Towards affect-aware vehicles for increasing safety and comfort: recognising driver emotions from audio recordings in a realistic driving study
For vehicle safety, the in-time monitoring of the driver and assessing his/her state is a demanding issue. Frustration can lead to aggressive driving behaviours, which play a decisive role in up to one-third of fatal road accidents. Consequently, the authors present the automatic analysis of the emo...
Saved in:
Published in | IET intelligent transport systems Vol. 14; no. 10; pp. 1265 - 1277 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
The Institution of Engineering and Technology
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For vehicle safety, the in-time monitoring of the driver and assessing his/her state is a demanding issue. Frustration can lead to aggressive driving behaviours, which play a decisive role in up to one-third of fatal road accidents. Consequently, the authors present the automatic analysis of the emotional driver states of frustration, anxiety, positive and neutral. Based on experiments with normal drivers within cars in real-world (low expressivity) situations, they use speech data, as speech can be recorded with zero invasiveness and comes naturally in driving situations. A careful selection of speech features, subject data identification, hyper-parameter optimisation, and machine learning algorithms was applied for this difficult 4-emotion-class detection problem, where the literature hardly reports results above chance level. In-car assistance demands real-time computing. A very detailed analysis yields best results with relatively small random forests, and with an optimal feature set containing only 65 features (6.51% of the standard emobase feature set) which outperformed all other feature sets, producing 35.38% unweighted average recall (53.26% precision) with low computational effort, and also reducing the inevitably high confusion of ‘neutral’ with low-expressed emotions. This result is comparable to and even outperforming other reported studies of emotion recognition in the wild. Their work, therefore, triggers adaptive automotive safety applications. |
---|---|
AbstractList | For vehicle safety, the in‐time monitoring of the driver and assessing his/her state is a demanding issue. Frustration can lead to aggressive driving behaviours, which play a decisive role in up to one‐third of fatal road accidents. Consequently, the authors present the automatic analysis of the emotional driver states of frustration, anxiety, positive and neutral. Based on experiments with normal drivers within cars in real‐world (low expressivity) situations, they use speech data, as speech can be recorded with zero invasiveness and comes naturally in driving situations. A careful selection of speech features, subject data identification, hyper‐parameter optimisation, and machine learning algorithms was applied for this difficult 4‐emotion‐class detection problem, where the literature hardly reports results above chance level. In‐car assistance demands real‐time computing. A very detailed analysis yields best results with relatively small random forests, and with an optimal feature set containing only 65 features (6.51% of the standard emobase feature set) which outperformed all other feature sets, producing 35.38% unweighted average recall (53.26% precision) with low computational effort, and also reducing the inevitably high confusion of ‘neutral’ with low‐expressed emotions. This result is comparable to and even outperforming other reported studies of emotion recognition in the wild. Their work, therefore, triggers adaptive automotive safety applications. |
Author | Ihme, Klas Requardt, Alicia F Wilbrink, Marc Wendemuth, Andreas |
Author_xml | – sequence: 1 givenname: Alicia F surname: Requardt fullname: Requardt, Alicia F email: alicia.requardt@ovgu.de organization: 1Otto-von-Guericke-University Magdeburg, Cognitive Systems Group, Universitätsplatz 2, 39106 Magdeburg, Germany – sequence: 2 givenname: Klas surname: Ihme fullname: Ihme, Klas organization: 2Germany Aerospace Center (DLR), Institute of Transportation Systems, Lilienthalplatz 7, 38108 Braunschweig, Germany – sequence: 3 givenname: Marc orcidid: 0000-0002-7550-8613 surname: Wilbrink fullname: Wilbrink, Marc organization: 2Germany Aerospace Center (DLR), Institute of Transportation Systems, Lilienthalplatz 7, 38108 Braunschweig, Germany – sequence: 4 givenname: Andreas surname: Wendemuth fullname: Wendemuth, Andreas organization: 1Otto-von-Guericke-University Magdeburg, Cognitive Systems Group, Universitätsplatz 2, 39106 Magdeburg, Germany |
