An investigation on gas hydrate formation and slurry viscosity in the presence of wax crystals
Clarifying the interaction effect between hydrate and wax is of great significance to guarantee operation safety in deep water petroleum fields. Experiments in a high‐pressure hydrate slurry rheological measurement system were carried out to investigate hydrate formation and slurry viscosity in the...
Saved in:
Published in | AIChE journal Vol. 64; no. 9; pp. 3502 - 3518 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
American Institute of Chemical Engineers
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Clarifying the interaction effect between hydrate and wax is of great significance to guarantee operation safety in deep water petroleum fields. Experiments in a high‐pressure hydrate slurry rheological measurement system were carried out to investigate hydrate formation and slurry viscosity in the presence of wax crystals. Results indicate that the presence of wax crystals can prolong hydrate nucleation induction time, and its influence on hydrate growth depends on multiple factors. Higher stirring rate can obviously promote hydrate growth rate, while its influence on hydrate nucleation induction time is complicated. Higher initial pressure will promote hydrate formation. Gas hydrate slurry shows a shear‐thinning behavior, and slurry viscosity increases with the increase of wax content and initial pressure. A semiempirical viscosity model showing a well‐fitting is established for hydrate slurry with wax crystals by considering the aggregation and breakage of hydrate particles, wax crystals, and water droplets. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3502–3518, 2018 |
---|---|
AbstractList | Clarifying the interaction effect between hydrate and wax is of great significance to guarantee operation safety in deep water petroleum fields. Experiments in a high‐pressure hydrate slurry rheological measurement system were carried out to investigate hydrate formation and slurry viscosity in the presence of wax crystals. Results indicate that the presence of wax crystals can prolong hydrate nucleation induction time, and its influence on hydrate growth depends on multiple factors. Higher stirring rate can obviously promote hydrate growth rate, while its influence on hydrate nucleation induction time is complicated. Higher initial pressure will promote hydrate formation. Gas hydrate slurry shows a shear‐thinning behavior, and slurry viscosity increases with the increase of wax content and initial pressure. A semiempirical viscosity model showing a well‐fitting is established for hydrate slurry with wax crystals by considering the aggregation and breakage of hydrate particles, wax crystals, and water droplets. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3502–3518, 2018 Clarifying the interaction effect between hydrate and wax is of great significance to guarantee operation safety in deep water petroleum fields. Experiments in a high‐pressure hydrate slurry rheological measurement system were carried out to investigate hydrate formation and slurry viscosity in the presence of wax crystals. Results indicate that the presence of wax crystals can prolong hydrate nucleation induction time, and its influence on hydrate growth depends on multiple factors. Higher stirring rate can obviously promote hydrate growth rate, while its influence on hydrate nucleation induction time is complicated. Higher initial pressure will promote hydrate formation. Gas hydrate slurry shows a shear‐thinning behavior, and slurry viscosity increases with the increase of wax content and initial pressure. A semiempirical viscosity model showing a well‐fitting is established for hydrate slurry with wax crystals by considering the aggregation and breakage of hydrate particles, wax crystals, and water droplets. © 2018 American Institute of Chemical Engineers AIChE J , 64: 3502–3518, 2018 |
Author | Wu, Hai‐Hao Wang, Wei Gong, Jing Chen, Yu‐Chuan Shi, Bo‐Hui Yao, Hai‐Yuan Ding, Lin Liu, Yang Song, Shang‐Fei Chai, Shuai |
