An investigation on gas hydrate formation and slurry viscosity in the presence of wax crystals

Clarifying the interaction effect between hydrate and wax is of great significance to guarantee operation safety in deep water petroleum fields. Experiments in a high‐pressure hydrate slurry rheological measurement system were carried out to investigate hydrate formation and slurry viscosity in the...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 64; no. 9; pp. 3502 - 3518
Main Authors Shi, Bo‐Hui, Chai, Shuai, Ding, Lin, Chen, Yu‐Chuan, Liu, Yang, Song, Shang‐Fei, Yao, Hai‐Yuan, Wu, Hai‐Hao, Wang, Wei, Gong, Jing
Format Journal Article
LanguageEnglish
Published New York American Institute of Chemical Engineers 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Clarifying the interaction effect between hydrate and wax is of great significance to guarantee operation safety in deep water petroleum fields. Experiments in a high‐pressure hydrate slurry rheological measurement system were carried out to investigate hydrate formation and slurry viscosity in the presence of wax crystals. Results indicate that the presence of wax crystals can prolong hydrate nucleation induction time, and its influence on hydrate growth depends on multiple factors. Higher stirring rate can obviously promote hydrate growth rate, while its influence on hydrate nucleation induction time is complicated. Higher initial pressure will promote hydrate formation. Gas hydrate slurry shows a shear‐thinning behavior, and slurry viscosity increases with the increase of wax content and initial pressure. A semiempirical viscosity model showing a well‐fitting is established for hydrate slurry with wax crystals by considering the aggregation and breakage of hydrate particles, wax crystals, and water droplets. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3502–3518, 2018
AbstractList Clarifying the interaction effect between hydrate and wax is of great significance to guarantee operation safety in deep water petroleum fields. Experiments in a high‐pressure hydrate slurry rheological measurement system were carried out to investigate hydrate formation and slurry viscosity in the presence of wax crystals. Results indicate that the presence of wax crystals can prolong hydrate nucleation induction time, and its influence on hydrate growth depends on multiple factors. Higher stirring rate can obviously promote hydrate growth rate, while its influence on hydrate nucleation induction time is complicated. Higher initial pressure will promote hydrate formation. Gas hydrate slurry shows a shear‐thinning behavior, and slurry viscosity increases with the increase of wax content and initial pressure. A semiempirical viscosity model showing a well‐fitting is established for hydrate slurry with wax crystals by considering the aggregation and breakage of hydrate particles, wax crystals, and water droplets. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3502–3518, 2018
Clarifying the interaction effect between hydrate and wax is of great significance to guarantee operation safety in deep water petroleum fields. Experiments in a high‐pressure hydrate slurry rheological measurement system were carried out to investigate hydrate formation and slurry viscosity in the presence of wax crystals. Results indicate that the presence of wax crystals can prolong hydrate nucleation induction time, and its influence on hydrate growth depends on multiple factors. Higher stirring rate can obviously promote hydrate growth rate, while its influence on hydrate nucleation induction time is complicated. Higher initial pressure will promote hydrate formation. Gas hydrate slurry shows a shear‐thinning behavior, and slurry viscosity increases with the increase of wax content and initial pressure. A semiempirical viscosity model showing a well‐fitting is established for hydrate slurry with wax crystals by considering the aggregation and breakage of hydrate particles, wax crystals, and water droplets. © 2018 American Institute of Chemical Engineers AIChE J , 64: 3502–3518, 2018
Author Wu, Hai‐Hao
Wang, Wei
Gong, Jing
Chen, Yu‐Chuan
Shi, Bo‐Hui
Yao, Hai‐Yuan
Ding, Lin
Liu, Yang
Song, Shang‐Fei
Chai, Shuai
Author_xml – sequence: 1
  givenname: Bo‐Hui
  orcidid: 0000-0003-2683-6984
  surname: Shi
  fullname: Shi, Bo‐Hui
  email: bh.shi@cup.edu.cn
  organization: China University of Petroleum‐Beijing
– sequence: 2
  givenname: Shuai
  surname: Chai
  fullname: Chai, Shuai
  organization: Sinopec Engineering Incorporation
– sequence: 3
  givenname: Lin
  surname: Ding
  fullname: Ding, Lin
  organization: China University of Petroleum‐Beijing
– sequence: 4
  givenname: Yu‐Chuan
  surname: Chen
  fullname: Chen, Yu‐Chuan
  organization: China University of Petroleum‐Beijing
– sequence: 5
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: China University of Petroleum‐Beijing
