Development of reaction–diffusion DFT and its application to catalytic oxidation of NO in porous materials

The reaction–diffusion (RD) process is an important and complex subject that involves nonequilibrium modeling and multiscale calculations and may be applied to multiple fields. State‐of‐art theories are computationally too expensive for real‐world applications. We propose a novel classical density f...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 66; no. 2
Main Authors Liu, Yu, Liu, Honglai
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.02.2020
American Institute of Chemical Engineers
Subjects
Online AccessGet full text
ISSN0001-1541
1547-5905
DOI10.1002/aic.16824

Cover

Loading…
Abstract The reaction–diffusion (RD) process is an important and complex subject that involves nonequilibrium modeling and multiscale calculations and may be applied to multiple fields. State‐of‐art theories are computationally too expensive for real‐world applications. We propose a novel classical density functional theory (CDFT) for RD modeling by combining ordinary time‐dependent density functional theory (TDDFT) and reaction kinetic models to examine the multiscale RD process. The theory is applied to NO oxidation in porous materials. The uptake, flux, and density profiles are examined, to reveal that the shape of the pore could influence the selectivity of adsorption between the reactant and product, which further leads to variations in the catalytic efficiency. It is noted that open pores are more favorable for catalytic reactions. The importance of adsorption is examined in the presence as well as the absence of pore–gas attraction. Without attraction, the catalytic efficiency is decreased by three orders of magnitude.
AbstractList The reaction–diffusion (RD) process is an important and complex subject that involves nonequilibrium modeling and multiscale calculations and may be applied to multiple fields. State‐of‐art theories are computationally too expensive for real‐world applications. We propose a novel classical density functional theory (CDFT) for RD modeling by combining ordinary time‐dependent density functional theory (TDDFT) and reaction kinetic models to examine the multiscale RD process. The theory is applied to NO oxidation in porous materials. The uptake, flux, and density profiles are examined, to reveal that the shape of the pore could influence the selectivity of adsorption between the reactant and product, which further leads to variations in the catalytic efficiency. It is noted that open pores are more favorable for catalytic reactions. The importance of adsorption is examined in the presence as well as the absence of pore–gas attraction. Without attraction, the catalytic efficiency is decreased by three orders of magnitude.
Author Liu, Honglai
Liu, Yu
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0003-1936-0228
  surname: Liu
  fullname: Liu, Yu
  email: liuyu89@mail.sysu.edu.cn
  organization: Sun Yat‐sen University
– sequence: 2
  givenname: Honglai
  orcidid: 0000-0002-5682-2295
  surname: Liu
  fullname: Liu, Honglai
  organization: East China University of Science and Technology
BookMark eNp9kM1OAjEUhRuDiYgufIMmrlwM9G-GmSUBURIiG1w3pT9JyTAd247KznfwDX0SC7gy0dU99-a75-aeS9BrXKMBuMFoiBEiI2HlEBclYWegj3M2zvIK5T3QRwjhLA3wBbgMYZs6Mi5JH9Qz_apr1-50E6Ez0Gsho3XN18enssZ0IWk4m6-haBS0MUDRtrWV4sDA6GBSot5HK6F7t-o0TjZPK2gb2DrvugB3ImpvRR2uwLlJRV__1AF4nt-vp4_ZcvWwmE6WmaSUsUyrcakQUQUtVSWYLFiRs6RzRQkzWCJB9abYVJUQ2mBmFNnQohKIlYwgbCo6ALcn39a7l06HyLeu8006yQmlNGdFOpOouxMlvQvBa8Nbb3fC7zlG_BAmT2HyY5iJHf1ipY3Hb6MXtv5v483Wev-3NZ8spqeNb0u2iSs
CitedBy_id crossref_primary_10_1016_j_ces_2020_115899
crossref_primary_10_1088_1361_648X_ac8633
crossref_primary_10_1016_j_shpsa_2021_04_006
