Towards affect-aware vehicles for increasing safety and comfort: recognising driver emotions from audio recordings in a realistic driving study

For vehicle safety, the in-time monitoring of the driver and assessing his/her state is a demanding issue. Frustration can lead to aggressive driving behaviours, which play a decisive role in up to one-third of fatal road accidents. Consequently, the authors present the automatic analysis of the emo...

Full description

Saved in:
Bibliographic Details
Published inIET intelligent transport systems Vol. 14; no. 10; pp. 1265 - 1277
Main Authors Requardt, Alicia F, Ihme, Klas, Wilbrink, Marc, Wendemuth, Andreas
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For vehicle safety, the in-time monitoring of the driver and assessing his/her state is a demanding issue. Frustration can lead to aggressive driving behaviours, which play a decisive role in up to one-third of fatal road accidents. Consequently, the authors present the automatic analysis of the emotional driver states of frustration, anxiety, positive and neutral. Based on experiments with normal drivers within cars in real-world (low expressivity) situations, they use speech data, as speech can be recorded with zero invasiveness and comes naturally in driving situations. A careful selection of speech features, subject data identification, hyper-parameter optimisation, and machine learning algorithms was applied for this difficult 4-emotion-class detection problem, where the literature hardly reports results above chance level. In-car assistance demands real-time computing. A very detailed analysis yields best results with relatively small random forests, and with an optimal feature set containing only 65 features (6.51% of the standard emobase feature set) which outperformed all other feature sets, producing 35.38% unweighted average recall (53.26% precision) with low computational effort, and also reducing the inevitably high confusion of ‘neutral’ with low-expressed emotions. This result is comparable to and even outperforming other reported studies of emotion recognition in the wild. Their work, therefore, triggers adaptive automotive safety applications.
AbstractList For vehicle safety, the in‐time monitoring of the driver and assessing his/her state is a demanding issue. Frustration can lead to aggressive driving behaviours, which play a decisive role in up to one‐third of fatal road accidents. Consequently, the authors present the automatic analysis of the emotional driver states of frustration, anxiety, positive and neutral. Based on experiments with normal drivers within cars in real‐world (low expressivity) situations, they use speech data, as speech can be recorded with zero invasiveness and comes naturally in driving situations. A careful selection of speech features, subject data identification, hyper‐parameter optimisation, and machine learning algorithms was applied for this difficult 4‐emotion‐class detection problem, where the literature hardly reports results above chance level. In‐car assistance demands real‐time computing. A very detailed analysis yields best results with relatively small random forests, and with an optimal feature set containing only 65 features (6.51% of the standard emobase feature set) which outperformed all other feature sets, producing 35.38% unweighted average recall (53.26% precision) with low computational effort, and also reducing the inevitably high confusion of ‘neutral’ with low‐expressed emotions. This result is comparable to and even outperforming other reported studies of emotion recognition in the wild. Their work, therefore, triggers adaptive automotive safety applications.
Author Ihme, Klas
Requardt, Alicia F
Wilbrink, Marc
Wendemuth, Andreas
Author_xml – sequence: 1
  givenname: Alicia F
  surname: Requardt
  fullname: Requardt, Alicia F
  email: alicia.requardt@ovgu.de
  organization: 1Otto-von-Guericke-University Magdeburg, Cognitive Systems Group, Universitätsplatz 2, 39106 Magdeburg, Germany
– sequence: 2
  givenname: Klas
  surname: Ihme
  fullname: Ihme, Klas
  organization: 2Germany Aerospace Center (DLR), Institute of Transportation Systems, Lilienthalplatz 7, 38108 Braunschweig, Germany
– sequence: 3
  givenname: Marc
  orcidid: 0000-0002-7550-8613
  surname: Wilbrink
  fullname: Wilbrink, Marc
  organization: 2Germany Aerospace Center (DLR), Institute of Transportation Systems, Lilienthalplatz 7, 38108 Braunschweig, Germany
– sequence: 4
  givenname: Andreas
  surname: Wendemuth
  fullname: Wendemuth, Andreas
  organization: 1Otto-von-Guericke-University Magdeburg, Cognitive Systems Group, Universitätsplatz 2, 39106 Magdeburg, Germany