BookMark | eNqFkMFOAjEQhhuDiYA-gLe-wGLbpbtbbkpESUhMDCbeNqU7xZJla9oC2afwle2C8eABT-1k_m8m8w1Qr7ENIHRLyYiSsbgzEBIT_IgRKkYkT9kF6tOc00TwvOj9_rP3KzTwfkMIzxijffS1tAfpKo-l1qBCImMFeA8fRtXgsbYOm0Y5kN40a-ylhtBi2VRY2W1shgl2oOy6Mcd-5cweHIatDcY2EXd2i-WuMvYYc1UM-TgQy1jL2vhg1BE6Dg-7qr1Gl1rWHm5-3iF6mz0up8_J4uVpPr1fJCpNxzTRmcxBcbrSJIWCZCylecF4TkGI8Qo442Nd5KTiXK9UKjLKGQMgXGopaCZ0OkT0NFc5670DXX46s5WuLSkpO6NlNFpGo2VntOyMRib_wygTZHdpcNLUZ8nJiTyYGtr_V5Xz5St7mBEiUhrh5AR3sY3duSaKObPsGwbxpIE |
CitedBy_id | crossref_primary_10_1016_j_specom_2023_102974 crossref_primary_10_1109_OJVT_2022_3174546 crossref_primary_10_1002_adfm_202422552 crossref_primary_10_3390_app132011277 crossref_primary_10_3390_su14137705 crossref_primary_10_1007_s10772_024_10107_7 crossref_primary_10_12677_ap_2024_148567 crossref_primary_10_1145_3569466 crossref_primary_10_3390_electronics13193904 crossref_primary_10_1007_s42154_023_00270_z crossref_primary_10_1016_j_buildenv_2021_108711 crossref_primary_10_1016_j_trpro_2021_12_077 crossref_primary_10_1109_TIM_2023_3301060 crossref_primary_10_1016_j_advengsoft_2023_103412 crossref_primary_10_35609_jmmr_2023_8_3_2 |
Cites_doi | 10.21437/Interspeech.2005-446 10.1145/3131726.3131744 10.1016/j.jsr.2013.01.009 10.1007/s10111-003-0143-x 10.1007/978-3-642-31537-4_13 10.1145/3129340 10.1016/j.trf.2014.04.003 10.1109/ICME.2008.4607572 10.1007/s12008-014-0227-2 10.1109/ITSC.2018.8569461 10.1109/ATSIP.2016.7523189 10.1109/ICPR.2010.1132 10.1037/0003-066X.46.8.819 10.1109/ICIP.2014.7026203 10.1007/s12193-015-0175-6 10.1016/S0278-2626(03)00008-3 10.1016/S0953-5438(01)00053-4 10.1016/j.trf.2012.07.002 10.21437/Interspeech.2004-424 10.1201/9781420007497 10.1109/ICVES.2018.8519595 10.21437/Interspeech.2017-736 10.1109/TSMCA.2008.918624 10.1016/j.aap.2011.09.039 10.1109/ICVES.2017.7991923 10.1016/S1369-8478(99)00002-9 10.1007/978-3-540-74889-2_12 10.1109/IVS.2010.5547956 10.1007/s10579-008-9076-6 10.1145/2370216.2370455 10.1007/978-3-030-05081-8_11 10.1109/FG.2013.6553805 10.1093/acprof:oso/9780199592746.003.0019 10.1524/9783486595000 10.1007/978-3-030-21074-8_32 10.1007/s00138-018-0960-9 10.1080/1463922X.2015.1067934 10.1007/978-3-319-99579-3_15 10.1007/s12193-013-0129-9 10.1016/j.ssci.2009.03.011 10.1109/ICASSP.2007.367226 10.1016/0005-7916(94)90063-9 10.1177/0539018405058216 10.1023/A:1010933404324 10.1109/ICMLA.2019.00039 |
ContentType | Journal Article |
Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
DBID | AAYXX CITATION |
DOI | 10.1049/iet-its.2019.0732 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-9578 |
EndPage | 1277 |
ExternalDocumentID | 10_1049_iet_its_2019_0732 ITR2BF00931 |
Genre | article |
GrantInformation_xml | – fundername: Horizon 2020 grantid: 688900 |
GroupedDBID | 0R 24P 29I 29J 4.4 5GY 6IK 8FE 8FG AAJGR ABJCF ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BFFAM BGLVJ CS3 EBS EJD HCIFZ HZ IFIPE IPLJI JAVBF L6V LAI M43 M7S O9- OCL P2P P62 PTHSS RIE RIG RNS RUI UNR .DC 0R~ 1OC AAHHS AAHJG ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADZOD AEEZP AEQDE AIAGR AIWBW AJBDE ALUQN AVUZU CCPQU GROUPED_DOAJ HZ~ IAO ITC MCNEO OK1 ROL AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
ID | FETCH-LOGICAL-c3341-f6a7ec51bf03e806231782571e994be5254f870d55fbc3961522ee05afa9169f3 |
IEDL.DBID | 24P |
ISSN | 1751-956X |
IngestDate | Tue Aug 05 11:59:41 EDT 2025 Thu Apr 24 23:05:19 EDT 2025 Wed Jan 22 16:30:45 EST 2025 Tue Jan 05 21:45:22 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | emotional driver states random forests vehicle safety road safety emotion recognition audio recordings aggressive driving behaviours speech data in-car assistance optimisation road accidents standard emobase feature set feature extraction driver information systems automatic analysis learning (artificial intelligence) real-world situations machine learning algorithms 4-emotion-class detection problem feature selection subject data identification low-expressed emotions feature sets speech feature selection small random forests chance level fatal road accidents affect-aware vehicles driver in-time monitoring hyper-parameter optimisation adaptive automotive safety applications driver emotion recognition optimal feature set audio recording realistic driving study |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3341-f6a7ec51bf03e806231782571e994be5254f870d55fbc3961522ee05afa9169f3 |
