Small signal stability analysis and control parameter optimization of DC microgrid cluster

Direct current microgrid (DCMG) clusters are gaining popularity in power systems due to their simplicity and high efficiency. However, DCMG clusters are susceptible to minor disturbances due to low system inertia. This paper proposes a method to enhance the small‐signal stability of a DCMG cluster b...

Full description

Saved in:
Bibliographic Details
Published inIET power electronics Vol. 17; no. 10; pp. 1378 - 1397
Main Authors Zhang, Zifan, Yang, Xiangyu, Zhao, Shiwei, Zeng, Qi, Liang, Zhanhong, Gao, Mengzhen
Format Journal Article
LanguageEnglish
Published Wiley 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Direct current microgrid (DCMG) clusters are gaining popularity in power systems due to their simplicity and high efficiency. However, DCMG clusters are susceptible to minor disturbances due to low system inertia. This paper proposes a method to enhance the small‐signal stability of a DCMG cluster by optimizing the main control parameters of the system. This paper presents a small‐signal state‐space model of a DCMG cluster system at the system level, considering a multi‐bus network topology. Then, the control parameters that significantly affect the small‐signal stability of the DCMG are selected using the participation factor method. To enhance the system damping, the Pareto‐optimal frontier of the bi‐objective problem was determined using the elite non‐dominated sorting genetic algorithm (NSGA‐II). The optimal compromise is determined by using the fuzzy membership function method to extract it from the generated Pareto optimal front. The proposed method has been verified on a three‐sub DCMG test system with droop control. This paper proposes a method to improve the small‐signal stability of a DC microgrid (DCMG) cluster by optimizing the main control parameters of the system. This paper establishes a direct current (DC) microgrid system‐level small‐signal state space model with a multi‐bus network topology. Then, the control parameters affecting the DCMG small‐signal stability significantly selected through the participation factor method. To increase the system damping, the Pareto‐optimal frontier of the constructed bi‐objective problem was obtained using the elite non‐dominated sorting genetic algorithm (NSGA‐II). The optimal compromise is extracted from the generated Pareto optimal front by adopting the fuzzy membership function method.
AbstractList Direct current microgrid (DCMG) clusters are gaining popularity in power systems due to their simplicity and high efficiency. However, DCMG clusters are susceptible to minor disturbances due to low system inertia. This paper proposes a method to enhance the small‐signal stability of a DCMG cluster by optimizing the main control parameters of the system. This paper presents a small‐signal state‐space model of a DCMG cluster system at the system level, considering a multi‐bus network topology. Then, the control parameters that significantly affect the small‐signal stability of the DCMG are selected using the participation factor method. To enhance the system damping, the Pareto‐optimal frontier of the bi‐objective problem was determined using the elite non‐dominated sorting genetic algorithm (NSGA‐II). The optimal compromise is determined by using the fuzzy membership function method to extract it from the generated Pareto optimal front. The proposed method has been verified on a three‐sub DCMG test system with droop control. This paper proposes a method to improve the small‐signal stability of a DC microgrid (DCMG) cluster by optimizing the main control parameters of the system. This paper establishes a direct current (DC) microgrid system‐level small‐signal state space model with a multi‐bus network topology. Then, the control parameters affecting the DCMG small‐signal stability significantly selected through the participation factor method. To increase the system damping, the Pareto‐optimal frontier of the constructed bi‐objective problem was obtained using the elite non‐dominated sorting genetic algorithm (NSGA‐II). The optimal compromise is extracted from the generated Pareto optimal front by adopting the fuzzy membership function method.