– sequence: 6
  givenname: Shang‐Fei
  surname: Song
  fullname: Song, Shang‐Fei
  organization: China University of Petroleum‐Beijing
– sequence: 7
  givenname: Hai‐Yuan
  surname: Yao
  fullname: Yao, Hai‐Yuan
  organization: CNOOC Research Institute Co. Ltd
– sequence: 8
  givenname: Hai‐Hao
  surname: Wu
  fullname: Wu, Hai‐Hao
  organization: China University of Petroleum‐Beijing
– sequence: 9
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: China University of Petroleum‐Beijing
– sequence: 10
  givenname: Jing
  orcidid: 0000-0002-2970-7988
  surname: Gong
  fullname: Gong, Jing
  email: ydgj@cup.edu.cn
  organization: China University of Petroleum‐Beijing
BookMark eNp1UE1LAzEQDVLBtnrwHwQ8edg2SbOb3WMpfhQKXvRqyGYnbcp2U5Nt6_57Y9eTKAwMM_PeG94boUHjGkDolpIJJYRNldUTmtGCXaAhTblI0oKkAzQkhNAkLugVGoWwjRMTORui93mDbXOE0Nq1aq1rcKy1CnjTVV61gI3zu_6gmgqH-uB9h482aBds20UubjeA9x4CNBqwM_ikPrH2XWhVHa7RpYkNbn76GL09PrwunpPVy9NyMV8lejbjLFFpmSulIeeQC15wSDNlSqLTqkyZKjXjAgTLDFQi47zkVZEZSrgmqQECRszG6K7X3Xv3cYhu5NYdfBNfSkZyJjjLCY-oaY_S3oXgwUht27O51itbS0rkd4gyhijPIUbG_S_G3tud8t2f2B_1k62h-x8o58tFz_gC1f6Eag
CitedBy_id crossref_primary_10_1016_j_cjche_2024_04_028
crossref_primary_10_1021_acs_energyfuels_2c03972
crossref_primary_10_1016_j_fuel_2023_127782
crossref_primary_10_1016_j_molliq_2024_124047
crossref_primary_10_2139_ssrn_4012805
crossref_primary_10_1016_j_partic_2024_02_009
crossref_primary_10_1021_acsomega_1c06523
crossref_primary_10_1016_j_fuel_2024_131723
crossref_primary_10_1002_aic_18398
crossref_primary_10_1016_j_petrol_2019_106504
crossref_primary_10_1016_j_ces_2020_115923
crossref_primary_10_1016_j_geoen_2023_212522
crossref_primary_10_1021_acs_energyfuels_4c02836
crossref_primary_10_1016_j_fuel_2024_131052
crossref_primary_10_1016_j_fuel_2024_132267
crossref_primary_10_1021_acs_energyfuels_2c04379
crossref_primary_10_1021_acs_energyfuels_8b01323
crossref_primary_10_1016_j_petsci_2022_07_001
crossref_primary_10_1016_j_molliq_2024_124853
crossref_primary_10_1016_j_fuel_2022_124128
crossref_primary_10_1016_j_cej_2022_136800
crossref_primary_10_1016_j_cej_2022_140389
crossref_primary_10_1016_j_geoen_2025_213765
crossref_primary_10_3389_fenrg_2022_986901
crossref_primary_10_1016_j_jngse_2021_104106
crossref_primary_10_1021_acs_energyfuels_8b01713
crossref_primary_10_1016_j_ces_2021_116608
crossref_primary_10_1021_acs_energyfuels_1c04359
crossref_primary_10_1021_acs_energyfuels_8b04268
crossref_primary_10_1016_S1876_3804_21_60302_6
crossref_primary_10_1021_acs_energyfuels_4c00149
crossref_primary_10_1039_D2RA02266D
crossref_primary_10_1016_j_est_2024_112059
crossref_primary_10_1016_j_fuel_2022_125501
crossref_primary_10_1016_j_eng_2024_10_020
crossref_primary_10_1016_j_cherd_2023_01_017
crossref_primary_10_1016_j_fuel_2023_129748
crossref_primary_10_1016_j_ces_2020_115703
crossref_primary_10_1021_acs_langmuir_0c02976
crossref_primary_10_1016_j_fuel_2020_119568
crossref_primary_10_1016_j_fuel_2021_120778
crossref_primary_10_1021_acs_energyfuels_3c04405
crossref_primary_10_1088_1755_1315_193_1_012042
crossref_primary_10_1016_j_fuel_2022_127211
crossref_primary_10_1021_acs_energyfuels_4c00237
crossref_primary_10_1021_acs_energyfuels_1c01173
crossref_primary_10_2118_199903_PA
crossref_primary_10_1021_acs_langmuir_1c01060
crossref_primary_10_2139_ssrn_4144519
crossref_primary_10_1002_aic_16668
crossref_primary_10_1021_acs_energyfuels_0c04209
crossref_primary_10_1016_j_fuel_2022_124743
crossref_primary_10_1016_j_petsci_2022_04_004
crossref_primary_10_1021_acs_energyfuels_0c02749
crossref_primary_10_1021_acsomega_1c05127
crossref_primary_10_1016_j_molliq_2021_118229
crossref_primary_10_1016_j_fuel_2019_02_014
crossref_primary_10_1039_C8CS00989A
crossref_primary_10_1021_acs_energyfuels_3c02396
Cites_doi 10.1021/ef401648r
10.2516/ogst:2004005
10.1016/j.ces.2016.10.045
10.1016/j.fuel.2016.03.029
10.1063/1.3675889
10.1016/j.enconman.2006.09.024
10.1016/j.ijrefrig.2005.01.002
10.1016/j.fuel.2016.07.113
10.1016/j.fuel.2004.06.002
10.1002/aic.15722
10.1021/acs.energyfuels.7b00092
10.1002/aic.14037
10.1002/aic.14867
10.1021/ef4004768
10.1016/j.cej.2011.05.029
10.2516/ogst/2009042
10.1016/j.enconman.2012.07.004
10.1016/j.cej.2016.09.047
10.1111/j.1749-6632.2000.tb06793.x
10.1016/j.jcis.2004.04.049
10.1002/aic.11844
10.1016/j.applthermaleng.2016.11.175
10.1002/aic.15436
10.1016/j.ces.2009.05.051
10.1111/j.1749-6632.2000.tb06844.x
10.1016/j.applthermaleng.2004.10.009
10.1016/S1003-9953(09)60062-1
10.1016/S0378-3812(99)00138-7
10.1016/j.enconman.2004.06.032
10.1016/j.ces.2013.11.015
10.1021/ef5022413
10.2523/99437-MS
10.1016/j.ces.2005.07.001
10.1002/1521-4117(200205)19:2<84::AID-PPSC84>3.0.CO;2-1
10.1016/j.ces.2014.01.035
10.1002/aic.11219
10.1016/j.petrol.2012.08.017
10.1016/j.ces.2012.11.022
10.1016/j.energy.2016.10.122
10.1016/j.fuel.2017.01.037
10.1016/j.ces.2009.09.074
10.1021/ef800189k
