Small signal stability analysis and control parameter optimization of DC microgrid cluster
Direct current microgrid (DCMG) clusters are gaining popularity in power systems due to their simplicity and high efficiency. However, DCMG clusters are susceptible to minor disturbances due to low system inertia. This paper proposes a method to enhance the small‐signal stability of a DCMG cluster b...
Saved in:
Published in | IET power electronics Vol. 17; no. 10; pp. 1378 - 1397 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Direct current microgrid (DCMG) clusters are gaining popularity in power systems due to their simplicity and high efficiency. However, DCMG clusters are susceptible to minor disturbances due to low system inertia. This paper proposes a method to enhance the small‐signal stability of a DCMG cluster by optimizing the main control parameters of the system. This paper presents a small‐signal state‐space model of a DCMG cluster system at the system level, considering a multi‐bus network topology. Then, the control parameters that significantly affect the small‐signal stability of the DCMG are selected using the participation factor method. To enhance the system damping, the Pareto‐optimal frontier of the bi‐objective problem was determined using the elite non‐dominated sorting genetic algorithm (NSGA‐II). The optimal compromise is determined by using the fuzzy membership function method to extract it from the generated Pareto optimal front. The proposed method has been verified on a three‐sub DCMG test system with droop control.
This paper proposes a method to improve the small‐signal stability of a DC microgrid (DCMG) cluster by optimizing the main control parameters of the system. This paper establishes a direct current (DC) microgrid system‐level small‐signal state space model with a multi‐bus network topology. Then, the control parameters affecting the DCMG small‐signal stability significantly selected through the participation factor method. To increase the system damping, the Pareto‐optimal frontier of the constructed bi‐objective problem was obtained using the elite non‐dominated sorting genetic algorithm (NSGA‐II). The optimal compromise is extracted from the generated Pareto optimal front by adopting the fuzzy membership function method. |
---|---|
AbstractList | Direct current microgrid (DCMG) clusters are gaining popularity in power systems due to their simplicity and high efficiency. However, DCMG clusters are susceptible to minor disturbances due to low system inertia. This paper proposes a method to enhance the small‐signal stability of a DCMG cluster by optimizing the main control parameters of the system. This paper presents a small‐signal state‐space model of a DCMG cluster system at the system level, considering a multi‐bus network topology. Then, the control parameters that significantly affect the small‐signal stability of the DCMG are selected using the participation factor method. To enhance the system damping, the Pareto‐optimal frontier of the bi‐objective problem was determined using the elite non‐dominated sorting genetic algorithm (NSGA‐II). The optimal compromise is determined by using the fuzzy membership function method to extract it from the generated Pareto optimal front. The proposed method has been verified on a three‐sub DCMG test system with droop control.