Direct current microgrid (DCMG) clusters are gaining popularity in power systems due to their simplicity and high efficiency. However, DCMG clusters are susceptible to minor disturbances due to low system inertia. This paper proposes a method to enhance the small‐signal stability of a DCMG cluster by optimizing the main control parameters of the system. This paper presents a small‐signal state‐space model of a DCMG cluster system at the system level, considering a multi‐bus network topology. Then, the control parameters that significantly affect the small‐signal stability of the DCMG are selected using the participation factor method. To enhance the system damping, the Pareto‐optimal frontier of the bi‐objective problem was determined using the elite non‐dominated sorting genetic algorithm (NSGA‐II). The optimal compromise is determined by using the fuzzy membership function method to extract it from the generated Pareto optimal front. The proposed method has been verified on a three‐sub DCMG test system with droop control.
Abstract Direct current microgrid (DCMG) clusters are gaining popularity in power systems due to their simplicity and high efficiency. However, DCMG clusters are susceptible to minor disturbances due to low system inertia. This paper proposes a method to enhance the small‐signal stability of a DCMG cluster by optimizing the main control parameters of the system. This paper presents a small‐signal state‐space model of a DCMG cluster system at the system level, considering a multi‐bus network topology. Then, the control parameters that significantly affect the small‐signal stability of the DCMG are selected using the participation factor method. To enhance the system damping, the Pareto‐optimal frontier of the bi‐objective problem was determined using the elite non‐dominated sorting genetic algorithm (NSGA‐II). The optimal compromise is determined by using the fuzzy membership function method to extract it from the generated Pareto optimal front. The proposed method has been verified on a three‐sub DCMG test system with droop control.
Author Zhang, Zifan
Liang, Zhanhong
Yang, Xiangyu
Zhao, Shiwei
Zeng, Qi
Gao, Mengzhen
Author_xml – sequence: 1
  givenname: Zifan
  orcidid: 0000-0003-2268-9876
  surname: Zhang
  fullname: Zhang, Zifan
  email: zzf3345@qq.com
  organization: South China University of Technology
– sequence: 2
  givenname: Xiangyu
  surname: Yang
  fullname: Yang, Xiangyu
  organization: South China University of Technology
– sequence: 3
  givenname: Shiwei
  surname: Zhao
  fullname: Zhao, Shiwei
  organization: South China University of Technology
– sequence: 4
  givenname: Qi
  surname: Zeng
  fullname: Zeng, Qi
  organization: Guangzhou City University of Technology
– sequence: 5
  givenname: Zhanhong
  surname: Liang
  fullname: Liang, Zhanhong
  organization: City University of Hong Kong
– sequence: 6
  givenname: Mengzhen
  orcidid: 0000-0002-5014-6919
  surname: Gao
  fullname: Gao, Mengzhen
  organization: South China University of Technology
BookMark eNp9kE9LxDAQxYOs4Lp68RP0LHRN0iRtjrKuurCgoF68hDR_lixpU5KK1E9vdyt79DRvZn7zYN4lmLWhNQDcILhEkPC7zni8RJhxfAbmqKQ0J5QUs5Mu6AW4TGkPIUOEVnPw-dZI77Pkdq0cSy9r510_ZHJsh-TSKHSmQtvH4LNORtmY3sQsdL1r3I_sXWizYLOHVdY4FcMuuhH3X2mErsC5lT6Z67-6AB-P6_fVc759edqs7re5KgqCc0tIVVtoDWdSW1JZSjRWBUNYFpBrSqylWDLOoaorq7mSHCtecjKuENO0WIDN5KuD3IsuukbGQQTpxHEQ4k7I2DvljSBYlZoRZDA0hJeEc40wxWVtmGbUHLxuJ6_xl5SisSc_BMUhYXFIWBwTHmE0wd_Om-EfUryut3i6-QWJpIA_