ORCID | 0000-0002-7550-8613 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1049_iet_its_2019_0732 iet_journals_10_1049_iet_its_2019_0732 wiley_primary_10_1049_iet_its_2019_0732_ITR2BF00931 crossref_citationtrail_10_1049_iet_its_2019_0732 |
ProviderPackageCode | RUI |
PublicationCentury | 2000 |
PublicationDate | 20201000 October 2020 2020-10-00 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201000 |
PublicationDecade | 2020 |
PublicationTitle | IET intelligent transport systems |
PublicationYear | 2020 |
Publisher | The Institution of Engineering and Technology |
Publisher_xml | – name: The Institution of Engineering and Technology |
References | Pêcher, C.; Lemercier, C.; Cellier, J.M. (C21) 2009; 47 Ihme, K.; Unni, A.; Zhang, M. (C30) 2018; 12 Scherer, K.R. (C23) 2005; 44 Busso, C.; Bulut, M.; Lee, C.C. (C42) 2008; 42 Lazarus, R.S. (C12) 1991; 46 Liaw, A.; Wiener, M. (C70) 2002; 2 Zander, T.O.; Lehne, M.; Ihme, K. (C24) 2011; 5 Taubman-Ben-Ari, O. (C22) 2012; 45 Breiman, L. (C68) 2001; 45 Nasoz, F.; Alvarez, K.; Lisetti, C.L. (C27) 2004; 6 Bradley, M.M.; Lang, P.J. (C63) 1994; 25 Bergstra, J.; Bengio, Y. (C65) 2012; 13 Jeon, M. (C2) 2015; 16 Jeon, M.; Walker, B.N.; Yim, J.B. (C20) 2014; 24 Klein, J.; Moon, Y.; Picard, R.W. (C15) 2002; 14 Schuller, B. (C36) 2018; 61 Probst, P.; Boulesteix, A.L.; Bischl, B. (C71) 2019; 20 Lu, J.; Xie, X.; Zhang, R. (C19) 2013; 45 Kaya, H.; Salah, A.A. (C50) 2016; 10 Siegert, I.; Böck, R.; Wendemuth, A. (C64) 2014; 8 Shinar, D. (C13) 1998; 1 Schmidt-Daffy, M. (C16) 2013; 16 Malta, L.; Miyajima, C.; Kitaoka, N. (C31) 2011; 12 Avots, E.; Sapiński, T.; Bachmann, M. (C48) 2019; 30 Koo, J.; Kwac, J.; Ju, W. (C18) 2015; 9 Katsis, C.D.; Katertsidis, N.; Ganiatsas, G. (C26) 2008; 38 Erickson, K.; Schulkin, J. (C29) 2003; 52 2002; 14 2009; 47 2008; 38 2004; 6 1994; 25 2014; 24 2011; 12 2007; 4738 2012; 13 2001; 45 2003; 52 2013; 16 2019; 20 1991; 46 1984 2018; 11253 2014; 8 2018; 11096 2015; 16 2012 2013; 88 2011 2019; 30 2010 2013; 45 2009 2016; 10 2008 2002; 2 1996 2007 2006 2005 2004 2018; 61 2012; 7376 2015; 9 2011; 5 2005; 44 1999 2019 2018 2017 2016 1998; 1 2014 2013 2008; 42 2018; 12 2012; 45 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 Martin O. (e_1_2_9_40_1) 2006 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 Lee B. (e_1_2_9_45_1) 2004 Schuller B. (e_1_2_9_54_1) 2008 Bergstra J. (e_1_2_9_66_1) 2012; 13 Ihme K. (e_1_2_9_31_1) 2018; 12 Lotz A.F. (e_1_2_9_58_1) 2018 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_68_1 Eyben F. (e_1_2_9_67_1) 2010 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_4_1 European Commission. (e_1_2_9_7_1) 2019 e_1_2_9_2_1 Zander T.O. (e_1_2_9_25_1) 2011; 5 Burkhardt F. (e_1_2_9_38_1) 2005 e_1_2_9_26_1 e_1_2_9_49_1 Probst P. (e_1_2_9_72_1) 2019; 20 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_34_1 e_1_2_9_57_1 Schölkopf B. (e_1_2_9_74_1) 1999 e_1_2_9_13_1 Schuller B. (e_1_2_9_53_1) 2007 e_1_2_9_55_1 Engbert I.S. (e_1_2_9_39_1) 1996 Ortega A. (e_1_2_9_44_1) 2004 Malta L. (e_1_2_9_32_1) 2011; 12 e_1_2_9_70_1 Steidl S. (e_1_2_9_41_1) 2009 Steinwart I. (e_1_2_9_76_1) 2008 e_1_2_9_15_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 Lotz A.F. (e_1_2_9_61_1) 2018 e_1_2_9_21_1 Breiman L. (e_1_2_9_78_1) 1984 e_1_2_9_23_1 e_1_2_9_65_1 Abdić I. (e_1_2_9_60_1) 2016 e_1_2_9_5_1 Oehl M. (e_1_2_9_11_1) 2019 Hsu C. (e_1_2_9_75_1) 2016 e_1_2_9_3_1 Liaw A. (e_1_2_9_71_1) 2002; 2 European Commission. (e_1_2_9_6_1) 2011 Drewitz U. (e_1_2_9_18_1) 2019 Wang Q. (e_1_2_9_8_1) 2006 e_1_2_9_9_1 Cevher D. (e_1_2_9_59_1) 2019 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 Hastie T. (e_1_2_9_73_1) 2009 e_1_2_9_29_1 Grimm M. (e_1_2_9_46_1) 2007 |
References_xml | – volume: 61 start-page: 90 issue: 5 year: 2018 end-page: 99 ident: C36 article-title: Speech emotion recognition: two decades in a nutshell, benchmarks, and ongoing trends publication-title: Commun. ACM – volume: 9 start-page: 269 issue: 4 year: 2015 end-page: 275 ident: C18 article-title: Why did my car just do that? Explaining semi-autonomous driving actions to improve driver understanding, trust, and performance publication-title: Int. J. Interact. Des. Manuf. – volume: 20 start-page: 1 issue: 53 year: 2019 end-page: 32 ident: C71 article-title: Tunability: importance of hyperparameters of machine learning algorithms publication-title: J. Mach. Learn. Res. – volume: 25 start-page: 49 issue: 1 year: 1994 end-page: 59 ident: C63 article-title: Measuring emotion: the self-assessment Manikin and the semantic differential publication-title: J. Behav. Ther. Exp. Psychiatry – volume: 6 