10.1111/j.1749-6632.2000.tb06786.x
10.1016/j.fuel.2011.06.038
10.1021/ef300163y
10.1021/acs.iecr.7b01332
10.1016/j.enconman.2016.02.045
10.1016/j.fluid.2016.08.006
10.1016/j.colsurfa.2017.01.023
10.1201/9781420008494
10.1115/IPC2016-64303
10.1016/j.ces.2005.01.008
10.1016/S0894-1777(01)00109-1
10.1021/ef201407j
10.1016/j.ijrefrig.2014.10.016
10.2118/84044-MS
10.2516/ogst/2014032
10.1021/ie5008954
10.1016/S1385-8947(98)00126-0
10.1021/je500590y
10.1021/la4022432
10.1021/ef300191e
10.1051/jphyslet:01985004607030100
10.1016/j.apenergy.2015.02.040
10.1016/S0016-2361(03)00035-8
10.1021/ef050427x
10.1016/j.fluid.2016.01.009
10.1016/j.enconman.2017.01.043
10.1038/nature02135
10.1002/aic.11378
10.1021/ef300280e
10.1016/j.ces.2014.04.035
10.1115/1.4023932
ContentType Journal Article
Copyright 2018 American Institute of Chemical Engineers
Copyright_xml – notice: 2018 American Institute of Chemical Engineers
DBID AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.16192
DatabaseName CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Solid State and Superconductivity Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage 3518
ExternalDocumentID 10_1002_aic_16192
AIC16192
Genre article
GrantInformation_xml – fundername: Science Foundation of China University of Petroleum‐Beijing
  funderid: C201602
– fundername: National Key Research and Development Plan of China
  funderid: 2016YFC0303704
– fundername: National Science and Technology Major Project of China
  funderid: 2016ZX05028004‐001 ; 2016ZX05066005‐001
– fundername: National Natural Science Foundation of China
  funderid: 51534007
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABJIA
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
7ST
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
L7M
SOI
ID FETCH-LOGICAL-c3342-a5b8aace84e87494e56afb0c5db52abc247e726fed7644b4d96f104c05fe0ef73
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Fri Jul 25 11:02:03 EDT 2025
Tue Jul 01 01:40:41 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Wed Jan 22 17:05:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3342-a5b8aace84e87494e56afb0c5db52abc247e726fed7644b4d96f104c05fe0ef73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2683-6984
0000-0002-2970-7988
PQID 2082742804
PQPubID 7879
PageCount 17
ParticipantIDs proquest_journals_2082742804
crossref_citationtrail_10_1002_aic_16192
crossref_primary_10_1002_aic_16192
wiley_primary_10_1002_aic_16192_AIC16192
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2018
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle AIChE journal
PublicationYear 2018
Publisher American Institute of Chemical Engineers
Publisher_xml – name: American Institute of Chemical Engineers
References 2013; 29
2017; 518
2013; 27
2002; 19
2013; 65
2015; 70
2010; 19
2016; 427
2015; 145
2017; 194
2005; 60
2005; 28
2016; 180
2017; 114
2017; 158
2016; 185
2017; 118
2005; 25
2009; 55
2017; 31
2010; 65
2013; 59
2006; 20
2006; 61
2008; 22
2016; 115
2012; 26
2003; 82
2014; 53
2012; 83
2014; 116
2017; 63
2006; 912
2004; 83
2009; 64
2011
2010
2015; 50
2013; 91
2007
2006
2008; 54
2005
2004
2003
2002
2007; 53
2017; 136
2011; 171
2005; 46
1985; 46
1999; 158–160
2004; 277
2017; 308
2002; 25
2014; 106
2003; 426
2014; 109
2015; 29
2015; 60
2015; 61
2011; 90
2004; 59
2017; 56
2016; 63
2012; 98–99
2013; 135
2017
2016; 414
2016
1998; 71
2007; 48
2003; 22
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_70_1
Li H (e_1_2_6_74_1) 2003; 22
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
Mettler‐Toleda AutoChem (e_1_2_6_85_1) 2007
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
Ji HY. (e_1_2_6_32_1) 2004
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_90_1
Schuller RB (e_1_2_6_59_1) 2005
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
Sloan ED (e_1_2_6_18_1) 2010
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 46
  start-page: 301
  issue: 7
  year: 1985
  end-page: 309
  article-title: Non‐Newtonian behaviour of flocculated suspensions
  publication-title: J Phys Lett.
– volume: 71
  start-page: 145
  issue: 2
  year: 1998
  end-page: 151
  article-title: A new approach to gas hydrate modelling
  publication-title: Chem Eng J.
– year: 2011
– volume: 53
  start-page: 1636
  issue: 7
  year: 2007
  end-page: 1643
  article-title: Natural gas hydrates: recent advances and challenges in energy and environmental applications
  publication-title: AIChE J.
– volume: 22
  start-page: 3150
  issue: 5
  year: 2008
  end-page: 3153
  article-title: Investigation of interactions between gas hydrates and several other flow assurance elements
  publication-title: Energy Fuels.
– volume: 48
  start-page: 1313
  issue: 4
  year: 2007
  end-page: 1322
  article-title: CO capture by hydrate crystallization – a potential solution for gas emission of steelmaking industry
  publication-title: Energy Convers Manag.
