Subject‐Based Transfer Learning in Longitudinal Multiple Sclerosis Lesion Segmentation
ABSTRACT Background and Purpose Accurate and consistent lesion segmentation from magnetic resonance imaging is required for longitudinal multiple sclerosis (MS) data analysis. In this work, we propose two new transfer learning‐based pipelines to improve segmentation performance for subjects in longi...
Saved in:
Published in | Journal of neuroimaging Vol. 35; no. 1; pp. e70024 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Background and Purpose
Accurate and consistent lesion segmentation from magnetic resonance imaging is required for longitudinal multiple sclerosis (MS) data analysis. In this work, we propose two new transfer learning‐based pipelines to improve segmentation performance for subjects in longitudinal MS datasets.
Method
In general, transfer learning is used to improve deep learning model performance for the unseen dataset by fine‐tuning a pretrained model with a limited number of labeled scans from the unseen dataset. The proposed methodologies fine‐tune the deep learning model for each subject using the first scan and improve segmentation performance for later scans for the same subject. We also investigated the statistical benefits of the proposed methodology by modeling lesion volume over time between progressors according to confirmed disability progression and nonprogressors for a large in‐house dataset (937 MS patients, 3210 scans) using a linear mixed effect (LME) model.
Results
The results show statistically significant improvement for the proposed methodology compared with the traditional transfer learning method using Dice (improvement: 2%), sensitivity (6%), and average volumetric difference (16%), as well as visual analysis for public and in‐house datasets. The LME result showed that the proposed subject‐wise transfer learning method had increased statistical power for the measurement of longitudinal lesion volume.
Conclusion
The proposed method improved lesion segmentation performance and can reduce manual effort to correct the automatic segmentations for final data analysis in longitudinal studies. |
---|---|
AbstractList | ABSTRACT
Background and Purpose
Accurate and consistent lesion segmentation from magnetic resonance imaging is required for longitudinal multiple sclerosis (MS) data analysis. In this work, we propose two new transfer learning‐based pipelines to improve segmentation performance for subjects in longitudinal MS datasets.
Method
In general, transfer learning is used to improve deep learning model performance for the unseen dataset by fine‐tuning a pretrained model with a limited number of labeled scans from the unseen dataset. The proposed methodologies fine‐tune the deep learning model for each subject using the first scan and improve segmentation performance for later scans for the same subject. We also investigated the statistical benefits of the proposed methodology by modeling lesion volume over time between progressors according to confirmed disability progression and nonprogressors for a large in‐house dataset (937 MS patients, 3210 scans) using a linear mixed effect (LME) model.
Results
The results show statistically significant improvement for the proposed methodology compared with the traditional transfer learning method using Dice (improvement: 2%), sensitivity (6%), and average volumetric difference (16%), as well as visual analysis for public and in‐house datasets. The LME result showed that the proposed subject‐wise transfer learning method had increased statistical power for the measurement of longitudinal lesion volume.
Conclusion
The proposed method improved lesion segmentation performance and can reduce manual effort to correct the automatic segmentations for final data analysis in longitudinal studies. Accurate and consistent lesion segmentation from magnetic resonance imaging is required for longitudinal multiple sclerosis (MS) data analysis. In this work, we propose two new transfer learning-based pipelines to improve segmentation performance for subjects in longitudinal MS datasets. In general, transfer learning is used to improve deep learning model performance for the unseen dataset by fine-tuning a pretrained model with a limited number of labeled scans from the unseen dataset. The proposed methodologies fine-tune the deep learning model for each subject using the first scan and improve segmentation performance for later scans for the same subject. We also investigated the statistical benefits of the proposed methodology by modeling lesion volume over time between progressors according to confirmed disability progression and nonprogressors for a large in-house dataset (937 MS patients, 3210 scans) using a linear mixed effect (LME) model. The results show statistically significant improvement for the proposed methodology compared with the traditional transfer learning method using Dice (improvement: 2%), sensitivity (6%), and average volumetric difference (16%), as well as visual analysis for public and in-house datasets. The LME result showed that the proposed subject-wise transfer learning method had increased statistical power for the measurement of longitudinal lesion volume. The proposed method improved lesion segmentation performance and can reduce manual effort to correct the automatic segmentations for final data analysis in longitudinal studies. |
Author | Gaj, Sibaji Thoomukuntla, Bhaskar Nakamura, Kunio Ontaneda, Daniel |
Author_xml | – sequence: 1 givenname: Sibaji orcidid: 0000-0002-6997-5717 surname: Gaj fullname: Gaj, Sibaji organization: Cleveland Clinic – sequence: 2 givenname: Bhaskar surname: Thoomukuntla fullname: Thoomukuntla, Bhaskar organization: Cleveland Clinic – sequence: 3 givenname: Daniel surname: Ontaneda fullname: Ontaneda, Daniel organization: Cleveland Clinic – sequence: 4 givenname: Kunio orcidid: 0000-0002-7833-8138 surname: Nakamura fullname: Nakamura, Kunio email: nakamuk@ccf.org organization: Cleveland Clinic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39923192$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kElOw0AQRVsoiAyw4AKoL-CkRydeQsQoQxYJEjurh3LUkdOO3LZQdhyBM3ISmgSozf-leirp_yHq-doDQpeUjGmcyab24ykhTJygAZWSJalMs170RNKEsZnoo2EIm0hQwfgZ6vMsY5xmbIDelp3egGm_Pj5vVACLV43yoYQG56Aa7_waO4_z2q9d21nnVYWfu6p1uwrw0lTQ1MGFyAZXe7yE9RZ8q9q4nKPTUlUBLn51hF7vblfzhyRf3D_Or_PEcC5EkllqiZzSkmqSKa5JFKZpqbkVwKA0M2o5SUshDDFTOkul1IxJYMooplLFR-jq-HfX6S3YYte4rWr2xV_ECEyOwLurYP9_p6T46a6I3RWH7oqnxcvB8G8pZ2Su |
ContentType | Journal Article |
Copyright | 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging. 2025 The Author(s). Journal of Neuroimaging published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging. |
Copyright_xml | – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging. – notice: 2025 The Author(s). Journal of Neuroimaging published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging. |
DBID | 24P CGR CUY CVF ECM EIF NPM |
DOI | 10.1111/jon.70024 |
DatabaseName | Wiley Online Library Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1552-6569 |
EndPage | n/a |
ExternalDocumentID | 39923192 JON70024 |
Genre | researchArticle Journal Article |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29L 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCUV ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE FUBAC FYBCS G-S G.N GODZA H.X HF~ HGLYW HVGLF HZ~ J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WVDHM WXSBR XG1 ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c3344-9d1d0571f1b09a3b0b092b1fb3d4e2efc81d306f44c0c718655b225e2aca2a6a3 |
IEDL.DBID | 24P |
ISSN | 1051-2284 |
IngestDate | Mon Jul 21 05:57:32 EDT 2025 Sun Jul 06 04:45:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | deep learning transfer learning automated segmentation UNet |
Language | English |
License | Attribution-NonCommercial 2025 The Author(s). Journal of Neuroimaging published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3344-9d1d0571f1b09a3b0b092b1fb3d4e2efc81d306f44c0c718655b225e2aca2a6a3 |
ORCID | 0000-0002-7833-8138 0000-0002-6997-5717 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjon.70024 |
PMID | 39923192 |
PageCount | 11 |
ParticipantIDs | pubmed_primary_39923192 wiley_primary_10_1111_jon_70024_JON70024 |
PublicationCentury | 2000 |
PublicationDate | January/February 2025 2025 Jan-Feb |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January/February 2025 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of neuroimaging |
PublicationTitleAlternate | J Neuroimaging |
PublicationYear | 2025 |
References | 2021; 27 2012; 186 2019; 92 2020; 84 2017; 65 2018; 288 2011; 54 2024 2012; 59 2017; 155 2014; 83 2016; 15 2016; 35 2018; 24 2021; 16 1998; 17 2021; 32 2017; 39 2019; 21 2019 2009; 9 2017 2022; 59 2015 1994; 18 2017; 148 2018; 37 |
References_xml | – start-page: 234 year: 2015 end-page: 241 – volume: 16 year: 2021 article-title: Automatic Segmentation of Gadolinium‐Enhancing Lesions in Multiple Sclerosis Using Deep Learning From Clinical MRI publication-title: PLoS One – volume: 21 year: 2019 article-title: One‐Shot Domain Adaptation in Multiple Sclerosis Lesion Segmentation Using Convolutional Neural Networks publication-title: NeuroImage: Clinical – volume: 59 year: 2022 article-title: Multiple Sclerosis Performance Test (MSPT): Normative Study of 428 Healthy Participants Ages 18 to 89 publication-title: Multiple Sclerosis and Related Disorders – volume: 155 start-page: 159 year: 2017 end-page: 168 article-title: Improving Automated Multiple Sclerosis Lesion Segmentation With a Cascaded 3D Convolutional Neural Network Approach publication-title: NeuroImage – volume: 186 start-page: 164 year: 2012 end-page: 185 article-title: Segmentation of Multiple Sclerosis Lesions in Brain MRI: A Review of Automated Approaches publication-title: Information Sciences – volume: 92 start-page: e1029 year: 2019 end-page: e1040 article-title: The Prevalence of MS in the United States: A Population‐Based Estimate Using Health Claims Data publication-title: Neurology – volume: 35 start-page: 1229 year: 2016 end-page: 1239 article-title: Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation publication-title: IEEE Transactions on Medical Imaging – volume: 32 year: 2021 article-title: ALL‐Net: Anatomical Information Lesion‐Wise Loss Function Integrated Into Neural Network for Multiple Sclerosis Lesion Segmentation publication-title: NeuroImage: Clinical – volume: 65 start-page: 111 year: 2017 end-page: 118 article-title: Multi‐View Longitudinal CNN for Multiple Sclerosis Lesion Segmentation publication-title: Engineering Applications of Artificial Intelligence – volume: 39 start-page: 2481 year: 2017 end-page: 2495 article-title: Segnet: A Deep Convolutional Encoder‐Decoder Architecture for Image Segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 288 start-page: 177 year: 2018 end-page: 185 article-title: Use of 2D U‐Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry publication-title: Radiology – volume: 15 start-page: 292 year: 2016 end-page: 303 article-title: MRI Criteria for the Diagnosis of Multiple Sclerosis: MAGNIMS Consensus Guidelines publication-title: Lancet Neurology – volume: 27 start-page: 519 year: 2021 end-page: 527 article-title: Deep Learning Segmentation of Gadolinium‐Enhancing Lesions in Multiple Sclerosis publication-title: Multiple Sclerosis – volume: 84 start-page: 437 year: 2020 end-page: 449 article-title: Automated Cartilage and Meniscus Segmentation of Knee MRI With Conditional Generative Adversarial Networks publication-title: Magnetic Resonance in Medicine – volume: 83 start-page: 1022 year: 2014 end-page: 1024 article-title: Atlas of Multiple Sclerosis 2013: A Growing Global Problem With Widespread Inequity publication-title: Neurology – start-page: 1 year: 2024 end-page: 5 article-title: Towards an Accurate and Generalizable Multiple Sclerosis Lesion Segmentation Model Using Self‐Ensembled Lesion Fusion – volume: 18 start-page: 192 year: 1994 end-page: 205 article-title: Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space publication-title: Journal of Computer Assisted Tomography – start-page: 338 year: 2019 end-page: 346 article-title: Multiple Sclerosis Lesion Segmentation With Tiramisu and 2.5 D Stacked Slices – volume: 9 start-page: 1037 year: 2009 end-page: 1037 article-title: ImageNet: Constructing a Large‐Scale Image Database publication-title: Journal of Vision – volume: 24 start-page: 1523 year: 2018 end-page: 1525 article-title: Treatment Decisions in MS: Shifting the Goal Posts or Changing How We See Them? publication-title: Multiple Sclerosis – volume: 54 start-page: 313 year: 2011 end-page: 327 article-title: Unbiased Average Age‐Appropriate Atlases for Pediatric Studies publication-title: NeuroImage – volume: 148 start-page: 77 year: 2017 end-page: 102 article-title: Longitudinal Multiple Sclerosis Lesion Segmentation: Resource and Challenge publication-title: NeuroImage – volume: 37 start-page: 2663 year: 2018 end-page: 2674 article-title: H‐DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes publication-title: IEEE Transactions on Medical Imaging – volume: 59 start-page: 2362 year: 2012 end-page: 2373 article-title: BEaST: Brain Extraction Based on Nonlocal Segmentation Technique publication-title: NeuroImage – volume: 17 start-page: 87 year: 1998 end-page: 97 article-title: A Nonparametric Method for Automatic Correction of Intensity Nonuniformity in MRI Data publication-title: IEEE Transactions on Medical Imaging – start-page: 516 year: 2017 end-page: 524 article-title: Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation |
SSID | ssj0021423 |
Score | 2.3900228 |
Snippet | ABSTRACT
Background and Purpose
Accurate and consistent lesion segmentation from magnetic resonance imaging is required for longitudinal multiple sclerosis... Accurate and consistent lesion segmentation from magnetic resonance imaging is required for longitudinal multiple sclerosis (MS) data analysis. In this work,... |
SourceID | pubmed wiley |
SourceType | Index Database Publisher |
StartPage | e70024 |
SubjectTerms | Adult automated segmentation Brain - diagnostic imaging Brain - pathology Deep Learning Disease Progression Female Humans Image Interpretation, Computer-Assisted - methods Longitudinal Studies Magnetic Resonance Imaging - methods Male Middle Aged Multiple Sclerosis - diagnostic imaging Multiple Sclerosis - pathology transfer learning UNet |
Title | Subject‐Based Transfer Learning in Longitudinal Multiple Sclerosis Lesion Segmentation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjon.70024 https://www.ncbi.nlm.nih.gov/pubmed/39923192 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qBfEivq0v9uDBy0J2s027eFKxlGJroRZ6C_tK6cG09HH3J_gb_SXObtLQo5ckkE0OM8x8s7Mz3wA8iEiztjVtmphYUIyI0Q8qyakNAbiKTMuEAtlB0h2L3qQ5qcHTthem4IeoEm7eMoK_9gau9GrXyFFLLQ8xe7DvW2s9cT4Xw2q3xQQvquubjHJ0wiWtUCjj2X66Azu7oWnAls4xHJVBIXkutHgCNZefwkG_PPY-gwmat8-X_H7_vCDqWBIQJnNLUtKjTsksJ-9zP3toY_2cK9IvCwXJCP-ISDhb4VqfGSMjN_0qG47ycxh33j5fu7QciUBNHAtBpWUWIyyWMR1JFesIb1yzTMdWOO4yg-EnbgIyIQyKmfmuU40W67gyiqtExRdQz-e5uwLiskg6a4w0OhNxy7UTyZyOEk8Br6TVDbgsZJMuCt6L1HPYosXyBjwGYVUvqo3EPE-DXNPexyA8XP9_6Q0ccj9bN6Q3bqG-Xm7cHQL-Wt8HxeJ1MOz_AdweqCo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gJurF-Bafe_DgpUl3u7Q08aJGgghoAibcmn2VcLAYhLs_wd_oL3F2uzQcPbVJtz3M5JtvZjoPgBseStrSqhXEKuIBesRoB0XKAu0ccBGqRLkC2UHceefdcXNcg7tVL0w5H6JKuFlkOHttAW4T0usoRzUllmM2YJPHLLGwZPytCrcoZ2V5fZMGDK2wnyvk6nhWr67xzrpv6silvQe73isk96Ua96FmigPY6vv_3ocwRnzbhMnv988D0o4mjmJyMyd-PuqETAvSm9nlQ0ttF12Rvq8UJEP8IlLh9AvP2tQYGZrJh-84Ko7gvf00euwEfidCoKKI8yDVVKOLRXMqw1REMsQLkzSXkeaGmVyh_4lRQM65QjlT23YqEbKGCSWYiEV0DPViVphTICYPU6OVSpXMeZSYVpxSI8PYzoAXqZYNOCllk32Wgy8yO8QWIcsacOuEVT2oIolZkTm5Zt3Xgbs5-__Ra9jujPq9rPc8eDmHHWYX7bpcxwXUF_OluUT2X8grp-Q_Cm-qig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gJsSL8S0-9-DBS5Pudik0nnwRREASNOHW7JNwsBCEuz_B3-gvcXZbGo6e2qS7Pcxk5puZnf0G4IaHkra0agWxiniAETH6QZGwQPsAXISqqXyD7CDufPDuuDGuwN36LkzOD1EW3JxleH_tDHyu7aaRo5aaDmK2YNsf9jlaZz4ssy3KWd5d36ABQydc0Ar5Np711g3Y2QxNPba092C3CArJfa7FfaiY7ABq_eLY-xDGaN6uXvL7_fOAqKOJRxhrFqSgR52QaUZ6Mzd7aKXdnCvSLxoFyQj_iEg4_cK1rjJGRmbyWVw4yo7go_38_tgJipEIgYoizoNEU40RFrVUhomIZIgPJqmVkeaGGasw_MQkwHKuUMzU3TqVaLGGCSWYiEV0DNVslplTIMaGidFKJUpaHjVNK06okWHsKOBFomUdTnLZpPOc9yJ1HLZosawOt15Y5YcykZhlqZdr2n0b-Jez_y-9htrwqZ32Xgav57DD3JhdX-m4gOpysTKXiP1LeeV1_AdW_am8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject%E2%80%90Based+Transfer+Learning+in+Longitudinal+Multiple+Sclerosis+Lesion+Segmentation&rft.jtitle=Journal+of+neuroimaging&rft.au=Gaj%2C+Sibaji&rft.au=Thoomukuntla%2C+Bhaskar&rft.au=Ontaneda%2C+Daniel&rft.au=Nakamura%2C+Kunio&rft.date=2025-01-01&rft.issn=1051-2284&rft.eissn=1552-6569&rft.volume=35&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fjon.70024&rft.externalDBID=10.1111%252Fjon.70024&rft.externalDocID=JON70024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2284&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2284&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2284&client=summon |