Author_xml | – sequence: 1 givenname: Bo‐Hui orcidid: 0000-0003-2683-6984 surname: Shi fullname: Shi, Bo‐Hui email: bh.shi@cup.edu.cn organization: China University of Petroleum‐Beijing – sequence: 2 givenname: Shuai surname: Chai fullname: Chai, Shuai organization: Sinopec Engineering Incorporation – sequence: 3 givenname: Lin surname: Ding fullname: Ding, Lin organization: China University of Petroleum‐Beijing – sequence: 4 givenname: Yu‐Chuan surname: Chen fullname: Chen, Yu‐Chuan organization: China University of Petroleum‐Beijing – sequence: 5 givenname: Yang surname: Liu fullname: Liu, Yang organization: China University of Petroleum‐Beijing – sequence: 6 givenname: Shang‐Fei surname: Song fullname: Song, Shang‐Fei organization: China University of Petroleum‐Beijing – sequence: 7 givenname: Hai‐Yuan surname: Yao fullname: Yao, Hai‐Yuan organization: CNOOC Research Institute Co. Ltd – sequence: 8 givenname: Hai‐Hao surname: Wu fullname: Wu, Hai‐Hao organization: China University of Petroleum‐Beijing – sequence: 9 givenname: Wei surname: Wang fullname: Wang, Wei organization: China University of Petroleum‐Beijing – sequence: 10 givenname: Jing orcidid: 0000-0002-2970-7988 surname: Gong fullname: Gong, Jing email: ydgj@cup.edu.cn organization: China University of Petroleum‐Beijing |
BookMark | eNp1UE1LAzEQDVLBtnrwHwQ8edg2SbOb3WMpfhQKXvRqyGYnbcp2U5Nt6_57Y9eTKAwMM_PeG94boUHjGkDolpIJJYRNldUTmtGCXaAhTblI0oKkAzQkhNAkLugVGoWwjRMTORui93mDbXOE0Nq1aq1rcKy1CnjTVV61gI3zu_6gmgqH-uB9h482aBds20UubjeA9x4CNBqwM_ikPrH2XWhVHa7RpYkNbn76GL09PrwunpPVy9NyMV8lejbjLFFpmSulIeeQC15wSDNlSqLTqkyZKjXjAgTLDFQi47zkVZEZSrgmqQECRszG6K7X3Xv3cYhu5NYdfBNfSkZyJjjLCY-oaY_S3oXgwUht27O51itbS0rkd4gyhijPIUbG_S_G3tud8t2f2B_1k62h-x8o58tFz_gC1f6Eag |
CitedBy_id | crossref_primary_10_1016_j_cjche_2024_04_028 crossref_primary_10_1021_acs_energyfuels_2c03972 crossref_primary_10_1016_j_fuel_2023_127782 crossref_primary_10_1016_j_molliq_2024_124047 crossref_primary_10_2139_ssrn_4012805 crossref_primary_10_1016_j_partic_2024_02_009 crossref_primary_10_1021_acsomega_1c06523 crossref_primary_10_1016_j_fuel_2024_131723 crossref_primary_10_1002_aic_18398 crossref_primary_10_1016_j_petrol_2019_106504 crossref_primary_10_1016_j_ces_2020_115923 crossref_primary_10_1016_j_geoen_2023_212522 crossref_primary_10_1021_acs_energyfuels_4c02836 crossref_primary_10_1016_j_fuel_2024_131052 crossref_primary_10_1016_j_fuel_2024_132267 crossref_primary_10_1021_acs_energyfuels_2c04379 crossref_primary_10_1021_acs_energyfuels_8b01323 crossref_primary_10_1016_j_petsci_2022_07_001 crossref_primary_10_1016_j_molliq_2024_124853 crossref_primary_10_1016_j_fuel_2022_124128 crossref_primary_10_1016_j_cej_2022_136800 crossref_primary_10_1016_j_cej_2022_140389 crossref_primary_10_1016_j_geoen_2025_213765 crossref_primary_10_3389_fenrg_2022_986901 crossref_primary_10_1016_j_jngse_2021_104106 crossref_primary_10_1021_acs_energyfuels_8b01713 crossref_primary_10_1016_j_ces_2021_116608 crossref_primary_10_1021_acs_energyfuels_1c04359 crossref_primary_10_1021_acs_energyfuels_8b04268 crossref_primary_10_1016_S1876_3804_21_60302_6 crossref_primary_10_1021_acs_energyfuels_4c00149 crossref_primary_10_1039_D2RA02266D crossref_primary_10_1016_j_est_2024_112059 crossref_primary_10_1016_j_fuel_2022_125501 crossref_primary_10_1016_j_eng_2024_10_020 crossref_primary_10_1016_j_cherd_2023_01_017 crossref_primary_10_1016_j_fuel_2023_129748 crossref_primary_10_1016_j_ces_2020_115703 crossref_primary_10_1021_acs_langmuir_0c02976 crossref_primary_10_1016_j_fuel_2020_119568 crossref_primary_10_1016_j_fuel_2021_120778 crossref_primary_10_1021_acs_energyfuels_3c04405 crossref_primary_10_1088_1755_1315_193_1_012042 crossref_primary_10_1016_j_fuel_2022_127211 crossref_primary_10_1021_acs_energyfuels_4c00237 crossref_primary_10_1021_acs_energyfuels_1c01173 crossref_primary_10_2118_199903_PA crossref_primary_10_1021_acs_langmuir_1c01060 crossref_primary_10_2139_ssrn_4144519 crossref_primary_10_1002_aic_16668 crossref_primary_10_1021_acs_energyfuels_0c04209 crossref_primary_10_1016_j_fuel_2022_124743 crossref_primary_10_1016_j_petsci_2022_04_004 crossref_primary_10_1021_acs_energyfuels_0c02749 crossref_primary_10_1021_acsomega_1c05127 crossref_primary_10_1016_j_molliq_2021_118229 crossref_primary_10_1016_j_fuel_2019_02_014 crossref_primary_10_1039_C8CS00989A crossref_primary_10_1021_acs_energyfuels_3c02396 |