crossref_primary_10_1103_PhysRevResearch_5_013080
crossref_primary_10_1177_10812865241313130
crossref_primary_10_1016_j_cplett_2023_140566
crossref_primary_10_1039_D1SM01507A
crossref_primary_10_1021_acs_iecr_4c01864
crossref_primary_10_1063_5_0030749
crossref_primary_10_1088_1751_8121_ad4c31
crossref_primary_10_1103_PhysRevLett_125_078001
crossref_primary_10_1080_00018732_2020_1854965
crossref_primary_10_1016_j_jtice_2020_12_019
crossref_primary_10_1039_D1SM00670C
crossref_primary_10_1038_s41467_020_19024_0
crossref_primary_10_1063_5_0078932
crossref_primary_10_1360_SSC_2024_0151
crossref_primary_10_1002_aic_17954
Cites_doi 10.1021/jp805697p
10.1126/science.1179047
10.1016/j.amc.2018.02.040
10.1016/j.jpowsour.2014.03.149
10.1016/S0016-2361(01)00096-5
10.1016/j.jpowsour.2011.09.003
10.1016/S0045-7825(97)00206-5
10.1021/jp0029109
10.1021/jp8071712
10.1063/1.1587126
10.1038/nbt1388
10.1063/1.1520530
10.1021/jz5009533
10.1021/jp020326p
10.1016/j.apcatb.2011.10.029
10.1021/jp010324p
10.1016/j.apcatb.2013.10.050
10.1016/S0016-2361(00)00034-X
10.1016/j.jmps.2012.11.001
10.1063/1.1328756
10.1021/la803666t
10.1063/1.464316
10.1063/1.1463435
10.1063/1.4907731
10.1021/la8024099
10.1002/aic.14842
10.1063/1.4906828
10.1021/ie102506q
10.1016/j.cpc.2013.11.013
10.1088/0953-8984/26/28/284102
10.1063/1.3166865
10.1006/niox.1999.0232
10.1021/acs.jpcc.6b10719
10.1063/1.1450566
10.1103/PhysRevA.44.1219
10.1016/j.fluid.2012.03.011
10.1063/1.2712442
10.1002/jcc.540110605
10.1002/chem.200902406
10.1016/j.apcatb.2018.04.001
10.1021/jz401787p
10.1063/1.1701689
10.1002/anie.201403691
10.1103/PhysRevLett.72.3831
10.1063/1.3174928
10.1021/jp904872f
10.1063/1.1491240
10.1093/imamat/48.3.249
10.1021/jp711496y
10.1021/la00078a043
10.1109/JPROC.2004.840301
10.1021/ct3010936
10.1039/C5CY01979F
10.1039/C6CP01610C
10.1021/ja2084042
10.1021/acs.jpcb.6b07203
10.1021/ja0754913
10.1021/jp9104932
10.1016/j.ces.2015.08.007
10.1016/0022-2836(76)90311-9
10.1016/j.apcatb.2007.05.029
10.1021/ct100754m
10.1103/PhysRevLett.63.980
10.1063/1.3054633
10.1021/jp9924124
10.1063/1.4968037
ContentType Journal Article
Copyright 2019 American Institute of Chemical Engineers
2020 American Institute of Chemical Engineers
Copyright_xml – notice: 2019 American Institute of Chemical Engineers
– notice: 2020 American Institute of Chemical Engineers
DBID AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.16824
DatabaseName CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Solid State and Superconductivity Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage n/a
ExternalDocumentID 10_1002_aic_16824
AIC16824
Genre article
GrantInformation_xml – fundername: Shanghai Rising Star Program
  funderid: 19QA1402400
– fundername: 100 Top Talents Program of Sun Yat‐sen University
– fundername: National Natural Science Foundation of China
  funderid: 21776070; 91534202; 91834301
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABJIA
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
7ST
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
L7M
SOI
ID FETCH-LOGICAL-c3344-ed78d02d638d9a4c6465438d5d324f1c0a3eb6b99aaef14fd2b369a0484201f93
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Fri Jul 25 10:49:31 EDT 2025
Tue Jul 01 01:46:49 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
Wed Jan 22 16:35:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3344-ed78d02d638d9a4c6465438d5d324f1c0a3eb6b99aaef14fd2b369a0484201f93
Notes Funding information
National Natural Science Foundation of China, Grant/Award Numbers: 21776070, 91534202, 91834301; Shanghai Rising Star Program, Grant/Award Number: 19QA1402400; 100 Top Talents Program of Sun Yat‐sen University
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5682-2295