BookMark eNqFkMFOAjEQhhuDiYA-gLe-wGLbpbtbbkpESUhMDCbeNqU7xZJla9oC2afwle2C8eABT-1k_m8m8w1Qr7ENIHRLyYiSsbgzEBIT_IgRKkYkT9kF6tOc00TwvOj9_rP3KzTwfkMIzxijffS1tAfpKo-l1qBCImMFeA8fRtXgsbYOm0Y5kN40a-ylhtBi2VRY2W1shgl2oOy6Mcd-5cweHIatDcY2EXd2i-WuMvYYc1UM-TgQy1jL2vhg1BE6Dg-7qr1Gl1rWHm5-3iF6mz0up8_J4uVpPr1fJCpNxzTRmcxBcbrSJIWCZCylecF4TkGI8Qo442Nd5KTiXK9UKjLKGQMgXGopaCZ0OkT0NFc5670DXX46s5WuLSkpO6NlNFpGo2VntOyMRib_wygTZHdpcNLUZ8nJiTyYGtr_V5Xz5St7mBEiUhrh5AR3sY3duSaKObPsGwbxpIE
CitedBy_id crossref_primary_10_1016_j_specom_2023_102974
crossref_primary_10_1109_OJVT_2022_3174546
crossref_primary_10_1002_adfm_202422552
crossref_primary_10_3390_app132011277
crossref_primary_10_3390_su14137705
crossref_primary_10_1007_s10772_024_10107_7
crossref_primary_10_12677_ap_2024_148567
crossref_primary_10_1145_3569466
crossref_primary_10_3390_electronics13193904
crossref_primary_10_1007_s42154_023_00270_z
crossref_primary_10_1016_j_buildenv_2021_108711
crossref_primary_10_1016_j_trpro_2021_12_077
crossref_primary_10_1109_TIM_2023_3301060
crossref_primary_10_1016_j_advengsoft_2023_103412
crossref_primary_10_35609_jmmr_2023_8_3_2
Cites_doi 10.21437/Interspeech.2005-446
10.1145/3131726.3131744
10.1016/j.jsr.2013.01.009
10.1007/s10111-003-0143-x
10.1007/978-3-642-31537-4_13
10.1145/3129340
10.1016/j.trf.2014.04.003
10.1109/ICME.2008.4607572
10.1007/s12008-014-0227-2
10.1109/ITSC.2018.8569461
10.1109/ATSIP.2016.7523189
10.1109/ICPR.2010.1132
10.1037/0003-066X.46.8.819
10.1109/ICIP.2014.7026203
10.1007/s12193-015-0175-6
10.1016/S0278-2626(03)00008-3
10.1016/S0953-5438(01)00053-4
10.1016/j.trf.2012.07.002
10.21437/Interspeech.2004-424
10.1201/9781420007497
10.1109/ICVES.2018.8519595
10.21437/Interspeech.2017-736
10.1109/TSMCA.2008.918624
10.1016/j.aap.2011.09.039
10.1109/ICVES.2017.7991923
10.1016/S1369-8478(99)00002-9
10.1007/978-3-540-74889-2_12
10.1109/IVS.2010.5547956
10.1007/s10579-008-9076-6
10.1145/2370216.2370455
10.1007/978-3-030-05081-8_11
10.1109/FG.2013.6553805
10.1093/acprof:oso/9780199592746.003.0019
10.1524/9783486595000
10.1007/978-3-030-21074-8_32
10.1007/s00138-018-0960-9
10.1080/1463922X.2015.1067934
10.1007/978-3-319-99579-3_15
10.1007/s12193-013-0129-9
10.1016/j.ssci.2009.03.011
10.1109/ICASSP.2007.367226
10.1016/0005-7916(94)90063-9
10.1177/0539018405058216
10.1023/A:1010933404324
10.1109/ICMLA.2019.00039
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-its.2019.0732
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9578
EndPage 1277
ExternalDocumentID 10_1049_iet_its_2019_0732
ITR2BF00931
Genre article
GrantInformation_xml – fundername: Horizon 2020
  grantid: 688900
GroupedDBID 0R
24P
29I
29J
4.4
5GY
6IK
8FE
8FG
AAJGR
ABJCF
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
CS3
EBS
EJD
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
L6V
LAI
M43
M7S
O9-
OCL
P2P
P62
PTHSS
RIE
RIG
RNS
RUI
UNR
.DC
0R~
1OC
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADZOD
AEEZP
AEQDE
AIAGR
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
ITC
MCNEO
OK1
ROL
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3341-f6a7ec51bf03e806231782571e994be5254f870d55fbc3961522ee05afa9169f3
IEDL.DBID 24P
ISSN 1751-956X
IngestDate Tue Aug 05 11:59:41 EDT 2025
Thu Apr 24 23:05:19 EDT 2025
Wed Jan 22 16:30:45 EST 2025
Tue Jan 05 21:45:22 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords emotional driver states
random forests
vehicle safety
road safety
emotion recognition
audio recordings
aggressive driving behaviours
speech data
in-car assistance
optimisation
road accidents
standard emobase feature set
feature extraction
driver information systems
automatic analysis
learning (artificial intelligence)
real-world situations
machine learning algorithms
4-emotion-class detection problem
feature selection
subject data identification
low-expressed emotions
feature sets
speech feature selection
small random forests
chance level
fatal road accidents
affect-aware vehicles
driver in-time monitoring
hyper-parameter optimisation
adaptive automotive safety applications
driver emotion recognition
optimal feature set
audio recording
realistic driving study
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3341-f6a7ec51bf03e806231782571e994be5254f870d55fbc3961522ee05afa9169f3
ORCID 0000-0002-7550-8613
PageCount 13
ParticipantIDs crossref_primary_10_1049_iet_its_2019_0732
iet_journals_10_1049_iet_its_2019_0732
wiley_primary_10_1049_iet_its_2019_0732_ITR2BF00931
crossref_citationtrail_10_1049_iet_its_2019_0732
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 20201000
October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201000
PublicationDecade 2020
PublicationTitle IET intelligent transport systems
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Pêcher, C.; Lemercier, C.; Cellier, J.M. (C21) 2009; 47
Ihme, K.; Unni, A.; Zhang, M. (C30) 2018; 12
Scherer, K.R. (C23) 2005; 44
Busso, C.; Bulut, M.; Lee, C.C. (C42) 2008; 42