Cites_doi 10.1109/JESTIE.2021.3088419
10.1109/TSTE.2018.2837750
10.1007/s43236-021-00350-5
10.1109/TSG.2018.2797127
10.1109/TIE.2018.2880666
10.1109/OAJPE.2021.3132860
10.1109/TIE.2019.2907507
10.23919/CJEE.2021.000038
10.1109/TPEL.2023.3237599
10.1016/j.rser.2012.11.040
10.1109/TPEL.2019.2893686
10.1109/JSYST.2019.2937836
10.1109/TIA.2021.3073376
10.1049/pel2.12293
10.1109/TIE.2022.3152028
10.1109/TETCI.2018.2863747
10.1016/j.ijepes.2022.108450
10.1109/TPWRS.2018.2884876
10.1109/TIE.2020.3029483
10.1109/TPEL.2015.2424672
10.1016/j.ijepes.2021.107578
10.1109/TII.2019.2931837
10.35833/MPCE.2018.000878
10.1109/TSG.2017.2751755
10.1109/TPEL.2020.3019311
10.1109/TPWRS.2013.2245922
10.1109/ACCESS.2019.2900728
10.1109/TSG.2016.2521652
10.1007/s00500-021-06502-w
10.1109/TPEL.2019.2961682
10.1109/TEC.2014.2362191
10.1109/TPEL.2021.3050506
10.1109/JETCAS.2021.3049810
10.1109/TSG.2022.3185264
10.1109/ENERGYCON.2014.6850588
10.1109/ACCESS.2022.3221435
10.1109/JESTIE.2022.3208513
10.1016/j.epsr.2022.108671
10.1109/JSYST.2021.3114963
10.1109/TPEL.2021.3076734
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/pel2.12692
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1755-4543
EndPage 1397
ExternalDocumentID oai_doaj_org_article_42c7d641e20e497499d12527be6d65e5
10_1049_pel2_12692
PEL212692
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62173148; 52377186
GroupedDBID 0R~
0ZK
1OC
24P
29I
5GY
6IK
AAHHS
AAHJG
AAJGR
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
CS3
DU5
EBS
GROUPED_DOAJ
HZ~
IAO
IFIPE
IGS
IPLJI
ITC
JAVBF
LXU
NADUK
NXXTH
O9-
OCL
OK1
P2P
RIE
RNS
ROL
RUI
UNMZH
~ZZ
4.4
8FE
8FG
AAMMB
AAYXX
ABJCF
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
HCIFZ
IDLOA
L6V
M43
M7S
MCNEO
P62
PHGZM
PHGZT
PQGLB
PTHSS
WIN
ID FETCH-LOGICAL-c3342-f448bf0fe96adf48f54d2c3612a309d54ff52a6990cb8fd9ca92c9794d5416d53
IEDL.DBID DOA
ISSN 1755-4535
IngestDate Wed Aug 27 01:15:44 EDT 2025
Tue Aug 05 12:03:24 EDT 2025
Wed Jan 22 17:17:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3342-f448bf0fe96adf48f54d2c3612a309d54ff52a6990cb8fd9ca92c9794d5416d53
ORCID 0000-0002-5014-6919
0000-0003-2268-9876
OpenAccessLink https://doaj.org/article/42c7d641e20e497499d12527be6d65e5
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_42c7d641e20e497499d12527be6d65e5
crossref_primary_10_1049_pel2_12692
wiley_primary_10_1049_pel2_12692_PEL212692
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle IET power electronics
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2019; 7
2021; 68
2021; 7
2017; 8
2013; 28
2023; 4
2023; 38
2019; 10
2019; 34
2016; 31
2020; 16
2020; 14
2022; 26
2020; 35
2014; 29
2022; 22
2022; 135
2022; 213
2021; 36
2020; 8
2013; 19
2021; 57
2016; 7
2022; 143
2020; 4
2021; 11
2022; 3
2019; 66
2022; 9
2022; 13
2022; 15
2020; 67
2014
2022; 10
2022; 16
2023; 70
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_2_1
Yu K. (e_1_2_10_7_1) 2016; 7
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 34
  start-page: 1780
  year: 2019
  end-page: 1800
  article-title: Stability analysis of primary plug‐and‐play and secondary leader‐based controllers for DC microgrid clusters
  publication-title: IEEE Trans. Power Syst.