start-page: 4 year: 2004 end-page: 14 ident: C27 article-title: Emotion recognition from physiological signals using wireless sensors for presence technologies publication-title: Cogn., Technol. Work – volume: 12 start-page: 109 issue: 1 year: 2011 end-page: 118 ident: C31 article-title: Analysis of real-world driver's frustration publication-title: IEEE Trans. ITS – volume: 1 start-page: 137 issue: 2 year: 1998 end-page: 160 ident: C13 article-title: Aggressive driving: the contribution of the drivers and the situation publication-title: Transp. Res. F, Traffic Psychol. Behav. – volume: 2 start-page: 18 issue: 3 year: 2002 end-page: 22 ident: C70 article-title: Classification and regression by random forest publication-title: R News – volume: 45 start-page: 65 year: 2013 end-page: 73 ident: C19 article-title: Focusing on appraisals: how and why anger and fear influence driving risk perception publication-title: J. Saf. Res. – volume: 8 start-page: 17 issue: 1 year: 2014 end-page: 28 ident: C64 article-title: Inter-rater reliability for emotion annotation in human-computer interaction: comparison and methodological improvements publication-title: J. Multimodal User Interfaces – volume: 16 start-page: 553 issue: 6 year: 2015 end-page: 585 ident: C2 article-title: Towards affect-integrated driving behaviour research publication-title: Theor. Issues Ergon. Sci. – volume: 44 start-page: 695 issue: 4 year: 2005 end-page: 729 ident: C23 article-title: What are emotions? And how can they be measured? publication-title: Soc. Sci. Inf. – volume: 24 start-page: 197 year: 2014 end-page: 209 ident: C20 article-title: Effects of specific emotions on subjective judgment, driving performance, and perceived workload publication-title: Transp. Res. F, Traffic Psychol. Behav. – volume: 16 start-page: 14 year: 2013 end-page: 28 ident: C16 article-title: Fear and anxiety while driving: differential impact of task demands, speed and motivation publication-title: Transp. Res. F, Traffic Psychol. Behav. – volume: 10 start-page: 139 issue: 2 year: 2016 end-page: 149 ident: C50 article-title: Combining modality-specific extreme learning machines for emotion recognition in the wild publication-title: J. Multimodal User Interfaces – volume: 5 start-page: 1 issue: 53 year: 2011 end-page: 10 ident: C24 article-title: A dry eeg-system for scientific research and brain-computer interfaces publication-title: Front. Neurosci. – volume: 45 start-page: 718 year: 2012 end-page: 725 ident: C22 article-title: The effects of positive emotion priming on self-reported reckless driving publication-title: Accident Anal. Prev. – volume: 47 start-page: 1254 issue: 9 year: 2009 end-page: 1259 ident: C21 article-title: Emotions drive attention: effects on driver's behaviour publication-title: Saf. Sci. – volume: 46 start-page: 819 issue: 8 year: 1991 end-page: 834 ident: C12 article-title: Progress on a cognitive-motivational-relational theory of emotion publication-title: Am. Psychologist – volume: 38 start-page: 502 issue: 3 year: 2008 end-page: 512 ident: C26 article-title: Toward emotion recognition in car-racing drivers: A biosignal processing approach publication-title: IEEE Trans. SMC Part A: Syst. Humans – volume: 14 start-page: 119 issue: 2 year: 2002 end-page: 140 ident: C15 article-title: This computer responds to user frustration: theory, design, and results publication-title: Interact. Comput. – volume: 42 start-page: 335 issue: 4 year: 2008 end-page: 359 ident: C42 article-title: IEMOCAP: interactive emotional dyadic motion capture database publication-title: Lang. Res. Eval. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: C68 article-title: Random forests publication-title: Mach. Learn. – volume: 30 start-page: 975 issue: 5 year: 2019 end-page: 985 ident: C48 article-title: Audiovisual emotion recognition in wild publication-title: Mach. Vis. Appl. – volume: 12 start-page: 1 issue: 327 year: 2018 end-page: 15 ident: C30 article-title: Recognizing frustration of drivers from face video recordings and brain activation measurements with functional near-infrared spectroscopy publication-title: Front. Hum. Neurosci. – volume: 13 start-page: 281 year: 2012 end-page: 305 ident: C65 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 52 start-page: 52 issue: 1 year: 2003 end-page: 60 ident: C29 article-title: Facial expressions of emotion: a cognitive neuroscience perspective publication-title: Brain Cogn. – year: 2011 – volume: 8 start-page: 17 issue: 1 year: 2014 end-page: 28 article-title: Inter‐rater reliability for emotion annotation in human‐computer interaction: comparison and methodological improvements publication-title: J. Multimodal User Interfaces – volume: 47 start-page: 1254 issue: 9 year: 2009 end-page: 1259 article-title: Emotions drive attention: effects on driver's behaviour publication-title: Saf. Sci. – year: 2009 – start-page: 1 year: 2007 end-page: 2 – start-page: 865 year: 2008 end-page: 868 – volume: 24 start-page: 197 year: 2014 end-page: 209 article-title: Effects of specific emotions on subjective judgment, driving performance, and perceived workload publication-title: Transp. Res. F, Traffic Psychol. Behav. – volume: 4738 start-page: 126 year: 2007 end-page: 138 – start-page: 1 year: 2019 end-page: 2 – start-page: 202 year: 2019 end-page: 209 – start-page: 386 year: 2019 end-page: 401 – start-page: 4605 year: 2010 end-page: 4608 – start-page: 2489 year: 2004 end-page: 2492 – year: 2018 – start-page: 208 year: 2018 end-page: 215 – volume: 16 start-page: 14 year: 2013 end-page: 28 article-title: Fear and anxiety while driving: differential impact of task demands, speed and motivation publication-title: Transp. Res. F, Traffic Psychol. Behav. – start-page: 1 year: 2018 end-page: 12 article-title: An experimental paradigm for inducing emotions in a real world driving scenario – evidence from self‐report, annotation of speech data and peripheral physiology – start-page: 88 year: 2017 end-page: 93 – volume: 5 start-page: 1 issue: 53 year: 2011 end-page: 10 article-title: A dry eeg‐system for scientific research and brain‐computer interfaces publication-title: Front. Neurosci. – volume: 42 start-page: 335 issue: 4 year: 2008 end-page: 359 article-title: IEMOCAP: interactive emotional dyadic motion capture database publication-title: Lang. Res. Eval. – volume: 38 start-page: 502 issue: 3 year: 2008 end-page: 512 article-title: Toward emotion recognition in car‐racing drivers: A biosignal processing approach publication-title: IEEE Trans. SMC Part A: Syst. Humans – start-page: 5961 year: 2014 end-page: 5965 – year: 2008 – start-page: 788 year: 2016 end-page: 792 – year: 2004 – volume: 46 start-page: 819 issue: 8 year: 1991 end-page: 834 article-title: Progress on a cognitive‐motivational‐relational theory of emotion publication-title: Am. Psychologist – start-page: 8587 year: 2006 end-page: 8591 – volume: 1 start-page: 137 issue: 2 year: 1998 end-page: 160 article-title: Aggressive driving: the contribution of the drivers and the situation publication-title: Transp. Res. F, Traffic Psychol. Behav. – start-page: 185 year: 2017 end-page: 190 – year: 2019 – volume: 12 start-page: 1 issue: 327 year: 2018 end-page: 15 article-title: Recognizing frustration of drivers from face video recordings and brain activation measurements with functional near‐infrared spectroscopy publication-title: Front. Hum. Neurosci. – start-page: 1517 year: 2005 end-page: 1520 – volume: 13 start-page: 281 year: 2012 end-page: 305 article-title: Random search for hyper‐parameter optimization publication-title: J. Mach. Learn. Res. – start-page: 281 year: 2013 end-page: 298 – volume: 14 start-page: 119 issue: 2 year: 2002 end-page: 140 article-title: This computer responds to user frustration: theory, design, and results publication-title: Interact. Comput. – start-page: 1113 year: 2017 end-page: 1117 – year: 2007 – volume: 9 start-page: 269 issue: 4 year: 2015 end-page: 275 article-title: Why did my car just do that? Explaining semi‐autonomous driving actions to improve driver understanding, trust, and performance publication-title: Int. J. Interact. Des. Manuf. – year: 1996 – volume: 25 start-page: 49 issue: 1 year: 1994 end-page: 59 article-title: Measuring emotion: the self‐assessment Manikin and the semantic differential publication-title: J. Behav. Ther. Exp. Psychiatry – volume: 11253 start-page: 146 year: 2018 end-page: 161 – volume: 52 start-page: 52 issue: 1 year: 2003 end-page: 60 article-title: Facial expressions of emotion: a cognitive neuroscience perspective publication-title: Brain Cogn. – volume: 61 start-page: 90 issue: 5 year: 2018 end-page: 99 article-title: Speech emotion recognition: two decades in a nutshell, benchmarks, and ongoing trends publication-title: Commun. ACM – start-page: 174 year: 2010 end-page: 178 – volume: 30 start-page: 975 issue: 5 year: 2019 end-page: 985 article-title: Audiovisual emotion recognition in wild publication-title: Mach. Vis. Appl. – year: 2016 – volume: 20 start-page: 1 issue: 53 year: 2019 end-page: 