Lazarus, R.S. (C12) 1991; 46
Liaw, A.; Wiener, M. (C70) 2002; 2
Zander, T.O.; Lehne, M.; Ihme, K. (C24) 2011; 5
Taubman-Ben-Ari, O. (C22) 2012; 45
Breiman, L. (C68) 2001; 45
Nasoz, F.; Alvarez, K.; Lisetti, C.L. (C27) 2004; 6
Bradley, M.M.; Lang, P.J. (C63) 1994; 25
Bergstra, J.; Bengio, Y. (C65) 2012; 13
Jeon, M. (C2) 2015; 16
Jeon, M.; Walker, B.N.; Yim, J.B. (C20) 2014; 24
Klein, J.; Moon, Y.; Picard, R.W. (C15) 2002; 14
Schuller, B. (C36) 2018; 61
Probst, P.; Boulesteix, A.L.; Bischl, B. (C71) 2019; 20
Lu, J.; Xie, X.; Zhang, R. (C19) 2013; 45
Kaya, H.; Salah, A.A. (C50) 2016; 10
Siegert, I.; Böck, R.; Wendemuth, A. (C64) 2014; 8
Shinar, D. (C13) 1998; 1
Schmidt-Daffy, M. (C16) 2013; 16
Malta, L.; Miyajima, C.; Kitaoka, N. (C31) 2011; 12
Avots, E.; Sapiński, T.; Bachmann, M. (C48) 2019; 30
Koo, J.; Kwac, J.; Ju, W. (C18) 2015; 9
Katsis, C.D.; Katertsidis, N.; Ganiatsas, G. (C26) 2008; 38
Erickson, K.; Schulkin, J. (C29) 2003; 52
2002; 14
2009; 47
2008; 38
2004; 6
1994; 25
2014; 24
2011; 12
2007; 4738
2012; 13
2001; 45
2003; 52
2013; 16
2019; 20
1991; 46
1984
2018; 11253
2014; 8
2018; 11096
2015; 16
2012
2013; 88
2011
2019; 30
2010
2013; 45
2009
2016; 10
2008
2002; 2
1996
2007
2006
2005
2004
2018; 61
2012; 7376
2015; 9
2011; 5
2005; 44
1999
2019
2018
2017
2016
1998; 1
2014
2013
2008; 42
2018; 12
2012; 45
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
Martin O. (e_1_2_9_40_1) 2006
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
Lee B. (e_1_2_9_45_1) 2004
Schuller B. (e_1_2_9_54_1) 2008
Bergstra J. (e_1_2_9_66_1) 2012; 13
Ihme K. (e_1_2_9_31_1) 2018; 12
Lotz A.F. (e_1_2_9_58_1) 2018
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_68_1
Eyben F. (e_1_2_9_67_1) 2010
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_4_1
European Commission. (e_1_2_9_7_1) 2019
e_1_2_9_2_1
Zander T.O. (e_1_2_9_25_1) 2011; 5
Burkhardt F. (e_1_2_9_38_1) 2005
e_1_2_9_26_1
e_1_2_9_49_1
Probst P. (e_1_2_9_72_1) 2019; 20
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_34_1
e_1_2_9_57_1
Schölkopf B. (e_1_2_9_74_1) 1999
e_1_2_9_13_1
Schuller B. (e_1_2_9_53_1) 2007
e_1_2_9_55_1
Engbert I.S. (e_1_2_9_39_1) 1996
Ortega A. (e_1_2_9_44_1) 2004
Malta L. (e_1_2_9_32_1) 2011; 12
e_1_2_9_70_1
Steidl S. (e_1_2_9_41_1) 2009
Steinwart I. (e_1_2_9_76_1) 2008
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
Lotz A.F. (e_1_2_9_61_1) 2018
e_1_2_9_21_1
Breiman L. (e_1_2_9_78_1) 1984
e_1_2_9_23_1
e_1_2_9_65_1
Abdić I. (e_1_2_9_60_1) 2016
e_1_2_9_5_1
Oehl M. (e_1_2_9_11_1) 2019
Hsu C. (e_1_2_9_75_1) 2016
e_1_2_9_3_1
Liaw A. (e_1_2_9_71_1) 2002; 2
European Commission. (e_1_2_9_6_1) 2011
Drewitz U. (e_1_2_9_18_1) 2019
Wang Q. (e_1_2_9_8_1) 2006
e_1_2_9_9_1
Cevher D. (e_1_2_9_59_1) 2019
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
Hastie T. (e_1_2_9_73_1) 2009
e_1_2_9_29_1
Grimm M. (e_1_2_9_46_1) 2007
References_xml – volume: 61
  start-page: 90
  issue: 5
  year: 2018
  end-page: 99
  ident: C36
  article-title: Speech emotion recognition: two decades in a nutshell, benchmarks, and ongoing trends
  publication-title: Commun. ACM
– volume: 9
  start-page: 269
  issue: 4
  year: 2015
  end-page: 275
  ident: C18
  article-title: Why did my car just do that? Explaining semi-autonomous driving actions to improve driver understanding, trust, and performance
  publication-title: Int. J. Interact. Des. Manuf.
– volume: 20
  start-page: 1
  issue: 53
  year: 2019
  end-page: 32
  ident: C71
  article-title: Tunability: importance of hyperparameters of machine learning algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 25
  start-page: 49
  issue: 1
  year: 1994
  end-page: 59
  ident: C63
  article-title: Measuring emotion: the self-assessment Manikin and the semantic differential
  publication-title: J. Behav. Ther. Exp. Psychiatry
– volume: 6
  start-page: 4
  year: 2004
  end-page: 14
  ident: C27
  article-title: Emotion recognition from physiological signals using wireless sensors for presence technologies
  publication-title: Cogn., Technol. Work
– volume: 12
  start-page: 109
  issue: 1
  year: 2011
  end-page: 118
  ident: C31
  article-title: Analysis of real-world driver's frustration
  publication-title: IEEE Trans. ITS
– volume: 1
  start-page: 137
  issue: 2
  year: 1998
  end-page: 160
  ident: C13
  article-title: Aggressive driving: the contribution of the drivers and the situation
  publication-title: Transp. Res. F, Traffic Psychol. Behav.
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  end-page: 22
  ident: C70
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 45
  start-page: 65
  year: 2013
  end-page: 73
  ident: C19
  article-title: Focusing on appraisals: how and why anger and fear influence driving risk perception
  publication-title: J. Saf. Res.
– volume: 8
  start-page: 17
  issue: 1
  year: 2014
  end-page: 28
  ident: C64
  article-title: Inter-rater reliability for emotion annotation in human-computer interaction: comparison and methodological improvements
  publication-title: J. Multimodal User Interfaces
– volume: 16
  start-page: 553
  issue: 6
  year: 2015
  end-page: 585
  ident: C2
  article-title: Towards affect-integrated driving behaviour research
  publication-title: Theor. Issues Ergon. Sci.
– volume: 44
  start-page: 695
  issue: 4
  year: 2005
  end-page: 729
  ident: C23
  article-title: What are emotions? And how can they be measured?
  publication-title: Soc. Sci. Inf.
– volume: 24
  start-page: 197
  year: 2014
  end-page: 209
  ident: C20
  article-title: Effects of specific emotions on subjective judgment, driving performance, and perceived workload
  publication-title: Transp. Res. F, Traffic Psychol. Behav.
– volume: 16
  start-page: 14
  year: 2013
  end-page: 28
  ident: C16
  article-title: Fear and anxiety while driving: differential impact of task demands, speed and motivation
  publication-title: Transp. Res. F, Traffic Psychol. Behav.
– volume: 10
  start-page: 139
  issue: 2
  year: 2016
  end-page: 149
  ident: C50
  article-title: Combining modality-specific extreme learning machines for emotion recognition in the wild
  publication-title: J. Multimodal User Interfaces
– volume: 5
  start-page: 1
  issue: 53
  year: 2011
  end-page: 10
  ident: C24
  article-title: A dry eeg-system for scientific research and brain-computer interfaces
  publication-title: Front. Neurosci.
– volume: 45
  start-page: 718
  year: 2012
  end-page: 725
  ident: C22
  article-title: The effects of positive emotion priming on self-reported reckless driving
  publication-title: Accident Anal. Prev.
– volume: 47
  start-page: 1254
  issue: 9
  year: 2009
  end-page: 1259
  ident: C21
  article-title: Emotions drive attention: effects on driver's behaviour
  publication-title: Saf. Sci.
– volume: 46
  start-page: 819
  issue: 8
  year: 1991
  end-page: 834
  ident: C12
  article-title: Progress on a cognitive-motivational-relational theory of emotion
  publication-title: Am. Psychologist
– volume: 38
  start-page: 502
  issue: 3
  year: 2008
  end-page: 512
  ident: C26
  article-title: Toward emotion recognition in car-racing drivers: A biosignal processing approach
  publication-title: IEEE Trans. SMC Part A: Syst. Humans
– volume: 14
  start-page: 119
  issue: 2
  year: 2002
  end-page: 140
  ident: C15
  article-title: This computer responds to user frustration: theory, design, and results
  publication-title: Interact. Comput.
– volume: 42
  start-page: 335
  issue: 4
  year: 2008
  end-page: 359
  ident: C42
  article-title: IEMOCAP: interactive emotional dyadic motion capture database
  publication-title: Lang. Res. Eval.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: C68
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 30
  start-page: 975
  issue: 5
  year: 2019
  end-page: 985
  ident: C48
  article-title: Audiovisual emotion recognition in wild
  publication-title: Mach. Vis. Appl.
– volume: 12
  start-page: 1
  issue: 327
  year: 2018
  end-page: 15
  ident: C30
  article-title: Recognizing frustration of drivers from face video recordings and brain activation measurements with functional near-infrared spectroscopy
  publication-title: Front. Hum. Neurosci.
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: C65
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 52
  start-page: 52
  issue: 1
  year: 2003
  end-page: 60
  ident: C29
  article-title: Facial expressions of emotion: a cognitive neuroscience perspective
  publication-title: Brain Cogn.
– year: 2011
– volume: 8
  start-page: 17
  issue: 1
  year: 2014
  end-page: 28
  article-title: Inter‐rater reliability for emotion annotation in human‐computer interaction: comparison and methodological improvements
  publication-title: J. Multimodal User Interfaces
– volume: 47
  start-page: 1254
  issue: 9
  year: 2009
  end-page: 1259
  article-title: Emotions drive attention: effects on driver's behaviour
  publication-title: Saf. Sci.
– year: 2009
– start-page: 1
  year: 2007
  end-page: 2
– start-page: 865
  year: 2008
  end-page: 868
– volume: 24
  start-page: 197
  year: 2014
  end-page: 209
  article-title: Effects of specific emotions on subjective judgment, driving performance, and perceived workload
  publication-title: Transp. Res. F, Traffic Psychol. Behav.
– volume: 4738
  start-page: 126
  year: 2007
  end-page: 138
– start-page: 1
  year: 2019
  end-page: 2
– start-page: 202
  year: 2019
  end-page: 209
– start-page: 386
  year: 2019
  end-page: 401
– start-page: 4605
  year: 2010
  end-page: 4608
– start-page: 2489
  year: 2004
  end-page: 2492
– year: 2018
– start-page: 208
  year: 2018
  end-page: 215
– volume: 16
  start-page: 14
  year: 2013
  end-page: 28
  article-title: Fear and anxiety while driving: differential impact of task demands, speed and motivation
  publication-title: Transp. Res. F, Traffic Psychol. Behav.
– start-page: 1
  year: 2018
  end-page: 12
  article-title: An experimental paradigm for inducing emotions in a real world driving scenario – evidence from self‐report, annotation of speech data and peripheral physiology
– start-page: 88
  year: 2017
  end-page: 93
– volume: 5
  start-page: 1
  issue: 53
  year: 2011
  end-page: 10
  article-title: A dry eeg‐system for scientific research and brain‐computer interfaces
  publication-title: Front. Neurosci.
– volume: 42
  start-page: 335
  issue: 4
  year: 2008
  end-page: 359
  article-title: IEMOCAP: interactive emotional dyadic motion capture database
  publication-title: Lang. Res. Eval.
– volume: 38
  start-page: 502
  issue: 3
  year: 2008
  end-page: 512
  article-title: Toward emotion recognition in car‐racing drivers: A biosignal processing approach
  publication-title: IEEE Trans. SMC Part A: Syst. Humans
– start-page: 5961
  year: 2014
  end-page: 5965
– year: 2008
– start-page: 788
  year: 2016
  end-page: 792
– year: 2004
– volume: 46
  start-page: 819
  issue: 8
  year: 1991
  end-page: 834
  article-title: Progress on a cognitive‐motivational‐relational theory of emotion
  publication-title: Am. Psychologist
– start-page: 8587
  year: 2006
  end-page: 8591
– volume: 1
  start-page: 137
  issue: 2
  year: 1998
  end-page: 160
  article-title: Aggressive driving: the contribution of the drivers and the situation
  publication-title: Transp. Res. F, Traffic Psychol. Behav.
– start-page: 185
  year: 2017
  end-page: 190
– year: 2019
– volume: 12
  start-page: 1
  issue: 327
  year: 2018
  end-page: 15
  article-title: Recognizing frustration of drivers from face video recordings and brain activation measurements with functional near‐infrared spectroscopy
  publication-title: Front. Hum. Neurosci.
– start-page: 1517
  year: 2005
  end-page: 1520
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  article-title: Random search for hyper‐parameter optimization
  publication-title: J. Mach. Learn. Res.
– start-page: 281
  year: 2013
  end-page: 298
– volume: 14
  start-page: 119
  issue: 2
  year: 2002
  end-page: 140
  article-title: This computer responds to user frustration: theory, design, and results
  publication-title: Interact. Comput.
– start-page: 1113
  year: 2017
  end-page: 1117
– year: 2007
– volume: 9
  start-page: 269
  issue: 4
  year: 2015
  end-page: 275
  article-title: Why did my car just do that? Explaining semi‐autonomous driving actions to improve driver understanding, trust, and performance
  publication-title: Int. J. Interact. Des. Manuf.
– year: 1996
– volume: 25
  start-page: 49
  issue: 1
  year: 1994
  end-page: 59
  article-title: Measuring emotion: the self‐assessment Manikin and the semantic differential
  publication-title: J. Behav. Ther. Exp. Psychiatry
– volume: 11253
  start-page: 146
  year: 2018
  end-page: 161
– volume: 52
  start-page: 52
  issue: 1
  year: 2003
  end-page: 60
  article-title: Facial expressions of emotion: a cognitive neuroscience perspective
  publication-title: Brain Cogn.
– volume: 61
  start-page: 90
  issue: 5
  year: 2018
  end-page: 99
  article-title: Speech emotion recognition: two decades in a nutshell, benchmarks, and ongoing trends
  publication-title: Commun. ACM
– start-page: 174
  year: 2010
  end-page: 178
– volume: 30
  start-page: 975
  issue: 5
  year: 2019
  end-page: 985
  article-title: Audiovisual emotion recognition in wild
  publication-title: Mach. Vis. Appl.
– year: 2016
– volume: 20
  start-page: 1
  issue: 53
  year: 2019
  end-page: 32
  article-title: Tunability: importance of hyperparameters of machine learning algorithms
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2018
  end-page: 6
– volume: 11096
  start-page: 134
  year: 2018
  end-page: 144
– volume: 88
  start-page: 16
  year: 2013
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  end-page: 22
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 12
  start-page: 109
  issue: 1
  year: 2011
  end-page: 118
  article-title: Analysis of real‐world driver's frustration
  publication-title: IEEE Trans. ITS
– start-page: 1459
  year: 2010
  end-page: 1462
– year: 1984
– volume: 44
  start-page: 695
  issue: 4
  year: 2005
  end-page: 729
  article-title: What are emotions? And how can they be measured?
  publication-title: Soc. Sci. Inf.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach. Learn.
– start-page: 1
  year: 2013
  end-page: 8
– volume: 45
  start-page: 65
  year: 2013
  end-page: 73
  article-title: Focusing on appraisals: how and why anger and fear influence driving risk perception
  publication-title: J. Saf. Res.
– start-page: 1589
  year: 2018
  end-page: 1596
– volume: 7376
  start-page: 154
  year: 2012
  end-page: 168
  article-title: How many trees in a random forest?
– start-page: 1
  year: 2019
  end-page: 20
– year: 2006
– start-page: 1127
  year: 2012
  end-page: 1132
– volume: 10
  start-page: 139
  issue: 2
  year: 2016
  end-page: 149
  article-title: Combining modality‐specific extreme learning machines for emotion recognition in the wild
  publication-title: J. Multimodal User Interfaces
– start-page: 1421
  year: 2018
  end-page: 1426
– start-page: 1
  year: 2008
  end-page: 4
– volume: 6
  start-page: 4
  year: 2004
  end-page: 14
  article-title: Emotion recognition from physiological signals using wireless sensors for presence technologies
  publication-title: Cogn., Technol. Work
– volume: 16
  start-page: 553
  issue: 6
  year: 2015
  end-page: 585
  article-title: Towards affect‐integrated driving behaviour research
  publication-title: Theor. Issues Ergon. Sci.
– volume: 45
  start-page: 718
  year: 2012
  end-page: 725
  article-title: The effects of positive emotion priming on self‐reported reckless driving
  publication-title: Accident Anal. Prev.
– start-page: 79
  year: 2019
  end-page: 90
– start-page: 763
  year: 2004
  end-page: 766
– start-page: 1354
  year: 2016
  end-page: 1360
– year: 1999
– start-page: 1517
  volume-title: Proc. of the INTERSPEECH‐2005
  year: 2005
  ident: e_1_2_9_38_1
  doi: 10.21437/Interspeech.2005-446
– volume-title: Automatic classification of emotion‐related user states in spontaneous children's speech
  year: 2009
  ident: e_1_2_9_41_1
– ident: e_1_2_9_10_1
  doi: 10.1145/3131726.3131744
– ident: e_1_2_9_20_1
  doi: 10.1016/j.jsr.2013.01.009
– volume-title: Information science and statistics
  year: 2008
  ident: e_1_2_9_76_1
– ident: e_1_2_9_28_1
  doi: 10.1007/s10111-003-0143-x
– ident: e_1_2_9_77_1
  doi: 10.1007/978-3-642-31537-4_13
– start-page: 1
  volume-title: Proc. of the DAGA‐2007
  year: 2007
  ident: e_1_2_9_53_1
– start-page: 1459
  volume-title: Proc. of the ACM Multimedia 2010
  year: 2010
  ident: e_1_2_9_67_1
– ident: e_1_2_9_37_1
  doi: 10.1145/3129340
– ident: e_1_2_9_21_1
  doi: 10.1016/j.trf.2014.04.003
– ident: e_1_2_9_55_1
  doi: 10.1109/ICME.2008.4607572
– ident: e_1_2_9_19_1
  doi: 10.1007/s12008-014-0227-2
– volume-title: Springer series in statistics
  year: 2009
  ident: e_1_2_9_73_1
– volume: 12
  start-page: 1
  issue: 327
  year: 2018
  ident: e_1_2_9_31_1
  article-title: Recognizing frustration of drivers from face video recordings and brain activation measurements with functional near‐infrared spectroscopy
  publication-title: Front. Hum. Neurosci.
– volume-title: Documentation of the danish emotional speech database DES
  year: 1996
  ident: e_1_2_9_39_1
– volume-title: Proc. of the ICDEW‐2006
  year: 2006
  ident: e_1_2_9_40_1
– ident: e_1_2_9_36_1
  doi: 10.1109/ITSC.2018.8569461
– ident: e_1_2_9_47_1
  doi: 10.1109/ATSIP.2016.7523189
– ident: e_1_2_9_4_1
– volume: 5
  start-page: 1
  issue: 53
  year: 2011
  ident: e_1_2_9_25_1
  article-title: A dry eeg‐system for scientific research and brain‐computer interfaces
  publication-title: Front. Neurosci.
– ident: e_1_2_9_57_1
  doi: 10.1109/ICPR.2010.1132
– ident: e_1_2_9_13_1
  doi: 10.1037/0003-066X.46.8.819
– ident: e_1_2_9_2_1
– volume-title: Road safety: commission welcomes agreement on new eu rules to help save lives
  year: 2019
  ident: e_1_2_9_7_1
– ident: e_1_2_9_33_1
  doi: 10.1109/ICIP.2014.7026203
– ident: e_1_2_9_51_1
  doi: 10.1007/s12193-015-0175-6
– ident: e_1_2_9_30_1
  doi: 10.1016/S0278-2626(03)00008-3
– ident: e_1_2_9_16_1
  doi: 10.1016/S0953-5438(01)00053-4
– ident: e_1_2_9_17_1
  doi: 10.1016/j.trf.2012.07.002
– start-page: 2489
  volume-title: Proc. of the INTERSPEECH‐2004
  year: 2004
  ident: e_1_2_9_45_1
  doi: 10.21437/Interspeech.2004-424
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: e_1_2_9_71_1
  article-title: Classification and regression by random forest
  publication-title: R News
– ident: e_1_2_9_9_1
  doi: 10.1201/9781420007497
– ident: e_1_2_9_35_1
  doi: 10.1109/ICVES.2018.8519595
– ident: e_1_2_9_50_1
  doi: 10.21437/Interspeech.2017-736
– volume-title: A practical guide to support vector classification
  year: 2016
  ident: e_1_2_9_75_1
– ident: e_1_2_9_27_1
  doi: 10.1109/TSMCA.2008.918624
– volume-title: Advances in kernel methods: support vector learning
  year: 1999
  ident: e_1_2_9_74_1
– ident: e_1_2_9_23_1
  doi: 10.1016/j.aap.2011.09.039
– ident: e_1_2_9_5_1
  doi: 10.1109/ICVES.2017.7991923
– ident: e_1_2_9_14_1
  doi: 10.1016/S1369-8478(99)00002-9
– ident: e_1_2_9_52_1
  doi: 10.1007/978-3-540-74889-2_12
– ident: e_1_2_9_56_1
  doi: 10.1109/IVS.2010.5547956
– ident: e_1_2_9_43_1
  doi: 10.1007/s10579-008-9076-6
– start-page: 1
  volume-title: Proc. of the 8th ITG‐Speech Communication
  year: 2008
  ident: e_1_2_9_54_1
– start-page: 1589
  volume-title: Proc. of the LREC 2018
  year: 2018
  ident: e_1_2_9_61_1
– ident: e_1_2_9_12_1
  doi: 10.1145/2370216.2370455
– ident: e_1_2_9_26_1
  doi: 10.1007/978-3-030-05081-8_11
– volume-title: Classification and regression trees
  year: 1984
  ident: e_1_2_9_78_1
– ident: e_1_2_9_42_1
  doi: 10.1109/FG.2013.6553805
– ident: e_1_2_9_62_1
– volume-title: White paper on transport – roadmap to a single European transport area – towards a competitive and resource‐efficient transport system
  year: 2011
  ident: e_1_2_9_6_1
– volume: 13
  start-page: 281
  year: 2012
  ident: e_1_2_9_66_1
  article-title: Random search for hyper‐parameter optimization
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_9_63_1
  doi: 10.1093/acprof:oso/9780199592746.003.0019
– ident: e_1_2_9_68_1
  doi: 10.1524/9783486595000
– ident: e_1_2_9_29_1
  doi: 10.1007/978-3-030-21074-8_32
– ident: e_1_2_9_49_1
  doi: 10.1007/s00138-018-0960-9
– ident: e_1_2_9_3_1
  doi: 10.1080/1463922X.2015.1067934
– ident: e_1_2_9_70_1
  doi: 10.1007/978-3-319-99579-3_15
– volume: 12
  start-page: 109
  issue: 1
  year: 2011
  ident: e_1_2_9_32_1
  article-title: Analysis of real‐world driver's frustration
  publication-title: IEEE Trans. ITS
– start-page: 1354
  volume-title: Proc. of the IJCAI‐2016
  year: 2016
  ident: e_1_2_9_60_1
– ident: e_1_2_9_65_1
  doi: 10.1007/s12193-013-0129-9
– start-page: 79
  volume-title: Proc. of the KONVENS 2019
  year: 2019
  ident: e_1_2_9_59_1
– ident: e_1_2_9_22_1
  doi: 10.1016/j.ssci.2009.03.011
– ident: e_1_2_9_48_1
  doi: 10.1109/ICASSP.2007.367226
– start-page: 763
  volume-title: Proc. of the LREC‐2004
  year: 2004
  ident: e_1_2_9_44_1
– start-page: 208
  volume-title: Elektronische Sprachsignalverarbeitung 2018. vol. 90 of Studientexte zur Sprachkommunikation
  year: 2018
  ident: e_1_2_9_58_1
– ident: e_1_2_9_64_1
  doi: 10.1016/0005-7916(94)90063-9
– ident: e_1_2_9_24_1
  doi: 10.1177/0539018405058216
– start-page: 1
  volume-title: Proc. of the DAGA‐2007
  year: 2007
  ident: e_1_2_9_46_1
– ident: e_1_2_9_15_1
– start-page: 1
  volume-title: 10. VDI‐Tagung Mensch‐Maschine‐Mobilität
  year: 2019
  ident: e_1_2_9_18_1
– start-page: 1
  volume-title: Mensch und computer 2019 – workshopband
  year: 2019
  ident: e_1_2_9_11_1
– ident: e_1_2_9_69_1
  doi: 10.1023/A:1010933404324
– start-page: 8587
  volume-title: Proc. of the IEEE WCICA'06
  year: 2006
  ident: e_1_2_9_8_1
– ident: e_1_2_9_34_1
  doi: 10.1109/ICMLA.2019.00039
– volume: 20
  start-page: 1
  issue: 53
  year: 2019
  ident: e_1_2_9_72_1
  article-title: Tunability: importance of hyperparameters of machine learning algorithms
  publication-title: J. Mach. Learn. Res.
SSID ssj0056221
Score 2.2743402
Snippet For vehicle safety, the in-time monitoring of the driver and assessing his/her state is a demanding issue. Frustration can lead to aggressive driving...
For vehicle safety, the in‐time monitoring of the driver and assessing his/her state is a demanding issue. Frustration can lead to aggressive driving...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 1265
SubjectTerms 4‐emotion‐class detection problem
adaptive automotive safety applications
affect‐aware vehicles
aggressive driving behaviours
automatic analysis
chance level
driver emotion recognition
driver information systems
driver in‐time monitoring
emotion recognition
emotional driver states
fatal road accidents
feature extraction
feature selection
feature sets
hyper‐parameter optimisation
in‐car assistance
learning (artificial intelligence)
low‐expressed emotions
machine learning algorithms
optimal feature set
optimisation
random forests
realistic driving study
real‐world situations
Research Article
road accidents
road safety
small random forests
speech data
speech feature selection
standard emobase feature set
subject data identification
vehicle safety
SummonAdditionalLinks – databaseName: IET Digital Library (Open Access)
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66XvQgPnF9kYN4EKJtHpvWm69FRT3ICnsrSZvognZlrYK_wr_sTNr1AaIe2yRDyUwz30zmQchWIbUWXKOlGlkmhfQM1IhjRtuC88hL0cHk5MurzumNPO-r_md6dDG4xV4ZbOxxQ2-5qzMPMHQbzuG9Zo_rhiSAb_dgAhtUWHo7TndBYuFAnuJax7JFps6OL9DEqk9mUPV1HpbG1vKq0_-45fyByDc9NQnD39FrUD_dOTLb4EZ6UDN6nky4coHMfKkmuEjeeiEE9omaEKPBDDw5-uLuQuQbBXRKByWCRHQP0CfjXfVKTVlQEDoYrPZpE00UxosRRmxQV7f5geWj4QM1z8VgSGvHDrrYgSA18IxVFOHDwqJAHIvWLpGb7knv6JQ1_RZYLkCZMd8x2uUqtj4SLokAGMWAH5SOXZpK6xTYkh5-70Ipb3ORAhbi3LlIGW8AZKZeLJNWOSzdCqFpovPEamuEMVLkcWKSVEaJ9JLbQgnZJtF4d7O8KUaOPTHus3ApLtMMdjwDhmTIkAwZ0iY7H0se60ocv03exndjWfltoghc_Ztkdta75odddAHFq_8lv0amORroIfpvnbSq0bPbABRT2c1GON8BPlLvjQ
  priority: 102
  providerName: Institution of Engineering and Technology
Title Towards affect-aware vehicles for increasing safety and comfort: recognising driver emotions from audio recordings in a realistic driving study
URI http://digital-library.theiet.org/content/journals/10.1049/iet-its.2019.0732
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-its.2019.0732
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PT9swFLc6emGHaWNDMAbyAXGYlJH4Tx3vVsqqFsGGUCv1FtmJrVXa0qkNSNz4CNtX3CfhPSetQEhF4pjYz0r8_Px-fn5_CDkshFKcKTypxjYSXPgI1IiLjLIFY7EXvIPByRffO4OxOJvISYv0lrEwdX6IlcENJSPs1yjgxtZVSADUAhOnroqmFWbcTvQXWKiwD7cxxBYT6DNxudyOQb_XwVcK68nLzmR1tamPnwzxSDm9gubHkDXonP5b8qYBi7Rbc_cdablyi7x-kELwPfk3Cn6vC2qCY8b_u78Gnh29cT-DwxsFUEqnJWJDtArQhfGuuqWmLCj8MDRWX2njRBTaizk6alBXV_cB8vnsNzXXxXRGa3sOWtZhQGrgGZMnwqcFojA45qr9QMb9b6PeIGrKLEQ5Bx0W-Y5RLpeJ9TF3aQx4KAHYIFXitBbWSThCepDqQkpvc64BAjHmXCyNN4AttefbZKOclW6HUJ2qPLXKGm6M4HmSmlSLOBVeMFtILnZJvJzfLG9ykGMpjF9ZuAsXOoM5z4AlGbIkQ5bsks8rkj91Ao51nY_wXSOGi3UdeeDr80Nmw9EVO-mj5Sf5-CKqPbLJ8JAePAA_kY1qfu32AclU9iCs1APSHp6e_-jeA_pS8Po
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAHqCHivIQ0Jb6gDggBRI_4phbC6yWpxBapL1FdmKLlWgW7QYkbv0J5S_2l3TGya5ASFTimNhjJR6P55vxeIaQrVIoxZlCSzW2keDCR6BGXGSULRmLveApXk4-v0i71-KkL_sz5HByF6bJDzF1uKFkhP0aBRwd0o3BKTBJ5sDV0aDGlNuJ3oWVChvxB5EyheLJxOVkPwYF39y-UlhQXqb96dmm3ns1xAvtNAvNLzFrUDqdRfKpRYv0R8Pez2TGVUvk47McgsvkqRcCX8fUhMiMv7__GHh29MHdhIg3CqiUDioEh-gWoGPjXf1ITVVS-GNorPdpG0UU2ssRRmpQ15T3AfLR8Bc19-VgSBuHDrrWYUBq4BmzJ8KnBaIwOCarXSHXnaPeQTdq6yxEBQclFvnUKFfIxPqYuywGQJQAbpAqcVoL6yTYkB7EupTS24JrwECMORdL4w2AS-35KpmrhpVbI1RnqsissoYbI3iRZCbTIs6EF8yWkot1Ek_mNy_aJORYC-M2D4fhQucw5zmwJEeW5MiSdbIzJblrMnC81Xkb37VyOH6rIw98_f-Q-XHviv3soOsn2XgX1Xcy3-2dn-VnxxenX8gCQ4s9hAN-JXP16N59A1hT282wav8BZ0Dy2g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBabLITkUNomIa-mOpQcAk5sS1pZveW15LmEsBuWXIxkS3Sh8YZdp9Bbf0LzF_NLMiN7ly6FBHK0pRG2RqP5NBp9IuRbzqVkscSVamgCzrgLwI3YQEuTx3HoOGvh4eSrTuu0x8_7ot8gR5OzMBU_xDTghpbh52s08IfcVetNjhyZA1sGgxIZtyO1BwMV5uEmsuXB0G4e3PbuepMJGTx8dfxK4o3yotWfbm6q_f8amXFPc1A8C1q912l_JB9quEgPKv1-Ig1bfCZL_5AILpOnrs98HVPtUzOe__zV8GzpL_vDp7xRgKV0UCA6xLgAHWtny99UFzmFX4bC8jut04h8eT7CVA1qq_t9QHw0vKf6MR8MaRXRwdg6NEg1PCN9InyaF_KNI1vtCum1T7pHp0F90UKQMfBigWtpaTMRGRcym4SAiCIADkJGVilurIBFpAO7zoVwJmMKQFAcWxsK7TSgS-XYKpkvhoVdI1QlMkuMNJppzVkWJTpRPEy447HJBePrJJz0b5rVLOR4GcbP1O-Gc5VCn6egkhRVkqJK1snuVOShouB4rfIOvqsNcfxaReb1-naT6Vn3Jj5sY-wn2niX1FeycH3cTi_POhebZDHGFbtPB9wi8-Xo0X4BWFOa7XrYvgCXN_PS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+affect%E2%80%90aware+vehicles+for+increasing+safety+and+comfort%3A+recognising+driver+emotions+from+audio+recordings+in+a+realistic+driving+study&rft.jtitle=IET+intelligent+transport+systems&rft.au=Requardt%2C+Alicia+F.&rft.au=Ihme%2C+Klas&rft.au=Wilbrink%2C+Marc&rft.au=Wendemuth%2C+Andreas&rft.date=2020-10-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-956X&rft.eissn=1751-9578&rft.volume=14&rft.issue=10&rft.spage=1265&rft.epage=1277&rft_id=info:doi/10.1049%2Fiet-its.2019.0732&rft.externalDBID=10.1049%252Fiet-its.2019.0732&rft.externalDocID=ITR2BF00931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-956X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-956X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-956X&client=summon