This paper proposes a method to improve the small‐signal stability of a DC microgrid (DCMG) cluster by optimizing the main control parameters of the system. This paper establishes a direct current (DC) microgrid system‐level small‐signal state space model with a multi‐bus network topology. Then, the control parameters affecting the DCMG small‐signal stability significantly selected through the participation factor method. To increase the system damping, the Pareto‐optimal frontier of the constructed bi‐objective problem was obtained using the elite non‐dominated sorting genetic algorithm (NSGA‐II). The optimal compromise is extracted from the generated Pareto optimal front by adopting the fuzzy membership function method. Direct current microgrid (DCMG) clusters are gaining popularity in power systems due to their simplicity and high efficiency. However, DCMG clusters are susceptible to minor disturbances due to low system inertia. This paper proposes a method to enhance the small‐signal stability of a DCMG cluster by optimizing the main control parameters of the system. This paper presents a small‐signal state‐space model of a DCMG cluster system at the system level, considering a multi‐bus network topology. Then, the control parameters that significantly affect the small‐signal stability of the DCMG are selected using the participation factor method. To enhance the system damping, the Pareto‐optimal frontier of the bi‐objective problem was determined using the elite non‐dominated sorting genetic algorithm (NSGA‐II). The optimal compromise is determined by using the fuzzy membership function method to extract it from the generated Pareto optimal front. The proposed method has been verified on a three‐sub DCMG test system with droop control. Abstract Direct current microgrid (DCMG) clusters are gaining popularity in power systems due to their simplicity and high efficiency. However, DCMG clusters are susceptible to minor disturbances due to low system inertia. This paper proposes a method to enhance the small‐signal stability of a DCMG cluster by optimizing the main control parameters of the system. This paper presents a small‐signal state‐space model of a DCMG cluster system at the system level, considering a multi‐bus network topology. Then, the control parameters that significantly affect the small‐signal stability of the DCMG are selected using the participation factor method. To enhance the system damping, the Pareto‐optimal frontier of the bi‐objective problem was determined using the elite non‐dominated sorting genetic algorithm (NSGA‐II). The optimal compromise is determined by using the fuzzy membership function method to extract it from the generated Pareto optimal front. The proposed method has been verified on a three‐sub DCMG test system with droop control. |
Author | Zhang, Zifan Liang, Zhanhong Yang, Xiangyu Zhao, Shiwei Zeng, Qi Gao, Mengzhen |
Author_xml | – sequence: 1 givenname: Zifan orcidid: 0000-0003-2268-9876 surname: Zhang fullname: Zhang, Zifan email: zzf3345@qq.com organization: South China University of Technology – sequence: 2 givenname: Xiangyu surname: Yang fullname: Yang, Xiangyu organization: South China University of Technology – sequence: 3 givenname: Shiwei surname: Zhao fullname: Zhao, Shiwei organization: South China University of Technology – sequence: 4 givenname: Qi surname: Zeng fullname: Zeng, Qi organization: Guangzhou City University of Technology – sequence: 5 givenname: Zhanhong surname: Liang fullname: Liang, Zhanhong organization: City University of Hong Kong – sequence: 6 givenname: Mengzhen orcidid: 0000-0002-5014-6919 surname: Gao fullname: Gao, Mengzhen organization: South China University of Technology |
BookMark | eNp9kE9LxDAQxYOs4Lp68RP0LHRN0iRtjrKuurCgoF68hDR_lixpU5KK1E9vdyt79DRvZn7zYN4lmLWhNQDcILhEkPC7zni8RJhxfAbmqKQ0J5QUs5Mu6AW4TGkPIUOEVnPw-dZI77Pkdq0cSy9r510_ZHJsh-TSKHSmQtvH4LNORtmY3sQsdL1r3I_sXWizYLOHVdY4FcMuuhH3X2mErsC5lT6Z67-6AB-P6_fVc759edqs7re5KgqCc0tIVVtoDWdSW1JZSjRWBUNYFpBrSqylWDLOoaorq7mSHCtecjKuENO0WIDN5KuD3IsuukbGQQTpxHEQ4k7I2DvljSBYlZoRZDA0hJeEc40wxWVtmGbUHLxuJ6_xl5SisSc_BMUhYXFIWBwTHmE0wd_Om-EfUryut3i6-QWJpIA_ |