– volume: 29
  start-page: 10997
  issue: 35
  year: 2013
  end-page: 11004
  article-title: Rheological properties of methane hydrate slurries formed from AOT + water + oil microemulsions
  publication-title: Langmuir.
– volume: 64
  start-page: 629
  issue: 5
  year: 2009
  end-page: 636
  article-title: Discussion of agglomeration mechanisms between hydrate particles in water in oil emulsions
  publication-title: Oil Gas Sci Technol.
– volume: 55
  start-page: 1584
  issue: 6
  year: 2009
  end-page: 1594
  article-title: Structure and composition of CO /H and CO /H /C H hydrate in relation to simultaneous CO capture and H production
  publication-title: AIChE J.
– volume: 63
  start-page: 1010
  year: 2016
  end-page: 1023
  article-title: A water droplet size distribution dependent modeling of hydrate formation in water/oil emulsion
  publication-title: AIChE J.
– year: 2005
– volume: 427
  start-page: 438
  year: 2016
  end-page: 459
  article-title: Mutual effects of paraffin waxes and clathrate hydrates: a multiphase integrated thermodynamic model and experimental measurements
  publication-title: Fluid Phase Equilib.
– volume: 59
  start-page: 41
  issue: 1
  year: 2004
  end-page: 57
  article-title: Rheological and flow properties of gas hydrate suspensions
  publication-title: Oil Gas Sci Technol.
– volume: 26
  start-page: 3504
  issue: 6
  year: 2012
  end-page: 3509
  article-title: High‐pressure rheology of hydrate slurries formed from water‐in‐oil emulsions
  publication-title: Energy Fuels.
– volume: 426
  start-page: 353
  issue: 6964
  year: 2003
  end-page: 359
  article-title: Fundamental principles and applications of natural gas hydrates
  publication-title: Nature.
– volume: 25
  start-page: 503
  issue: 7
  year: 2002
  end-page: 510
  article-title: Analysis of impact of droplets on horizontal surfaces
  publication-title: Exp Therm Fluid Sci.
– volume: 135
  issue: 4
  year: 2013
  article-title: Effects of the dispersed phase on oil/water wax deposition
  publication-title: J Energy Resour Technol.
– volume: 59
  start-page: 2640
  issue: 7
  year: 2013
  end-page: 2646
  article-title: Probability distributions of gas hydrate formation
  publication-title: AIChE J.
– volume: 82
  start-page: 1387
  issue: 11
  year: 2003
  end-page: 1397
  article-title: A generalized model for predicting non‐Newtonian viscosity of waxy crudes as a function of temperature and precipitated wax
  publication-title: Fuel.
– volume: 28
  start-page: 663
  issue: 5
  year: 2005
  end-page: 671
  article-title: Rheological study of TBAB hydrate slurries as secondary two‐phase refrigerants
  publication-title: Int J Refrig.
– volume: 31
  start-page: 4817
  issue: 5
  year: 2017
  end-page: 4825
  article-title: Effect of particle hydrophobicity on hydrate formation in water‐in‐oil emulsions in the presence of wax
  publication-title: Energy Fuels.
– volume: 91
  start-page: 173
  year: 2013
  end-page: 179
  article-title: Evolution of dispersed drops during the mixing of mineral oil and water phases in a stirring tank
  publication-title: Chem Eng Sci.
– volume: 61
  start-page: 3441
  issue: 10
  year: 2015
  end-page: 3450
  article-title: Intensification and kinetics of methane hydrate formation under heat removal by phase change of ‐tetradecane
  publication-title: AIChE J.
– volume: 29
  start-page: 122
  issue: 1
  year: 2015
  end-page: 129
  article-title: Evaluation of gas hydrate anti‐agglomerant based on laser measurement
  publication-title: Energy Fuels.
– volume: 145
  start-page: 265
  year: 2015
  end-page: 277
  article-title: Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods
  publication-title: Appl Energy.
– volume: 25
  start-page: 1708
  issue: 11–12
  year: 2005
  end-page: 1723
  article-title: Economic evaluation of natural gas hydrate as an alternative for natural gas transportation
  publication-title: Appl Therm Eng.
– volume: 98–99
  start-page: 122
  year: 2012
  end-page: 129
  article-title: Overview of CSMHyK: a transient hydrate formation model
  publication-title: J Pet Sci Eng.
– volume: 60
  start-page: 3251
  issue: 12
  year: 2005
  end-page: 3265
  article-title: Determination of non‐spherical particle size distribution from chord length measurements. Part 1: theoretical analysis
  publication-title: Chem Eng Sci.
– volume: 20
  start-page: 825
  issue: 3
  year: 2006
  end-page: 847
  article-title: History of the development of low dosage hydrate inhibitors
  publication-title: Energy Fuels.
– volume: 194
  start-page: 395
  year: 2017
  end-page: 405
  article-title: An investigation on repeated methane hydrates formation in porous hydrogel particles
  publication-title: Fuel.
– volume: 114
  start-page: 245
  year: 2017
  end-page: 254
  article-title: Modeling the effects of hydrate wall deposition on slug flow hydrodynamics and heat transfer
  publication-title: Appl Therm Eng.
– year: 2004
– volume: 50
  start-page: 19
  year: 2015
  end-page: 31
  article-title: Particle size distribution of TBPB hydrates by focused beam reflectance measurement (FBRM) for secondary refrigeration application
  publication-title: Int J Refrig.
– volume: 27
  start-page: 7294
  issue: 12
  year: 2013
  end-page: 7302
  article-title: Study on gas hydrate formation and hydrate slurry flow in a multiphase transportation system
  publication-title: Energy Fuels.
– volume: 60
  start-page: 293
  issue: 2
  year: 2015
  end-page: 298
  article-title: Effectiveness of low‐dosage hydrate inhibitors and their rheological behavior for gas condensate/water systems
  publication-title: J Chem Eng Data.
– volume: 518
  start-page: 73
  year: 2017
  end-page: 79
  article-title: Wax adsorption at paraffin oil‐water interface stabilized by Span80
  publication-title: Colloids Surf A Physicochem Eng Asp.
– volume: 83
  start-page: 2115
  issue: 16
  year: 2004
  end-page: 2121
  article-title: Effect of additives on formation of natural gas hydrate
  publication-title: Fuel.
– volume: 83
  start-page: 015106
  issue: 1
  year: 2012
  article-title: High pressure rheometer for in situ formation and characterization of methane hydrates
  publication-title: Rev Sci Instrum.
– volume: 109
  start-page: 315
  year: 2014
  end-page: 325
  article-title: Application of the shrinking‐core model to the kinetics of repeated formation of methane hydrates in a system of mixed dry‐water and porous hydrogel particulates
  publication-title: Chem Eng Sci.
– volume: 65
  start-page: 120
  year: 2013
  end-page: 132
  article-title: State of the art on phase change material slurries
  publication-title: Energy Convers Manag.
– volume: 26
  start-page: 4112
  issue: 7
  year: 2012
  end-page: 4116
  article-title: Efficient hydrate plug prevention
  publication-title: Energy Fuels.
– volume: 106
  start-page: 99
  year: 2014
  end-page: 108
  article-title: Flow characteristics and rheological properties of natural gas hydrate slurry in the presence of anti‐agglomerant in a flow loop apparatus
  publication-title: Chem Eng Sci.
– start-page: 83
  year: 2005
  end-page: 90
  article-title: Rheological hydrate detection and characterization
  publication-title: Annu Trans Nord Rheol Soc.
– volume: 26
  start-page: 2688
  issue: 5
  year: 2012
  end-page: 2695
  article-title: Flow assurance study for waxy crude oils
  publication-title: Energy Fuels.
– year: 2007
– volume: 180
  start-page: 187
  year: 2016
  end-page: 193
  article-title: Anti‐agglomeration of natural gas hydrates in liquid condensate and crude oil at constant pressure conditions
  publication-title: Fuel.
– volume: 277
  start-page: 335
  issue: 2
  year: 2004
  end-page: 341
  article-title: Temperature dependence of particle–particle adherence forces in ice and clathrate hydrates
  publication-title: J Colloid Interface Sci.
– year: 2003
– volume: 912
  start-page: 392
  issue: 1
  year: 2006
  end-page: 402
  article-title: A consistent thermodynamic model for predicting combined wax‐hydrate in petroleum reservoir fluids
  publication-title: Ann N Y Acad Sci.
– volume: 27
  start-page: 4564
  issue: 8
  year: 2013
  end-page: 4573
  article-title: Model water‐in‐oil emulsions for gas hydrate studies in oil continuous systems
  publication-title: Energy Fuels.
– volume: 912
  start-page: 906
  issue: 1
  year: 2006
  end-page: 916
  article-title: Rheological characterization of hydrate suspensions in oil dominated systems
  publication-title: Ann N Y Acad Sci.
– volume: 54
  start-page: 565
  issue: 2
  year: 2008
  end-page: 574
  article-title: Effects of antiagglomerants on the interactions between hydrate particles
  publication-title: AIChE J.
– volume: 26
  start-page: 4046
  issue: 7
  year: 2012
  end-page: 4052
  article-title: Developing a comprehensive understanding and model of hydrate in multiphase flow: from laboratory measurements to field applications
  publication-title: Energy Fuels.
– volume: 185
  start-page: 323
  issue: 12
  year: 2016
  end-page: 338
  article-title: Viscosity investigation of natural gas hydrate slurries with anti‐agglomerants additives
  publication-title: Fuel.
– volume: 308
  start-page: 40
  year: 2017
  end-page: 49
  article-title: Enhanced CH recovery and CO storage via thermal stimulation in the CH /CO replacement of methane hydrate
  publication-title: Chem Eng J.
– volume: 118
  start-page: 950
  year: 2017
  end-page: 956
  article-title: CO capture from flue gas using clathrate formation in the presence of thermodynamic promoters
  publication-title: Energy.
– volume: 171
  start-page: 1308
  issue: 3
  year: 2011
  end-page: 1316
  article-title: An inward and outward natural gas hydrates growth shell model considering intrinsic kinetics, mass and heat transfer
  publication-title: Chem Eng J.
– year: 2016
– volume: 158
  start-page: 480
  year: 2017
  end-page: 496
  article-title: Investigation of hydrate plugging in natural gas plus diesel oil plus water systems using a high‐pressure flow loop
  publication-title: Chem Eng Sci.
– volume: 912
  start-page: 322
  issue: 1
  year: 2006
  end-page: 329
  article-title: Flow properties of hydrate‐in‐water slurries
  publication-title: Ann N Y Acad Sci.
– volume: 65
  start-page: 1185
  issue: 3
  year: 2010
  end-page: 1200
  article-title: Chord length distributions measurements during crystallization and agglomeration of gas hydrate in a water‐in‐oil emulsion: simulation and experimentation
  publication-title: Chem Eng Sci.
– volume: 19
  start-page: 84
  issue: 2
  year: 2002
  end-page: 95
  article-title: Estimating average particle size by focused beam reflectance measurement (FBRM)
  publication-title: Part Part Syst Charact.
– volume: 136
  start-page: 431
  year: 2017
  end-page: 438
  article-title: Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration
  publication-title: Energy Convers Manag.