32 article-title: Tunability: importance of hyperparameters of machine learning algorithms publication-title: J. Mach. Learn. Res. – start-page: 1 year: 2018 end-page: 6 – volume: 11096 start-page: 134 year: 2018 end-page: 144 – volume: 88 start-page: 16 year: 2013 – volume: 2 start-page: 18 issue: 3 year: 2002 end-page: 22 article-title: Classification and regression by random forest publication-title: R News – volume: 12 start-page: 109 issue: 1 year: 2011 end-page: 118 article-title: Analysis of real‐world driver's frustration publication-title: IEEE Trans. ITS – start-page: 1459 year: 2010 end-page: 1462 – year: 1984 – volume: 44 start-page: 695 issue: 4 year: 2005 end-page: 729 article-title: What are emotions? And how can they be measured? publication-title: Soc. Sci. Inf. – volume: 45 start-page: 5 year: 2001 end-page: 32 article-title: Random forests publication-title: Mach. Learn. – start-page: 1 year: 2013 end-page: 8 – volume: 45 start-page: 65 year: 2013 end-page: 73 article-title: Focusing on appraisals: how and why anger and fear influence driving risk perception publication-title: J. Saf. Res. – start-page: 1589 year: 2018 end-page: 1596 – volume: 7376 start-page: 154 year: 2012 end-page: 168 article-title: How many trees in a random forest? – start-page: 1 year: 2019 end-page: 20 – year: 2006 – start-page: 1127 year: 2012 end-page: 1132 – volume: 10 start-page: 139 issue: 2 year: 2016 end-page: 149 article-title: Combining modality‐specific extreme learning machines for emotion recognition in the wild publication-title: J. Multimodal User Interfaces – start-page: 1421 year: 2018 end-page: 1426 – start-page: 1 year: 2008 end-page: 4 – volume: 6 start-page: 4 year: 2004 end-page: 14 article-title: Emotion recognition from physiological signals using wireless sensors for presence technologies publication-title: Cogn., Technol. Work – volume: 16 start-page: 553 issue: 6 year: 2015 end-page: 585 article-title: Towards affect‐integrated driving behaviour research publication-title: Theor. Issues Ergon. Sci. – volume: 45 start-page: 718 year: 2012 end-page: 725 article-title: The effects of positive emotion priming on self‐reported reckless driving publication-title: Accident Anal. Prev. – start-page: 79 year: 2019 end-page: 90 – start-page: 763 year: 2004 end-page: 766 – start-page: 1354 year: 2016 end-page: 1360 – year: 1999 – start-page: 1517 volume-title: Proc. of the INTERSPEECH‐2005 year: 2005 ident: e_1_2_9_38_1 doi: 10.21437/Interspeech.2005-446 – volume-title: Automatic classification of emotion‐related user states in spontaneous children's speech year: 2009 ident: e_1_2_9_41_1 – ident: e_1_2_9_10_1 doi: 10.1145/3131726.3131744 – ident: e_1_2_9_20_1 doi: 10.1016/j.jsr.2013.01.009 – volume-title: Information science and statistics year: 2008 ident: e_1_2_9_76_1 – ident: e_1_2_9_28_1 doi: 10.1007/s10111-003-0143-x – ident: e_1_2_9_77_1 doi: 10.1007/978-3-642-31537-4_13 – start-page: 1 volume-title: Proc. of the DAGA‐2007 year: 2007 ident: e_1_2_9_53_1 – start-page: 1459 volume-title: Proc. of the ACM Multimedia 2010 year: 2010 ident: e_1_2_9_67_1 – ident: e_1_2_9_37_1 doi: 10.1145/3129340 – ident: e_1_2_9_21_1 doi: 10.1016/j.trf.2014.04.003 – ident: e_1_2_9_55_1 doi: 10.1109/ICME.2008.4607572 – ident: e_1_2_9_19_1 doi: 10.1007/s12008-014-0227-2 – volume-title: Springer series in statistics year: 2009 ident: e_1_2_9_73_1 – volume: 12 start-page: 1 issue: 327 year: 2018 ident: e_1_2_9_31_1 article-title: Recognizing frustration of drivers from face video recordings and brain activation measurements with functional near‐infrared spectroscopy publication-title: Front. Hum. Neurosci. – volume-title: Documentation of the danish emotional speech database DES year: 1996 ident: e_1_2_9_39_1 – volume-title: Proc. of the ICDEW‐2006 year: 2006 ident: e_1_2_9_40_1 – ident: e_1_2_9_36_1 doi: 10.1109/ITSC.2018.8569461 – ident: e_1_2_9_47_1 doi: 10.1109/ATSIP.2016.7523189 – ident: e_1_2_9_4_1 – volume: 5 start-page: 1 issue: 53 year: 2011 ident: e_1_2_9_25_1 article-title: A dry eeg‐system for scientific research and brain‐computer interfaces publication-title: Front. Neurosci. – ident: e_1_2_9_57_1 doi: 10.1109/ICPR.2010.1132 – ident: e_1_2_9_13_1 doi: 10.1037/0003-066X.46.8.819 – ident: e_1_2_9_2_1 – volume-title: Road safety: commission welcomes agreement on new eu rules to help save lives year: 2019 ident: e_1_2_9_7_1 – ident: e_1_2_9_33_1 doi: 10.1109/ICIP.2014.7026203 – ident: e_1_2_9_51_1 doi: 10.1007/s12193-015-0175-6 – ident: e_1_2_9_30_1 doi: 10.1016/S0278-2626(03)00008-3 – ident: e_1_2_9_16_1 doi: 10.1016/S0953-5438(01)00053-4 – ident: e_1_2_9_17_1 doi: 10.1016/j.trf.2012.07.002 – start-page: 2489 volume-title: Proc. of the INTERSPEECH‐2004 year: 2004 ident: e_1_2_9_45_1 doi: 10.21437/Interspeech.2004-424 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: e_1_2_9_71_1 article-title: Classification and regression by random forest publication-title: R News – ident: e_1_2_9_9_1 doi: 10.1201/9781420007497 – ident: e_1_2_9_35_1 doi: 10.1109/ICVES.2018.8519595 – ident: e_1_2_9_50_1 doi: 10.21437/Interspeech.2017-736 – volume-title: A practical guide to support vector classification year: 2016 ident: e_1_2_9_75_1 – ident: e_1_2_9_27_1 doi: 10.1109/TSMCA.2008.918624 – volume-title: Advances in kernel methods: support vector learning year: 1999 ident: e_1_2_9_74_1 – ident: e_1_2_9_23_1 doi: 10.1016/j.aap.2011.09.039 – ident: e_1_2_9_5_1 doi: 10.1109/ICVES.2017.7991923 – ident: e_1_2_9_14_1 doi: 10.1016/S1369-8478(99)00002-9 – ident: e_1_2_9_52_1 doi: 10.1007/978-3-540-74889-2_12 – ident: e_1_2_9_56_1 doi: 10.1109/IVS.2010.5547956 – ident: e_1_2_9_43_1 doi: 10.1007/s10579-008-9076-6 – start-page: 1 volume-title: Proc. of the 8th ITG‐Speech Communication year: 2008 ident: e_1_2_9_54_1 – start-page: 1589 volume-title: Proc. of the LREC 2018 year: 2018 ident: e_1_2_9_61_1 – ident: e_1_2_9_12_1 doi: 10.1145/2370216.2370455 – ident: e_1_2_9_26_1 doi: 10.1007/978-3-030-05081-8_11 – volume-title: Classification and regression trees year: 1984 ident: e_1_2_9_78_1 – ident: e_1_2_9_42_1 doi: 10.1109/FG.2013.6553805 – ident: e_1_2_9_62_1 – volume-title: White paper on transport – roadmap to a single European transport area – towards a competitive and resource‐efficient transport system year: 2011 ident: e_1_2_9_6_1 – volume: 13 start-page: 281 year: 2012 ident: e_1_2_9_66_1 article-title: Random search for hyper‐parameter optimization publication-title: J. Mach. Learn. Res. – ident: e_1_2_9_63_1 doi: 10.1093/acprof:oso/9780199592746.003.0019 – ident: e_1_2_9_68_1 doi: 10.1524/9783486595000 – ident: e_1_2_9_29_1 doi: 10.1007/978-3-030-21074-8_32 – ident: e_1_2_9_49_1 doi: 10.1007/s00138-018-0960-9 – ident: e_1_2_9_3_1 doi: 10.1080/1463922X.2015.1067934 – ident: e_1_2_9_70_1 doi: 10.1007/978-3-319-99579-3_15 – volume: 12 start-page: 109 issue: 1 year: 2011 ident: e_1_2_9_32_1 article-title: Analysis of real‐world driver's frustration publication-title: IEEE Trans. ITS – start-page: 1354 volume-title: Proc. of the IJCAI‐2016 year: 2016 ident: e_1_2_9_60_1 – ident: e_1_2_9_65_1 doi: 10.1007/s12193-013-0129-9 – start-page: 79 volume-title: Proc. of the KONVENS 2019 year: 2019 ident: e_1_2_9_59_1 – ident: e_1_2_9_22_1 doi: 10.1016/j.ssci.2009.03.011 – ident: e_1_2_9_48_1 doi: 10.1109/ICASSP.2007.367226 – start-page: 763 volume-title: Proc. of the LREC‐2004 year: 2004 ident: e_1_2_9_44_1 – start-page: 208 volume-title: Elektronische Sprachsignalverarbeitung 2018. vol. 90 of Studientexte zur Sprachkommunikation year: 2018 ident: e_1_2_9_58_1 – ident: e_1_2_9_64_1 doi: 10.1016/0005-7916(94)90063-9 – ident: e_1_2_9_24_1 doi: 10.1177/0539018405058216 – start-page: 1 volume-title: Proc. of the DAGA‐2007 year: 2007 ident: e_1_2_9_46_1 – ident: e_1_2_9_15_1 – start-page: 1 volume-title: 10. VDI‐Tagung Mensch‐Maschine‐Mobilität year: 2019 ident: e_1_2_9_18_1 – start-page: 1 volume-title: Mensch und computer 2019 – workshopband year: 2019 ident: e_1_2_9_11_1 – ident: e_1_2_9_69_1 doi: 10.1023/A:1010933404324 – start-page: 8587 volume-title: Proc. of the IEEE WCICA'06 year: 2006 ident: e_1_2_9_8_1 – ident: e_1_2_9_34_1 doi: 10.1109/ICMLA.2019.00039 – volume: 20 start-page: 1 issue: 53 year: 2019 ident: e_1_2_9_72_1 article-title: Tunability: importance of hyperparameters of machine learning algorithms publication-title: J. Mach. Learn. Res. |
SSID | ssj0056221 |
Score | 2.2743402 |
Snippet | For vehicle safety, the in-time monitoring of the driver and assessing his/her state is a demanding issue. Frustration can lead to aggressive driving... For vehicle safety, the in‐time monitoring of the driver and assessing his/her state is a demanding issue. Frustration can lead to aggressive driving... |
SourceID | crossref wiley iet |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1265 |
SubjectTerms | 4‐emotion‐class detection problem adaptive automotive safety applications affect‐aware vehicles aggressive driving behaviours automatic analysis chance level driver emotion recognition driver information systems driver in‐time monitoring emotion recognition emotional driver states fatal road accidents feature extraction feature selection feature sets hyper‐parameter optimisation in‐car assistance learning (artificial intelligence) low‐expressed emotions machine learning algorithms optimal feature set optimisation random forests realistic driving study real‐world situations Research Article road accidents road safety small random forests speech data speech feature selection standard emobase feature set subject data identification vehicle safety |
SummonAdditionalLinks | – databaseName: IET Digital Library (Open Access) dbid: IDLOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66XvQgPnF9kYN4EKJtHpvWm69FRT3ICnsrSZvognZlrYK_wr_sTNr1AaIe2yRDyUwz30zmQchWIbUWXKOlGlkmhfQM1IhjRtuC88hL0cHk5MurzumNPO-r_md6dDG4xV4ZbOxxQ2-5qzMPMHQbzuG9Zo_rhiSAb_dgAhtUWHo7TndBYuFAnuJax7JFps6OL9DEqk9mUPV1HpbG1vKq0_-45fyByDc9NQnD39FrUD_dOTLb4EZ6UDN6nky4coHMfKkmuEjeeiEE9omaEKPBDDw5-uLuQuQbBXRKByWCRHQP0CfjXfVKTVlQEDoYrPZpE00UxosRRmxQV7f5geWj4QM1z8VgSGvHDrrYgSA18IxVFOHDwqJAHIvWLpGb7knv6JQ1_RZYLkCZMd8x2uUqtj4SLokAGMWAH5SOXZpK6xTYkh5-70Ipb3ORAhbi3LlIGW8AZKZeLJNWOSzdCqFpovPEamuEMVLkcWKSVEaJ9JLbQgnZJtF4d7O8KUaOPTHus3ApLtMMdjwDhmTIkAwZ0iY7H0se60ocv03exndjWfltoghc_Ztkdta75odddAHFq_8lv0amORroIfpvnbSq0bPbABRT2c1GON8BPlLvjQ priority: 102 providerName: Institution of Engineering and Technology |
Title | Towards affect-aware vehicles for increasing safety and comfort: recognising driver emotions from audio recordings in a realistic driving study |
URI | http://digital-library.theiet.org/content/journals/10.1049/iet-its.2019.0732 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-its.2019.0732 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PT9swFLc6emGHaWNDMAbyAXGYlJH4Tx3vVsqqFsGGUCv1FtmJrVXa0qkNSNz4CNtX3CfhPSetQEhF4pjYz0r8_Px-fn5_CDkshFKcKTypxjYSXPgI1IiLjLIFY7EXvIPByRffO4OxOJvISYv0lrEwdX6IlcENJSPs1yjgxtZVSADUAhOnroqmFWbcTvQXWKiwD7cxxBYT6DNxudyOQb_XwVcK68nLzmR1tamPnwzxSDm9gubHkDXonP5b8qYBi7Rbc_cdablyi7x-kELwPfk3Cn6vC2qCY8b_u78Gnh29cT-DwxsFUEqnJWJDtArQhfGuuqWmLCj8MDRWX2njRBTaizk6alBXV_cB8vnsNzXXxXRGa3sOWtZhQGrgGZMnwqcFojA45qr9QMb9b6PeIGrKLEQ5Bx0W-Y5RLpeJ9TF3aQx4KAHYIFXitBbWSThCepDqQkpvc64BAjHmXCyNN4AttefbZKOclW6HUJ2qPLXKGm6M4HmSmlSLOBVeMFtILnZJvJzfLG9ykGMpjF9ZuAsXOoM5z4AlGbIkQ5bsks8rkj91Ao51nY_wXSOGi3UdeeDr80Nmw9EVO-mj5Sf5-CKqPbLJ8JAePAA_kY1qfu32AclU9iCs1APSHp6e_-jeA_pS8Po |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAHqCHivIQ0Jb6gDggBRI_4phbC6yWpxBapL1FdmKLlWgW7QYkbv0J5S_2l3TGya5ASFTimNhjJR6P55vxeIaQrVIoxZlCSzW2keDCR6BGXGSULRmLveApXk4-v0i71-KkL_sz5HByF6bJDzF1uKFkhP0aBRwd0o3BKTBJ5sDV0aDGlNuJ3oWVChvxB5EyheLJxOVkPwYF39y-UlhQXqb96dmm3ns1xAvtNAvNLzFrUDqdRfKpRYv0R8Pez2TGVUvk47McgsvkqRcCX8fUhMiMv7__GHh29MHdhIg3CqiUDioEh-gWoGPjXf1ITVVS-GNorPdpG0UU2ssRRmpQ15T3AfLR8Bc19-VgSBuHDrrWYUBq4BmzJ8KnBaIwOCarXSHXnaPeQTdq6yxEBQclFvnUKFfIxPqYuywGQJQAbpAqcVoL6yTYkB7EupTS24JrwECMORdL4w2AS-35KpmrhpVbI1RnqsissoYbI3iRZCbTIs6EF8yWkot1Ek_mNy_aJORYC-M2D4fhQucw5zmwJEeW5MiSdbIzJblrMnC81Xkb37VyOH6rIw98_f-Q-XHviv3soOsn2XgX1Xcy3-2dn-VnxxenX8gCQ4s9hAN-JXP16N59A1hT282wav8BZ0Dy2g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBabLITkUNomIa-mOpQcAk5sS1pZveW15LmEsBuWXIxkS3Sh8YZdp9Bbf0LzF_NLMiN7ly6FBHK0pRG2RqP5NBp9IuRbzqVkscSVamgCzrgLwI3YQEuTx3HoOGvh4eSrTuu0x8_7ot8gR5OzMBU_xDTghpbh52s08IfcVetNjhyZA1sGgxIZtyO1BwMV5uEmsuXB0G4e3PbuepMJGTx8dfxK4o3yotWfbm6q_f8amXFPc1A8C1q912l_JB9quEgPKv1-Ig1bfCZL_5AILpOnrs98HVPtUzOe__zV8GzpL_vDp7xRgKV0UCA6xLgAHWtny99UFzmFX4bC8jut04h8eT7CVA1qq_t9QHw0vKf6MR8MaRXRwdg6NEg1PCN9InyaF_KNI1vtCum1T7pHp0F90UKQMfBigWtpaTMRGRcym4SAiCIADkJGVilurIBFpAO7zoVwJmMKQFAcWxsK7TSgS-XYKpkvhoVdI1QlMkuMNJppzVkWJTpRPEy447HJBePrJJz0b5rVLOR4GcbP1O-Gc5VCn6egkhRVkqJK1snuVOShouB4rfIOvqsNcfxaReb1-naT6Vn3Jj5sY-wn2niX1FeycH3cTi_POhebZDHGFbtPB9wi8-Xo0X4BWFOa7XrYvgCXN_PS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+affect%E2%80%90aware+vehicles+for+increasing+safety+and+comfort%3A+recognising+driver+emotions+from+audio+recordings+in+a+realistic+driving+study&rft.jtitle=IET+intelligent+transport+systems&rft.au=Requardt%2C+Alicia+F.&rft.au=Ihme%2C+Klas&rft.au=Wilbrink%2C+Marc&rft.au=Wendemuth%2C+Andreas&rft.date=2020-10-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-956X&rft.eissn=1751-9578&rft.volume=14&rft.issue=10&rft.spage=1265&rft.epage=1277&rft_id=info:doi/10.1049%2Fiet-its.2019.0732&rft.externalDBID=10.1049%252Fiet-its.2019.0732&rft.externalDocID=ITR2BF00931 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-956X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-956X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-956X&client=summon |