0000-0003-1936-0228
PQID 2333546344
PQPubID 7879
PageCount 13
ParticipantIDs proquest_journals_2333546344
crossref_primary_10_1002_aic_16824
crossref_citationtrail_10_1002_aic_16824
wiley_primary_10_1002_aic_16824_AIC16824
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle AIChE journal
PublicationYear 2020
Publisher John Wiley & Sons, Inc
American Institute of Chemical Engineers
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Institute of Chemical Engineers
References 1987; 3
1990; 11
2003; 119
2010; 16
2013; 4
2002; 12
2013; 61
2015; 142
2002; 117
2016; 145
2014; 26
2009; 113
2002; 116
2011; 196
2007; 76
1998; 156
2013; 9
2001; 105
2018; 330
2014; 5
2012; 134
2015; 138
1991; 44
2010; 114
2002; 106
2008; 26
2008; 24
1992; 48
2017; 121
2008; 112
1994; 72
2014; 53
1989; 63
2007; 126
2009; 25
2010; 329
1976; 103
1999; 3
1967; 47
2009; 130
2009; 131
2016; 18
2016; 120
2011; 7
2001; 80
2016; 6
2012; 111
2012; 322–323
2000; 104
2015; 61
2000; 79
2018; 234
1993; 98
2011; 50
2005; 93
2014; 264
2014; 185
2008; 130
2001; 114
2014; 148
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 16
  start-page: 1506
  issue: 5
  year: 2010
  end-page: 1520
  article-title: Intermediates involved in the oxidation of nitrogen monoxide: photochemistry of the cis‐N O center dot O complex and of sym‐N O in Solid Ne Matrices
  publication-title: Chem Eur J
– volume: 111
  start-page: 415
  year: 2012
  end-page: 423
  article-title: Modelling the kinetics of NO oxidation and NOx storage over platinum, ceria and ceria zirconia
  publication-title: Appl Catal B Environ
– volume: 105
  start-page: 569
  issue: 2
  year: 2001
  end-page: 585
  article-title: QM/MM implementation of the self‐consistent charge density functional tight binding (SCC‐DFTB) method
  publication-title: J Phys Chem B
– volume: 5
  start-page: 2195
  issue: 13
  year: 2014
  end-page: 2200
  article-title: Kinetic charging inversion in ionic liquid electric double layers
  publication-title: J Phys Chem Lett
– volume: 104
  start-page: 1720
  issue: 8
  year: 2000
  end-page: 1735
  article-title: Frontier bonds in QM/MM methods: A comparison of different approaches
  publication-title: J Phys Chem A
– volume: 76
  start-page: 235
  issue: 3‐4
  year: 2007
  end-page: 240
  article-title: Catalytic effect of platinum on the kinetics of carbon oxidation by NO and O
  publication-title: Appl Catal B Environ
– volume: 142
  start-page: 064107
  issue: 6
  year: 2015
  article-title: The charge‐asymmetric nonlocally determined local‐electric (CANDLE) solvation model
  publication-title: J Chem Phys
– volume: 330
  start-page: 254
  year: 2018
  end-page: 265
  article-title: Nonlinear diffusion equation with reaction terms: Analytical and numerical results
  publication-title: Appl Math Comput
– volume: 138
  start-page: 396
  year: 2015
  end-page: 402
  article-title: Shape‐selective synthesis of para‐diethylbenzene over pore‐engineered ZSM‐5: A kinetic study
  publication-title: Chem Eng Sci
– volume: 3
  start-page: 1123
  issue: 6
  year: 1987
  end-page: 1127
  article-title: Interactions of diatomic molecules with graphite
  publication-title: Langmuir
– volume: 131
  start-page: 024704
  issue: 2
  year: 2009
  article-title: A novel weighted density functional theory for adsorption, fluid‐solid interfacial tension, and disjoining properties of simple liquid films on planar solid surfaces
  publication-title: J Chem Phys
– volume: 61
  start-page: 2951
  year: 2015
  end-page: 2957
  article-title: High‐throughput and comprehensive prediction of H2 adsorption in metal‐organic frameworks under various conditions
  publication-title: AIChE J
– volume: 134
  start-page: 2111
  issue: 4
  year: 2012
  end-page: 2119
  article-title: Insights into intrastrand cross‐link lesions of DNA from QM/MM molecular dynamics simulations
  publication-title: J Am Chem Soc
– volume: 61
  start-page: 293
  issue: 2
  year: 2013
  end-page: 310
  article-title: Interface‐reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium‐ion batteries
  publication-title: J Mech Phys Solids
– volume: 130
  start-page: 2213
  issue: 7
  year: 2008
  end-page: 2220
  article-title: Dynamic interplay between diffusion and reaction: Nitrogen recombination on Rh{211} in car exhaust catalysis
  publication-title: J Am Chem Soc
– volume: 53
  start-page: 10006
  issue: 38
  year: 2014
  end-page: 10018
  article-title: Birth and future of multiscale modeling for macromolecular systems (nobel lecture)
  publication-title: Angew Chem Int Ed
– volume: 25
  start-page: 1296
  issue: 3
  year: 2009
  end-page: 1299
  article-title: Predicting gas adsorption in complex microporous and mesoporous materials using a new density functional theory of finely discretized lattice fluids
  publication-title: Langmuir
– volume: 6
  start-page: 4802
  issue: 13
  year: 2016
  end-page: 4813
  article-title: Highly‐efficient conversion of methanol to p‐xylene over shape‐selective Mg‐Zn‐Si‐HZSM‐5 catalyst with fine modification of pore‐opening and acidic properties
  publication-title: Cat Sci Technol
– volume: 142
  start-page: 054102
  issue: 5
  year: 2015
  article-title: Spicing up continuum solvation models with SaLSA: The spherically averaged liquid susceptibility ansatz
  publication-title: J Chem Phys
– volume: 121
  start-page: 2521
  issue: 5
  year: 2017
  end-page: 2528
  article-title: Size effects in nanoparticle catalysis at nanoparticle modified electrodes: the interplay of diffusion and chemical reactions
  publication-title: J Phys Chem C
– volume: 93
  start-page: 216
  issue: 2
  year: 2005
  end-page: 231
  article-title: The design and implementation of FFTW3
  publication-title: Proc IEEE
– volume: 48
  start-page: 249
  issue: 3
  year: 1992
  end-page: 264
  article-title: Nonlocal reaction–diffusion equations and nucleation
  publication-title: IMA J Appl Math
– volume: 113
  start-page: 12326
  issue: 36
  year: 2009
  end-page: 12331
  article-title: Development of a density functional theory in three‐dimensional nanoconfined space: H2 storage in metal organic frameworks
  publication-title: J Phys Chem B
– volume: 114
  start-page: 2820
  issue: 8
  year: 2010
  end-page: 2827
  article-title: Density functional theory for adsorption of gas mixtures in metal‐organic frameworks
  publication-title: J Phys Chem B
– volume: 322–323
  start-page: 66
  year: 2012
  end-page: 78
  article-title: Equilibrium and transport properties of CO +N O and CO +NO mixtures: Molecular simulation and equation of state modelling study
  publication-title: Fluid Phase Equilibria
– volume: 196
  start-page: 10737
  issue: 24
  year: 2011
  end-page: 10747
  article-title: Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery
  publication-title: J Power Sources
– volume: 98
  start-page: 1514
  issue: 2
  year: 1993
  end-page: 1523
  article-title: Lattice Boltzmann computations for reaction‐diffusion equations
  publication-title: J Chem Phys
– volume: 44
  start-page: 1219
  issue: 2
  year: 1991
  end-page: 1227
  article-title: Density‐functional approach to the structure of classical uniform fluids
  publication-title: Phys Rev A
– volume: 79
  start-page: 1713
  issue: 14
  year: 2000
  end-page: 1723
  article-title: NO oxidation over activated carbon fiber (ACF). Part 1. Extended kinetics over a pitch based ACF of very large surface area
  publication-title: Fuel
– volume: 4
  start-page: 3687
  issue: 21
  year: 2013
  end-page: 3691
  article-title: High‐throughput prediction of the hydration free energies of small molecules from a classical density functional theory
  publication-title: J Phys Chem Lett
– volume: 105
  start-page: 6895
  issue: 29
  year: 2001
  end-page: 6906
  article-title: Kinetic study of NO oxidation and NOx storage on Pt/Al O and Pt/BaO/Al O
  publication-title: J Phys Chem B
– volume: 9
  start-page: 1896
  issue: 4
  year: 2013
  end-page: 1908
  article-title: A site density functional theory for water: application to solvation of amino acid side chains
  publication-title: J Chem Theory Comput
– volume: 11
  start-page: 700
  issue: 6
  year: 1990
  end-page: 733
  article-title: A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations
  publication-title: J Comput Chem
– volume: 24
  start-page: 12431
  issue: 21
  year: 2008
  end-page: 12439
  article-title: A density functional theory for Lennard‐Jones fluids in cylindrical pores and its applications to adsorption of nitrogen on MCM‐41 materials
  publication-title: Langmuir
– volume: 117
  start-page: 10156
  issue: 22
  year: 2002
  end-page: 10164
  article-title: Wu JZ. Structures of hard‐sphere fluids from a modified fundamental‐measure theory
  publication-title: J Chem Phys
– volume: 63
  start-page: 980
  issue: 9
  year: 1989
  end-page: 983
  article-title: Free‐energy model for the inhomogeneous hard‐sphere fluid mixture and density‐functional theory of freezing
  publication-title: Phys Rev Lett
– volume: 185
  start-page: 818
  issue: 3
  year: 2014
  end-page: 825
  article-title: Efficient classical density‐functional theories of rigid‐molecular fluids and a simplified free energy functional for liquid water
  publication-title: Comput Phys Commun
– volume: 72
  start-page: 3831
  issue: 24
  year: 1994
  end-page: 3834
  article-title: Phase separation of asymmetric binary hard‐sphere fluids: self‐consistent density functional theory
  publication-title: Phys Rev Lett
– volume: 106
  start-page: 8078
  issue: 33
  year: 2002
  end-page: 8085
  article-title: QM/MM simulations for Diels‐Alder reactions in water: contribution of enhanced hydrogen bonding at the transition state to the solvent effect
  publication-title: J Phys Chem B
– volume: 130
  start-page: 014509
  issue: 1
  year: 2009
  article-title: Dynamical density functional theory for molecular and colloidal fluids: A microscopic approach to fluid mechanics
  publication-title: J Chem Phys
– volume: 50
  start-page: 6017
  issue: 10
  year: 2011
  end-page: 6027
  article-title: Kinetics and mechanism study of low‐temperature selective catalytic reduction of NO with urea supported on pitch‐based spherical activated carbon
  publication-title: Ind Eng Chem Res
– volume: 112
  start-page: 5680
  issue: 18
  year: 2008
  end-page: 5692
  article-title: Accelerating QM/MM free energy calculations: Representing the surroundings by an updated mean charge distribution
  publication-title: J Phys Chem B
– volume: 145
  start-page: 204707
  issue: 20
  year: 2016
  article-title: Time‐dependent density functional theory for the charging kinetics of electric double layer containing room‐temperature ionic liquids
  publication-title: J Chem Phys
– volume: 113
  start-page: 1253
  issue: 5
  year: 2009
  end-page: 1272
  article-title: Progress in ab initio QM/MM free‐energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pK(a), redox reactions and solvation free energies
  publication-title: J Phys Chem B
– volume: 131
  start-page: 014105
  issue: 1
  year: 2009
  article-title: Kinetic theory of correlated fluids: From dynamic density functional to Lattice Boltzmann methods
  publication-title: J Chem Phys