– volume: 9
  start-page: 16
  year: 2022
  end-page: 28
  article-title: Potential‐based large‐signal stability analysis in DC power grids with multiple constant power loads
  publication-title: IEEE Open Access J. Power Energy
– volume: 38
  start-page: 6597
  year: 2023
  end-page: 6612
  article-title: Accurate small‐signal terminal characteristic model and SISO stability analysis approach for parallel grid‐forming inverters in islanded microgrids
  publication-title: IEEE Trans. Power Electron.
– volume: 7
  start-page: 695
  year: 2016
  end-page: 705
  article-title: Analysis and optimization of droop controller for microgrid system based on small‐signal dynamic model
  publication-title: IEEE Trans. Smart Grid
– volume: 16
  start-page: 2423
  year: 2020
  end-page: 2435
  article-title: Multiobjective optimization of droop‐controlled distributed generators in DC microgrids
  publication-title: IEEE Trans. Ind. Inf.
– volume: 35
  start-page: 8186
  year: 2020
  end-page: 8199
  article-title: A generalized multifrequency small‐signal model for high‐bandwidth buck converters under constant‐frequency voltage‐mode control
  publication-title: IEEE Trans. Power Electron.
– volume: 68
  start-page: 10806
  year: 2021
  end-page: 10814
  article-title: Intelligent multiobjective NSBGA‐II control of power converters in DC microgrids
  publication-title: IEEE Trans. Ind. Electron.
– volume: 7
  start-page: 36896
  year: 2019
  end-page: 36909
  article-title: Small‐signal stability analysis and optimal parameters design of microgrid clusters
  publication-title: IEEE Access
– volume: 29
  start-page: 922
  year: 2014
  end-page: 933
  article-title: Hierarchical control for multiple DC‐microgrids clusters
  publication-title: IEEE Trans. Energy Convers.
– volume: 36
  start-page: 12670
  year: 2021
  end-page: 12684
  article-title: Takagi‐sugeno multimodeling‐based large signal stability analysis of DC microgrid clusters
  publication-title: IEEE Trans. Power Electron.
– volume: 14
  start-page: 1015
  year: 2020
  end-page: 1023
  article-title: Distributed hierarchical control for optimal power dispatch in multiple DC microgrids
  publication-title: IEEE Syst. J.
– volume: 10
  start-page: 569
  year: 2019
  end-page: 578
  article-title: Stability constrained economic operation of islanded droop‐controlled DC microgrids
  publication-title: IEEE Trans. Sustainable Energy
– volume: 10
  start-page: 752
  year: 2019
  end-page: 761
  article-title: A novel composite nonlinear controller for stabilization of constant power load in DC microgrid
  publication-title: IEEE Trans. Smart Grid
– volume: 22
  start-page: 308
  year: 2022
  end-page: 317
  article-title: An adaptive nonlinear droop control for accurate load current sharing and DC bus voltage compensation in a DC power system
  publication-title: J. Power Electron.
– volume: 8
  start-page: 2287
  year: 2017
  end-page: 2295
  article-title: Large signal Lyapunov‐based stability studies in microgrids: A review
  publication-title: IEEE Trans. Smart Grid
– volume: 70
  start-page: 465
  year: 2023
  end-page: 473
  article-title: Observer‐based backstepping sliding mode control design for microgrids feeding a constant power load
  publication-title: IEEE Trans. Ind. Electron.
– volume: 10
  start-page: 119345
  year: 2022
  end-page: 119356
  article-title: A fully distributed economic dispatch method in DC microgrid based on consensus algorithm
  publication-title: IEEE Access
– volume: 7
  start-page: 60
  year: 2021
  end-page: 77
  article-title: Stability and robustness of a coupled microgrid cluster formed by various coupling structures
  publication-title: China J. Electr. Eng.
– volume: 36
  start-page: 9105
  year: 2021
  end-page: 9118
  article-title: Distribution power loss mitigation of parallel‐connected distributed energy resources in low‐voltage DC microgrids using a lagrange multiplier‐based adaptive droop control
  publication-title: IEEE Trans. Power Electron.