Cites_doi | 10.1021/ef401648r 10.2516/ogst:2004005 10.1016/j.ces.2016.10.045 10.1016/j.fuel.2016.03.029 10.1063/1.3675889 10.1016/j.enconman.2006.09.024 10.1016/j.ijrefrig.2005.01.002 10.1016/j.fuel.2016.07.113 10.1016/j.fuel.2004.06.002 10.1002/aic.15722 10.1021/acs.energyfuels.7b00092 10.1002/aic.14037 10.1002/aic.14867 10.1021/ef4004768 10.1016/j.cej.2011.05.029 10.2516/ogst/2009042 10.1016/j.enconman.2012.07.004 10.1016/j.cej.2016.09.047 10.1111/j.1749-6632.2000.tb06793.x 10.1016/j.jcis.2004.04.049 10.1002/aic.11844 10.1016/j.applthermaleng.2016.11.175 10.1002/aic.15436 10.1016/j.ces.2009.05.051 10.1111/j.1749-6632.2000.tb06844.x 10.1016/j.applthermaleng.2004.10.009 10.1016/S1003-9953(09)60062-1 10.1016/S0378-3812(99)00138-7 10.1016/j.enconman.2004.06.032 10.1016/j.ces.2013.11.015 10.1021/ef5022413 10.2523/99437-MS 10.1016/j.ces.2005.07.001 10.1002/1521-4117(200205)19:2<84::AID-PPSC84>3.0.CO;2-1 10.1016/j.ces.2014.01.035 10.1002/aic.11219 10.1016/j.petrol.2012.08.017 10.1016/j.ces.2012.11.022 10.1016/j.energy.2016.10.122 10.1016/j.fuel.2017.01.037 10.1016/j.ces.2009.09.074 10.1021/ef800189k 10.1111/j.1749-6632.2000.tb06786.x 10.1016/j.fuel.2011.06.038 10.1021/ef300163y 10.1021/acs.iecr.7b01332 10.1016/j.enconman.2016.02.045 10.1016/j.fluid.2016.08.006 10.1016/j.colsurfa.2017.01.023 10.1201/9781420008494 10.1115/IPC2016-64303 10.1016/j.ces.2005.01.008 10.1016/S0894-1777(01)00109-1 10.1021/ef201407j 10.1016/j.ijrefrig.2014.10.016 10.2118/84044-MS 10.2516/ogst/2014032 10.1021/ie5008954 10.1016/S1385-8947(98)00126-0 10.1021/je500590y 10.1021/la4022432 10.1021/ef300191e 10.1051/jphyslet:01985004607030100 10.1016/j.apenergy.2015.02.040 10.1016/S0016-2361(03)00035-8 10.1021/ef050427x 10.1016/j.fluid.2016.01.009 10.1016/j.enconman.2017.01.043 10.1038/nature02135 10.1002/aic.11378 10.1021/ef300280e 10.1016/j.ces.2014.04.035 10.1115/1.4023932 |
ContentType | Journal Article |
Copyright | 2018 American Institute of Chemical Engineers |
Copyright_xml | – notice: 2018 American Institute of Chemical Engineers |
DBID | AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI |
DOI | 10.1002/aic.16192 |
DatabaseName | CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1547-5905 |
EndPage | 3518 |
ExternalDocumentID | 10_1002_aic_16192 AIC16192 |
Genre | article |
GrantInformation_xml | – fundername: Science Foundation of China University of Petroleum‐Beijing funderid: C201602 – fundername: National Key Research and Development Plan of China funderid: 2016YFC0303704 – fundername: National Science and Technology Major Project of China funderid: 2016ZX05028004‐001 ; 2016ZX05066005‐001 – fundername: National Natural Science Foundation of China funderid: 51534007 |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHHS AAHQN AAIHA AAIKC AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 S0X SAMSI SUPJJ TAE TN5 TUS UAO UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABJIA ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT 7ST 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K L7M SOI |
ID | FETCH-LOGICAL-c3342-a5b8aace84e87494e56afb0c5db52abc247e726fed7644b4d96f104c05fe0ef73 |
IEDL.DBID | DR2 |
ISSN | 0001-1541 |
IngestDate | Fri Jul 25 11:02:03 EDT 2025 Tue Jul 01 01:40:41 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Wed Jan 22 17:05:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3342-a5b8aace84e87494e56afb0c5db52abc247e726fed7644b4d96f104c05fe0ef73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2683-6984 0000-0002-2970-7988 |
PQID | 2082742804 |
PQPubID | 7879 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2082742804 crossref_citationtrail_10_1002_aic_16192 crossref_primary_10_1002_aic_16192 wiley_primary_10_1002_aic_16192_AIC16192 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2018 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | AIChE journal |
PublicationYear | 2018 |
Publisher | American Institute of Chemical Engineers |
Publisher_xml | – name: American Institute of Chemical Engineers |
References | 2013; 29 2017; 518 2013; 27 2002; 19 2013; 65 2015; 70 2010; 19 2016; 427 2015; 145 2017; 194 2005; 60 2005; 28 2016; 180 2017; 114 2017; 158 2016; 185 2017; 118 2005; 25 2009; 55 2017; 31 2010; 65 2013; 59 2006; 20 2006; 61 2008; 22 2016; 115 2012; 26 2003; 82 2014; 53 2012; 83 2014; 116 2017; 63 2006; 912 2004; 83 2009; 64 2011 2010 2015; 50 2013; 91 2007 2006 2008; 54 2005 2004 2003 2002 2007; 53 2017; 136 2011; 171 2005; 46 1985; 46 1999; 158–160 2004; 277 2017; 308 2002; 25 2014; 106 2003; 426 2014; 109 2015; 29 2015; 60 2015; 61 2011; 90 2004; 59 2017; 56 2016; 63 2012; 98–99 2013; 135 2017 2016; 414 2016 1998; 71 2007; 48 2003; 22 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_70_1 Li H (e_1_2_6_74_1) 2003; 22 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 Mettler‐Toleda AutoChem (e_1_2_6_85_1) 2007 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 Ji HY. (e_1_2_6_32_1) 2004 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_90_1 Schuller RB (e_1_2_6_59_1) 2005 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 Sloan ED (e_1_2_6_18_1) 2010 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 46 start-page: 301 issue: 7 year: 1985 end-page: 309 article-title: Non‐Newtonian behaviour of flocculated suspensions publication-title: J Phys Lett. – volume: 71 start-page: 145 issue: 2 year: 1998 end-page: 151 article-title: A new approach to gas hydrate modelling publication-title: Chem Eng J. – year: 2011 – volume: 53 start-page: 1636 issue: 7 year: 2007 end-page: 1643 article-title: Natural gas hydrates: recent advances and challenges in energy and environmental applications publication-title: AIChE J. – volume: 22 start-page: 3150 issue: 5 year: 2008 end-page: 3153 article-title: Investigation of interactions between gas hydrates and several other flow assurance elements publication-title: Energy Fuels. – volume: 48 start-page: 1313 issue: 4 year: 2007 end-page: 1322 article-title: CO capture by hydrate crystallization – a potential solution for gas emission of steelmaking industry publication-title: Energy Convers Manag. – volume: 29 start-page: 10997 issue: 35 year: 2013 end-page: 11004 article-title: Rheological properties of methane hydrate slurries formed from AOT + water + oil microemulsions publication-title: Langmuir. – volume: 64 start-page: 629 issue: 5 year: 2009 end-page: 636 article-title: Discussion of agglomeration mechanisms between hydrate particles in water in oil emulsions publication-title: Oil Gas Sci Technol. – volume: 55 start-page: 1584 issue: 6 year: 2009 end-page: 1594 article-title: Structure and composition of CO /H and CO /H /C H hydrate in relation to simultaneous CO capture and H production publication-title: AIChE J. – volume: 63 start-page: 1010 year: 2016 end-page: 1023 article-title: A water droplet size distribution dependent modeling of hydrate formation in water/oil emulsion publication-title: AIChE J. – year: 2005 – volume: 427 start-page: 438 year: 2016 end-page: 459 article-title: Mutual effects of paraffin waxes and clathrate hydrates: a multiphase integrated thermodynamic model and experimental measurements publication-title: Fluid Phase Equilib. – volume: 59 start-page: 41 issue: 1 year: 2004 end-page: 57 article-title: Rheological and flow properties of gas hydrate suspensions publication-title: Oil Gas Sci Technol. – volume: 26 start-page: 3504 issue: 6 year: 2012 end-page: 3509 article-title: High‐pressure rheology of hydrate slurries formed from water‐in‐oil emulsions publication-title: Energy Fuels. – volume: 426 start-page: 353 issue: 6964 year: 2003 end-page: 359 article-title: Fundamental principles and applications of natural gas hydrates publication-title: Nature. – volume: 25 start-page: 503 issue: 7 year: 2002 end-page: 510 article-title: Analysis of impact of droplets on horizontal surfaces publication-title: Exp Therm Fluid Sci. – volume: 135 issue: 4 year: 2013 article-title: Effects of the dispersed phase on oil/water wax deposition publication-title: J Energy Resour Technol. – volume: 59 start-page: 2640 issue: 7 year: 2013 end-page: 2646 article-title: Probability distributions of gas hydrate formation publication-title: AIChE J. – volume: 82 start-page: 1387 issue: 11 year: 2003 end-page: 1397 article-title: A generalized model for predicting non‐Newtonian viscosity of waxy crudes as a function of temperature and precipitated wax publication-title: Fuel. – volume: 28 start-page: 663 issue: 5 year: 2005 end-page: 671 article-title: Rheological study of TBAB hydrate slurries as secondary two‐phase refrigerants publication-title: Int J Refrig. – volume: 31 start-page: 4817 issue: 5 year: 2017 end-page: 4825 article-title: Effect of particle hydrophobicity on hydrate formation in water‐in‐oil emulsions in the presence of wax publication-title: Energy Fuels. – volume: 91 start-page: 173 year: 2013 end-page: 179 article-title: Evolution of dispersed drops during the mixing of mineral oil and water phases in a stirring tank publication-title: Chem Eng Sci. – volume: 61 start-page: 3441 issue: 10 year: 2015 end-page: 3450 article-title: Intensification and kinetics of methane hydrate formation under heat removal by phase change of ‐tetradecane publication-title: AIChE J. – volume: 29 start-page: 122 issue: 1 year: 2015 end-page: 129 article-title: Evaluation of gas hydrate anti‐agglomerant based on laser measurement publication-title: Energy Fuels. – volume: 145 start-page: 265 year: 2015 end-page: 277 