Cites_doi | 10.1109/JESTIE.2021.3088419 10.1109/TSTE.2018.2837750 10.1007/s43236-021-00350-5 10.1109/TSG.2018.2797127 10.1109/TIE.2018.2880666 10.1109/OAJPE.2021.3132860 10.1109/TIE.2019.2907507 10.23919/CJEE.2021.000038 10.1109/TPEL.2023.3237599 10.1016/j.rser.2012.11.040 10.1109/TPEL.2019.2893686 10.1109/JSYST.2019.2937836 10.1109/TIA.2021.3073376 10.1049/pel2.12293 10.1109/TIE.2022.3152028 10.1109/TETCI.2018.2863747 10.1016/j.ijepes.2022.108450 10.1109/TPWRS.2018.2884876 10.1109/TIE.2020.3029483 10.1109/TPEL.2015.2424672 10.1016/j.ijepes.2021.107578 10.1109/TII.2019.2931837 10.35833/MPCE.2018.000878 10.1109/TSG.2017.2751755 10.1109/TPEL.2020.3019311 10.1109/TPWRS.2013.2245922 10.1109/ACCESS.2019.2900728 10.1109/TSG.2016.2521652 10.1007/s00500-021-06502-w 10.1109/TPEL.2019.2961682 10.1109/TEC.2014.2362191 10.1109/TPEL.2021.3050506 10.1109/JETCAS.2021.3049810 10.1109/TSG.2022.3185264 10.1109/ENERGYCON.2014.6850588 10.1109/ACCESS.2022.3221435 10.1109/JESTIE.2022.3208513 10.1016/j.epsr.2022.108671 10.1109/JSYST.2021.3114963 10.1109/TPEL.2021.3076734 |
ContentType | Journal Article |
Copyright | 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1049/pel2.12692 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1755-4543 |
EndPage | 1397 |
ExternalDocumentID | oai_doaj_org_article_42c7d641e20e497499d12527be6d65e5 10_1049_pel2_12692 PEL212692 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62173148; 52377186 |
GroupedDBID | 0R~ 0ZK 1OC 24P 29I 5GY 6IK AAHHS AAHJG AAJGR ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADEYR ADZOD AEEZP AEGXH AENEX AEQDE AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU CS3 DU5 EBS GROUPED_DOAJ HZ~ IAO IFIPE IGS IPLJI ITC JAVBF LXU NADUK NXXTH O9- OCL OK1 P2P RIE RNS ROL RUI UNMZH ~ZZ 4.4 8FE 8FG AAMMB AAYXX ABJCF AEFGJ AFKRA AGXDD AIDQK AIDYY ARAPS BENPR BGLVJ CCPQU CITATION EJD HCIFZ IDLOA L6V M43 M7S MCNEO P62 PHGZM PHGZT PQGLB PTHSS WIN |
ID | FETCH-LOGICAL-c3342-f448bf0fe96adf48f54d2c3612a309d54ff52a6990cb8fd9ca92c9794d5416d53 |
IEDL.DBID | DOA |
ISSN | 1755-4535 |
IngestDate | Wed Aug 27 01:15:44 EDT 2025 Tue Aug 05 12:03:24 EDT 2025 Wed Jan 22 17:17:26 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3342-f448bf0fe96adf48f54d2c3612a309d54ff52a6990cb8fd9ca92c9794d5416d53 |
ORCID | 0000-0002-5014-6919 0000-0003-2268-9876 |
OpenAccessLink | https://doaj.org/article/42c7d641e20e497499d12527be6d65e5 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_42c7d641e20e497499d12527be6d65e5 crossref_primary_10_1049_pel2_12692 wiley_primary_10_1049_pel2_12692_PEL212692 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IET power electronics |
PublicationYear | 2024 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2019; 7 2021; 68 2021; 7 2017; 8 2013; 28 2023; 4 2023; 38 2019; 10 2019; 34 2016; 31 2020; 16 2020; 14 2022; 26 2020; 35 2014; 29 2022; 22 2022; 135 2022; 213 2021; 36 2020; 8 2013; 19 2021; 57 2016; 7 2022; 143 2020; 4 2021; 11 2022; 3 2019; 66 2022; 9 2022; 13 2022; 15 2020; 67 2014 2022; 10 2022; 16 2023; 70 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 e_1_2_10_2_1 Yu K. (e_1_2_10_7_1) 2016; 7 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 34 start-page: 1780 year: 2019 end-page: 1800 article-title: Stability analysis of primary plug‐and‐play and secondary leader‐based controllers for DC microgrid clusters publication-title: IEEE Trans. Power Syst. – volume: 9 start-page: 16 year: 2022 end-page: 28 article-title: Potential‐based large‐signal stability analysis in DC power grids with multiple constant power loads publication-title: IEEE Open Access J. Power Energy – volume: 38 start-page: 6597 year: 2023 end-page: 6612 article-title: Accurate small‐signal terminal characteristic model and SISO stability analysis approach for parallel grid‐forming inverters in islanded microgrids publication-title: IEEE Trans. Power Electron. – volume: 7 start-page: 695 year: 2016 end-page: 705 article-title: Analysis and optimization of droop controller for microgrid system based on small‐signal dynamic model publication-title: IEEE Trans. Smart Grid – volume: 16 start-page: 2423 year: 2020 end-page: 2435 article-title: Multiobjective optimization of droop‐controlled distributed generators in DC microgrids publication-title: IEEE Trans. Ind. Inf. – volume: 35 start-page: 8186 year: 2020 end-page: 8199 article-title: A generalized multifrequency small‐signal model for high‐bandwidth buck converters under constant‐frequency voltage‐mode control publication-title: IEEE Trans. Power Electron. – volume: 68 start-page: 10806 year: 2021 end-page: 10814 article-title: Intelligent multiobjective NSBGA‐II control of power converters in DC microgrids publication-title: IEEE Trans. Ind. Electron. – volume: 7 start-page: 36896 year: 2019 end-page: 36909 article-title: Small‐signal stability analysis and optimal parameters design of microgrid clusters publication-title: IEEE Access – volume: 29 start-page: 922 year: 2014 end-page: 933 article-title: Hierarchical control for multiple DC‐microgrids clusters publication-title: IEEE Trans. Energy Convers. – volume: 36 start-page: 12670 year: 2021 end-page: 12684 article-title: Takagi‐sugeno multimodeling‐based large signal stability analysis of DC microgrid clusters publication-title: IEEE Trans. Power Electron. – volume: 14 start-page: 1015 year: 2020 end-page: 1023 article-title: Distributed hierarchical control for optimal power dispatch in multiple DC microgrids publication-title: IEEE Syst. J. – volume: 10 start-page: 569 year: 2019 end-page: 578 article-title: Stability constrained economic operation of islanded droop‐controlled DC microgrids publication-title: IEEE Trans. Sustainable Energy – volume: 10 start-page: 752 year: 2019 end-page: 761 article-title: A novel composite nonlinear controller for stabilization of constant power load in DC microgrid publication-title: IEEE Trans. Smart Grid – volume: 22 start-page: 308 year: 2022 end-page: 317 article-title: An adaptive nonlinear droop control for accurate load current sharing and DC bus voltage compensation in a DC power system publication-title: J. Power Electron. – volume: 8 start-page: 2287 year: 2017 end-page: 2295 article-title: Large signal Lyapunov‐based stability studies in microgrids: A review publication-title: IEEE Trans. Smart Grid – volume: 70 start-page: 465 year: 2023 end-page: 473 article-title: Observer‐based backstepping sliding mode control design for microgrids feeding a constant power load publication-title: IEEE Trans. Ind. Electron. – volume: 10 start-page: 119345 year: 2022 end-page: 119356 article-title: A fully distributed economic dispatch method in DC microgrid based on consensus algorithm publication-title: IEEE Access – volume: 7 start-page: 60 year: 2021 end-page: 77 article-title: Stability and robustness of a coupled microgrid cluster formed by various coupling structures publication-title: China J. Electr. Eng. – volume: 36 start-page: 9105 year: 2021 end-page: 9118 article-title: Distribution power loss mitigation of parallel‐connected distributed energy resources in low‐voltage DC microgrids using a lagrange multiplier‐based adaptive droop control publication-title: IEEE Trans. Power Electron. – volume: 4 start-page: 119 year: 2020 end-page: 