– volume: 4
  start-page: 119
  year: 2020
  end-page: 129
  article-title: A distributed iterative learning framework for DC microgrids: Current sharing and voltage regulation
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 143
  year: 2022
  article-title: Large‐signal stability analysis of islanded DC microgrids with multiple types of loads
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 19
  start-page: 370
  year: 2013
  end-page: 384
  article-title: Iterative non‐deterministic algorithms in on‐shore wind farm design: A brief survey
  publication-title: Renewable Sustainable Energy Rev.
– volume: 26
  start-page: 4045
  year: 2022
  end-page: 4056
  article-title: A novel approach for optimal power scheduling of distributed energy resources in microgrids
  publication-title: Soft Comput.
– volume: 31
  start-page: 1717
  year: 2016
  end-page: 1733
  article-title: Distributed tertiary control of DC microgrid clusters
  publication-title: IEEE Trans. Power Electron.
– volume: 28
  start-page: 2679
  year: 2013
  end-page: 2687
  article-title: Coordinated optimal design of inverter controllers in a micro‐grid with multiple distributed generation units
  publication-title: IEEE Trans. Power Syst.
– start-page: 1284
  year: 2014
  end-page: 1290
  article-title: Modeling, stability analysis and active stabilization of multiple DC‐microgrid clusters
– volume: 11
  start-page: 168
  year: 2021
  end-page: 175
  article-title: Design of nonlinear droop control in DC microgrid for desired voltage regulation and current sharing accuracy
  publication-title: IEEE J. Emerging Sel. Top. Circuits Syst.
– volume: 36
  start-page: 4224
  year: 2021
  end-page: 4236
  article-title: System‐level large‐signal stability analysis of droop‐controlled DC microgrids
  publication-title: IEEE Trans. Power Electron.
– volume: 13
  start-page: 4538
  year: 2022
  end-page: 4550
  article-title: Power loss minimization of parallel‐connected distributed energy resources in DC microgrids using a distributed gradient algorithm‐based hierarchical control
  publication-title: IEEE Trans. Smart Grid
– volume: 57
  start-page: 4196
  year: 2021
  end-page: 4206
  article-title: A novel control strategy to achieve SOC balancing for batteries in a DC microgrid without droop control
  publication-title: IEEE Trans. Ind. Appl.
– volume: 3
  start-page: 90
  year: 2022
  end-page: 100
  article-title: Fuzzy controller for energy management and SoC equalization in DC microgrids powered by fuel cell and energy storage units
  publication-title: IEEE J. Emerging Sel. Top. Ind. Electron.
– volume: 16
  start-page: 5445
  year: 2022
  end-page: 5454
  article-title: A multiobjective secondary control approach for optimal design of DG droop characteristic and control mode for autonomous microgrids
  publication-title: IEEE Syst. J.
– volume: 34
  start-page: 9404
  year: 2019
  end-page: 9421
  article-title: Investigation of nonlinear droop control in DC power distribution systems: Load sharing, voltage regulation, efficiency, and stability
  publication-title: IEEE Trans. Power Electron.
– volume: 135
  year: 2022
  article-title: A novel communication‐less fuzzy based control method to improve SOC balancing, current‐sharing, and voltage restoration in a widespread DC microgrid
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 67
  start-page: 3043
  year: 2020
  end-page: 3053
  article-title: Distributed voltage restoration and current sharing control in islanded DC microgrid systems without continuous communication
  publication-title: IEEE Trans. Ind. Electron.
– volume: 66
  start-page: 5644
  year: 2019
  end-page: 5652
  article-title: Tracking control for a DC microgrid feeding uncertain loads in more electric aircraft: Adaptive backstepping approach
  publication-title: IEEE Trans. Ind. Electron.
– volume: 10
  start-page: 2396
  year: 2019
  end-page: 2406
  article-title: Intelligent power sharing of DC isolated microgrid based on fuzzy sliding mode droop control
  publication-title: IEEE Trans. Smart Grid
– volume: 15
  start-page: 1093
  year: 2022
  end-page: 1109
  article-title: Design of droop controller in islanded microgrids using multi‐objective optimisation based on accurate small‐signal model
  publication-title: IET Power Electron.
– volume: 213
  year: 2022
  article-title: Multi‐objective optimization technique for droop controlled distributed generators in AC islanded microgrid
  publication-title: Electr. Power Syst. Res.
– volume: 8
  start-page: 564
  year: 2020
  end-page: 572
  article-title: Small‐signal Analysis of DC microgrid and multi‐objective optimization segmented droop control suitable for economic dispatch
  publication-title: J. Mod. Power Syst. Clean Energy
– volume: 4
  start-page: 3
  year: 2023
  end-page: 13
  article-title: An optimized nonlinear droop control method using load profile for DC microgrids
  publication-title: IEEE J. Emerging Sel. Top. Ind. Electron.
– ident: e_1_2_10_26_1
  doi: 10.1109/JESTIE.2021.3088419
– ident: e_1_2_10_35_1
  doi: 10.1109/TSTE.2018.2837750
– ident: e_1_2_10_29_1
  doi: 10.1007/s43236-021-00350-5
– ident: e_1_2_10_38_1
  doi: 10.1109/TSG.2018.2797127
– ident: e_1_2_10_40_1
  doi: 10.1109/TIE.2018.2880666
– ident: e_1_2_10_11_1
  doi: 10.1109/OAJPE.2021.3132860
– ident: e_1_2_10_17_1
  doi: 10.1109/TIE.2019.2907507
– ident: e_1_2_10_8_1
  doi: 10.23919/CJEE.2021.000038
– ident: e_1_2_10_6_1
  doi: 10.1109/TPEL.2023.3237599
– ident: e_1_2_10_34_1
  doi: 10.1016/j.rser.2012.11.040
– ident: e_1_2_10_12_1
  doi: 10.1109/TPEL.2019.2893686
– ident: e_1_2_10_23_1
  doi: 10.1109/JSYST.2019.2937836
– ident: e_1_2_10_24_1
  doi: 10.1109/TIA.2021.3073376
– ident: e_1_2_10_4_1
  doi: 10.1049/pel2.12293
– ident: e_1_2_10_10_1
  doi: 10.1109/TIE.2022.3152028
– ident: e_1_2_10_18_1
  doi: 10.1109/TETCI.2018.2863747
– ident: e_1_2_10_16_1
  doi: 10.1016/j.ijepes.2022.108450
– ident: e_1_2_10_31_1
  doi: 10.1109/TPWRS.2018.2884876
– ident: e_1_2_10_15_1
  doi: 10.1109/TIE.2020.3029483
– ident: e_1_2_10_33_1
  doi: 10.1109/TPEL.2015.2424672
– ident: e_1_2_10_25_1
  doi: 10.1016/j.ijepes.2021.107578
– ident: e_1_2_10_37_1
  doi: 10.1109/TII.2019.2931837
– ident: e_1_2_10_14_1
  doi: 10.35833/MPCE.2018.000878
– ident: e_1_2_10_39_1
  doi: 10.1109/TSG.2017.2751755
– ident: e_1_2_10_32_1