article-title: Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods publication-title: Appl Energy. – volume: 25 start-page: 1708 issue: 11–12 year: 2005 end-page: 1723 article-title: Economic evaluation of natural gas hydrate as an alternative for natural gas transportation publication-title: Appl Therm Eng. – volume: 98–99 start-page: 122 year: 2012 end-page: 129 article-title: Overview of CSMHyK: a transient hydrate formation model publication-title: J Pet Sci Eng. – volume: 60 start-page: 3251 issue: 12 year: 2005 end-page: 3265 article-title: Determination of non‐spherical particle size distribution from chord length measurements. Part 1: theoretical analysis publication-title: Chem Eng Sci. – volume: 20 start-page: 825 issue: 3 year: 2006 end-page: 847 article-title: History of the development of low dosage hydrate inhibitors publication-title: Energy Fuels. – volume: 194 start-page: 395 year: 2017 end-page: 405 article-title: An investigation on repeated methane hydrates formation in porous hydrogel particles publication-title: Fuel. – volume: 114 start-page: 245 year: 2017 end-page: 254 article-title: Modeling the effects of hydrate wall deposition on slug flow hydrodynamics and heat transfer publication-title: Appl Therm Eng. – year: 2004 – volume: 50 start-page: 19 year: 2015 end-page: 31 article-title: Particle size distribution of TBPB hydrates by focused beam reflectance measurement (FBRM) for secondary refrigeration application publication-title: Int J Refrig. – volume: 27 start-page: 7294 issue: 12 year: 2013 end-page: 7302 article-title: Study on gas hydrate formation and hydrate slurry flow in a multiphase transportation system publication-title: Energy Fuels. – volume: 60 start-page: 293 issue: 2 year: 2015 end-page: 298 article-title: Effectiveness of low‐dosage hydrate inhibitors and their rheological behavior for gas condensate/water systems publication-title: J Chem Eng Data. – volume: 518 start-page: 73 year: 2017 end-page: 79 article-title: Wax adsorption at paraffin oil‐water interface stabilized by Span80 publication-title: Colloids Surf A Physicochem Eng Asp. – volume: 83 start-page: 2115 issue: 16 year: 2004 end-page: 2121 article-title: Effect of additives on formation of natural gas hydrate publication-title: Fuel. – volume: 83 start-page: 015106 issue: 1 year: 2012 article-title: High pressure rheometer for in situ formation and characterization of methane hydrates publication-title: Rev Sci Instrum. – volume: 109 start-page: 315 year: 2014 end-page: 325 article-title: Application of the shrinking‐core model to the kinetics of repeated formation of methane hydrates in a system of mixed dry‐water and porous hydrogel particulates publication-title: Chem Eng Sci. – volume: 65 start-page: 120 year: 2013 end-page: 132 article-title: State of the art on phase change material slurries publication-title: Energy Convers Manag. – volume: 26 start-page: 4112 issue: 7 year: 2012 end-page: 4116 article-title: Efficient hydrate plug prevention publication-title: Energy Fuels. – volume: 106 start-page: 99 year: 2014 end-page: 108 article-title: Flow characteristics and rheological properties of natural gas hydrate slurry in the presence of anti‐agglomerant in a flow loop apparatus publication-title: Chem Eng Sci. – start-page: 83 year: 2005 end-page: 90 article-title: Rheological hydrate detection and characterization publication-title: Annu Trans Nord Rheol Soc. – volume: 26 start-page: 2688 issue: 5 year: 2012 end-page: 2695 article-title: Flow assurance study for waxy crude oils publication-title: Energy Fuels. – year: 2007 – volume: 180 start-page: 187 year: 2016 end-page: 193 article-title: Anti‐agglomeration of natural gas hydrates in liquid condensate and crude oil at constant pressure conditions publication-title: Fuel. – volume: 277 start-page: 335 issue: 2 year: 2004 end-page: 341 article-title: Temperature dependence of particle–particle adherence forces in ice and clathrate hydrates publication-title: J Colloid Interface Sci. – year: 2003 – volume: 912 start-page: 392 issue: 1 year: 2006 end-page: 402 article-title: A consistent thermodynamic model for predicting combined wax‐hydrate in petroleum reservoir fluids publication-title: Ann N Y Acad Sci. – volume: 27 start-page: 4564 issue: 8 year: 2013 end-page: 4573 article-title: Model water‐in‐oil emulsions for gas hydrate studies in oil continuous systems publication-title: Energy Fuels. – volume: 912 start-page: 906 issue: 1 year: 2006 