129 article-title: A distributed iterative learning framework for DC microgrids: Current sharing and voltage regulation publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – volume: 143 year: 2022 article-title: Large‐signal stability analysis of islanded DC microgrids with multiple types of loads publication-title: Int. J. Electr. Power Energy Syst. – volume: 19 start-page: 370 year: 2013 end-page: 384 article-title: Iterative non‐deterministic algorithms in on‐shore wind farm design: A brief survey publication-title: Renewable Sustainable Energy Rev. – volume: 26 start-page: 4045 year: 2022 end-page: 4056 article-title: A novel approach for optimal power scheduling of distributed energy resources in microgrids publication-title: Soft Comput. – volume: 31 start-page: 1717 year: 2016 end-page: 1733 article-title: Distributed tertiary control of DC microgrid clusters publication-title: IEEE Trans. Power Electron. – volume: 28 start-page: 2679 year: 2013 end-page: 2687 article-title: Coordinated optimal design of inverter controllers in a micro‐grid with multiple distributed generation units publication-title: IEEE Trans. Power Syst. – start-page: 1284 year: 2014 end-page: 1290 article-title: Modeling, stability analysis and active stabilization of multiple DC‐microgrid clusters – volume: 11 start-page: 168 year: 2021 end-page: 175 article-title: Design of nonlinear droop control in DC microgrid for desired voltage regulation and current sharing accuracy publication-title: IEEE J. Emerging Sel. Top. Circuits Syst. – volume: 36 start-page: 4224 year: 2021 end-page: 4236 article-title: System‐level large‐signal stability analysis of droop‐controlled DC microgrids publication-title: IEEE Trans. Power Electron. – volume: 13 start-page: 4538 year: 2022 end-page: 4550 article-title: Power loss minimization of parallel‐connected distributed energy resources in DC microgrids using a distributed gradient algorithm‐based hierarchical control publication-title: IEEE Trans. Smart Grid – volume: 57 start-page: 4196 year: 2021 end-page: 4206 article-title: A novel control strategy to achieve SOC balancing for batteries in a DC microgrid without droop control publication-title: IEEE Trans. Ind. Appl. – volume: 3 start-page: 90 year: 2022 end-page: 100 article-title: Fuzzy controller for energy management and SoC equalization in DC microgrids powered by fuel cell and energy storage units publication-title: IEEE J. Emerging Sel. Top. Ind. Electron. – volume: 16 start-page: 5445 year: 2022 end-page: 5454 article-title: A multiobjective secondary control approach for optimal design of DG droop characteristic and control mode for autonomous microgrids publication-title: IEEE Syst. J. – volume: 34 start-page: 9404 year: 2019 end-page: 9421 article-title: Investigation of nonlinear droop control in DC power distribution systems: Load sharing, voltage regulation, efficiency, and stability publication-title: IEEE Trans. Power Electron. – volume: 135 year: 2022 article-title: A novel communication‐less fuzzy based control method to improve SOC balancing, current‐sharing, and voltage restoration in a widespread DC microgrid publication-title: Int. J. Electr. Power Energy Syst. – volume: 67 start-page: 3043 year: 2020 end-page: 3053 article-title: Distributed voltage restoration and current sharing control in islanded DC microgrid systems without continuous communication publication-title: IEEE Trans. Ind. Electron. – volume: 66 start-page: 5644 year: 2019 end-page: 5652 article-title: Tracking control for a DC microgrid feeding uncertain loads in more electric aircraft: Adaptive backstepping approach publication-title: IEEE Trans. Ind. Electron. – volume: 