  doi: 10.1109/TPEL.2020.3019311
– ident: e_1_2_10_5_1
  doi: 10.1109/TPWRS.2013.2245922
– ident: e_1_2_10_9_1
  doi: 10.1109/ACCESS.2019.2900728
– ident: e_1_2_10_42_1
  doi: 10.1109/TSG.2016.2521652
– ident: e_1_2_10_36_1
  doi: 10.1007/s00500-021-06502-w
– ident: e_1_2_10_41_1
  doi: 10.1109/TPEL.2019.2961682
– ident: e_1_2_10_20_1
  doi: 10.1109/TEC.2014.2362191
– ident: e_1_2_10_13_1
  doi: 10.1109/TPEL.2021.3050506
– volume: 7
  start-page: 695
  year: 2016
  ident: e_1_2_10_7_1
  article-title: Analysis and optimization of droop controller for microgrid system based on small‐signal dynamic model
  publication-title: IEEE Trans. Smart Grid
– ident: e_1_2_10_19_1
  doi: 10.1109/JETCAS.2021.3049810
– ident: e_1_2_10_27_1
  doi: 10.1109/TSG.2022.3185264
– ident: e_1_2_10_21_1
  doi: 10.1109/ENERGYCON.2014.6850588
– ident: e_1_2_10_22_1
  doi: 10.1109/ACCESS.2022.3221435
– ident: e_1_2_10_28_1
  doi: 10.1109/JESTIE.2022.3208513
– ident: e_1_2_10_3_1
  doi: 10.1016/j.epsr.2022.108671
– ident: e_1_2_10_2_1
  doi: 10.1109/JSYST.2021.3114963
– ident: e_1_2_10_30_1
  doi: 10.1109/TPEL.2021.3076734
SSID ssj0061458
Score 2.357795
Snippet Direct current microgrid (DCMG) clusters are gaining popularity in power systems due to their simplicity and high efficiency. However, DCMG clusters are...
Abstract Direct current microgrid (DCMG) clusters are gaining popularity in power systems due to their simplicity and high efficiency. However, DCMG clusters...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
StartPage 1378
SubjectTerms DC transmission networks
DC–DC power convertors
Pareto optimisation
power grids
stability
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KvehBfGJ9saAnIZrsI8mCF60tRVQKWihewmYfRUgaKe3Bf-_sJq32InhbklkCszsz32ZnvkHoMkoToo0WgdXUBEyHYSCooYGCHW0TpUTii8KeX-LBiD2O-biFbpe1MDU_xOqHm7MM76-dgcu87kICoNZ1pjUFuY5ILMABb7jaWsecT9hw6Ych7vjunBAfecA45UtyUiZufuauhSPP2r-OUn2Y6e-g7QYf4rt6QXdRy0z30NYv1sB99P5ayqLALvMCJAHd-fzWLywbfhEYaNykoGNH7V26lBdcgXMom6pLXFn80MWly8abzD5AvFg4xoQDNOr33rqDoGmREChKGQksnK5yG1ojYqktSy1nmigKsEXSUGjOrOVExhByVJ5aLZQUxOmfwaso1pweova0mpojhOGoAtAkVYAYc0atzCMCky3AQyVTkcgOulhqKvusmTAyf4PNROb0mXl9dtC9U-JKwrFX-wfVbJI1xpAxohIds8iQ0DA40AihAWeRJDexjrnhHXTll-CP72TD3hPxo-P_CJ-gTQKopM7gO0Xt-WxhzgBVzPNzv3m-AcrMx0c
  priority: 102
  providerName: Wiley-Blackwell
Title Small signal stability analysis and control parameter optimization of DC microgrid cluster
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fpel2.12692