end-page: 916 article-title: Rheological characterization of hydrate suspensions in oil dominated systems publication-title: Ann N Y Acad Sci. – volume: 54 start-page: 565 issue: 2 year: 2008 end-page: 574 article-title: Effects of antiagglomerants on the interactions between hydrate particles publication-title: AIChE J. – volume: 26 start-page: 4046 issue: 7 year: 2012 end-page: 4052 article-title: Developing a comprehensive understanding and model of hydrate in multiphase flow: from laboratory measurements to field applications publication-title: Energy Fuels. – volume: 185 start-page: 323 issue: 12 year: 2016 end-page: 338 article-title: Viscosity investigation of natural gas hydrate slurries with anti‐agglomerants additives publication-title: Fuel. – volume: 308 start-page: 40 year: 2017 end-page: 49 article-title: Enhanced CH recovery and CO storage via thermal stimulation in the CH /CO replacement of methane hydrate publication-title: Chem Eng J. – volume: 118 start-page: 950 year: 2017 end-page: 956 article-title: CO capture from flue gas using clathrate formation in the presence of thermodynamic promoters publication-title: Energy. – volume: 171 start-page: 1308 issue: 3 year: 2011 end-page: 1316 article-title: An inward and outward natural gas hydrates growth shell model considering intrinsic kinetics, mass and heat transfer publication-title: Chem Eng J. – year: 2016 – volume: 158 start-page: 480 year: 2017 end-page: 496 article-title: Investigation of hydrate plugging in natural gas plus diesel oil plus water systems using a high‐pressure flow loop publication-title: Chem Eng Sci. – volume: 912 start-page: 322 issue: 1 year: 2006 end-page: 329 article-title: Flow properties of hydrate‐in‐water slurries publication-title: Ann N Y Acad Sci. – volume: 65 start-page: 1185 issue: 3 year: 2010 end-page: 1200 article-title: Chord length distributions measurements during crystallization and agglomeration of gas hydrate in a water‐in‐oil emulsion: simulation and experimentation publication-title: Chem Eng Sci. – volume: 19 start-page: 84 issue: 2 year: 2002 end-page: 95 article-title: Estimating average particle size by focused beam reflectance measurement (FBRM) publication-title: Part Part Syst Charact. – volume: 136 start-page: 431 year: 2017 end-page: 438 article-title: Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration publication-title: Energy Convers Manag. – year: 2010 – volume: 158–160 start-page: 481 issue: 6 year: 1999 end-page: 489 article-title: A unified framework for calculating solid deposition from petroleum fluids including waxes, asphaltenes, hydrates and scales publication-title: Fluid Phase Equilib. – volume: 53 start-page: 6998 issue: 17 year: 2014 end-page: 7007 article-title: High pressure rheology of hydrate slurries formed from water‐in‐mineral oil emulsions publication-title: Ind Eng Chem Res. – volume: 90 start-page: 3343 issue: 11 year: 2011 end-page: 3351 article-title: Bimodal model for predicting the emulsion‐hydrate mixture viscosity in high water cut systems publication-title: Fuel. – volume: 115 start-page: 132 year: 2016 end-page: 158 article-title: A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility publication-title: Energy Convers Manag. – volume: 414 start-page: 117 issue: 1 year: 2016 end-page: 132 article-title: Development of a multiphase flash in presence of hydrates: experimental measurements and validation with the CPA equation of state publication-title: Fluid Phase Equilib. – year: 2002 – volume: 19 start-page: 261 issue: 3 year: 2010 end-page: 266 article-title: Natural gas hydrate shell model in gas‐slurry pipeline flow publication-title: J Nat Gas Chem. – year: 2006 – volume: 64 start-page: 3996 issue: 18 year: 2009 end-page: 4004 article-title: Methane hydrate formation and an inward growing shell model in water‐in‐oil dispersions publication-title: Chem Eng Sci. – volume: 70 start-page: 1111 issue: 6 year: 2015 end-page: 1124 article-title: Experimental study on hydrate induction time of gas‐saturated water‐in‐oil emulsion using a high‐pressure flow loop publication-title: Oil Gas Sci Technol. – volume: 116 start-page: 817 issue: 36 year: 2014 end-page: 823 article-title: Experimental measurement of the induction time of natural gas hydrate and its prediction with polymeric kinetic inhibitor publication-title: Chem Eng Sci. – volume: 46 start-page: 1333 issue: 9–10 year: 2005 end-page: 1343 article-title: Benefits and drawbacks of clathrate hydrates: a review of their areas of interest publication-title: Energy Convers Manag. – volume: 56 start-page: 8330 issue: 29 year: 2017 end-page: 8339 article-title: Induction time of hydrate formation in water‐in‐oil emulsions publication-title: Ind Eng Chem Res. – year: 2017 – volume: 61 start-page: 505 issue: 2 year: 2006 end-page: 515 article-title: Rheology of methane hydrate slurries during their crystallization in a water in dodecane emulsion under flowing publication-title: Chem Eng Sci. – volume: 63 start-page: 4136 issue: 9 year: 2017 end-page: 4146 article-title: Dynamics of hydrate formation and deposition under pseudo multiphase flow publication-title: AIChE J. – volume: 22 start-page: 28 issue: 10 year: 2003 end-page: 30 article-title: Comparison of different methods on determining wax appearance temperature of crude oils publication-title: Oil Gas Storage Transp. – ident: e_1_2_6_49_1 doi: 10.1021/ef401648r – ident: e_1_2_6_27_1 doi: 10.2516/ogst:2004005 – ident: e_1_2_6_21_1 doi: 10.1016/j.ces.2016.10.045 – ident: e_1_2_6_25_1 doi: 10.1016/j.fuel.2016.03.029 – volume-title: Lasentec® V819 with PVM Technology System Manual year: 2007 ident: e_1_2_6_85_1 – ident: e_1_2_6_62_1 doi: 10.1063/1.3675889 – ident: e_1_2_6_8_1 doi: 10.1016/j.enconman.2006.09.024 – ident: e_1_2_6_12_1 doi: 10.1016/j.ijrefrig.2005.01.002 – ident: e_1_2_6_53_1 – ident: e_1_2_6_66_1 doi: 10.1016/j.fuel.2016.07.113 – ident: e_1_2_6_41_1 doi: 10.1016/j.fuel.2004.06.002 – ident: e_1_2_6_20_1 doi: 10.1002/aic.15722 – ident: e_1_2_6_22_1 – ident: e_1_2_6_29_1 doi: 10.1021/acs.energyfuels.7b00092 – volume-title: Thermodynamic Modelling of Wax and Integrated Wax‐Hydrate year: 2004 ident: e_1_2_6_32_1 – ident: e_1_2_6_63_1 – ident: e_1_2_6_82_1 doi: 10.1002/aic.14037 – ident: e_1_2_6_37_1 doi: 10.1002/aic.14867 – ident: e_1_2_6_68_1 doi: 10.1021/ef4004768 – ident: e_1_2_6_45_1 doi: 10.1016/j.cej.2011.05.029 – ident: e_1_2_6_71_1 doi: 10.2516/ogst/2009042 – ident: e_1_2_6_13_1 doi: 10.1016/j.enconman.2012.07.004 – ident: e_1_2_6_9_1 doi: 10.1016/j.cej.2016.09.047 – ident: e_1_2_6_58_1 – ident: e_1_2_6_31_1 doi: 10.1111/j.1749-6632.2000.tb06793.x – ident: e_1_2_6_54_1 doi: 10.1016/j.jcis.2004.04.049 – ident: e_1_2_6_11_1 doi: 10.1002/aic.11844 – ident: e_1_2_6_19_1 doi: 10.1016/j.applthermaleng.2016.11.175 – ident: e_1_2_6_44_1 doi: 10.1002/aic.15436 – ident: e_1_2_6_46_1 doi: 10.1016/j.ces.2009.05.051 – ident: e_1_2_6_50_1 doi: 10.1111/j.1749-6632.2000.tb06844.x – ident: e_1_2_6_15_1 doi: 10.1016/j.applthermaleng.2004.10.009 – ident: e_1_2_6_47_1 doi: 10.1016/S1003-9953(09)60062-1 – ident: e_1_2_6_77_1 – ident: e_1_2_6_30_1 doi: 10.1016/S0378-3812(99)00138-7 – ident: e_1_2_6_3_1 doi: 10.1016/j.enconman.2004.06.032 – ident: e_1_2_6_88_1 – ident: e_1_2_6_57_1 doi: 10.1016/j.ces.2013.11.015 – ident: e_1_2_6_73_1 doi: 10.1021/ef5022413 – ident: e_1_2_6_33_1 doi: 10.2523/99437-MS – ident: e_1_2_6_55_1 doi: 10.1016/j.ces.2005.07.001 – ident: e_1_2_6_81_1 doi: 10.1002/1521-4117(200205)19:2<84::AID-PPSC84>3.0.CO;2-1 – ident: e_1_2_6_16_1 doi: 10.1016/j.ces.2014.01.035 – ident: e_1_2_6_5_1 doi: 10.1002/aic.11219 – ident: e_1_2_6_43_1 doi: 10.1016/j.petrol.2012.08.017 – ident: e_1_2_6_76_1 doi: 10.1016/j.ces.2012.11.022 – ident: e_1_2_6_87_1 – ident: e_1_2_6_10_1 doi: 10.1016/j.energy.2016.10.122 – ident: e_1_2_6_17_1 doi: 10.1016/j.fuel.2017.01.037 – ident: e_1_2_6_80_1 doi: 10.1016/j.ces.2009.09.074 – ident: e_1_2_6_38_1 doi: 10.1021/ef800189k – ident: e_1_2_6_51_1 doi: 10.1111/j.1749-6632.2000.tb06786.x – ident: e_1_2_6_72_1 doi: 10.1016/j.fuel.2011.06.038 – ident: e_1_2_6_61_1 doi: 10.1021/ef300163y – ident: e_1_2_6_39_1 doi: 10.1021/acs.iecr.7b01332 – ident: e_1_2_6_14_1 doi: 10.1016/j.enconman.2016.02.045 – ident: e_1_2_6_60_1 – ident: e_1_2_6_34_1 doi: 10.1016/j.fluid.2016.08.006 – ident: e_1_2_6_83_1 doi: 10.1016/j.colsurfa.2017.01.023 – ident: e_1_2_6_4_1 doi: 10.1201/9781420008494 – ident: e_1_2_6_48_1 doi: 10.1115/IPC2016-64303 – ident: e_1_2_6_79_1 doi: 10.1016/j.ces.2005.01.008 – ident: e_1_2_6_91_1 doi: 10.1016/S0894-1777(01)00109-1 – ident: e_1_2_6_52_1 – ident: e_1_2_6_86_1 – ident: e_1_2_6_36_1 doi: 10.1021/ef201407j – ident: e_1_2_6_78_1 doi: 10.1016/j.ijrefrig.2014.10.016 – ident: e_1_2_6_56_1 doi: 10.2118/84044-MS – ident: e_1_2_6_89_1 – ident: e_1_2_6_40_1 doi: 10.2516/ogst/2014032 – ident: e_1_2_6_65_1 doi: 10.1021/ie5008954 – ident: e_1_2_6_75_1 doi: 10.1016/S1385-8947(98)00126-0 – ident: e_1_2_6_67_1 doi: 10.1021/je500590y – start-page: 83 year: 2005 ident: e_1_2_6_59_1 article-title: Rheological hydrate detection and characterization publication-title: Annu Trans Nord Rheol Soc. – ident: e_1_2_6_64_1 doi: 10.1021/la4022432 – ident: e_1_2_6_24_1 doi: 10.1021/ef300191e – ident: e_1_2_6_69_1 doi: 10.1051/jphyslet:01985004607030100 – ident: e_1_2_6_6_1 doi: 10.1016/j.apenergy.2015.02.040 – volume-title: Natural Gas Hydrates in Flow Assurance year: 2010 ident: e_1_2_6_18_1 – ident: e_1_2_6_90_1 doi: 10.1016/S0016-2361(03)00035-8 – ident: e_1_2_6_23_1 doi: 10.1021/ef050427x – ident: e_1_2_6_35_1 doi: 10.1016/j.fluid.2016.01.009 – ident: e_1_2_6_70_1 – ident: e_1_2_6_7_1 doi: 10.1016/j.enconman.2017.01.043 – ident: e_1_2_6_2_1 doi: 10.1038/nature02135 – ident: e_1_2_6_26_1 doi: 10.1002/aic.11378 – volume: 22 start-page: 28 issue: 10 year: 2003 ident: e_1_2_6_74_1 article-title: Comparison of different methods on determining wax appearance temperature of crude oils publication-title: Oil Gas Storage Transp. – ident: e_1_2_6_28_1 doi: 10.1021/ef300280e – ident: e_1_2_6_42_1 doi: 10.1016/j.ces.2014.04.035 – ident: e_1_2_6_84_1 doi: 10.1115/1.4023932 |
SSID | ssj0012782 |
Score | 2.5034478 |
Snippet | Clarifying the interaction effect between hydrate and wax is of great significance to guarantee operation safety in deep water petroleum fields. Experiments in... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3502 |
SubjectTerms | Breakage Crystals Deep water hydrate formation hydrate slurry viscosity hydrates induction time Initial pressure Nucleation Organic chemistry Pressure Rheological properties Sedimentation & deposition Slurries Viscosity Water drops wax crystals Waxes |
Title | An investigation on gas hydrate formation and slurry viscosity in the presence of wax crystals |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.16192 https://www.proquest.com/docview/2082742804 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMfDmBc9-Fv8MSWIBy-dXZo2KZ7GVFScB3XgQSxJmuhwdLJu6vzrfWnXTkVBhB5KSdI0Pz-vvPcNQntaUMlDEzpEh6FDOZGONJQ5NOCxCI2gwrfxzu3L4LRDz2_92wo6LGJhcn2I8oebnRnZem0nuJDpwVQ0VHRVvWHxH9Zf66tlgeiqlI5qEMZzpXAwlwETGoWqkEsOypxf96IpYH7G1GyfOVlAd0UNc_eSp_poKOvq_Zt44z8_YRHNT_gTN_MBs4QqOllGc59UCVfQfTPB3an8Rj_BcD2IFD-OYyssgcuARyySGKe90WAwxi_dVFkHsDHkxUCV-DkLbFIa9w1-FW9YDcZAor10FXVOjm9ap87kGAZHeR4ljvAlF0JpTjVnNKTaD4SRrvJj6RMhFaFMMxIYHTOAK0njMDBg5CnXN9rVhnlrqJr0E72OMPc0F0yFRHBJuTTclbyhPAnlwUPf3UD7RYdEaqJRbo_K6EW5ujKJoMmirMk20G6Z9DkX5vgpUa3o1WgyN9OIAPUwsLpcCq_Luuf3AqLmWSu72fx70i00C1TFc0e0GqoOByO9DeQylDtopnnUvrjeyYbqB7eH7Q8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcoAeCuWhvgALgcQl26zjxM6Bw6ql2u3rgFqpJ4Lt2HTVVbba7LZNf1P_Sv8T47y2IJC49ICUQxQ5E8eesb-xZr4B-GAkUyK2sUdNHHtMUOUpy7jHIpHK2EomQ5fvfHgU9U_Y3ml4ugC3TS5MxQ_RHrg5yyjXa2fg7kB6a84aKoe603X4vw6p3DfFFTps-efBDs7uR0p3vxxv9726poCng4BRT4ZKSKmNYEZwFjMTRtIqX4epCqlUmjJuOI2sSTkiBcXSOLLosWg_tMY3lgco9xE8dhXEHVP_zteWrKpLuai4ydFBR2DSbXiMfLrVdvXX3W8Oae8D43Jn230Gd82YVAEt553ZVHX0zW90kf_LoD2H5Rpik15lEyuwYLIXsHSPePElfOtlZDhnGBlnBK8fMidnReq4M0ib00lklpJ8NJtMCnI5zLWLcSvwXYLAmVyUuVvakLElV_Ka6EmBYHuUv4KTB_nB17CYjTOzCkQERkiuYyqFYkJZ4SvR1YFCefgw9NfgU6MBia5p2F01kFFSEUjTBKcoKadoDd63TS8q7pE_Ndps1Cipl588oQjsODqWPsPPlfrwdwFJb7Bd3qz_e9N38KR_fHiQHAyO9jfgKYJIUcXdbcLidDIzbxCoTdXb0j4IfH9o3foJY5NLow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE4UH7V0kItBBKXbLOOE9uHHlZdVl0KFUJU6olgOzZdscquNrtt01fqq_ShmPxui0Di0gNSDlE0mSSeGfubaOYzwBurmBbSSY9aKT0mqPa0Y9xjkUiUdIqpsOh3_nQY7R-xD8fh8QpcNr0wFT9E-8OtiIxyvi4CfJq4nSVpqBqZTreA_3VF5YHNzzBfy3aHfTTuW0oH77_u7Xv1lgKeCQJGPRVqoZSxglnBmWQ2jJTTvgkTHVKlDWXccho5m3AECpolMnKYsBg_dNa3jgeo9w7cZZEvi30i-l9arqou5aKiJsf8HHFJt6Ex8ulO-6o3F78lor2Oi8uFbbAGV82QVPUsPzuLue6Yi9_YIv-TMXsED2uATXpVRDyGFZs-gQfXaBefwrdeSkZLfpFJSvD4oTJykicFcwZpOzqJShOSjRezWU5OR5kpKtxyvJcgbCbTsnPLWDJx5EydEzPLEWqPs2dwdCsf-BxW00lq14GIwArFjaRKaCa0E74WXRNo1IcXQ38D3jUOEJuahL3YC2QcV_TRNEYTxaWJNuB1KzqtmEf-JLTVeFFcTz5ZTBHWcUwrfYaPK93h7wri3nCvPHnx76LbcO9zfxB_HB4ebMJ9RJCiKrrbgtX5bGFfIkqb61dldBD4ftuu9QsmD0pS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+on+gas+hydrate+formation+and+slurry+viscosity+in+the+presence+of+wax+crystals&rft.jtitle=AIChE+journal&rft.au=Shi%2C+Bo%E2%80%90Hui&rft.au=Chai%2C+Shuai&rft.au=Ding%2C+Lin&rft.au=Chen%2C+Yu%E2%80%90Chuan&rft.date=2018-09-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=64&rft.issue=9&rft.spage=3502&rft.epage=3518&rft_id=info:doi/10.1002%2Faic.16192&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aic_16192 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |