Subject‐Based Transfer Learning in Longitudinal Multiple Sclerosis Lesion Segmentation

ABSTRACT Background and Purpose Accurate and consistent lesion segmentation from magnetic resonance imaging is required for longitudinal multiple sclerosis (MS) data analysis. In this work, we propose two new transfer learning‐based pipelines to improve segmentation performance for subjects in longi...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroimaging Vol. 35; no. 1; pp. e70024 - n/a
Main Authors Gaj, Sibaji, Thoomukuntla, Bhaskar, Ontaneda, Daniel, Nakamura, Kunio
Format Journal Article
LanguageEnglish
Published United States 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Background and Purpose Accurate and consistent lesion segmentation from magnetic resonance imaging is required for longitudinal multiple sclerosis (MS) data analysis. In this work, we propose two new transfer learning‐based pipelines to improve segmentation performance for subjects in longitudinal MS datasets. Method In general, transfer learning is used to improve deep learning model performance for the unseen dataset by fine‐tuning a pretrained model with a limited number of labeled scans from the unseen dataset. The proposed methodologies fine‐tune the deep learning model for each subject using the first scan and improve segmentation performance for later scans for the same subject. We also investigated the statistical benefits of the proposed methodology by modeling lesion volume over time between progressors according to confirmed disability progression and nonprogressors for a large in‐house dataset (937 MS patients, 3210 scans) using a linear mixed effect (LME) model. Results The results show statistically significant improvement for the proposed methodology compared with the traditional transfer learning method using Dice (improvement: 2%), sensitivity (6%), and average volumetric difference (16%), as well as visual analysis for public and in‐house datasets. The LME result showed that the proposed subject‐wise transfer learning method had increased statistical power for the measurement of longitudinal lesion volume. Conclusion The proposed method improved lesion segmentation performance and can reduce manual effort to correct the automatic segmentations for final data analysis in longitudinal studies.
AbstractList ABSTRACT Background and Purpose Accurate and consistent lesion segmentation from magnetic resonance imaging is required for longitudinal multiple sclerosis (MS) data analysis. In this work, we propose two new transfer learning‐based pipelines to improve segmentation performance for subjects in longitudinal MS datasets. Method In general, transfer learning is used to improve deep learning model performance for the unseen dataset by fine‐tuning a pretrained model with a limited number of labeled scans from the unseen dataset. The proposed methodologies fine‐tune the deep learning model for each subject using the first scan and improve segmentation performance for later scans for the same subject. We also investigated the statistical benefits of the proposed methodology by modeling lesion volume over time between progressors according to confirmed disability progression and nonprogressors for a large in‐house dataset (937 MS patients, 3210 scans) using a linear mixed effect (LME) model. Results The results show statistically significant improvement for the proposed methodology compared with the traditional transfer learning method using Dice (improvement: 2%), sensitivity (6%), and average volumetric difference (16%), as well as visual analysis for public and in‐house datasets. The LME result showed that the proposed subject‐wise transfer learning method had increased statistical power for the measurement of longitudinal lesion volume. Conclusion The proposed method improved lesion segmentation performance and can reduce manual effort to correct the automatic segmentations for final data analysis in longitudinal studies.
Accurate and consistent lesion segmentation from magnetic resonance imaging is required for longitudinal multiple sclerosis (MS) data analysis. In this work, we propose two new transfer learning-based pipelines to improve segmentation performance for subjects in longitudinal MS datasets. In general, transfer learning is used to improve deep learning model performance for the unseen dataset by fine-tuning a pretrained model with a limited number of labeled scans from the unseen dataset. The proposed methodologies fine-tune the deep learning model for each subject using the first scan and improve segmentation performance for later scans for the same subject. We also investigated the statistical benefits of the proposed methodology by modeling lesion volume over time between progressors according to confirmed disability progression and nonprogressors for a large in-house dataset (937 MS patients, 3210 scans) using a linear mixed effect (LME) model. The results show statistically significant improvement for the proposed methodology compared with the traditional transfer learning method using Dice (improvement: 2%), sensitivity (6%), and average volumetric difference (16%), as well as visual analysis for public and in-house datasets. The LME result showed that the proposed subject-wise transfer learning method had increased statistical power for the measurement of longitudinal lesion volume. The proposed method improved lesion segmentation performance and can reduce manual effort to correct the automatic segmentations for final data analysis in longitudinal studies.
Author Gaj, Sibaji
Thoomukuntla, Bhaskar
Nakamura, Kunio
Ontaneda, Daniel
Author_xml – sequence: 1
  givenname: Sibaji
  orcidid: 0000-0002-6997-5717
  surname: Gaj
  fullname: Gaj, Sibaji
  organization: Cleveland Clinic
– sequence: 2
  givenname: Bhaskar
  surname: Thoomukuntla
  fullname: Thoomukuntla, Bhaskar
  organization: Cleveland Clinic
– sequence: 3
  givenname: Daniel
  surname: Ontaneda
  fullname: Ontaneda, Daniel
  organization: Cleveland Clinic
– sequence: 4
  givenname: Kunio
  orcidid: 0000-0002-7833-8138
  surname: Nakamura
  fullname: Nakamura, Kunio
  email: nakamuk@ccf.org
  organization: Cleveland Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39923192$$D View this record in MEDLINE/PubMed
BookMark eNo9kElOw0AQRVsoiAyw4AKoL-CkRydeQsQoQxYJEjurh3LUkdOO3LZQdhyBM3ISmgSozf-leirp_yHq-doDQpeUjGmcyab24ykhTJygAZWSJalMs170RNKEsZnoo2EIm0hQwfgZ6vMsY5xmbIDelp3egGm_Pj5vVACLV43yoYQG56Aa7_waO4_z2q9d21nnVYWfu6p1uwrw0lTQ1MGFyAZXe7yE9RZ8q9q4nKPTUlUBLn51hF7vblfzhyRf3D_Or_PEcC5EkllqiZzSkmqSKa5JFKZpqbkVwKA0M2o5SUshDDFTOkul1IxJYMooplLFR-jq-HfX6S3YYte4rWr2xV_ECEyOwLurYP9_p6T46a6I3RWH7oqnxcvB8G8pZ2Su
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging.
2025 The Author(s). Journal of Neuroimaging published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging.
– notice: 2025 The Author(s). Journal of Neuroimaging published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging.
DBID 24P
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1111/jon.70024
DatabaseName Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1552-6569
EndPage n/a
ExternalDocumentID 39923192
JON70024
Genre researchArticle
Journal Article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29L
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCUV
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZ~
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WVDHM
WXSBR
XG1
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c3344-9d1d0571f1b09a3b0b092b1fb3d4e2efc81d306f44c0c718655b225e2aca2a6a3
IEDL.DBID 24P
ISSN 1051-2284
IngestDate Mon Jul 21 05:57:32 EDT 2025
Sun Jul 06 04:45:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords deep learning
transfer learning
automated segmentation
UNet
Language English
License Attribution-NonCommercial
2025 The Author(s). Journal of Neuroimaging published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3344-9d1d0571f1b09a3b0b092b1fb3d4e2efc81d306f44c0c718655b225e2aca2a6a3
ORCID 0000-0002-7833-8138
0000-0002-6997-5717
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjon.70024
PMID 39923192
PageCount 11
ParticipantIDs pubmed_primary_39923192
wiley_primary_10_1111_jon_70024_JON70024
PublicationCentury 2000
PublicationDate January/February 2025
2025 Jan-Feb
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January/February 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of neuroimaging
PublicationTitleAlternate J Neuroimaging
PublicationYear 2025
References 2021; 27
2012; 186
2019; 92
2020; 84
2017; 65
2018; 288
2011; 54
2024
2012; 59
2017; 155
2014; 83
2016; 15
2016; 35
2018; 24
2021; 16
1998; 17
2021; 32
2017; 39
2019; 21
2019
2009; 9
2017
2022; 59
2015
1994; 18
2017; 148
2018; 37
References_xml – start-page: 234
  year: 2015
  end-page: 241
– volume: 16
  year: 2021
  article-title: Automatic Segmentation of Gadolinium‐Enhancing Lesions in Multiple Sclerosis Using Deep Learning From Clinical MRI
  publication-title: PLoS One
– volume: 21
  year: 2019
  article-title: One‐Shot Domain Adaptation in Multiple Sclerosis Lesion Segmentation Using Convolutional Neural Networks
  publication-title: NeuroImage: Clinical
– volume: 59
  year: 2022
  article-title: Multiple Sclerosis Performance Test (MSPT): Normative Study of 428 Healthy Participants Ages 18 to 89
  publication-title: Multiple Sclerosis and Related Disorders
– volume: 155
  start-page: 159
  year: 2017
  end-page: 168
  article-title: Improving Automated Multiple Sclerosis Lesion Segmentation With a Cascaded 3D Convolutional Neural Network Approach
  publication-title: NeuroImage
– volume: 186
  start-page: 164
  year: 2012
  end-page: 185
  article-title: Segmentation of Multiple Sclerosis Lesions in Brain MRI: A Review of Automated Approaches
  publication-title: Information Sciences
– volume: 92
  start-page: e1029
  year: 2019
  end-page: e1040
  article-title: The Prevalence of MS in the United States: A Population‐Based Estimate Using Health Claims Data
  publication-title: Neurology
– volume: 35
  start-page: 1229
  year: 2016
  end-page: 1239
  article-title: Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation
  publication-title: IEEE Transactions on Medical Imaging
– volume: 32
  year: 2021
  article-title: ALL‐Net: Anatomical Information Lesion‐Wise Loss Function Integrated Into Neural Network for Multiple Sclerosis Lesion Segmentation
  publication-title: NeuroImage: Clinical
– volume: 65
  start-page: 111
  year: 2017
  end-page: 118
  article-title: Multi‐View Longitudinal CNN for Multiple Sclerosis Lesion Segmentation
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  article-title: Segnet: A Deep Convolutional Encoder‐Decoder Architecture for Image Segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 288
  start-page: 177
  year: 2018
  end-page: 185
  article-title: Use of 2D U‐Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry
  publication-title: Radiology
– volume: 15
  start-page: 292
  year: 2016
  end-page: 303
  article-title: MRI Criteria for the Diagnosis of Multiple Sclerosis: MAGNIMS Consensus Guidelines
  publication-title: Lancet Neurology
– volume: 27
  start-page: 519
  year: 2021
  end-page: 527
  article-title: Deep Learning Segmentation of Gadolinium‐Enhancing Lesions in Multiple Sclerosis
  publication-title: Multiple Sclerosis
– volume: 84
  start-page: 437
  year: 2020
  end-page: 449
  article-title: Automated Cartilage and Meniscus Segmentation of Knee MRI With Conditional Generative Adversarial Networks
  publication-title: Magnetic Resonance in Medicine
– volume: 83
  start-page: 1022
  year: 2014
  end-page: 1024
  article-title: Atlas of Multiple Sclerosis 2013: A Growing Global Problem With Widespread Inequity
  publication-title: Neurology
– start-page: 1
  year: 2024
  end-page: 5
  article-title: Towards an Accurate and Generalizable Multiple Sclerosis Lesion Segmentation Model Using Self‐Ensembled Lesion Fusion
– volume: 18
  start-page: 192
  year: 1994
  end-page: 205
  article-title: Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space
  publication-title: Journal of Computer Assisted Tomography
– start-page: 338
  year: 2019
  end-page: 346
  article-title: Multiple Sclerosis Lesion Segmentation With Tiramisu and 2.5 D Stacked Slices
– volume: 9
  start-page: 1037
  year: 2009
  end-page: 1037
  article-title: ImageNet: Constructing a Large‐Scale Image Database
  publication-title: Journal of Vision
– volume: 24
  start-page: 1523
  year: 2018
  end-page: 1525
  article-title: Treatment Decisions in MS: Shifting the Goal Posts or Changing How We See Them?
  publication-title: Multiple Sclerosis
– volume: 54
  start-page: 313
  year: 2011
  end-page: 327
  article-title: Unbiased Average Age‐Appropriate Atlases for Pediatric Studies
  publication-title: NeuroImage
– volume: 148
  start-page: 77
  year: 2017
  end-page: 102
  article-title: Longitudinal Multiple Sclerosis Lesion Segmentation: Resource and Challenge
  publication-title: NeuroImage
– volume: 37
  start-page: 2663
  year: 2018
  end-page: 2674
  article-title: H‐DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes
  publication-title: IEEE Transactions on Medical Imaging
– volume: 59
  start-page: 2362
  year: 2012
  end-page: 2373
  article-title: BEaST: Brain Extraction Based on Nonlocal Segmentation Technique
  publication-title: NeuroImage
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  article-title: A Nonparametric Method for Automatic Correction of Intensity Nonuniformity in MRI Data
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 516
  year: 2017
  end-page: 524
  article-title: Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation
SSID ssj0021423
Score 2.3900228
Snippet ABSTRACT Background and Purpose Accurate and consistent lesion segmentation from magnetic resonance imaging is required for longitudinal multiple sclerosis...
Accurate and consistent lesion segmentation from magnetic resonance imaging is required for longitudinal multiple sclerosis (MS) data analysis. In this work,...
SourceID pubmed
wiley
SourceType Index Database
Publisher
StartPage e70024
SubjectTerms Adult
automated segmentation
Brain - diagnostic imaging
Brain - pathology
Deep Learning
Disease Progression
Female
Humans
Image Interpretation, Computer-Assisted - methods
Longitudinal Studies
Magnetic Resonance Imaging - methods
Male
Middle Aged
Multiple Sclerosis - diagnostic imaging
Multiple Sclerosis - pathology
transfer learning
UNet
Title Subject‐Based Transfer Learning in Longitudinal Multiple Sclerosis Lesion Segmentation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjon.70024
https://www.ncbi.nlm.nih.gov/pubmed/39923192
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qBfEivq0v9uDBy0J2s027eFKxlGJroRZ6C_tK6cG09HH3J_gb_SXObtLQo5ckkE0OM8x8s7Mz3wA8iEiztjVtmphYUIyI0Q8qyakNAbiKTMuEAtlB0h2L3qQ5qcHTthem4IeoEm7eMoK_9gau9GrXyFFLLQ8xe7DvW2s9cT4Xw2q3xQQvquubjHJ0wiWtUCjj2X66Azu7oWnAls4xHJVBIXkutHgCNZefwkG_PPY-gwmat8-X_H7_vCDqWBIQJnNLUtKjTsksJ-9zP3toY_2cK9IvCwXJCP-ISDhb4VqfGSMjN_0qG47ycxh33j5fu7QciUBNHAtBpWUWIyyWMR1JFesIb1yzTMdWOO4yg-EnbgIyIQyKmfmuU40W67gyiqtExRdQz-e5uwLiskg6a4w0OhNxy7UTyZyOEk8Br6TVDbgsZJMuCt6L1HPYosXyBjwGYVUvqo3EPE-DXNPexyA8XP9_6Q0ccj9bN6Q3bqG-Xm7cHQL-Wt8HxeJ1MOz_AdweqCo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gJurF-Bafe_DgpUl3u7Q08aJGgghoAibcmn2VcLAYhLs_wd_oL3F2uzQcPbVJtz3M5JtvZjoPgBseStrSqhXEKuIBesRoB0XKAu0ccBGqRLkC2UHceefdcXNcg7tVL0w5H6JKuFlkOHttAW4T0usoRzUllmM2YJPHLLGwZPytCrcoZ2V5fZMGDK2wnyvk6nhWr67xzrpv6silvQe73isk96Ua96FmigPY6vv_3ocwRnzbhMnv988D0o4mjmJyMyd-PuqETAvSm9nlQ0ttF12Rvq8UJEP8IlLh9AvP2tQYGZrJh-84Ko7gvf00euwEfidCoKKI8yDVVKOLRXMqw1REMsQLkzSXkeaGmVyh_4lRQM65QjlT23YqEbKGCSWYiEV0DPViVphTICYPU6OVSpXMeZSYVpxSI8PYzoAXqZYNOCllk32Wgy8yO8QWIcsacOuEVT2oIolZkTm5Zt3Xgbs5-__Ra9jujPq9rPc8eDmHHWYX7bpcxwXUF_OluUT2X8grp-Q_Cm-qig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gJsSL8S0-9-DBS5Pudik0nnwRREASNOHW7JNwsBCEuz_B3-gvcXZbGo6e2qS7Pcxk5puZnf0G4IaHkra0agWxiniAETH6QZGwQPsAXISqqXyD7CDufPDuuDGuwN36LkzOD1EW3JxleH_tDHyu7aaRo5aaDmK2YNsf9jlaZz4ssy3KWd5d36ABQydc0Ar5Np711g3Y2QxNPba092C3CArJfa7FfaiY7ABq_eLY-xDGaN6uXvL7_fOAqKOJRxhrFqSgR52QaUZ6Mzd7aKXdnCvSLxoFyQj_iEg4_cK1rjJGRmbyWVw4yo7go_38_tgJipEIgYoizoNEU40RFrVUhomIZIgPJqmVkeaGGasw_MQkwHKuUMzU3TqVaLGGCSWYiEV0DNVslplTIMaGidFKJUpaHjVNK06okWHsKOBFomUdTnLZpPOc9yJ1HLZosawOt15Y5YcykZhlqZdr2n0b-Jez_y-9htrwqZ32Xgav57DD3JhdX-m4gOpysTKXiP1LeeV1_AdW_am8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject%E2%80%90Based+Transfer+Learning+in+Longitudinal+Multiple+Sclerosis+Lesion+Segmentation&rft.jtitle=Journal+of+neuroimaging&rft.au=Gaj%2C+Sibaji&rft.au=Thoomukuntla%2C+Bhaskar&rft.au=Ontaneda%2C+Daniel&rft.au=Nakamura%2C+Kunio&rft.date=2025-01-01&rft.issn=1051-2284&rft.eissn=1552-6569&rft.volume=35&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fjon.70024&rft.externalDBID=10.1111%252Fjon.70024&rft.externalDocID=JON70024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2284&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2284&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2284&client=summon