https://doaj.org/article/42c7d641e20e497499d12527be6d65e5
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA66kx7ET5wfI6Anoa7NV5ujzo0hKgMdDC8lzYcI6zbGdvDf-ybtZLvoxVto35DyviHPE_rkCULXSZYSY42MnKE2YiaOI0ktjTTMaJdqLdNwKOz5RfSH7HHER2tXfXlNWGUPXCWuzYhOjWCJJbFlQH6lNIDJJC2sMILb4F4KmLfaTFVrMGBOuJkTsJFHjFO-MiZlsj2zY3KbECHJBhQFx_5NhhogpreP9mpuiO-qbzpAW3ZyiHbXHAOP0PtrqcZj7FUXEAnMLmhbv7CqvUWgYXAtP8fe1rv0chc8hYWhrE9c4qnDDx1ceiXex_wTwsdL75ZwjIa97lunH9XXI0SaUkYiBzurwsXOSqGMY5njzBBNgbIoGkvDmXOcKAFwo4vMGamVJD73DF4lwnB6ghqT6cSeIgzbFKAlmQa2WDDqVJEQ6OyAGmqVyVQ10dUqU_mscsHIw99rJnOfzzzks4nufRJ_IrxzdXgA9czreuZ_1bOJbkIJfhknH3SfSGid_ceI52iHAFOpVH0XqLGYL-0lMI1F0ULbhA1aYWp9Azfnzu0
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB_UgPnF9BvQkVNtkkjZHX8uqqwgqiJeS5rEI-5BlPfjvnaRdHxfBW2gnFGYyM9-kky-EHGZFzqyzKvGWuwRsmiaKO54YXNE-N0bl8VDY7Z3sPMH1s3huenPCWZiaH-Jrwy14RozXwcHDhnRdcEIgyXxzfXacMakwAs-BZHnwSwb300CMiSdez4kJUiQguJiyk4I6-Z77Kx9F2v7fMDXmmfYyWWoAIj2tLbpCZtxwlSz-oA1cIy8PA93v09B6gZII72KD6wfVDcEIDixtetBp4PYehJ4XOsLoMGiOXdKRpxfndBDa8XrjVxTvvwfKhHXy1L58PO8kzR0JieEcWOKxvKp86p2S2noovADLDEfconmqrADvBdMSc46pCm-V0YoFAwC-yqQVfIPMDkdDt0ko1iqITQqDkLEC7nWVMZzsER8aXahct8jBVFPlW02FUcZf2KDKoM8y6rNFzoISvyQCfXV8MBr3ysYbSmAmtxIyx1IHWNEoZRFosbxy0krhRIscRRP88Z3y_rLL4mjrP8L7ZL7zeNstu1d3N9tkgSFEqdv5dsjsZPzudhFiTKq9uJA-AZxKyrM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB5KBdGDuGJdB_QkRJNZkgx40dbiUktBK8VLmMxShG6UevDf-2aSVnsRvA3JGwJv3vK9zJtvEDqP0oRoo0VgNTUB02EYCGpooMCibaKUSPyhsOd2fN9ljz3eq6Dr-VmYgh9i8cPNeYaP187BJ9oW9SZzHJkTMyCXEYkFBOAVR5MHNr1y89Z9784jMWQefz8nZEgeME75nJ6Uiauf2UsJyfP2L-NUn2iam2ijRIj4pljSLVQxo220_os3cAe9vwzlYIBd7wVIAr7zHa5fWJYMIzDQuGxCx47ce-iaXvAYwsOwPHeJxxY36njo-vH60w8QH3w6zoRd1G3evdbvg_KShEBRykhgob7KbWiNiKW2LLWcaaIoABdJQ6E5s5YTGUPSUXlqtVBSELcCDF5FseZ0D1VH45HZRxiKFQAnqQLMmDNqZR4RmGwBICqZikTW0NlcU9mk4MLI_B42E5nTZ-b1WUO3TokLCcdf7R-Mp_2sdIeMEZXomEWGhIZBSSOEBqRFktzEOuaG19CFX4I_vpN17lrEjw7-I3yKVjuNZtZ6aD8dojUCEKVo5ztC1dn00xwDxJjlJ6UlfQN1ocur
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+signal+stability+analysis+and+control+parameter+optimization+of+DC+microgrid+cluster&rft.jtitle=IET+power+electronics&rft.au=Zifan+Zhang&rft.au=Xiangyu+Yang&rft.au=Shiwei+Zhao&rft.au=Qi+Zeng&rft.date=2024-08-01&rft.pub=Wiley&rft.issn=1755-4535&rft.eissn=1755-4543&rft.volume=17&rft.issue=10&rft.spage=1378&rft.epage=1397&rft_id=info:doi/10.1049%2Fpel2.12692&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_42c7d641e20e497499d12527be6d65e5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4535&client=summon