– volume: 80
  start-page: 2227
  issue: 15
  year: 2001
  end-page: 2233
  article-title: Catalytic activity of pitch‐based activated carbon fiber of large surface area heat‐treated at high temperature and its regeneration for NO‐NH reaction at ambient temperatures
  publication-title: Fuel
– volume: 156
  start-page: 185
  issue: 1‐4
  year: 1998
  end-page: 210
  article-title: Comparison of some finite element methods for solving the diffusion‐convection‐reaction equation
  publication-title: Comput Methods Appl Mech Eng
– volume: 18
  start-page: 13158
  issue: 19
  year: 2016
  end-page: 13163
  article-title: Development of 3‐dimensional time‐dependent density functional theory and its application to gas diffusion in nanoporous materials
  publication-title: Phys Chem Chem Phys
– volume: 103
  start-page: 227
  issue: 2
  year: 1976
  end-page: 249
  article-title: Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme
  publication-title: J Mol Biol
– volume: 264
  start-page: 320
  year: 2014
  end-page: 332
  article-title: Reaction and transport in Ag/Ag2O gas diffusion electrodes of aqueous LiO batteries: Experiments and modeling
  publication-title: J Power Sources
– volume: 7
  start-page: 2021
  issue: 7
  year: 2011
  end-page: 2024
  article-title: Mechanism of nitric oxide oxidation reaction (2NO + O ‐> 2NO ) Revisited
  publication-title: J Chem Theory Comput
– volume: 234
  start-page: 117
  year: 2018
  end-page: 129
  article-title: Shape selectivity vapor‐phase conversion of lignin‐derived 4‐ethylphenol to phenol and ethylene over acidic aluminosilicates: Impact of acid properties and pore constraint
  publication-title: Appl Catal Environ
– volume: 117
  start-page: 2368
  issue: 5
  year: 2002
  end-page: 2376
  article-title: Density functional theory for inhomogeneous mixtures of polymeric fluids
  publication-title: J Chem Phys
– volume: 3
  start-page: 191
  issue: 3
  year: 1999
  end-page: 198
  article-title: Gas‐phase oxidation of nitric oxide: Chemical kinetics and rate constant
  publication-title: Nitric Oxide Biol Chem
– volume: 329
  start-page: 1616
  issue: 5999
  year: 2010
  end-page: 1620
  article-title: Reaction‐diffusion model as a framework for understanding biological pattern formation
  publication-title: Science
– volume: 119
  start-page: 2165
  issue: 4
  year: 2003
  end-page: 2170
  article-title: Fractional reaction‐diffusion equation
  publication-title: J Chem Phys
– volume: 12
  start-page: 131
  issue: 1
  year: 2002
  end-page: 143
  article-title: From atomistic lattice‐gas models for surface reactions to hydrodynamic reaction‐diffusion equations
  publication-title: Chaos
– volume: 112
  start-page: 15407
  issue: 48
  year: 2008
  end-page: 15416
  article-title: A density functional theory with a mean‐field weight function: applications to surface tension, adsorption, and phase transition of a Lennard‐Jones fluid in a slit‐like pore
  publication-title: J Phys Chem B
– volume: 116
  start-page: 7094
  issue: 16
  year: 2002
  end-page: 7103
  article-title: Wu JZ. A fundamental‐measure theory for inhomogeneous associating fluids
  publication-title: J Chem Phys
– volume: 148
  start-page: 573
  year: 2014
  end-page: 581
  article-title: Nitric oxide oxidation catalyzed by microporous activated carbon fiber cloth: An updated reaction mechanism
  publication-title: Appl Catal B Environ
– volume: 120
  start-page: 9913
  issue: 37
  year: 2016
  end-page: 9921
  article-title: Exploring the dependence of QM/MM calculations of enzyme catalysis on the size of the QM region
  publication-title: J Phys Chem B
– volume: 26
  start-page: 284102
  issue: 28
  year: 2014