10 start-page: 2396 year: 2019 end-page: 2406 article-title: Intelligent power sharing of DC isolated microgrid based on fuzzy sliding mode droop control publication-title: IEEE Trans. Smart Grid – volume: 15 start-page: 1093 year: 2022 end-page: 1109 article-title: Design of droop controller in islanded microgrids using multi‐objective optimisation based on accurate small‐signal model publication-title: IET Power Electron. – volume: 213 year: 2022 article-title: Multi‐objective optimization technique for droop controlled distributed generators in AC islanded microgrid publication-title: Electr. Power Syst. Res. – volume: 8 start-page: 564 year: 2020 end-page: 572 article-title: Small‐signal Analysis of DC microgrid and multi‐objective optimization segmented droop control suitable for economic dispatch publication-title: J. Mod. Power Syst. Clean Energy – volume: 4 start-page: 3 year: 2023 end-page: 13 article-title: An optimized nonlinear droop control method using load profile for DC microgrids publication-title: IEEE J. Emerging Sel. Top. Ind. Electron. – ident: e_1_2_10_26_1 doi: 10.1109/JESTIE.2021.3088419 – ident: e_1_2_10_35_1 doi: 10.1109/TSTE.2018.2837750 – ident: e_1_2_10_29_1 doi: 10.1007/s43236-021-00350-5 – ident: e_1_2_10_38_1 doi: 10.1109/TSG.2018.2797127 – ident: e_1_2_10_40_1 doi: 10.1109/TIE.2018.2880666 – ident: e_1_2_10_11_1 doi: 10.1109/OAJPE.2021.3132860 – ident: e_1_2_10_17_1 doi: 10.1109/TIE.2019.2907507 – ident: e_1_2_10_8_1 doi: 10.23919/CJEE.2021.000038 – ident: e_1_2_10_6_1 doi: 10.1109/TPEL.2023.3237599 – ident: e_1_2_10_34_1 doi: 10.1016/j.rser.2012.11.040 – ident: e_1_2_10_12_1 doi: 10.1109/TPEL.2019.2893686 – ident: e_1_2_10_23_1 doi: 10.1109/JSYST.2019.2937836 – ident: e_1_2_10_24_1 doi: 10.1109/TIA.2021.3073376 – ident: e_1_2_10_4_1 doi: 10.1049/pel2.12293 – ident: e_1_2_10_10_1 doi: 10.1109/TIE.2022.3152028 – ident: e_1_2_10_18_1 doi: 10.1109/TETCI.2018.2863747 – ident: e_1_2_10_16_1 doi: 10.1016/j.ijepes.2022.108450 – ident: e_1_2_10_31_1 doi: 10.1109/TPWRS.2018.2884876 – ident: e_1_2_10_15_1 doi: 10.1109/TIE.2020.3029483 – ident: e_1_2_10_33_1 doi: 10.1109/TPEL.2015.2424672 – ident: e_1_2_10_25_1 doi: 10.1016/j.ijepes.2021.107578 – ident: e_1_2_10_37_1 doi: 10.1109/TII.2019.2931837 – ident: e_1_2_10_14_1 doi: 10.35833/MPCE.2018.000878 – ident: e_1_2_10_39_1 doi: 10.1109/TSG.2017.2751755 – ident: e_1_2_10_32_1 doi: 10.1109/TPEL.2020.3019311 – ident: e_1_2_10_5_1 doi: 10.1109/TPWRS.2013.2245922 – ident: e_1_2_10_9_1 doi: 10.1109/ACCESS.2019.2900728 – ident: e_1_2_10_42_1 doi: 10.1109/TSG.2016.2521652 – ident: e_1_2_10_36_1 doi: 10.1007/s00500-021-06502-w – ident: e_1_2_10_41_1 doi: 10.1109/TPEL.2019.2961682 – ident: e_1_2_10_20_1 doi: 10.1109/TEC.2014.2362191 – ident: e_1_2_10_13_1 doi: 10.1109/TPEL.2021.3050506 – volume: 7 start-page: 695 year: 2016 ident: e_1_2_10_7_1 article-title: Analysis and optimization of droop controller for microgrid system based on small‐signal dynamic model publication-title: IEEE Trans. Smart Grid – ident: e_1_2_10_19_1 doi: 10.1109/JETCAS.2021.3049810 – ident: e_1_2_10_27_1 doi: 10.1109/TSG.2022.3185264 – ident: e_1_2_10_21_1 doi: 10.1109/ENERGYCON.2014.6850588 – ident: e_1_2_10_22_1 doi: 10.1109/ACCESS.2022.3221435 – ident: e_1_2_10_28_1 doi: 10.1109/JESTIE.2022.3208513 – ident: e_1_2_10_3_1 doi: 10.1016/j.epsr.2022.108671 – ident: e_1_2_10_2_1 doi: 10.1109/JSYST.2021.3114963 – ident: e_1_2_10_30_1 doi: 10.1109/TPEL.2021.3076734 |
SSID | ssj0061458 |
Score | 2.357795 |
Snippet | Direct current microgrid (DCMG) clusters are gaining popularity in power systems due to their simplicity and high efficiency. However, DCMG clusters are... Abstract Direct current microgrid (DCMG) clusters are gaining popularity in power systems due to their simplicity and high efficiency. However, DCMG clusters... |
SourceID | doaj crossref wiley |
SourceType | Open Website Index Database Publisher |
StartPage | 1378 |
SubjectTerms | DC transmission networks DC–DC power convertors Pareto optimisation power grids stability |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KvehBfGJ9saAnIZrsI8mCF60tRVQKWihewmYfRUgaKe3Bf-_sJq32InhbklkCszsz32ZnvkHoMkoToo0WgdXUBEyHYSCooYGCHW0TpUTii8KeX-LBiD2O-biFbpe1MDU_xOqHm7MM76-dgcu87kICoNZ1pjUFuY5ILMABb7jaWsecT9hw6Ych7vjunBAfecA45UtyUiZufuauhSPP2r-OUn2Y6e-g7QYf4rt6QXdRy0z30NYv1sB99P5ayqLALvMCJAHd-fzWLywbfhEYaNykoGNH7V26lBdcgXMom6pLXFn80MWly8abzD5AvFg4xoQDNOr33rqDoGmREChKGQksnK5yG1ojYqktSy1nmigKsEXSUGjOrOVExhByVJ5aLZQUxOmfwaso1pweova0mpojhOGoAtAkVYAYc0atzCMCky3AQyVTkcgOulhqKvusmTAyf4PNROb0mXl9dtC9U-JKwrFX-wfVbJI1xpAxohIds8iQ0DA40AihAWeRJDexjrnhHXTll-CP72TD3hPxo-P_CJ-gTQKopM7gO0Xt-WxhzgBVzPNzv3m-AcrMx0c priority: 102 providerName: Wiley-Blackwell |
Title | Small signal stability analysis and control parameter optimization of DC microgrid cluster |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fpel2.12692 https://doaj.org/article/42c7d641e20e497499d12527be6d65e5 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA66kx7ET5wfI6Anoa7NV5ujzo0hKgMdDC8lzYcI6zbGdvDf-ybtZLvoxVto35DyviHPE_rkCULXSZYSY42MnKE2YiaOI0ktjTTMaJdqLdNwKOz5RfSH7HHER2tXfXlNWGUPXCWuzYhOjWCJJbFlQH6lNIDJJC2sMILb4F4KmLfaTFVrMGBOuJkTsJFHjFO-MiZlsj2zY3KbECHJBhQFx_5NhhogpreP9mpuiO-qbzpAW3ZyiHbXHAOP0PtrqcZj7FUXEAnMLmhbv7CqvUWgYXAtP8fe1rv0chc8hYWhrE9c4qnDDx1ceiXex_wTwsdL75ZwjIa97lunH9XXI0SaUkYiBzurwsXOSqGMY5njzBBNgbIoGkvDmXOcKAFwo4vMGamVJD73DF4lwnB6ghqT6cSeIgzbFKAlmQa2WDDqVJEQ6OyAGmqVyVQ10dUqU_mscsHIw99rJnOfzzzks4nufRJ_IrxzdXgA9czreuZ_1bOJbkIJfhknH3SfSGid_ceI52iHAFOpVH0XqLGYL-0lMI1F0ULbhA1aYWp9Azfnzu0 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB_UgPnF9BvQkVNtkkjZHX8uqqwgqiJeS5rEI-5BlPfjvnaRdHxfBW2gnFGYyM9-kky-EHGZFzqyzKvGWuwRsmiaKO54YXNE-N0bl8VDY7Z3sPMH1s3huenPCWZiaH-Jrwy14RozXwcHDhnRdcEIgyXxzfXacMakwAs-BZHnwSwb300CMiSdez4kJUiQguJiyk4I6-Z77Kx9F2v7fMDXmmfYyWWoAIj2tLbpCZtxwlSz-oA1cIy8PA93v09B6gZII72KD6wfVDcEIDixtetBp4PYehJ4XOsLoMGiOXdKRpxfndBDa8XrjVxTvvwfKhHXy1L58PO8kzR0JieEcWOKxvKp86p2S2noovADLDEfconmqrADvBdMSc46pCm-V0YoFAwC-yqQVfIPMDkdDt0ko1iqITQqDkLEC7nWVMZzsER8aXahct8jBVFPlW02FUcZf2KDKoM8y6rNFzoISvyQCfXV8MBr3ysYbSmAmtxIyx1IHWNEoZRFosbxy0krhRIscRRP88Z3y_rLL4mjrP8L7ZL7zeNstu1d3N9tkgSFEqdv5dsjsZPzudhFiTKq9uJA-AZxKyrM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB5KBdGDuGJdB_QkRJNZkgx40dbiUktBK8VLmMxShG6UevDf-2aSVnsRvA3JGwJv3vK9zJtvEDqP0oRoo0VgNTUB02EYCGpooMCibaKUSPyhsOd2fN9ljz3eq6Dr-VmYgh9i8cPNeYaP187BJ9oW9SZzHJkTMyCXEYkFBOAVR5MHNr1y89Z9784jMWQefz8nZEgeME75nJ6Uiauf2UsJyfP2L-NUn2iam2ijRIj4pljSLVQxo220_os3cAe9vwzlYIBd7wVIAr7zHa5fWJYMIzDQuGxCx47ce-iaXvAYwsOwPHeJxxY36njo-vH60w8QH3w6zoRd1G3evdbvg_KShEBRykhgob7KbWiNiKW2LLWcaaIoABdJQ6E5s5YTGUPSUXlqtVBSELcCDF5FseZ0D1VH45HZRxiKFQAnqQLMmDNqZR4RmGwBICqZikTW0NlcU9mk4MLI_B42E5nTZ-b1WUO3TokLCcdf7R-Mp_2sdIeMEZXomEWGhIZBSSOEBqRFktzEOuaG19CFX4I_vpN17lrEjw7-I3yKVjuNZtZ6aD8dojUCEKVo5ztC1dn00xwDxJjlJ6UlfQN1ocur |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+signal+stability+analysis+and+control+parameter+optimization+of+DC+microgrid+cluster&rft.jtitle=IET+power+electronics&rft.au=Zifan+Zhang&rft.au=Xiangyu+Yang&rft.au=Shiwei+Zhao&rft.au=Qi+Zeng&rft.date=2024-08-01&rft.pub=Wiley&rft.issn=1755-4535&rft.eissn=1755-4543&rft.volume=17&rft.issue=10&rft.spage=1378&rft.epage=1397&rft_id=info:doi/10.1049%2Fpel2.12692&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_42c7d641e20e497499d12527be6d65e5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4535&client=summon |