– year: 2010
– volume: 158–160
  start-page: 481
  issue: 6
  year: 1999
  end-page: 489
  article-title: A unified framework for calculating solid deposition from petroleum fluids including waxes, asphaltenes, hydrates and scales
  publication-title: Fluid Phase Equilib.
– volume: 53
  start-page: 6998
  issue: 17
  year: 2014
  end-page: 7007
  article-title: High pressure rheology of hydrate slurries formed from water‐in‐mineral oil emulsions
  publication-title: Ind Eng Chem Res.
– volume: 90
  start-page: 3343
  issue: 11
  year: 2011
  end-page: 3351
  article-title: Bimodal model for predicting the emulsion‐hydrate mixture viscosity in high water cut systems
  publication-title: Fuel.
– volume: 115
  start-page: 132
  year: 2016
  end-page: 158
  article-title: A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility
  publication-title: Energy Convers Manag.
– volume: 414
  start-page: 117
  issue: 1
  year: 2016
  end-page: 132
  article-title: Development of a multiphase flash in presence of hydrates: experimental measurements and validation with the CPA equation of state
  publication-title: Fluid Phase Equilib.
– year: 2002
– volume: 19
  start-page: 261
  issue: 3
  year: 2010
  end-page: 266
  article-title: Natural gas hydrate shell model in gas‐slurry pipeline flow
  publication-title: J Nat Gas Chem.
– year: 2006
– volume: 64
  start-page: 3996
  issue: 18
  year: 2009
  end-page: 4004
  article-title: Methane hydrate formation and an inward growing shell model in water‐in‐oil dispersions
  publication-title: Chem Eng Sci.
– volume: 70
  start-page: 1111
  issue: 6
  year: 2015
  end-page: 1124
  article-title: Experimental study on hydrate induction time of gas‐saturated water‐in‐oil emulsion using a high‐pressure flow loop
  publication-title: Oil Gas Sci Technol.
– volume: 116
  start-page: 817
  issue: 36
  year: 2014
  end-page: 823
  article-title: Experimental measurement of the induction time of natural gas hydrate and its prediction with polymeric kinetic inhibitor
  publication-title: Chem Eng Sci.
– volume: 46
  start-page: 1333
  issue: 9–10
  year: 2005
  end-page: 1343
  article-title: Benefits and drawbacks of clathrate hydrates: a review of their areas of interest
  publication-title: Energy Convers Manag.
– volume: 56
  start-page: 8330
  issue: 29
  year: 2017
  end-page: 8339
  article-title: Induction time of hydrate formation in water‐in‐oil emulsions
  publication-title: Ind Eng Chem Res.
– year: 2017
– volume: 61
  start-page: 505
  issue: 2
  year: 2006
  end-page: 515
  article-title: Rheology of methane hydrate slurries during their crystallization in a water in dodecane emulsion under flowing
  publication-title: Chem Eng Sci.
– volume: 63
  start-page: 4136
  issue: 9
  year: 2017
  end-page: 4146
  article-title: Dynamics of hydrate formation and deposition under pseudo multiphase flow
  publication-title: AIChE J.
– volume: 22
  start-page: 28
  issue: 10
  year: 2003
  end-page: 30
  article-title: Comparison of different methods on determining wax appearance temperature of crude oils
  publication-title: Oil Gas Storage Transp.
– ident: e_1_2_6_49_1
  doi: 10.1021/ef401648r
– ident: e_1_2_6_27_1
  doi: 10.2516/ogst:2004005
– ident: e_1_2_6_21_1
  doi: 10.1016/j.ces.2016.10.045
– ident: e_1_2_6_25_1
  doi: 10.1016/j.fuel.2016.03.029
– volume-title: Lasentec® V819 with PVM Technology System Manual
  year: 2007
  ident: e_1_2_6_85_1
– ident: e_1_2_6_62_1
  doi: 10.1063/1.3675889
– ident: e_1_2_6_8_1
  doi: 10.1016/j.enconman.2006.09.024
– ident: e_1_2_6_12_1
  doi: 10.1016/j.ijrefrig.2005.01.002
– ident: e_1_2_6_53_1
– ident: e_1_2_6_66_1
  doi: 10.1016/j.fuel.2016.07.113
– ident: e_1_2_6_41_1
  doi: 10.1016/j.fuel.2004.06.002
– ident: e_1_2_6_20_1
  doi: 10.1002/aic.15722
– ident: e_1_2_6_22_1
– ident: e_1_2_6_29_1
  doi: 10.1021/acs.energyfuels.7b00092
– volume-title: Thermodynamic Modelling of Wax and Integrated Wax‐Hydrate
  year: 2004
  ident: e_1_2_6_32_1
– ident: e_1_2_6_63_1
– ident: e_1_2_6_82_1
  doi: 10.1002/aic.14037
– ident: e_1_2_6_37_1
  doi: 10.1002/aic.14867
– ident: e_1_2_6_68_1
  doi: 10.1021/ef4004768
– ident: e_1_2_6_45_1
  doi: 10.1016/j.cej.2011.05.029
– ident: e_1_2_6_71_1
  doi: 10.2516/ogst/2009042
– ident: e_1_2_6_13_1
  doi: 10.1016/j.enconman.2012.07.004
– ident: e_1_2_6_9_1
  doi: 10.1016/j.cej.2016.09.047
– ident: e_1_2_6_58_1
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1749-6632.2000.tb06793.x
– ident: e_1_2_6_54_1
  doi: 10.1016/j.jcis.2004.04.049
– ident: e_1_2_6_11_1
  doi: 10.1002/aic.11844
– ident: e_1_2_6_19_1
  doi: 10.1016/j.applthermaleng.2016.11.175
– ident: e_1_2_6_44_1
  doi: 10.1002/aic.15436
– ident: e_1_2_6_46_1
  doi: 10.1016/j.ces.2009.05.051
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1749-6632.2000.tb06844.x
– ident: e_1_2_6_15_1
  doi: 10.1016/j.applthermaleng.2004.10.009
– ident: e_1_2_6_47_1
  doi: 10.1016/S1003-9953(09)60062-1
– ident: e_1_2_6_77_1
– ident: e_1_2_6_30_1
  doi: 10.1016/S0378-3812(99)00138-7
– ident: e_1_2_6_3_1
  doi: 10.1016/j.enconman.2004.06.032
– ident: e_1_2_6_88_1
– ident: e_1_2_6_57_1
  doi: 10.1016/j.ces.2013.11.015
– ident: e_1_2_6_73_1
  doi: 10.1021/ef5022413
– ident: e_1_2_6_33_1
  doi: 10.2523/99437-MS
– ident: e_1_2_6_55_1
  doi: 10.1016/j.ces.2005.07.001
– ident: e_1_2_6_81_1
  doi: 10.1002/1521-4117(200205)19:2<84::AID-PPSC84>3.0.CO;2-1
– ident: e_1_2_6_16_1
  doi: 10.1016/j.ces.2014.01.035
– ident: e_1_2_6_5_1
  doi: 10.1002/aic.11219
– ident: e_1_2_6_43_1
  doi: 10.1016/j.petrol.2012.08.017
– ident: e_1_2_6_76_1
  doi: 10.1016/j.ces.2012.11.022
– ident: e_1_2_6_87_1
– ident: e_1_2_6_10_1
  doi: 10.1016/j.energy.2016.10.122
– ident: e_1_2_6_17_1
  doi: 10.1016/j.fuel.2017.01.037
– ident: e_1_2_6_80_1
  doi: 10.1016/j.ces.2009.09.074
– ident: e_1_2_6_38_1
  doi: 10.1021/ef800189k
– ident: e_1_2_6_51_1
  doi: 10.1111/j.1749-6632.2000.tb06786.x
– ident: e_1_2_6_72_1
  doi: 10.1016/j.fuel.2011.06.038
– ident: e_1_2_6_61_1
  doi: 10.1021/ef300163y
– ident: e_1_2_6_39_1
  doi: 10.1021/acs.iecr.7b01332
– ident: e_1_2_6_14_1
  doi: 10.1016/j.enconman.2016.02.045
– ident: e_1_2_6_60_1
– ident: e_1_2_6_34_1
  doi: 10.1016/j.fluid.2016.08.006
– ident: e_1_2_6_83_1
  doi: 10.1016/j.colsurfa.2017.01.023
– ident: e_1_2_6_4_1
  doi: 10.1201/9781420008494
– ident: e_1_2_6_48_1
  doi: 10.1115/IPC2016-64303
– ident: e_1_2_6_79_1
  doi: 10.1016/j.ces.2005.01.008
– ident: e_1_2_6_91_1
  doi: 10.1016/S0894-1777(01)00109-1
– ident: e_1_2_6_52_1
– ident: e_1_2_6_86_1
– ident: e_1_2_6_36_1
  doi: 10.1021/ef201407j
– ident: e_1_2_6_78_1
  doi: 10.1016/j.ijrefrig.2014.10.016
– ident: e_1_2_6_56_1
  doi: 10.2118/84044-MS
– ident: e_1_2_6_89_1
– ident: e_1_2_6_40_1
  doi: 10.2516/ogst/2014032
– ident: e_1_2_6_65_1
  doi: 10.1021/ie5008954
– ident: e_1_2_6_75_1
  doi: 10.1016/S1385-8947(98)00126-0
– ident: e_1_2_6_67_1
  doi: 10.1021/je500590y
– start-page: 83
  year: 2005
  ident: e_1_2_6_59_1
  article-title: Rheological hydrate detection and characterization
  publication-title: Annu Trans Nord Rheol Soc.
– ident: e_1_2_6_64_1
  doi: 10.1021/la4022432
– ident: e_1_2_6_24_1
  doi: 10.1021/ef300191e
– ident: e_1_2_6_69_1
  doi: 10.1051/jphyslet:01985004607030100
– ident: e_1_2_6_6_1
  doi: 10.1016/j.apenergy.2015.02.040
– volume-title: Natural Gas Hydrates in Flow Assurance
  year: 2010
  ident: e_1_2_6_18_1
– ident: e_1_2_6_90_1
  doi: 10.1016/S0016-2361(03)00035-8
– ident: e_1_2_6_23_1
  doi: 10.1021/ef050427x
– ident: e_1_2_6_35_1
  doi: 10.1016/j.fluid.2016.01.009
– ident: e_1_2_6_70_1
– ident: e_1_2_6_7_1
  doi: 10.1016/j.enconman.2017.01.043
– ident: e_1_2_6_2_1
  doi: 10.1038/nature02135
– ident: e_1_2_6_26_1
  doi: 10.1002/aic.11378
– volume: 22
  start-page: 28
  issue: 10
  year: 2003
  ident: e_1_2_6_74_1
  article-title: Comparison of different methods on determining wax appearance temperature of crude oils
  publication-title: Oil Gas Storage Transp.
– ident: e_1_2_6_28_1
  doi: 10.1021/ef300280e
– ident: e_1_2_6_42_1
  doi: 10.1016/j.ces.2014.04.035
– ident: e_1_2_6_84_1
  doi: 10.1115/1.4023932
SSID ssj0012782
Score 2.5034478
Snippet Clarifying the interaction effect between hydrate and wax is of great significance to guarantee operation safety in deep water petroleum fields. Experiments in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3502
SubjectTerms Breakage
Crystals
Deep water
hydrate formation
hydrate slurry viscosity
hydrates
induction time
Initial pressure
Nucleation
Organic chemistry
Pressure
Rheological properties
Sedimentation & deposition
Slurries
Viscosity
Water drops
wax crystals
Waxes
Title An investigation on gas hydrate formation and slurry viscosity in the presence of wax crystals
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.16192
https://www.proquest.com/docview/2082742804
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMfDmBc9-Fv8MSWIBy-dXZo2KZ7GVFScB3XgQSxJmuhwdLJu6vzrfWnXTkVBhB5KSdI0Pz-vvPcNQntaUMlDEzpEh6FDOZGONJQ5NOCxCI2gwrfxzu3L4LRDz2_92wo6LGJhcn2I8oebnRnZem0nuJDpwVQ0VHRVvWHxH9Zf66tlgeiqlI5qEMZzpXAwlwETGoWqkEsOypxf96IpYH7G1GyfOVlAd0UNc_eSp_poKOvq_Zt44z8_YRHNT_gTN_MBs4QqOllGc59UCVfQfTPB3an8Rj_BcD2IFD-OYyssgcuARyySGKe90WAwxi_dVFkHsDHkxUCV-DkLbFIa9w1-FW9YDcZAor10FXVOjm9ap87kGAZHeR4ljvAlF0JpTjVnNKTaD4SRrvJj6RMhFaFMMxIYHTOAK0njMDBg5CnXN9rVhnlrqJr0E72OMPc0F0yFRHBJuTTclbyhPAnlwUPf3UD7RYdEaqJRbo_K6EW5ujKJoMmirMk20G6Z9DkX5vgpUa3o1WgyN9OIAPUwsLpcCq_Luuf3AqLmWSu72fx70i00C1TFc0e0GqoOByO9DeQylDtopnnUvrjeyYbqB7eH7Q8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcoAeCuWhvgALgcQl26zjxM6Bw6ql2u3rgFqpJ4Lt2HTVVbba7LZNf1P_Sv8T47y2IJC49ICUQxQ5E8eesb-xZr4B-GAkUyK2sUdNHHtMUOUpy7jHIpHK2EomQ5fvfHgU9U_Y3ml4ugC3TS5MxQ_RHrg5yyjXa2fg7kB6a84aKoe603X4vw6p3DfFFTps-efBDs7uR0p3vxxv9726poCng4BRT4ZKSKmNYEZwFjMTRtIqX4epCqlUmjJuOI2sSTkiBcXSOLLosWg_tMY3lgco9xE8dhXEHVP_zteWrKpLuai4ydFBR2DSbXiMfLrVdvXX3W8Oae8D43Jn230Gd82YVAEt553ZVHX0zW90kf_LoD2H5Rpik15lEyuwYLIXsHSPePElfOtlZDhnGBlnBK8fMidnReq4M0ib00lklpJ8NJtMCnI5zLWLcSvwXYLAmVyUuVvakLElV_Ka6EmBYHuUv4KTB_nB17CYjTOzCkQERkiuYyqFYkJZ4SvR1YFCefgw9NfgU6MBia5p2F01kFFSEUjTBKcoKadoDd63TS8q7pE_Ndps1Cipl588oQjsODqWPsPPlfrwdwFJb7Bd3qz_e9N38KR_fHiQHAyO9jfgKYJIUcXdbcLidDIzbxCoTdXb0j4IfH9o3foJY5NLow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE4UH7V0kItBBKXbLOOE9uHHlZdVl0KFUJU6olgOzZdscquNrtt01fqq_ShmPxui0Di0gNSDlE0mSSeGfubaOYzwBurmBbSSY9aKT0mqPa0Y9xjkUiUdIqpsOh3_nQY7R-xD8fh8QpcNr0wFT9E-8OtiIxyvi4CfJq4nSVpqBqZTreA_3VF5YHNzzBfy3aHfTTuW0oH77_u7Xv1lgKeCQJGPRVqoZSxglnBmWQ2jJTTvgkTHVKlDWXccho5m3AECpolMnKYsBg_dNa3jgeo9w7cZZEvi30i-l9arqou5aKiJsf8HHFJt6Ex8ulO-6o3F78lor2Oi8uFbbAGV82QVPUsPzuLue6Yi9_YIv-TMXsED2uATXpVRDyGFZs-gQfXaBefwrdeSkZLfpFJSvD4oTJykicFcwZpOzqJShOSjRezWU5OR5kpKtxyvJcgbCbTsnPLWDJx5EydEzPLEWqPs2dwdCsf-BxW00lq14GIwArFjaRKaCa0E74WXRNo1IcXQ38D3jUOEJuahL3YC2QcV_TRNEYTxaWJNuB1KzqtmEf-JLTVeFFcTz5ZTBHWcUwrfYaPK93h7wri3nCvPHnx76LbcO9zfxB_HB4ebMJ9RJCiKrrbgtX5bGFfIkqb61dldBD4ftuu9QsmD0pS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+on+gas+hydrate+formation+and+slurry+viscosity+in+the+presence+of+wax+crystals&rft.jtitle=AIChE+journal&rft.au=Shi%2C+Bo%E2%80%90Hui&rft.au=Chai%2C+Shuai&rft.au=Ding%2C+Lin&rft.au=Chen%2C+Yu%E2%80%90Chuan&rft.date=2018-09-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=64&rft.issue=9&rft.spage=3502&rft.epage=3518&rft_id=info:doi/10.1002%2Faic.16192&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aic_16192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon