Enhancing underwater target detection: Fusion of spatio‐temporal incompletely‐aligned AIS and sonar information via DTW and multi‐head attention mechanism
In the field of underwater target detection, the passive sonar is an important means of long‐distance target detection. The sonar detection information typically includes both surface and underwater targets, whereas it is a great challenge on effectively distinguishing between surface and underwater...
Saved in:
Published in | IET radar, sonar & navigation Vol. 18; no. 12; pp. 2521 - 2540 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1751-8784 1751-8792 |
DOI | 10.1049/rsn2.12653 |
Cover
Loading…
Abstract | In the field of underwater target detection, the passive sonar is an important means of long‐distance target detection. The sonar detection information typically includes both surface and underwater targets, whereas it is a great challenge on effectively distinguishing between surface and underwater targets solely based on sonar information. Effective fusion of sonar and AIS (Automatic Identification System) data can leverage their complementary nature to compensate for the limitation of sonar information. However, the sonar information and AIS information are acquired based on different detection principles and systems, which are essentially multi‐source heterogeneous information with obvious spatio‐temporal misalignment in nature. Existing fusion methods normally struggle to effectively align sonar and AIS data in both time and space subject to the complexity of the problem. In this study, the Dynamic Time Warping (DTW) algorithm is applied to align sonar and AIS data in the time domain. In addition, a deep learning algorithm with multi‐head attention mechanism is proposed to achieve the spatial alignment of sonar and AIS data, where the matching between the surface targets in AIS data and the same surface targets in sonar data can also be successfully achieved. It provides a priori knowledge to enhance the underwater target detection of the passive sonar by eliminating the interference of the surface targets. Based on the attention mechanism, the features extracted from the intermediate‐layer of the neural networks are found to be effective to represent the typical features of the target motion trajectories, which also demonstrates the effectiveness of the attention mechanism. The experiment results show that the proposed method can successfully achieve a MatchingSucccessRate of over 95% between the AIS targets and sonar detection targets.
The study addresses the challenge of distinguishing between surface and underwater targets in passive sonar detection, which often includes both types of targets. To tackle this issue, the study employs two key methods: Dynamic Time Warping (DTW) to align sonar and AIS data in the time domain, handling temporal misalignment, and a deep learning algorithm with a multi‐head attention mechanism for spatial alignment of the data. These methods effectively manage the spatio‐temporal misalignment and heterogeneous nature of the data sources, significantly improving underwater target detection by reducing surface target interference. As a result, the approach achieves over 95% accuracy in matching targets detected by AIS with those identified by sonar. |
---|---|
AbstractList | In the field of underwater target detection, the passive sonar is an important means of long‐distance target detection. The sonar detection information typically includes both surface and underwater targets, whereas it is a great challenge on effectively distinguishing between surface and underwater targets solely based on sonar information. Effective fusion of sonar and AIS (Automatic Identification System) data can leverage their complementary nature to compensate for the limitation of sonar information. However, the sonar information and AIS information are acquired based on different detection principles and systems, which are essentially multi‐source heterogeneous information with obvious spatio‐temporal misalignment in nature. Existing fusion methods normally struggle to effectively align sonar and AIS data in both time and space subject to the complexity of the problem. In this study, the Dynamic Time Warping (DTW) algorithm is applied to align sonar and AIS data in the time domain. In addition, a deep learning algorithm with multi‐head attention mechanism is proposed to achieve the spatial alignment of sonar and AIS data, where the matching between the surface targets in AIS data and the same surface targets in sonar data can also be successfully achieved. It provides a priori knowledge to enhance the underwater target detection of the passive sonar by eliminating the interference of the surface targets. Based on the attention mechanism, the features extracted from the intermediate‐layer of the neural networks are found to be effective to represent the typical features of the target motion trajectories, which also demonstrates the effectiveness of the attention mechanism. The experiment results show that the proposed method can successfully achieve a MatchingSucccessRate of over 95% between the AIS targets and sonar detection targets.
The study addresses the challenge of distinguishing between surface and underwater targets in passive sonar detection, which often includes both types of targets. To tackle this issue, the study employs two key methods: Dynamic Time Warping (DTW) to align sonar and AIS data in the time domain, handling temporal misalignment, and a deep learning algorithm with a multi‐head attention mechanism for spatial alignment of the data. These methods effectively manage the spatio‐temporal misalignment and heterogeneous nature of the data sources, significantly improving underwater target detection by reducing surface target interference. As a result, the approach achieves over 95% accuracy in matching targets detected by AIS with those identified by sonar. Abstract In the field of underwater target detection, the passive sonar is an important means of long‐distance target detection. The sonar detection information typically includes both surface and underwater targets, whereas it is a great challenge on effectively distinguishing between surface and underwater targets solely based on sonar information. Effective fusion of sonar and AIS (Automatic Identification System) data can leverage their complementary nature to compensate for the limitation of sonar information. However, the sonar information and AIS information are acquired based on different detection principles and systems, which are essentially multi‐source heterogeneous information with obvious spatio‐temporal misalignment in nature. Existing fusion methods normally struggle to effectively align sonar and AIS data in both time and space subject to the complexity of the problem. In this study, the Dynamic Time Warping (DTW) algorithm is applied to align sonar and AIS data in the time domain. In addition, a deep learning algorithm with multi‐head attention mechanism is proposed to achieve the spatial alignment of sonar and AIS data, where the matching between the surface targets in AIS data and the same surface targets in sonar data can also be successfully achieved. It provides a priori knowledge to enhance the underwater target detection of the passive sonar by eliminating the interference of the surface targets. Based on the attention mechanism, the abstract features extracted from the intermediate‐layer of the neural networks are found to be effective to represent the typical features of the target motion trajectories, which also demonstrates the effectiveness of the attention mechanism. The experiment results show that the proposed method can successfully achieve a MatchingSucccessRate of over 95% between the AIS targets and sonar detection targets. |
Author | Xiong, Xiaodan Zhao, Wenbo Cheng, Xinghua Wang, Dezhi Zhang, Xiaoshuang |
Author_xml | – sequence: 1 givenname: Wenbo surname: Zhao fullname: Zhao, Wenbo organization: National University of Defense Technology – sequence: 2 givenname: Xinghua surname: Cheng fullname: Cheng, Xinghua organization: National University of Defense Technology – sequence: 3 givenname: Dezhi orcidid: 0009-0005-9490-8398 surname: Wang fullname: Wang, Dezhi email: wangdezhi08@nudt.edu.cn organization: National University of Defense Technology – sequence: 4 givenname: Xiaodan surname: Xiong fullname: Xiong, Xiaodan organization: National University of Defense Technology – sequence: 5 givenname: Xiaoshuang surname: Zhang fullname: Zhang, Xiaoshuang organization: National University of Defense Technology |
BookMark | eNp9kU1uFDEQhS0UJJLAhhN4jTTBf93uZheFBEaKQEqCWFrVdvXEUbc9sj2JZscROAJn4yR4ZlCWWVXp1feeSnon5CjEgIS85-yMM9V_TDmIMy7aRr4ix1w3fNHpXhw97516Q05yfmCsaVrVH5M_l-EegvVhRTfBYXqCgokWSCss1GFBW3wMn-jVJtdJ40jzGqr099fvgvM6JpioDzbO66nC07bqMPlVQEfPl7cUgqM5BkgVGmOad9ZAHz3Qz3c_99d5MxVfXfcIjkIpGPbIjLb-5fP8lrweYcr47v88JT-uLu8uvi6uv39ZXpxfL6yUSi6sGHSj9Wg726tBKSFAtQ654CD10AnhnByAKdEL1F1TOcC27bRsrR3HgctTsjzkuggPZp38DGlrInizF2JaGUjF2wkNY0K1ouedVk4NA4deq0Y2nHVWMN7vsj4csmyKOSccn_M4M7uezK4ns--pwvwAP_kJty-Q5ub2mzh4_gHmppx7 |
Cites_doi | 10.1016/j.autcon.2019.103050 10.1016/j.knosys.2024.111672 10.1016/j.jprocont.2021.04.002 10.1080/15481603.2022.2118437 10.3390/jmse11112132 10.1016/j.oceaneng.2024.116900 10.3390/rs16050803 10.1007/s13735‐014‐0065‐9 10.1016/j.oceaneng.2023.115647 10.1109/tassp.1975.1162641 10.1016/0005‐1098(71)90096‐3 10.18653/v1/D18-1280 10.3390/jmse11081574 10.1109/TPAMI.2023.3275156 10.1016/j.chaos.2018.01.031 10.1155/2015/719025 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1049/rsn2.12653 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-8792 |
EndPage | 2540 |
ExternalDocumentID | oai_doaj_org_article_00246291874d4bb1a974535108c20191 10_1049_rsn2_12653 RSN212653 |
Genre | article |
GrantInformation_xml | – fundername: NUDT Independent Innovation Science Fund funderid: 22‐ZZCX‐011 |
GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 4.4 4IJ 6IK 8FE 8FG 8VB 96U AAHHS AAHJG AAJGR ABJCF ABMDY ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADEYR ADZOD AEEZP AEGXH AENEX AEQDE AFAZI AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU DU5 EBS EJD ESX F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFIPE IGS IPLJI ITC JAVBF K1G L6V LAI M43 M7S MCNEO MS~ NXXTH O9- OCL OK1 P62 PTHSS QWB RIE RNS ROL RUI S0W U5U UNMZH ZL0 AAYXX CITATION IDLOA IMI PHGZM PHGZT WIN |
ID | FETCH-LOGICAL-c3343-c2b7577fc8c94b4422a46de121a37b822dd3ba04292e785fc8ae668736ccffb13 |
IEDL.DBID | DOA |
ISSN | 1751-8784 |
IngestDate | Wed Aug 27 01:01:01 EDT 2025 Tue Jul 01 05:15:16 EDT 2025 Wed Jan 22 17:13:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3343-c2b7577fc8c94b4422a46de121a37b822dd3ba04292e785fc8ae668736ccffb13 |
Notes | Wenbo Zhao and Xinghua Cheng are equally contributed. |
ORCID | 0009-0005-9490-8398 |
OpenAccessLink | https://doaj.org/article/00246291874d4bb1a974535108c20191 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_00246291874d4bb1a974535108c20191 crossref_primary_10_1049_rsn2_12653 wiley_primary_10_1049_rsn2_12653_RSN212653 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationTitle | IET radar, sonar & navigation |
PublicationYear | 2024 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2023; 11 2015; 4 2021; 102 2011 2018; 108 2023; 286 2018; 61 2024 2024; 16 1971; 7 2012; 3 2023 2022 2021 2020 2024; 1‐22 2015; 2015 2024; 295 1975; 23 2018 2022; 59 2017 2016 2020; 111 2024; 1 2024; 293 2023; 57.8 Gao K. (e_1_2_11_25_1) 2024 Xiu‐lan SONG (e_1_2_11_17_1) 2023; 57 Yang P.S. (e_1_2_11_13_1) 2024; 1 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_36_1 Moura N.N. (e_1_2_11_5_1) 2011 e_1_2_11_14_1 Wei X. (e_1_2_11_27_1) 2012; 3 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_28_1 e_1_2_11_4_1 e_1_2_11_3_1 e_1_2_11_2_1 Komari Alaie H. (e_1_2_11_18_1) 2018; 61 Zhou H. (e_1_2_11_12_1) 2020 Yang F. (e_1_2_11_26_1) 2021 Zhang H. (e_1_2_11_31_1) 2024; 1 e_1_2_11_21_1 e_1_2_11_20_1 Burnham K.L. (e_1_2_11_6_1) 2020 Bai Y. (e_1_2_11_30_1) 2020 e_1_2_11_24_1 e_1_2_11_9_1 Wu H. (e_1_2_11_15_1) 2021 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 Tang Y. (e_1_2_11_34_1) 2022 e_1_2_11_16_1 Sun F. (e_1_2_11_19_1) 2022 e_1_2_11_37_1 Wang D.C. (e_1_2_11_35_1) 2020 |
References_xml | – year: 2011 – volume: 293 year: 2024 article-title: A dual‐branch joint learning network for underwater object detection publication-title: Knowl. Base Syst. – volume: 61 year: 2018 article-title: Passive sonar target detection using statistical classifier and adaptive threshold publication-title: Appl. Sci. – volume: 11 issue: 8 year: 2023 article-title: Quantitative analysis on the influence of the oceanic front on underwater acoustic detection with investigated marine data publication-title: J. Mar. Sci. Eng. – volume: 295 year: 2024 article-title: Acoustic scattering feature‐enhanced space‐time high‐resolution detection method for buried target publication-title: Ocean Eng. – volume: 111 year: 2020 article-title: Risk assessment and management via multi‐source information fusion for undersea tunnel construction publication-title: Autom. ConStruct. – start-page: 62 year: 2022 end-page: 67 – volume: 59 start-page: 1473 issue: 1 year: 2022 end-page: 1490 article-title: A novel machine learning approach to analyzing geospatial vessel patterns using AIS data publication-title: GIScience Remote Sens. – volume: 1 year: 2024 article-title: Performance analysis of relay‐aided satellite‐underwater acoustic communication systems publication-title: IEEE Trans. Commun. – volume: 7 start-page: 455 issue: 4 year: 1971 end-page: 463 article-title: Computer control of multiple site track correlation publication-title: Automatica – year: 2016 – year: 2018 – volume: 3 start-page: 29 year: 2012 article-title: Passive sonar target modeling and real‐time simulation publication-title: Comput. Simulat. – volume: 11 issue: 11 year: 2023 article-title: Large‐scale long‐term prediction of ship AIS trajectories via linear networks with a look‐back window decomposition scheme of time features publication-title: J. Mar. Sci. Eng. – volume: 286 year: 2023 article-title: A convolutional vision transformer for semantic segmentation of side‐scan sonar data publication-title: Ocean Eng. – start-page: 225 year: 2022 end-page: 229 – volume: 108 start-page: 87 year: 2018 end-page: 93 article-title: Robust adaptive beam‐forming optimization method based on diagonal‐loading and MSE criterion publication-title: Chaos, Solit. Fractals – volume: 2015 start-page: 1 year: 2015 end-page: 7 article-title: Symbol estimation algorithm for MIMO underwater acoustic communication system based on multiplicative noise model publication-title: Math. Probl Eng. – start-page: 22419 year: 2021 end-page: 22430 – volume: 23 start-page: 67 issue: 1 year: 1975 end-page: 72 article-title: Minimum prediction residual principle applied to speech recognition publication-title: IEEE Trans. Acoust. Speech Signal Process. – year: 2022 – year: 2020 – year: 2023 – start-page: 238 year: 2024 end-page: 245 – volume: 102 start-page: 44 year: 2021 end-page: 53 article-title: Detection of downhole incidents for complex geological drilling processes using amplitude change detection and dynamic time warping publication-title: J. Process Control – volume: 57.8 year: 2023 article-title: Vehicle trajectory prediction based on temporal‐spatial multi‐head attention mechanism publication-title: J. Zhejiang Univ. (Eng. Sci.) – volume: 16 issue: 5 year: 2024 article-title: HATF: multi‐modal feature learning for infrared and visible image fusion via hybrid attention transformer publication-title: Rem. Sens. – year: 2017 – volume: 1‐22 year: 2024 article-title: A review of multimodal data fusion research[J/OL] publication-title: Comput. Sci. Explor. – year: 2021 article-title: Research and implementation of multidimensional data simulation tool for maritime targets based on generative adversarial network [D] publication-title: null – volume: 4 start-page: 3 issue: 1 year: 2015 end-page: 16 article-title: Aligning plot synopses to videos for story‐based retrieval publication-title: Int. J. Multimedia Inf. Retrieval – ident: e_1_2_11_11_1 doi: 10.1016/j.autcon.2019.103050 – volume-title: Passive Sonar Data Detection and Classification Based on Independent Component Analysis year: 2011 ident: e_1_2_11_5_1 – ident: e_1_2_11_2_1 doi: 10.1016/j.knosys.2024.111672 – volume-title: Can Temporal Information Help with Contrastive Self‐Supervised Learning? year: 2020 ident: e_1_2_11_30_1 – ident: e_1_2_11_16_1 doi: 10.1016/j.jprocont.2021.04.002 – ident: e_1_2_11_10_1 doi: 10.1080/15481603.2022.2118437 – year: 2021 ident: e_1_2_11_26_1 article-title: Research and implementation of multidimensional data simulation tool for maritime targets based on generative adversarial network [D] publication-title: null – volume: 57 year: 2023 ident: e_1_2_11_17_1 article-title: Vehicle trajectory prediction based on temporal‐spatial multi‐head attention mechanism publication-title: J. Zhejiang Univ. (Eng. Sci.) – volume: 1 year: 2024 ident: e_1_2_11_31_1 article-title: A review of multimodal data fusion research[J/OL] publication-title: Comput. Sci. Explor. – ident: e_1_2_11_24_1 doi: 10.3390/jmse11112132 – ident: e_1_2_11_4_1 doi: 10.1016/j.oceaneng.2024.116900 – start-page: 22419 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) year: 2021 ident: e_1_2_11_15_1 – ident: e_1_2_11_8_1 – ident: e_1_2_11_32_1 doi: 10.3390/rs16050803 – volume-title: Proceedings of the 2020'Western China Acoustics Symposium year: 2020 ident: e_1_2_11_35_1 – ident: e_1_2_11_33_1 doi: 10.1007/s13735‐014‐0065‐9 – volume: 3 start-page: 29 year: 2012 ident: e_1_2_11_27_1 article-title: Passive sonar target modeling and real‐time simulation publication-title: Comput. Simulat. – volume-title: Informer: Beyond Efficient Transformer for Long Sequence Time‐Series Forecasting year: 2020 ident: e_1_2_11_12_1 – volume: 1 year: 2024 ident: e_1_2_11_13_1 article-title: Performance analysis of relay‐aided satellite‐underwater acoustic communication systems publication-title: IEEE Trans. Commun. – ident: e_1_2_11_23_1 – ident: e_1_2_11_36_1 doi: 10.1016/j.oceaneng.2023.115647 – start-page: 225 volume-title: Digital Ocean and Underwater Attack and Defense year: 2022 ident: e_1_2_11_19_1 – ident: e_1_2_11_20_1 – volume: 61 year: 2018 ident: e_1_2_11_18_1 article-title: Passive sonar target detection using statistical classifier and adaptive threshold publication-title: Appl. Sci. – ident: e_1_2_11_29_1 doi: 10.1109/tassp.1975.1162641 – volume-title: Information Fusion for an Unmanned Underwater Vehicle through Probabilistic Prediction and Optimal Matching year: 2020 ident: e_1_2_11_6_1 – ident: e_1_2_11_7_1 doi: 10.1016/0005‐1098(71)90096‐3 – ident: e_1_2_11_21_1 doi: 10.18653/v1/D18-1280 – ident: e_1_2_11_28_1 – ident: e_1_2_11_3_1 doi: 10.3390/jmse11081574 – ident: e_1_2_11_22_1 doi: 10.1109/TPAMI.2023.3275156 – start-page: 238 volume-title: Proceedings of the 2024 8th International Conference on Control Engineering and Artificial Intelligence, CCEAI ’24 year: 2024 ident: e_1_2_11_25_1 – ident: e_1_2_11_37_1 doi: 10.1016/j.chaos.2018.01.031 – start-page: 62 volume-title: Side‐scan Sonar Shipwreck Target Detection Based on Improved YOLOv3 Model year: 2022 ident: e_1_2_11_34_1 – ident: e_1_2_11_14_1 – ident: e_1_2_11_9_1 doi: 10.1155/2015/719025 |
SSID | ssj0055649 |
Score | 2.3984506 |
Snippet | In the field of underwater target detection, the passive sonar is an important means of long‐distance target detection. The sonar detection information... Abstract In the field of underwater target detection, the passive sonar is an important means of long‐distance target detection. The sonar detection... |
SourceID | doaj crossref wiley |
SourceType | Open Website Index Database Publisher |
StartPage | 2521 |
SubjectTerms | acoustic signal detection artificial intelligence sensor fusion |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYovdADagtVtw80UjkhBYjtxDbqhVJWtBII8RDcIr-yRYIsyi5F3PgJ_Qn9bf0lnXGytFwq9RY5fkiZzMxne-YbxlaV8yGqEDOvpc-InyQzxplMelXnNuig0-35_kG5dyq_nhfnc-zjLBem44d4OHAjzUj2mhTcuq4KCYJaFGI7afh6zstCPGFPKbeWmPO5PJzZ4aIoE_hF_5ijzms5IyeVZuPP2EfuKLH2P0apyc0Mn7PFHh_CdifQF2wuNi_Zs79YA5fYz93mG7FkNCOgDLD2FuFiC11IN4Q4TcFVzRYMb-gkDMY1TFLY9K_7Hz0R1SUQJwPxAk_j5R22Ixgfob2F7S_HYJsAhM9b6ElVaTb4fmHh88lZepuCEHEU2vEAxM-ZIibhKlIW8cXkapmdDndPdvayvtBC5oWQIvPcqUKp2mtvpJOScyvLEHOeW6EcQogQhLPkunhUmqK-bCxLrUTpfV27XLxi8824ia8ZBEu5sda74GpZ-E0bBE4u64I2cobrAfsw-97VdcenUaV7cGkqkkqVpDJgn0gUDz2IAzs1jNtR1atURfCi5IaKCgbpXG5xa1QItDHaI6ox-YCtJUH-Y53q6PiAp6c3_9P5LVvguHgX1fKOzU_bm_gescnUraRf8DfDU-RB priority: 102 providerName: Wiley-Blackwell |
Title | Enhancing underwater target detection: Fusion of spatio‐temporal incompletely‐aligned AIS and sonar information via DTW and multi‐head attention mechanism |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frsn2.12653 https://doaj.org/article/00246291874d4bb1a974535108c20191 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTt0wELWAFV0gnuqlFI0EK6RAYzux0x20XAESCPEQ7CK_AkgQqtwLqLt-Ap_At_ElzDi5CDZlwy5yHDvyTDzH8ZljxlaVdT4oHxKnpUtInyQpClsk0qkqNV57HXfP9w_ynVO5d56dvznqizhhrTxwO3CUri1zXtDRcV5amxoEwJlAT9IOY1fMW-cY80aLqXYOzrI8Al-MjSl-71qOhEllsdEMar6e8jwT70JRVOx_j1BjiOlPs6kOG8Jm-04zbCzUs-zLG8XAOfa0XV-SQkZ9AZT91TwgVGygpXODD8NIrKp_Qv-O_oLBbQWDSJl-_vfYiVBdA-kxkCbwMFz_xXIE4hc418Lm7jGY2gNh8wY6QVVqDe6vDPw-OYt3IwERn8I53ANpc0a2JNwEyiC-GtzMs9P-9smvnaQ7ZCFxQkiROG5VplTltCuklZJzI3MfUp4aoSzCB--FNRS2eFCaGF8m5LlWIneuqmwqFthEfVuHrwy8obxY46y3lczcD-MFNi6rjBZxBdc9tjIa7_JPq6VRxj1wWZRklTJapce2yBSvNUj_OhagV5SdV5QfeUWPrUVD_qef8uj4gMerxc_o8Rub5FilZbossYlhcxe-I14Z2mU2zuXhcnTQFzI06gA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWgLIAF4qkOzyvBCilA7Bs_2BXoaArtCNGp6C7yK0OlNoMyUxA7PoFP4Nv4EnydTKEbJHaRYztRbu71sX3uMWNPlPMhqhALr9EXpE9SGONMgV41pQ066Lx7vjeVkwN8e1gdDtwcyoXp9SHOFtzIM3K8JgenBel-wokkktktW_6s5LISF9kllFyRX3J8vw7EVSUz-k0DZJmcXuNanRTN8z9tz41HWbb_PEzN48z4Ors2AETY6i16g12I7U129S_ZwFvs53b7iWQy2jlQClj3NeHFDnpON4S4yuyq9iWMT2kpDBYNLDNv-tf3H4MS1TGQKAMJA6_i8bdUntD4PAVc2NrZB9sGIIDewaCqSr3BlyMLb2Yf893MQkytUiAPQAKdmTIJJ5HSiI-WJ7fZwXh79npSDCctFF4IFIXnTlVKNV57gw6Rc4syxJKXViiXMEQIwlkau3hUmmhfNkqplZDeN40rxR220S7auMkgWEqOtd4F12DlX9ggUufYVDSTM1yP2OP1964_94Iadd4IR1OTVepslRF7RaY4q0Ei2Llg0c3rwadqwheSGzpVMKBzpU1zo0qkIKN9gjWmHLGn2ZD_eE79YX_K89Xd_6n8iF2ezPZ2692d6bt77ApPL9JTXO6zjVV3Gh8koLJyD_Pv-BsU2eet |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkJwQDzF8hwJTkgBYjuxjXpZaFctjxWiXai4RH5lqdRmq-yWqrf-BH4Cv41fgsfJFnpB4hY5tmNlPDOf7ZnPAE-ldT5IHzKnhMuInyTT2upMOFnnxiuv0un5h3G5NRFv94q9FVhf5sJ0_BDnG26kGclek4If-bpbbwriyGznDXues7Lgl2CNaPLinF4bfp58nSwtcVGUCf5GD5lHrVdiSU8q9Is_rS84pMTbfxGnJkczug7XeoSIw06kN2AlNDfh6l-8gbfg52bzjXgymilSDlh7EgFji11QN_qwSOFVzSscHdNeGM5qnKfA6V9nP3oqqgMkVgZiBl6Eg9NYHuH4NFpcHG7voGk8EkJvsadVpd7w-77Bjd0v6W0KQ4ytoiX3SAydKWYSDwPlEe_PD2_DZLS5-2Yr669ayBzngmeOWVlIWTvltLBCMGZE6UPOcsOljSDCe24NOS8WpKK4LxPKUkleOlfXNud3YLWZNeEuoDeUHWuc9bYWhXtpPI-di7qgpZxmagBPlv-7OuoYNap0Ei50RVKpklQG8JpEcV6DWLBTwaydVr1SVQQwSqbpWkEvrM1NXBwVPFoZ5SKu0fkAniVB_uM71aedMUtP9_6n8mO4_HFjVL3fHr-7D1dYHEcX4vIAVhftcXgYgcrCPurn428pe-il |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+underwater+target+detection%3A+Fusion+of+spatio%E2%80%90temporal+incompletely%E2%80%90aligned+AIS+and+sonar+information+via+DTW+and+multi%E2%80%90head+attention+mechanism&rft.jtitle=IET+radar%2C+sonar+%26+navigation&rft.au=Zhao%2C+Wenbo&rft.au=Cheng%2C+Xinghua&rft.au=Wang%2C+Dezhi&rft.au=Xiong%2C+Xiaodan&rft.date=2024-12-01&rft.issn=1751-8784&rft.eissn=1751-8792&rft.volume=18&rft.issue=12&rft.spage=2521&rft.epage=2540&rft_id=info:doi/10.1049%2Frsn2.12653&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_rsn2_12653 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8784&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8784&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8784&client=summon |