  doi: 10.1016/j.jbi.2014.12.009
– ident: e_1_2_8_3_2
  doi: 10.1049/iet-spr.2009.0301
– volume: 5
  start-page: 506
  year: 2011
  ident: e_1_2_8_31_2
  article-title: Evaluation of multiclass support vector machine classifiers using optimum threshold‐based pruning technique
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2010.0311
– ident: e_1_2_8_25_2
  doi: 10.1016/j.ins.2011.04.025
– ident: e_1_2_8_17_2
  doi: 10.1016/j.neucom.2014.03.072
– volume: 84
  start-page: 120
  year: 2016
  ident: e_1_2_8_27_2
  article-title: Sparse representation‐based classification: orthogonal least squares or orthogonal matching pursuit ?
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2016.08.017
– volume: 81
  start-page: 131
  year: 2015
  ident: e_1_2_8_30_2
  article-title: A comparison on multi‐class classification methods based on least squares twin support vector machine
  publication-title: Knowl.‐Based Syst.
  doi: 10.1016/j.knosys.2015.02.009
– ident: e_1_2_8_21_2
  doi: 10.1016/j.neunet.2009.06.042
– ident: e_1_2_8_6_2
  doi: 10.1109/JSEN.2015.2501850
– ident: e_1_2_8_22_2
  doi: 10.1016/j.neunet.2014.02.002
– ident: e_1_2_8_10_2
  doi: 10.1016/j.knosys.2015.09.025
– ident: e_1_2_8_26_2
  doi: 10.1049/el.2014.4483
– ident: e_1_2_8_11_2
  doi: 10.1109/TNN.2010.2053853
– volume: 19
  start-page: 163
  year: 2016
  ident: e_1_2_8_13_2
  article-title: Hierarchical error‐correcting output codes based on SVDD
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-015-0455-5
– ident: e_1_2_8_29_2
  doi: 10.1109/TSMCB.2009.2013962
– volume: 23
  start-page: 3013
  issue: 7
  year: 2014
  ident: e_1_2_8_28_2
  article-title: Multiple kernel learning for sparse representation‐based classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2324290
– volume: 3
  start-page: 205
  year: 2008
  ident: e_1_2_8_14_2
  article-title: Statistical model‐based voice activity detection using support vector machine
  publication-title: IET Signal Process.
– ident: e_1_2_8_4_2
  doi: 10.1049/iet-spr.2013.0281
– volume: 41
  start-page: 3343
  issue: 7
  year: 2014
  ident: e_1_2_8_20_2
  article-title: Density weighted support vector data description
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.11.025
– ident: e_1_2_8_8_2
  doi: 10.1049/iet-rsn.2015.0244
– volume: 16
  start-page: 2023
  year: 2015
  ident: e_1_2_8_23_2
  article-title: Learning using privileged information: similarity control and knowledge transfer
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 189
  issue: 3
  year: 2015
  ident: e_1_2_8_24_2
  article-title: Emotion recognition with the help of privileged information
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2463113
– volume: 10
  start-page: 558
  issue: 3
  year: 2013
  ident: e_1_2_8_7_2
  article-title: Noise‐robust modification method for Gaussian‐based models with application to radar HRRP recognition
  publication-title: IEEE Geosci. Remote Sensing
  doi: 10.1109/LGRS.2012.2213234
– volume: 42
  start-page: 77
  issue: 1
  year: 2009
  ident: e_1_2_8_9_2
  article-title: A boundary method for outlier detection based on support vector domain description
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.07.003
– volume: 60
  start-page: 3546
  issue: 7
  year: 2012
  ident: e_1_2_8_2_2
  article-title: Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2191965
– ident: e_1_2_8_19_2
  doi: 10.1007/s10044-011-0208-z
– ident: e_1_2_8_15_2
  doi: 10.1016/S0167-8655(99)00087-2
SSID ssj0056512
Score 2.1930175
Snippet A novel machine learning method named extended support vector data description with negative examples (ESVDD-neg) is developed to classify the fast Fourier...
A novel machine learning method named extended support vector data description with negative examples (ESVDD‐neg) is developed to classify the fast Fourier...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 188
SubjectTerms close nonlinear boundary advantage
complex high‐resolution range profile
ESVDD‐neg
extended support vector data description‐with‐negative examples
fast Fourier transforms
fast Fourier transform‐magnitude feature classification
HRRP‐based radar target recognition
learning (artificial intelligence)
learning paradigm
low signal‐to‐noise ratio
machine learning method
radar automatic target recognition problem
radar computing
radar signal processing
radar target recognition
Research Article
signal classification
translation sensitivity
UCI datasets
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvehBfGJ9sQfxIESb7GaTHLVYqvgo1UJvYfaRUpC0pNWzP8Hf6C9xJ0mDRajgLWx29zCzu_Ptzsw3hJwaNDugIwfNh8M903SkZOC4rvKV8Y0QHJOTHx5Fp8_vBv6gRlrzXJiCH6J6cMOdkZ_XuMFBFlVILKi1ShyZmTOdIKWnKy6aFsavkFVMscX6DR7vzo9jC1gKl2eA9eRFyCrXZnT5a4oF47Rify9C1tzmtDfJRgkW6VWh3S1SM-k2Wf9BIbhDnkqC1CHFCPYhnWSj9xE-BWhacqKi5Kn9op1er_v18Yl2S9MMNGS0iAOnVRTRON0l_fbNS6vjlEUSHMUYF06keAgQJFwG4IPLwsQimsDel7lRiUI6eKaAaa7Bc40MpYEmBy2VNvggrBO2R-rpODX7hCoQrmbChKHiXFsVgtASEmVvKIZ7gdcgzbl0YlUyiGMhi9c492TzKLYSi61AYxRojAJtkPNqyKSgz1jW-Qzbyk00XdaR5Vr5e8r4-fbeu25jyq04-NeoQ7Jm28MiWOeI1GfZmzm2OGQmT_J19g0gbNkN
  priority: 102
  providerName: Wiley-Blackwell
Title Learning using privileged information for HRRP-based radar target recognition
URI http://digital-library.theiet.org/content/journals/10.1049/iet-spr.2016.0625
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-spr.2016.0625
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4IXPRgfEZ8kD0YDyYrbXe7LUd8EDBgCFpjvDTb3S0hMYUg-vvdoQUlMeht027nMNPsfDuPbwDODbodqRsU3QflnnFokjBJXVf5yvhGCI7Nyb0H0Y74_Yv_8t0erUdDnJVBFxE3jJabvPMAS7ftOVwvdJwPJLH4tm430PcJcnu64sqxeL4EFS8InLAMlc5tF69Y-clssUue_QxwtLxFysss5y9CVvxUyb5eRa9z99Page0CN5Jmbuhd2DDZHmz9YBPch17BlTokWMw-JJPp6HOEUQFNCnpUNAKxK9IeDPoUHZgmU6nllOQF4WRZTjTODiBq3T3dtGkxLYEqxrigDcVDKYOUJ4H0pcvC1EKbwF6cuVGpQl54piTTXEvPNUmYGOlwqROlDUaGdcoOoZyNM3MEREnhaiZMGCrOtbWlFDqRqbJXFcO9wKuCs9BNrAoqcZxo8RbPU9q8EVt9xVadMaozRnVW4XL5ySTn0Vi3-QKfLSy9biOb2-RvkfFjp-tdt7D3Vhz_V_wJbNp1mBfqnEJ5Nv0wZxaDzJIalDzer0Gl-Ry9RrXiR_sCQOzbyw
linkProvider Institution of Engineering and Technology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOQAHxCrK6gPigBRIYsdJjmxVCm2pSiv1Fjm2U1VCaZUWznwC38iX4EnSiAqpSNyiZOzDm9jzPB4_I3SuIOxw6RsQPgxqK9OIIsINyxKOUI5ijMLh5FabBX36OHAGFXQ_PwuT60OUCTcYGdl8DQMcEtL5gpOCSOZIzYzpBDQ9LXZlah6_glap5udQ2GfTznw-1owl3_N04UJ55pFyb9O__tXFQnRa0Z8XOWsWdOpbaLNgi_gmd-82qqhkB2380BDcRc-FQuoQQwn7EE_S0fsIcgESF6KoAD3WTzjodjtfH58QuCROueQpzgvBcVlGNE72UL_-0LsLjOKWBEMQQpnhC-px7sY0crnDLeLFmtK4esFMlYgF6METwYmkktuWirxIcZNyGQmpICMsY7KPqsk4UQcIC84sSZjyPEGp1D7kTEY8FnqJoqjt2jVkztEJRSEhDjdZvIbZVjb1Q41YqAENAdAQAK2hy7LJJNfPWGZ8Ae-KUTRdZkgyr_zdZfjSaNq3dThzyw7_1eoMrQW9VjNsNtpPR2hd23h55c4xqs7SN3WiScksOs3-uW_xxdyA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA67gOiDeMV5zYP4IFTXJk27xzktm845ppPhS0mTdAxkK9302Z_gb_SXmNN2xSFM8K2kJ3k4Jyfn5Fy-IHSqwOxwWTPAfBjUUlUjCAg3TFPYQtmKMQrNyfcd1uzT24E9KKDGvBcmxYfIA26gGcl5DQoeyTC9b1LAyBypmTGNANLTZBdV7cYXURnQ8vRmL9ef-y_9-YGsXZY06enAi_LMJXlys3b5a5EF81TUvxed1sTqeBtoPXMXcT2V7yYqqPEWWvsBIriNHjKI1CGGGvYhjuLR-wiCARJnqKjAe6y_cLPX6359fILlkjjmksc4rQTHeR3RZLyD-t7NU6NpZM8kGIIQyoyaoC7nTkgDh9vcJG6ofRpH35ipEqEAQHgiOJFUcstUgRsoXqVcBkIqCAnLkOyi0ngyVnsIC85MSZhyXUGp1ELkTAY8FPqOoqjlWBVUnXPHFxmGODxl8eonuWxa8zXHfM1QHxjqA0Mr6DyfEqUAGsuIz2AsU6PpMkKSSOXvJf3HVtu68qDplu3_a9YJWulee3671bk7QKuaxE0rdw5RaRa_qSPtlMyC42zTfQPZf91v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+using+privileged+information+for+HRRP%E2%80%90based+radar+target+recognition&rft.jtitle=IET+signal+processing&rft.au=Guo%2C+Yu&rft.au=Xiao%2C+Huaitie&rft.au=Kan%2C+Yingzhi&rft.au=Fu%2C+Qiang&rft.date=2018-04-01&rft.issn=1751-9675&rft.eissn=1751-9683&rft.volume=12&rft.issue=2&rft.spage=188&rft.epage=197&rft_id=info:doi/10.1049%2Fiet-spr.2016.0625&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_spr_2016_0625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon