Enhancing underwater target detection: Fusion of spatio‐temporal incompletely‐aligned AIS and sonar information via DTW and multi‐head attention mechanism

In the field of underwater target detection, the passive sonar is an important means of long‐distance target detection. The sonar detection information typically includes both surface and underwater targets, whereas it is a great challenge on effectively distinguishing between surface and underwater...

Full description

Saved in:
Bibliographic Details
Published inIET radar, sonar & navigation Vol. 18; no. 12; pp. 2521 - 2540
Main Authors Zhao, Wenbo, Cheng, Xinghua, Wang, Dezhi, Xiong, Xiaodan, Zhang, Xiaoshuang
Format Journal Article
LanguageEnglish
Published Wiley 01.12.2024
Subjects
Online AccessGet full text
ISSN1751-8784
1751-8792
DOI10.1049/rsn2.12653

Cover

Loading…
Abstract In the field of underwater target detection, the passive sonar is an important means of long‐distance target detection. The sonar detection information typically includes both surface and underwater targets, whereas it is a great challenge on effectively distinguishing between surface and underwater targets solely based on sonar information. Effective fusion of sonar and AIS (Automatic Identification System) data can leverage their complementary nature to compensate for the limitation of sonar information. However, the sonar information and AIS information are acquired based on different detection principles and systems, which are essentially multi‐source heterogeneous information with obvious spatio‐temporal misalignment in nature. Existing fusion methods normally struggle to effectively align sonar and AIS data in both time and space subject to the complexity of the problem. In this study, the Dynamic Time Warping (DTW) algorithm is applied to align sonar and AIS data in the time domain. In addition, a deep learning algorithm with multi‐head attention mechanism is proposed to achieve the spatial alignment of sonar and AIS data, where the matching between the surface targets in AIS data and the same surface targets in sonar data can also be successfully achieved. It provides a priori knowledge to enhance the underwater target detection of the passive sonar by eliminating the interference of the surface targets. Based on the attention mechanism, the features extracted from the intermediate‐layer of the neural networks are found to be effective to represent the typical features of the target motion trajectories, which also demonstrates the effectiveness of the attention mechanism. The experiment results show that the proposed method can successfully achieve a MatchingSucccessRate of over 95% between the AIS targets and sonar detection targets. The study addresses the challenge of distinguishing between surface and underwater targets in passive sonar detection, which often includes both types of targets. To tackle this issue, the study employs two key methods: Dynamic Time Warping (DTW) to align sonar and AIS data in the time domain, handling temporal misalignment, and a deep learning algorithm with a multi‐head attention mechanism for spatial alignment of the data. These methods effectively manage the spatio‐temporal misalignment and heterogeneous nature of the data sources, significantly improving underwater target detection by reducing surface target interference. As a result, the approach achieves over 95% accuracy in matching targets detected by AIS with those identified by sonar.
AbstractList In the field of underwater target detection, the passive sonar is an important means of long‐distance target detection. The sonar detection information typically includes both surface and underwater targets, whereas it is a great challenge on effectively distinguishing between surface and underwater targets solely based on sonar information. Effective fusion of sonar and AIS (Automatic Identification System) data can leverage their complementary nature to compensate for the limitation of sonar information. However, the sonar information and AIS information are acquired based on different detection principles and systems, which are essentially multi‐source heterogeneous information with obvious spatio‐temporal misalignment in nature. Existing fusion methods normally struggle to effectively align sonar and AIS data in both time and space subject to the complexity of the problem. In this study, the Dynamic Time Warping (DTW) algorithm is applied to align sonar and AIS data in the time domain. In addition, a deep learning algorithm with multi‐head attention mechanism is proposed to achieve the spatial alignment of sonar and AIS data, where the matching between the surface targets in AIS data and the same surface targets in sonar data can also be successfully achieved. It provides a priori knowledge to enhance the underwater target detection of the passive sonar by eliminating the interference of the surface targets. Based on the attention mechanism, the features extracted from the intermediate‐layer of the neural networks are found to be effective to represent the typical features of the target motion trajectories, which also demonstrates the effectiveness of the attention mechanism. The experiment results show that the proposed method can successfully achieve a MatchingSucccessRate of over 95% between the AIS targets and sonar detection targets. The study addresses the challenge of distinguishing between surface and underwater targets in passive sonar detection, which often includes both types of targets. To tackle this issue, the study employs two key methods: Dynamic Time Warping (DTW) to align sonar and AIS data in the time domain, handling temporal misalignment, and a deep learning algorithm with a multi‐head attention mechanism for spatial alignment of the data. These methods effectively manage the spatio‐temporal misalignment and heterogeneous nature of the data sources, significantly improving underwater target detection by reducing surface target interference. As a result, the approach achieves over 95% accuracy in matching targets detected by AIS with those identified by sonar.
Abstract In the field of underwater target detection, the passive sonar is an important means of long‐distance target detection. The sonar detection information typically includes both surface and underwater targets, whereas it is a great challenge on effectively distinguishing between surface and underwater targets solely based on sonar information. Effective fusion of sonar and AIS (Automatic Identification System) data can leverage their complementary nature to compensate for the limitation of sonar information. However, the sonar information and AIS information are acquired based on different detection principles and systems, which are essentially multi‐source heterogeneous information with obvious spatio‐temporal misalignment in nature. Existing fusion methods normally struggle to effectively align sonar and AIS data in both time and space subject to the complexity of the problem. In this study, the Dynamic Time Warping (DTW) algorithm is applied to align sonar and AIS data in the time domain. In addition, a deep learning algorithm with multi‐head attention mechanism is proposed to achieve the spatial alignment of sonar and AIS data, where the matching between the surface targets in AIS data and the same surface targets in sonar data can also be successfully achieved. It provides a priori knowledge to enhance the underwater target detection of the passive sonar by eliminating the interference of the surface targets. Based on the attention mechanism, the abstract features extracted from the intermediate‐layer of the neural networks are found to be effective to represent the typical features of the target motion trajectories, which also demonstrates the effectiveness of the attention mechanism. The experiment results show that the proposed method can successfully achieve a MatchingSucccessRate of over 95% between the AIS targets and sonar detection targets.
Author Xiong, Xiaodan
Zhao, Wenbo
Cheng, Xinghua
Wang, Dezhi
Zhang, Xiaoshuang
Author_xml – sequence: 1
  givenname: Wenbo
  surname: Zhao
  fullname: Zhao, Wenbo
  organization: National University of Defense Technology
– sequence: 2
  givenname: Xinghua
  surname: Cheng
  fullname: Cheng, Xinghua
  organization: National University of Defense Technology
– sequence: 3
  givenname: Dezhi
  orcidid: 0009-0005-9490-8398
  surname: Wang
  fullname: Wang, Dezhi
  email: wangdezhi08@nudt.edu.cn
  organization: National University of Defense Technology
– sequence: 4
  givenname: Xiaodan
  surname: Xiong
  fullname: Xiong, Xiaodan
  organization: National University of Defense Technology
– sequence: 5
  givenname: Xiaoshuang
  surname: Zhang
  fullname: Zhang, Xiaoshuang
  organization: National University of Defense Technology
BookMark eNp9kU1uFDEQhS0UJJLAhhN4jTTBf93uZheFBEaKQEqCWFrVdvXEUbc9sj2JZscROAJn4yR4ZlCWWVXp1feeSnon5CjEgIS85-yMM9V_TDmIMy7aRr4ix1w3fNHpXhw97516Q05yfmCsaVrVH5M_l-EegvVhRTfBYXqCgokWSCss1GFBW3wMn-jVJtdJ40jzGqr099fvgvM6JpioDzbO66nC07bqMPlVQEfPl7cUgqM5BkgVGmOad9ZAHz3Qz3c_99d5MxVfXfcIjkIpGPbIjLb-5fP8lrweYcr47v88JT-uLu8uvi6uv39ZXpxfL6yUSi6sGHSj9Wg726tBKSFAtQ654CD10AnhnByAKdEL1F1TOcC27bRsrR3HgctTsjzkuggPZp38DGlrInizF2JaGUjF2wkNY0K1ouedVk4NA4deq0Y2nHVWMN7vsj4csmyKOSccn_M4M7uezK4ns--pwvwAP_kJty-Q5ub2mzh4_gHmppx7
Cites_doi 10.1016/j.autcon.2019.103050
10.1016/j.knosys.2024.111672
10.1016/j.jprocont.2021.04.002
10.1080/15481603.2022.2118437
10.3390/jmse11112132
10.1016/j.oceaneng.2024.116900
10.3390/rs16050803
10.1007/s13735‐014‐0065‐9
10.1016/j.oceaneng.2023.115647
10.1109/tassp.1975.1162641
10.1016/0005‐1098(71)90096‐3
10.18653/v1/D18-1280
10.3390/jmse11081574
10.1109/TPAMI.2023.3275156
10.1016/j.chaos.2018.01.031
10.1155/2015/719025
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/rsn2.12653
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8792
EndPage 2540
ExternalDocumentID oai_doaj_org_article_00246291874d4bb1a974535108c20191
10_1049_rsn2_12653
RSN212653
Genre article
GrantInformation_xml – fundername: NUDT Independent Innovation Science Fund
  funderid: 22‐ZZCX‐011
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
4IJ
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
DU5
EBS
EJD
ESX
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFIPE
IGS
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
NXXTH
O9-
OCL
OK1
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
U5U
UNMZH
ZL0
AAYXX
CITATION
IDLOA
IMI
PHGZM
PHGZT
WIN
ID FETCH-LOGICAL-c3343-c2b7577fc8c94b4422a46de121a37b822dd3ba04292e785fc8ae668736ccffb13
IEDL.DBID DOA
ISSN 1751-8784
IngestDate Wed Aug 27 01:01:01 EDT 2025
Tue Jul 01 05:15:16 EDT 2025
Wed Jan 22 17:13:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3343-c2b7577fc8c94b4422a46de121a37b822dd3ba04292e785fc8ae668736ccffb13
Notes Wenbo Zhao and Xinghua Cheng are equally contributed.
ORCID 0009-0005-9490-8398
OpenAccessLink https://doaj.org/article/00246291874d4bb1a974535108c20191
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_00246291874d4bb1a974535108c20191
crossref_primary_10_1049_rsn2_12653
wiley_primary_10_1049_rsn2_12653_RSN212653
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle IET radar, sonar & navigation
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2023; 11
2015; 4
2021; 102
2011
2018; 108
2023; 286
2018; 61
2024
2024; 16
1971; 7
2012; 3
2023
2022
2021
2020
2024; 1‐22
2015; 2015
2024; 295
1975; 23
2018
2022; 59
2017
2016
2020; 111
2024; 1
2024; 293
2023; 57.8
Gao K. (e_1_2_11_25_1) 2024
Xiu‐lan SONG (e_1_2_11_17_1) 2023; 57
Yang P.S. (e_1_2_11_13_1) 2024; 1
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_36_1
Moura N.N. (e_1_2_11_5_1) 2011
e_1_2_11_14_1
Wei X. (e_1_2_11_27_1) 2012; 3
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_28_1
e_1_2_11_4_1
e_1_2_11_3_1
e_1_2_11_2_1
Komari Alaie H. (e_1_2_11_18_1) 2018; 61
Zhou H. (e_1_2_11_12_1) 2020
Yang F. (e_1_2_11_26_1) 2021
Zhang H. (e_1_2_11_31_1) 2024; 1
e_1_2_11_21_1
e_1_2_11_20_1
Burnham K.L. (e_1_2_11_6_1) 2020
Bai Y. (e_1_2_11_30_1) 2020
e_1_2_11_24_1
e_1_2_11_9_1
Wu H. (e_1_2_11_15_1) 2021
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
Tang Y. (e_1_2_11_34_1) 2022
e_1_2_11_16_1
Sun F. (e_1_2_11_19_1) 2022
e_1_2_11_37_1
Wang D.C. (e_1_2_11_35_1) 2020
References_xml – year: 2011
– volume: 293
  year: 2024
  article-title: A dual‐branch joint learning network for underwater object detection
  publication-title: Knowl. Base Syst.
– volume: 61
  year: 2018
  article-title: Passive sonar target detection using statistical classifier and adaptive threshold
  publication-title: Appl. Sci.
– volume: 11
  issue: 8
  year: 2023
  article-title: Quantitative analysis on the influence of the oceanic front on underwater acoustic detection with investigated marine data
  publication-title: J. Mar. Sci. Eng.
– volume: 295
  year: 2024
  article-title: Acoustic scattering feature‐enhanced space‐time high‐resolution detection method for buried target
  publication-title: Ocean Eng.
– volume: 111
  year: 2020
  article-title: Risk assessment and management via multi‐source information fusion for undersea tunnel construction
  publication-title: Autom. ConStruct.
– start-page: 62
  year: 2022
  end-page: 67
– volume: 59
  start-page: 1473
  issue: 1
  year: 2022
  end-page: 1490
  article-title: A novel machine learning approach to analyzing geospatial vessel patterns using AIS data
  publication-title: GIScience Remote Sens.
– volume: 1
  year: 2024
  article-title: Performance analysis of relay‐aided satellite‐underwater acoustic communication systems
  publication-title: IEEE Trans. Commun.
– volume: 7
  start-page: 455
  issue: 4
  year: 1971
  end-page: 463
  article-title: Computer control of multiple site track correlation
  publication-title: Automatica
– year: 2016
– year: 2018
– volume: 3
  start-page: 29
  year: 2012
  article-title: Passive sonar target modeling and real‐time simulation
  publication-title: Comput. Simulat.
– volume: 11
  issue: 11
  year: 2023
  article-title: Large‐scale long‐term prediction of ship AIS trajectories via linear networks with a look‐back window decomposition scheme of time features
  publication-title: J. Mar. Sci. Eng.
– volume: 286
  year: 2023
  article-title: A convolutional vision transformer for semantic segmentation of side‐scan sonar data
  publication-title: Ocean Eng.
– start-page: 225
  year: 2022
  end-page: 229
– volume: 108
  start-page: 87
  year: 2018
  end-page: 93
  article-title: Robust adaptive beam‐forming optimization method based on diagonal‐loading and MSE criterion
  publication-title: Chaos, Solit. Fractals
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 7
  article-title: Symbol estimation algorithm for MIMO underwater acoustic communication system based on multiplicative noise model
  publication-title: Math. Probl Eng.
– start-page: 22419
  year: 2021
  end-page: 22430
– volume: 23
  start-page: 67
  issue: 1
  year: 1975
  end-page: 72
  article-title: Minimum prediction residual principle applied to speech recognition
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– year: 2022
– year: 2020
– year: 2023
– start-page: 238
  year: 2024
  end-page: 245
– volume: 102
  start-page: 44
  year: 2021
  end-page: 53
  article-title: Detection of downhole incidents for complex geological drilling processes using amplitude change detection and dynamic time warping
  publication-title: J. Process Control
– volume: 57.8
  year: 2023
  article-title: Vehicle trajectory prediction based on temporal‐spatial multi‐head attention mechanism
  publication-title: J. Zhejiang Univ. (Eng. Sci.)
– volume: 16
  issue: 5
  year: 2024
  article-title: HATF: multi‐modal feature learning for infrared and visible image fusion via hybrid attention transformer
  publication-title: Rem. Sens.
– year: 2017
– volume: 1‐22
  year: 2024
  article-title: A review of multimodal data fusion research[J/OL]
  publication-title: Comput. Sci. Explor.
– year: 2021
  article-title: Research and implementation of multidimensional data simulation tool for maritime targets based on generative adversarial network [D]
  publication-title: null
– volume: 4
  start-page: 3
  issue: 1
  year: 2015
  end-page: 16
  article-title: Aligning plot synopses to videos for story‐based retrieval
  publication-title: Int. J. Multimedia Inf. Retrieval
– ident: e_1_2_11_11_1
  doi: 10.1016/j.autcon.2019.103050
– volume-title: Passive Sonar Data Detection and Classification Based on Independent Component Analysis
  year: 2011
  ident: e_1_2_11_5_1
– ident: e_1_2_11_2_1
  doi: 10.1016/j.knosys.2024.111672
– volume-title: Can Temporal Information Help with Contrastive Self‐Supervised Learning?
  year: 2020
  ident: e_1_2_11_30_1
– ident: e_1_2_11_16_1
  doi: 10.1016/j.jprocont.2021.04.002
– ident: e_1_2_11_10_1
  doi: 10.1080/15481603.2022.2118437
– year: 2021
  ident: e_1_2_11_26_1
  article-title: Research and implementation of multidimensional data simulation tool for maritime targets based on generative adversarial network [D]
  publication-title: null
– volume: 57
  year: 2023
  ident: e_1_2_11_17_1
  article-title: Vehicle trajectory prediction based on temporal‐spatial multi‐head attention mechanism
  publication-title: J. Zhejiang Univ. (Eng. Sci.)
– volume: 1
  year: 2024
  ident: e_1_2_11_31_1
  article-title: A review of multimodal data fusion research[J/OL]
  publication-title: Comput. Sci. Explor.
– ident: e_1_2_11_24_1
  doi: 10.3390/jmse11112132
– ident: e_1_2_11_4_1
  doi: 10.1016/j.oceaneng.2024.116900
– start-page: 22419
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  year: 2021
  ident: e_1_2_11_15_1
– ident: e_1_2_11_8_1
– ident: e_1_2_11_32_1
  doi: 10.3390/rs16050803
– volume-title: Proceedings of the 2020'Western China Acoustics Symposium
  year: 2020
  ident: e_1_2_11_35_1
– ident: e_1_2_11_33_1
  doi: 10.1007/s13735‐014‐0065‐9
– volume: 3
  start-page: 29
  year: 2012
  ident: e_1_2_11_27_1
  article-title: Passive sonar target modeling and real‐time simulation
  publication-title: Comput. Simulat.
– volume-title: Informer: Beyond Efficient Transformer for Long Sequence Time‐Series Forecasting
  year: 2020
  ident: e_1_2_11_12_1
– volume: 1
  year: 2024
  ident: e_1_2_11_13_1
  article-title: Performance analysis of relay‐aided satellite‐underwater acoustic communication systems
  publication-title: IEEE Trans. Commun.
– ident: e_1_2_11_23_1
– ident: e_1_2_11_36_1
  doi: 10.1016/j.oceaneng.2023.115647
– start-page: 225
  volume-title: Digital Ocean and Underwater Attack and Defense
  year: 2022
  ident: e_1_2_11_19_1
– ident: e_1_2_11_20_1
– volume: 61
  year: 2018
  ident: e_1_2_11_18_1
  article-title: Passive sonar target detection using statistical classifier and adaptive threshold
  publication-title: Appl. Sci.
– ident: e_1_2_11_29_1
  doi: 10.1109/tassp.1975.1162641
– volume-title: Information Fusion for an Unmanned Underwater Vehicle through Probabilistic Prediction and Optimal Matching
  year: 2020
  ident: e_1_2_11_6_1
– ident: e_1_2_11_7_1
  doi: 10.1016/0005‐1098(71)90096‐3
– ident: e_1_2_11_21_1
  doi: 10.18653/v1/D18-1280
– ident: e_1_2_11_28_1
– ident: e_1_2_11_3_1
  doi: 10.3390/jmse11081574
– ident: e_1_2_11_22_1
  doi: 10.1109/TPAMI.2023.3275156
– start-page: 238
  volume-title: Proceedings of the 2024 8th International Conference on Control Engineering and Artificial Intelligence, CCEAI ’24
  year: 2024
  ident: e_1_2_11_25_1
– ident: e_1_2_11_37_1
  doi: 10.1016/j.chaos.2018.01.031
– start-page: 62
  volume-title: Side‐scan Sonar Shipwreck Target Detection Based on Improved YOLOv3 Model
  year: 2022
  ident: e_1_2_11_34_1
– ident: e_1_2_11_14_1
– ident: e_1_2_11_9_1
  doi: 10.1155/2015/719025
SSID ssj0055649
Score 2.3984506
Snippet In the field of underwater target detection, the passive sonar is an important means of long‐distance target detection. The sonar detection information...
Abstract In the field of underwater target detection, the passive sonar is an important means of long‐distance target detection. The sonar detection...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
StartPage 2521
SubjectTerms acoustic signal detection
artificial intelligence
sensor fusion
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYovdADagtVtw80UjkhBYjtxDbqhVJWtBII8RDcIr-yRYIsyi5F3PgJ_Qn9bf0lnXGytFwq9RY5fkiZzMxne-YbxlaV8yGqEDOvpc-InyQzxplMelXnNuig0-35_kG5dyq_nhfnc-zjLBem44d4OHAjzUj2mhTcuq4KCYJaFGI7afh6zstCPGFPKbeWmPO5PJzZ4aIoE_hF_5ijzms5IyeVZuPP2EfuKLH2P0apyc0Mn7PFHh_CdifQF2wuNi_Zs79YA5fYz93mG7FkNCOgDLD2FuFiC11IN4Q4TcFVzRYMb-gkDMY1TFLY9K_7Hz0R1SUQJwPxAk_j5R22Ixgfob2F7S_HYJsAhM9b6ElVaTb4fmHh88lZepuCEHEU2vEAxM-ZIibhKlIW8cXkapmdDndPdvayvtBC5oWQIvPcqUKp2mtvpJOScyvLEHOeW6EcQogQhLPkunhUmqK-bCxLrUTpfV27XLxi8824ia8ZBEu5sda74GpZ-E0bBE4u64I2cobrAfsw-97VdcenUaV7cGkqkkqVpDJgn0gUDz2IAzs1jNtR1atURfCi5IaKCgbpXG5xa1QItDHaI6ox-YCtJUH-Y53q6PiAp6c3_9P5LVvguHgX1fKOzU_bm_gescnUraRf8DfDU-RB
  priority: 102
  providerName: Wiley-Blackwell
Title Enhancing underwater target detection: Fusion of spatio‐temporal incompletely‐aligned AIS and sonar information via DTW and multi‐head attention mechanism
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frsn2.12653
https://doaj.org/article/00246291874d4bb1a974535108c20191
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTt0wELWAFV0gnuqlFI0EK6RAYzux0x20XAESCPEQ7CK_AkgQqtwLqLt-Ap_At_ElzDi5CDZlwy5yHDvyTDzH8ZljxlaVdT4oHxKnpUtInyQpClsk0qkqNV57HXfP9w_ynVO5d56dvznqizhhrTxwO3CUri1zXtDRcV5amxoEwJlAT9IOY1fMW-cY80aLqXYOzrI8Al-MjSl-71qOhEllsdEMar6e8jwT70JRVOx_j1BjiOlPs6kOG8Jm-04zbCzUs-zLG8XAOfa0XV-SQkZ9AZT91TwgVGygpXODD8NIrKp_Qv-O_oLBbQWDSJl-_vfYiVBdA-kxkCbwMFz_xXIE4hc418Lm7jGY2gNh8wY6QVVqDe6vDPw-OYt3IwERn8I53ANpc0a2JNwEyiC-GtzMs9P-9smvnaQ7ZCFxQkiROG5VplTltCuklZJzI3MfUp4aoSzCB--FNRS2eFCaGF8m5LlWIneuqmwqFthEfVuHrwy8obxY46y3lczcD-MFNi6rjBZxBdc9tjIa7_JPq6VRxj1wWZRklTJapce2yBSvNUj_OhagV5SdV5QfeUWPrUVD_qef8uj4gMerxc_o8Rub5FilZbossYlhcxe-I14Z2mU2zuXhcnTQFzI06gA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWgLIAF4qkOzyvBCilA7Bs_2BXoaArtCNGp6C7yK0OlNoMyUxA7PoFP4Nv4EnydTKEbJHaRYztRbu71sX3uMWNPlPMhqhALr9EXpE9SGONMgV41pQ066Lx7vjeVkwN8e1gdDtwcyoXp9SHOFtzIM3K8JgenBel-wokkktktW_6s5LISF9kllFyRX3J8vw7EVSUz-k0DZJmcXuNanRTN8z9tz41HWbb_PEzN48z4Ors2AETY6i16g12I7U129S_ZwFvs53b7iWQy2jlQClj3NeHFDnpON4S4yuyq9iWMT2kpDBYNLDNv-tf3H4MS1TGQKAMJA6_i8bdUntD4PAVc2NrZB9sGIIDewaCqSr3BlyMLb2Yf893MQkytUiAPQAKdmTIJJ5HSiI-WJ7fZwXh79npSDCctFF4IFIXnTlVKNV57gw6Rc4syxJKXViiXMEQIwlkau3hUmmhfNkqplZDeN40rxR220S7auMkgWEqOtd4F12DlX9ggUufYVDSTM1yP2OP1964_94Iadd4IR1OTVepslRF7RaY4q0Ei2Llg0c3rwadqwheSGzpVMKBzpU1zo0qkIKN9gjWmHLGn2ZD_eE79YX_K89Xd_6n8iF2ezPZ2692d6bt77ApPL9JTXO6zjVV3Gh8koLJyD_Pv-BsU2eet
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkJwQDzF8hwJTkgBYjuxjXpZaFctjxWiXai4RH5lqdRmq-yWqrf-BH4Cv41fgsfJFnpB4hY5tmNlPDOf7ZnPAE-ldT5IHzKnhMuInyTT2upMOFnnxiuv0un5h3G5NRFv94q9FVhf5sJ0_BDnG26kGclek4If-bpbbwriyGznDXues7Lgl2CNaPLinF4bfp58nSwtcVGUCf5GD5lHrVdiSU8q9Is_rS84pMTbfxGnJkczug7XeoSIw06kN2AlNDfh6l-8gbfg52bzjXgymilSDlh7EgFji11QN_qwSOFVzSscHdNeGM5qnKfA6V9nP3oqqgMkVgZiBl6Eg9NYHuH4NFpcHG7voGk8EkJvsadVpd7w-77Bjd0v6W0KQ4ytoiX3SAydKWYSDwPlEe_PD2_DZLS5-2Yr669ayBzngmeOWVlIWTvltLBCMGZE6UPOcsOljSDCe24NOS8WpKK4LxPKUkleOlfXNud3YLWZNeEuoDeUHWuc9bYWhXtpPI-di7qgpZxmagBPlv-7OuoYNap0Ei50RVKpklQG8JpEcV6DWLBTwaydVr1SVQQwSqbpWkEvrM1NXBwVPFoZ5SKu0fkAniVB_uM71aedMUtP9_6n8mO4_HFjVL3fHr-7D1dYHEcX4vIAVhftcXgYgcrCPurn428pe-il
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+underwater+target+detection%3A+Fusion+of+spatio%E2%80%90temporal+incompletely%E2%80%90aligned+AIS+and+sonar+information+via+DTW+and+multi%E2%80%90head+attention+mechanism&rft.jtitle=IET+radar%2C+sonar+%26+navigation&rft.au=Zhao%2C+Wenbo&rft.au=Cheng%2C+Xinghua&rft.au=Wang%2C+Dezhi&rft.au=Xiong%2C+Xiaodan&rft.date=2024-12-01&rft.issn=1751-8784&rft.eissn=1751-8792&rft.volume=18&rft.issue=12&rft.spage=2521&rft.epage=2540&rft_id=info:doi/10.1049%2Frsn2.12653&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_rsn2_12653
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8784&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8784&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8784&client=summon