  article-title: Time‐dependent density functional theory for ion diffusion in electrochemical systems
  publication-title: J Phys‐Condens Matter
– volume: 47
  start-page: 4714
  issue: 11
  year: 1967
  end-page: 4721
  article-title: Perturbation theory and equation of state for fluids. 2. A successful theory of liquids
  publication-title: J Chem Phys
– volume: 26
  start-page: 417
  issue: 4
  year: 2008
  end-page: 426
  article-title: Making it stick: convection, reaction and diffusion in surface‐based biosensors
  publication-title: Nat Biotechnol
– volume: 114
  start-page: 1851
  issue: 4
  year: 2001
  end-page: 1859
  article-title: Effect of confinement on chemical reaction equilibria: The reactions 2NO <‐>NO and N  + 3H <‐> 2NH in carbon micropores
  publication-title: J Chem Phys
– volume: 126
  start-page: 144912
  issue: 14
  year: 2007
  article-title: Density functional theory for a primitive model of nanoparticle‐block copolymer mixtures
  publication-title: J Chem Phys
– ident: e_1_2_6_43_1
  doi: 10.1021/jp805697p
– ident: e_1_2_6_6_1
  doi: 10.1126/science.1179047
– ident: e_1_2_6_23_1
  doi: 10.1016/j.amc.2018.02.040
– ident: e_1_2_6_4_1
  doi: 10.1016/j.jpowsour.2014.03.149
– ident: e_1_2_6_51_1
  doi: 10.1016/S0016-2361(01)00096-5
– ident: e_1_2_6_2_1
  doi: 10.1016/j.jpowsour.2011.09.003
– ident: e_1_2_6_25_1
  doi: 10.1016/S0045-7825(97)00206-5
– ident: e_1_2_6_16_1
  doi: 10.1021/jp0029109
– ident: e_1_2_6_17_1
  doi: 10.1021/jp8071712
– ident: e_1_2_6_26_1
  doi: 10.1063/1.1587126
– ident: e_1_2_6_5_1
  doi: 10.1038/nbt1388
– ident: e_1_2_6_32_1
  doi: 10.1063/1.1520530
– ident: e_1_2_6_39_1
  doi: 10.1021/jz5009533
– ident: e_1_2_6_19_1
  doi: 10.1021/jp020326p
– ident: e_1_2_6_60_1
  doi: 10.1016/j.apcatb.2011.10.029
– ident: e_1_2_6_64_1
  doi: 10.1021/jp010324p
– ident: e_1_2_6_55_1
  doi: 10.1016/j.apcatb.2013.10.050
– ident: e_1_2_6_50_1
  doi: 10.1016/S0016-2361(00)00034-X
– ident: e_1_2_6_3_1
  doi: 10.1016/j.jmps.2012.11.001
– ident: e_1_2_6_9_1
  doi: 10.1063/1.1328756
– ident: e_1_2_6_45_1
  doi: 10.1021/la803666t
– ident: e_1_2_6_24_1
  doi: 10.1063/1.464316
– ident: e_1_2_6_58_1
  doi: 10.1063/1.1463435
– ident: e_1_2_6_21_1
  doi: 10.1063/1.4907731
– ident: e_1_2_6_44_1
  doi: 10.1021/la8024099
– ident: e_1_2_6_40_1
  doi: 10.1002/aic.14842
– ident: e_1_2_6_20_1
  doi: 10.1063/1.4906828
– ident: e_1_2_6_54_1
  doi: 10.1021/ie102506q
– ident: e_1_2_6_22_1
  doi: 10.1016/j.cpc.2013.11.013
– ident: e_1_2_6_48_1
  doi: 10.1088/0953-8984/26/28/284102
– ident: e_1_2_6_49_1
  doi: 10.1063/1.3166865
– ident: e_1_2_6_52_1
  doi: 10.1006/niox.1999.0232
– ident: e_1_2_6_8_1
  doi: 10.1021/acs.jpcc.6b10719
– ident: e_1_2_6_27_1
  doi: 10.1063/1.1450566
– ident: e_1_2_6_30_1
  doi: 10.1103/PhysRevA.44.1219
– ident: e_1_2_6_61_1
  doi: 10.1016/j.fluid.2012.03.011
– ident: e_1_2_6_34_1
  doi: 10.1063/1.2712442
– ident: e_1_2_6_14_1
  doi: 10.1002/jcc.540110605
– ident: e_1_2_6_57_1
  doi: 10.1002/chem.200902406
– ident: e_1_2_6_66_1
  doi: 10.1016/j.apcatb.2018.04.001
– ident: e_1_2_6_37_1
  doi: 10.1021/jz401787p
– ident: e_1_2_6_59_1
  doi: 10.1063/1.1701689
– ident: e_1_2_6_13_1
  doi: 10.1002/anie.201403691
– ident: e_1_2_6_31_1
  doi: 10.1103/PhysRevLett.72.3831
– ident: e_1_2_6_42_1
  doi: 10.1063/1.3174928
– ident: e_1_2_6_36_1
  doi: 10.1021/jp904872f
– ident: e_1_2_6_33_1
  doi: 10.1063/1.1491240
– ident: e_1_2_6_28_1
  doi: 10.1093/imamat/48.3.249
– ident: e_1_2_6_12_1
  doi: 10.1021/jp711496y
– ident: e_1_2_6_62_1
  doi: 10.1021/la00078a043
– ident: e_1_2_6_63_1
  doi: 10.1109/JPROC.2004.840301
– ident: e_1_2_6_38_1
  doi: 10.1021/ct3010936
– ident: e_1_2_6_65_1
  doi: 10.1039/C5CY01979F
– ident: e_1_2_6_41_1
  doi: 10.1039/C6CP01610C
– ident: e_1_2_6_18_1
  doi: 10.1021/ja2084042
– ident: e_1_2_6_11_1
  doi: 10.1021/acs.jpcb.6b07203
– ident: e_1_2_6_7_1
  doi: 10.1021/ja0754913
– ident: e_1_2_6_46_1
  doi: 10.1021/jp9104932
– ident: e_1_2_6_67_1
  doi: 10.1016/j.ces.2015.08.007
– ident: e_1_2_6_10_1
  doi: 10.1016/0022-2836(76)90311-9
– ident: e_1_2_6_53_1
  doi: 10.1016/j.apcatb.2007.05.029
– ident: e_1_2_6_56_1
  doi: 10.1021/ct100754m
– ident: e_1_2_6_29_1
  doi: 10.1103/PhysRevLett.63.980
– ident: e_1_2_6_35_1
  doi: 10.1063/1.3054633
– ident: e_1_2_6_15_1
  doi: 10.1021/jp9924124
– ident: e_1_2_6_47_1
  doi: 10.1063/1.4968037
SSID ssj0012782
Score 2.412629
Snippet The reaction–diffusion (RD) process is an important and complex subject that involves nonequilibrium modeling and multiscale calculations and may be applied to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Adsorption
Attraction
catalysis
Catalytic oxidation
Density functional theory
Modelling
multiscale
Oxidation
porous material
Porous materials
reaction–diffusion process
Selectivity
Time dependence
time‐dependent density functional theory
Title Development of reaction–diffusion DFT and its application to catalytic oxidation of NO in porous materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.16824
https://www.proquest.com/docview/2333546344
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF5KT3rwX6xWWcRDL2mTbJImeCrVUgUrSAs9CGF_oVgSMSmoJ9_BN_RJnN00bRUF8baQ2SHZndn9djL7DUJnRIREilBYVPm25XHft0IVMIvwtoIeAewxOqB_Mwj6I-967I8r6Ly8C1PwQywCbtozzHqtHZyyrLUkDaUT3nSC0NVcoDpXSwOiuwV1lOO2w4IpHI7LABOcklXIdluLnl_3oiXAXIWpZp_pbaL78g2L9JKH5ixnTf76jbzxn5-whTbm-BN3CoPZRhWZ7KD1FVbCXTRdSSTCqcIAK83lh4-3d11OZabja_iiN8Q0EXiSZ3jlJzjOU2wiQi-gH6fPk6Jkk1YzuMWTBAPcT2cZBpxcmP4eGvUuh92-NS_KYHFCPM-Soh0K2xXgtyKiHg80IRu0fQHQTDncpkSygEURpVI5nhIuI0FEYaHwAGuoiOyjapIm8gBhXzlMOr6KbKaPeW0aSCaYI0BYcsVpDTXK6Yn5nLFcF86YxgXXshvDAMZmAGvodCH6WNB0_CRUL-c4nntqFruEEF0SwIPHDTNZvyuIO1dd0zj8u-gRWnP1Ed0ketdRNX-ayWPAMTk7MQb7Cf4v8JQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4V9gAc9sFDwMJirTj0kpLETppIXBBLVV5FQq3EBUV-ShUoQTSVYE_7H_Yf7i9h7DRtd8VKiJuljEeJ7fF8M7G_AdinKqFaJcrjJvI9JqPIS0wsPCrbBnvE6GNsQv-yF3cH7OwmumnAYX0XpuKHmCbcrGW4_doauE1IH8xYQ_lQtoI4CdkCfLAVvV1AdT0ljwrCdlJxhWPAjEAhqHmF_PBg2vVvbzSDmPNA1Xmazie4rd-xOmBy1xqXoiV__kPf-N6P-AwfJxCUHFVr5gs0dL4KK3PEhGtwP3eWiBSGILJ09x_-_PptK6qMbYqN_Oj0Cc8VGZYjMvcfnJQFcUmhZ9RPiqdhVbXJquldkWFOEPEX4xFBqFyt_nUYdE76x11vUpfBk5Qy5mnVTpQfKjRdlXImY8vJhu1IITozgfQ51SIWacq5NgEzKhQ0TjnuFQzhhknpBizmRa43gUQmEDqITOoLG-m1eayFEoFCYS2N5FvQrOcnkxPScls74z6r6JbDDAcwcwO4Bd-nog8VU8drQjv1JGcTYx1lIaXUVgVg-LjpZuv_CrKj02PX2H676B4sdfuXF9nFae_8KyyHNmJ35753YLF8HOtdhDWl-OZW7wv92vSv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_8ANEHbdWiVusiffAlZ5Ld7CX4JF4PP-q1iIIPQthPOCqJeDmwffJ_8D_sX-Ls5nJei4L4tpDZJdmZ2fntZPc3AF-pTqnRqQ6ETcKAqSQJUstlQFXbYg-OMcYl9M96_OiSnVwlV1Ow39yFqfkhxgk35xl-vXYOfqvt3jNpqOirVsTTmE3DLONh6ky6cz7mjoridlpTheN-GXFC1NAKhfHeuOu_wegZYU7iVB9ouktw3bxifb7kV2tYyZb68x974zu_4QMsjgAoOagt5iNMmWIZFiZoCVfgZuIkESktQVzpbz_8fXh09VSGLsFGOt0LIgpN-tWATPwFJ1VJfEroN45Pyvt-XbPJDdP7QfoFQbxfDgcEgXJt-6tw2f12cXgUjKoyBIpSxgKj26kOY42OqzPBFHeMbNhONGIzG6lQUCO5zDIhjI2Y1bGkPBO4UjAEGzajn2CmKAuzBiSxkTRRYrNQun1eW3AjtYw0ChtllViH3UY9uRpRlrvKGTd5TbYc5ziBuZ_AddgZi97WPB0vCW02Os5HrjrIY0qpqwnA8PGuV9brA-QHx4e-sfF20W2Y-9np5t-Pe6efYT5223V_6HsTZqq7odlCTFPJL952nwBM4_Nn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+reaction%E2%80%93diffusion+DFT+and+its+application+to+catalytic+oxidation+of+NO+in+porous+materials&rft.jtitle=AIChE+journal&rft.au=Liu%2C+Yu&rft.au=Liu%2C+Honglai&rft.date=2020-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=66&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faic.16824&rft.externalDBID=10.1002%252Faic.16824&rft.externalDocID=AIC16824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon