A note on the choice and the estimation of Kriging models for the analysis of deterministic computer experiments
Our goal in the present article to give an insight on some important questions to be asked when choosing a Kriging model for the analysis of numerical experiments. We are especially concerned about the cases where the size of the design of experiments is relatively small to the algebraic dimension o...
Saved in:
Published in | Applied stochastic models in business and industry Vol. 25; no. 2; pp. 115 - 131 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.03.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 1524-1904 1526-4025 |
DOI | 10.1002/asmb.741 |
Cover
Abstract | Our goal in the present article to give an insight on some important questions to be asked when choosing a Kriging model for the analysis of numerical experiments. We are especially concerned about the cases where the size of the design of experiments is relatively small to the algebraic dimension of the inputs. We first fix the notations and recall some basic properties of Kriging. Then we expose two experimental studies on subjects that are often skipped in the field of computer simulation analysis: the lack of reliability of likelihood maximization with few data and the consequences of a trend misspecification. We finally propose an example from a porous media application, with the introduction of an original Kriging method in which a non‐linear additive model is used as an external trend. Copyright © 2009 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Our goal in the present article to give an insight on some important questions to be asked when choosing a Kriging model for the analysis of numerical experiments. We are especially concerned about the cases where the size of the design of experiments is relatively small to the algebraic dimension of the inputs. We first fix the notations and recall some basic properties of Kriging. Then we expose two experimental studies on subjects that are often skipped in the field of computer simulation analysis: the lack of reliability of likelihood maximization with few data and the consequences of a trend misspecification. We finally propose an example from a porous media application, with the introduction of an original Kriging method in which a non-linear additive model is used as an external trend. Our goal in the present article to give an insight on some important questions to be asked when choosing a Kriging model for the analysis of numerical experiments. We are especially concerned about the cases where the size of the design of experiments is relatively small to the algebraic dimension of the inputs. We first fix the notations and recall some basic properties of Kriging. Then we expose two experimental studies on subjects that are often skipped in the field of computer simulation analysis: the lack of reliability of likelihood maximization with few data and the consequences of a trend misspecification. We finally propose an example from a porous media application, with the introduction of an original Kriging method in which a non‐linear additive model is used as an external trend. Copyright © 2009 John Wiley & Sons, Ltd. |
Author | Roustant, Olivier Dupuy, Delphine Ginsbourger, David Badea, Anca Carraro, Laurent |
Author_xml | – sequence: 1 givenname: David surname: Ginsbourger fullname: Ginsbourger, David email: ginsbourger@emse.fr, ginsbourger@gmail.com organization: Département 3MI, Ecole Nationale Supérieure des Mines, 158 cours Fauriel, 42023 Saint-Etienne, France – sequence: 2 givenname: Delphine surname: Dupuy fullname: Dupuy, Delphine organization: Département 3MI, Ecole Nationale Supérieure des Mines, 158 cours Fauriel, 42023 Saint-Etienne, France – sequence: 3 givenname: Anca surname: Badea fullname: Badea, Anca organization: Département 3MI, Ecole Nationale Supérieure des Mines, 158 cours Fauriel, 42023 Saint-Etienne, France – sequence: 4 givenname: Laurent surname: Carraro fullname: Carraro, Laurent organization: Département 3MI, Ecole Nationale Supérieure des Mines, 158 cours Fauriel, 42023 Saint-Etienne, France – sequence: 5 givenname: Olivier surname: Roustant fullname: Roustant, Olivier organization: Département 3MI, Ecole Nationale Supérieure des Mines, 158 cours Fauriel, 42023 Saint-Etienne, France |
BookMark | eNp1kEtvGyEUhVGVSLXTSv0JrKpuxoEB5rG03cR5totE6hIxcCemnYEJjJX43wfbVaRU6eq-vnOlc6boyHkHCH2hZEYJyU9V7JtZyekHNKEiLzJOcnG073lGa8I_ommMvwmhlJd0goY5dn4E7B0e14D12lsNWDmzHyGOtlejTVff4utgH6x7wL030EXc-rCHlFPdNtq4QwyMEHrrbBJqrH0_bNICw_MAwfbgxvgJHbeqi_D5bz1B9-dn98uL7Obn6nI5v8k0Y5xm2jSkYEIpXgnCCANC6royheENMdyIqlSs1VrnTd3mRS5Yy2pTgKaqIS0v2Qn6eng7BP-4ST5kb6OGrlMO_CZKxvMqp5VI4OwA6uBjDNBKbce95TEo20lK5C5XuctVplyT4Ns_giFZU2H7Hpod0Cfbwfa_nJzf3S7e8Ck-eH7lVfgji5KVQv76sZLXq8X3O7G4kpS9AJX1mmM |
CitedBy_id | crossref_primary_10_1007_s00366_015_0397_y crossref_primary_10_1007_s00158_021_02895_2 crossref_primary_10_1007_s11069_018_3470_1 crossref_primary_10_1007_s00158_024_03906_8 crossref_primary_10_1111_rssc_12516 crossref_primary_10_1007_s00180_023_01424_7 crossref_primary_10_1002_asmb_2656 crossref_primary_10_3390_vibration5020020 crossref_primary_10_1016_j_csda_2020_107155 crossref_primary_10_4304_jnw_8_3_576_587 crossref_primary_10_5802_afst_1342 crossref_primary_10_1007_s00158_018_2127_8 crossref_primary_10_51387_23_NEJSDS26 crossref_primary_10_1016_j_fishres_2023_106816 crossref_primary_10_1016_j_cpc_2024_109464 crossref_primary_10_3390_ma15124117 crossref_primary_10_1007_s00339_018_1916_7 crossref_primary_10_1007_s00704_012_0716_9 |
Cites_doi | 10.1093/biomet/71.1.135 10.1214/ss/1177012413 10.2514/6.2004-4483 10.1007/978-1-4757-3799-8 10.1214/aos/1176345208 10.1137/1.9781611970128 10.1007/978-0-387-21606-5 10.2307/3315678 10.1111/1467-9469.00168 10.2514/1.8650 10.1198/004017004000000671 10.2113/gsecongeo.58.8.1246 10.1007/978-1-4612-1494-6 10.1023/A:1008306431147 10.1016/j.ress.2005.11.025 10.1002/9781119115151 10.1007/BF00893318 |
ContentType | Journal Article |
Copyright | Copyright © 2009 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2009 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7SC 7TA 8FD JG9 JQ2 L7M L~C L~D |
DOI | 10.1002/asmb.741 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Materials Business File Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Materials Business File Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1526-4025 |
EndPage | 131 |
ExternalDocumentID | 10_1002_asmb_741 ASMB741 ark_67375_WNG_KGBDS5BJ_1 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBA EBO EBR EBS EBU EJD EMK EPL F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC K1G KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW QWB R.K ROL RWI RX1 RYL SUPJJ TH9 UB1 W8V W99 WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XPP XV2 YHZ ZL0 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AHQJS ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION 1OB 7SC 7TA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3341-cdb0635aa4850303e00998d6d4b0d4d587a3fccc2b9f26253f39d6ec1ab0f473 |
IEDL.DBID | DR2 |
ISSN | 1524-1904 |
IngestDate | Fri Sep 05 14:58:00 EDT 2025 Tue Jul 01 04:27:33 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 Wed Jan 22 17:10:39 EST 2025 Wed Oct 30 09:50:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3341-cdb0635aa4850303e00998d6d4b0d4d587a3fccc2b9f26253f39d6ec1ab0f473 |
Notes | ark:/67375/WNG-KGBDS5BJ-1 ArticleID:ASMB741 istex:598830D1ADD9B963F2C1F54C15809D99F2D3680D ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 34282185 |
PQPubID | 23500 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_34282185 crossref_citationtrail_10_1002_asmb_741 crossref_primary_10_1002_asmb_741 wiley_primary_10_1002_asmb_741_ASMB741 istex_primary_ark_67375_WNG_KGBDS5BJ_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-03 March/April 2009 2009-03-00 20090301 |
PublicationDateYYYYMMDD | 2009-03-01 |
PublicationDate_xml | – month: 03 year: 2009 text: 2009-03 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK |
PublicationTitle | Applied stochastic models in business and industry |
PublicationTitleAlternate | Appl. Stochastic Models Bus. Ind |
PublicationYear | 2009 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | Li R, Sudjianto A. Analysis of computer experiments using penalized likelihood in gaussian Kriging models. Technometrics 2005; 47:111-120. O'Hagan A. Bayesian analysis of computer code outputs: a tutorial. Reliability Engineering and System Safety 2006; 91:1290-1300. Sweeting TJ. Uniform asymptotic normality of the maximum likelihood estimator. The Annals of Statistics 1980; 8(6):1375-1381. Abt M. Estimating the prediction mean squared error in gaussian stochastic processes with exponential covariance structure. Scandinavian Journal of Statistics 1999; 26:563-578. Jourdan A. Approches statistiques des expériences simulées. Revue de Statistiques Appliquées 2002; 50:49-64. Wahba G. Spline Models for Observational Data. SIAM: Philadelphia, PA, 1990. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2006. ISBN 3-900051-07-0. Hastie T, Tibshirani R. Generalized Additive Models. Chapman & Hall: London, 1991. Abt M, Welch WJ. Fisher information and maximum-likelihood estimation of covariance parameters in gaussian stochastic processes. The Canadian Journal of Statistics 1998; 26:127-137. Journel AG, Rossi ME. When do we need a trend model in Kriging? Mathematical Geology 1989; 21(7):715-739. Mardia KV, Marshall RJ. Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 1984; 71:135-146. Santner TJ, Williams BJ, Notz WJ. The Design and Analysis of Computer Experiments. Springer: Berlin, 2003. Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and analysis of computer experiments. Statistical Science 1989; 4(4):409-435. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Springer: Berlin, 2001. Stein ML. Interpolation of Spatial Data, Some Theory for Kriging. Springer: Berlin, 1999. Martin JD, Simpson TW. Use of Kriging models to approximate deterministic computer models. AIAA Journal 2005; 43(4):853-863. Matheron G. Principles of geostatistics. Economic Geology 1963; 58:1246-1266. Jones DR, Schonlau M, Welch WJ. Efficient global optimization of expensive black-box functions. Journal of Global Optimization 1998; 13:455-492. 1963; 58 1998; 26 1989; 4 2006; 91 1984; 71 1989; 21 2001 1990 2002; 50 1999; 26 1980; 8 1996 2005; 43 2006 1993 2004 2003 1991 1998; 13 2005; 47 1999 Hastie T (e_1_2_1_20_2) 1991 Jourdan A (e_1_2_1_7_2) 2002; 50 R Development Core Team (e_1_2_1_22_2) 2006 e_1_2_1_6_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_23_2 e_1_2_1_10_2 e_1_2_1_21_2 e_1_2_1_15_2 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_24_2 e_1_2_1_14_2 e_1_2_1_25_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – reference: Abt M. Estimating the prediction mean squared error in gaussian stochastic processes with exponential covariance structure. Scandinavian Journal of Statistics 1999; 26:563-578. – reference: Li R, Sudjianto A. Analysis of computer experiments using penalized likelihood in gaussian Kriging models. Technometrics 2005; 47:111-120. – reference: O'Hagan A. Bayesian analysis of computer code outputs: a tutorial. Reliability Engineering and System Safety 2006; 91:1290-1300. – reference: Abt M, Welch WJ. Fisher information and maximum-likelihood estimation of covariance parameters in gaussian stochastic processes. The Canadian Journal of Statistics 1998; 26:127-137. – reference: Wahba G. Spline Models for Observational Data. SIAM: Philadelphia, PA, 1990. – reference: Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and analysis of computer experiments. Statistical Science 1989; 4(4):409-435. – reference: Matheron G. Principles of geostatistics. Economic Geology 1963; 58:1246-1266. – reference: Santner TJ, Williams BJ, Notz WJ. The Design and Analysis of Computer Experiments. Springer: Berlin, 2003. – reference: Sweeting TJ. Uniform asymptotic normality of the maximum likelihood estimator. The Annals of Statistics 1980; 8(6):1375-1381. – reference: Journel AG, Rossi ME. When do we need a trend model in Kriging? Mathematical Geology 1989; 21(7):715-739. – reference: Hastie T, Tibshirani R. Generalized Additive Models. Chapman & Hall: London, 1991. – reference: Jourdan A. Approches statistiques des expériences simulées. Revue de Statistiques Appliquées 2002; 50:49-64. – reference: Mardia KV, Marshall RJ. Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 1984; 71:135-146. – reference: Martin JD, Simpson TW. Use of Kriging models to approximate deterministic computer models. AIAA Journal 2005; 43(4):853-863. – reference: Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Springer: Berlin, 2001. – reference: Stein ML. Interpolation of Spatial Data, Some Theory for Kriging. Springer: Berlin, 1999. – reference: R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2006. ISBN 3-900051-07-0. – reference: Jones DR, Schonlau M, Welch WJ. Efficient global optimization of expensive black-box functions. Journal of Global Optimization 1998; 13:455-492. – volume: 13 start-page: 455 year: 1998 end-page: 492 article-title: Efficient global optimization of expensive black‐box functions publication-title: Journal of Global Optimization – volume: 43 start-page: 853 issue: 4 year: 2005 end-page: 863 article-title: Use of Kriging models to approximate deterministic computer models publication-title: AIAA Journal – volume: 21 start-page: 715 issue: 7 year: 1989 end-page: 739 article-title: When do we need a trend model in Kriging? publication-title: Mathematical Geology – volume: 26 start-page: 563 year: 1999 end-page: 578 article-title: Estimating the prediction mean squared error in gaussian stochastic processes with exponential covariance structure publication-title: Scandinavian Journal of Statistics – start-page: 4483 – volume: 71 start-page: 135 year: 1984 end-page: 146 article-title: Maximum likelihood estimation of models for residual covariance in spatial regression publication-title: Biometrika – year: 2001 – year: 2006 – year: 2003 – year: 2004 – year: 1996 – volume: 26 start-page: 127 year: 1998 end-page: 137 article-title: Fisher information and maximum‐likelihood estimation of covariance parameters in gaussian stochastic processes publication-title: The Canadian Journal of Statistics – volume: 47 start-page: 111 year: 2005 end-page: 120 article-title: Analysis of computer experiments using penalized likelihood in gaussian Kriging models publication-title: Technometrics – volume: 91 start-page: 1290 year: 2006 end-page: 1300 article-title: Bayesian analysis of computer code outputs: a tutorial publication-title: Reliability Engineering and System Safety – volume: 4 start-page: 409 issue: 4 year: 1989 end-page: 435 article-title: Design and analysis of computer experiments publication-title: Statistical Science – volume: 50 start-page: 49 year: 2002 end-page: 64 article-title: Approches statistiques des expériences simulées publication-title: Revue de Statistiques Appliquées – year: 1991 – volume: 8 start-page: 1375 issue: 6 year: 1980 end-page: 1381 article-title: Uniform asymptotic normality of the maximum likelihood estimator publication-title: The Annals of Statistics – year: 1990 – year: 1993 – volume: 58 start-page: 1246 year: 1963 end-page: 1266 article-title: Principles of geostatistics publication-title: Economic Geology – year: 1999 – ident: e_1_2_1_12_2 doi: 10.1093/biomet/71.1.135 – ident: e_1_2_1_14_2 – ident: e_1_2_1_4_2 doi: 10.1214/ss/1177012413 – ident: e_1_2_1_9_2 doi: 10.2514/6.2004-4483 – ident: e_1_2_1_25_2 – ident: e_1_2_1_6_2 doi: 10.1007/978-1-4757-3799-8 – ident: e_1_2_1_11_2 doi: 10.1214/aos/1176345208 – ident: e_1_2_1_21_2 doi: 10.1137/1.9781611970128 – ident: e_1_2_1_17_2 doi: 10.1007/978-0-387-21606-5 – ident: e_1_2_1_24_2 – ident: e_1_2_1_13_2 doi: 10.2307/3315678 – volume: 50 start-page: 49 year: 2002 ident: e_1_2_1_7_2 article-title: Approches statistiques des expériences simulées publication-title: Revue de Statistiques Appliquées – ident: e_1_2_1_15_2 doi: 10.1111/1467-9469.00168 – ident: e_1_2_1_8_2 doi: 10.2514/1.8650 – ident: e_1_2_1_16_2 doi: 10.1198/004017004000000671 – ident: e_1_2_1_23_2 – ident: e_1_2_1_2_2 doi: 10.2113/gsecongeo.58.8.1246 – ident: e_1_2_1_18_2 doi: 10.1007/978-1-4612-1494-6 – ident: e_1_2_1_5_2 doi: 10.1023/A:1008306431147 – ident: e_1_2_1_10_2 doi: 10.1016/j.ress.2005.11.025 – volume-title: Generalized Additive Models year: 1991 ident: e_1_2_1_20_2 – volume-title: R: A Language and Environment for Statistical Computing year: 2006 ident: e_1_2_1_22_2 – ident: e_1_2_1_3_2 doi: 10.1002/9781119115151 – ident: e_1_2_1_19_2 doi: 10.1007/BF00893318 |
SSID | ssj0011471 |
Score | 1.8923576 |
Snippet | Our goal in the present article to give an insight on some important questions to be asked when choosing a Kriging model for the analysis of numerical... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115 |
SubjectTerms | additive models deterministic drift Kriging maximum likelihood metamodeling |
Title | A note on the choice and the estimation of Kriging models for the analysis of deterministic computer experiments |
URI | https://api.istex.fr/ark:/67375/WNG-KGBDS5BJ-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasmb.741 https://www.proquest.com/docview/34282185 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3rwLdbnCqKn1Ca7mzTH1vpAaQ9WUfCw7Cse1ERMC-Kvd3bz0IqCeAoJk9fO7Mw3yew3CO2HJjSRL2MvSaTxqIoDT_iQ8-i2UYZJULnrn9IfhOc39OKO3ZVVlXYtTMEPUX9wszPD-Ws7wYXMjz5JQ0X-LJuRW7Puk9DS5veuauYoQPlFrsUC6kHMoxXvbCs4qk6ciEQzdlDfJmDmV7Dqos3pArqvnrMoMnlsjkeyqd6_UTj-70UW0XwJQnGnsJolNGXSZTTXrxlc8xX00sFpNjI4SzEcxeAkwaNgkWq3a6k5ijWPOEvwpWuu9YBdV50cAwx2QqLkO7Eiuqy6cbTQWJWtJPBnf4F8FV2fnlwfn3tldwZPEQh9ntIS4A0TgrYZeApiLNhs61BT2dJUs3YkSKKUCmScBJBlkYTEOjTKF7KV0Iisoek0S806wn5iFKiIyFjFlAohdEsLMBMVExEARGmgw0pRXJXM5baBxhMvOJcDboeQwxA20F4t-VKwdfwgc-B0XQuI10db3RYxfjs445dn3d6QdS84CO5WxsBhztkfKSI12TjnBHI2gEYMLuUU--u9eGfY78J246-Cm2i2-F1li9y20PTodWy2AfWM5I6z7w9eJAIF |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQPbAceOyCKE8jrZZTShvbSSNOLa9CaQ9L0XJYyfIrHIAENa2E-PWMnQcPgYQ4RYkmL894_I09_gah34EJTNiSkRfH0nhURb4nWhDz6LZRhklQuaufMhgGvSt6fs2uZ9BBuRcm54eoJtxsz3D-2nZwOyG9_8IaKrJ72QjtpvUaBZxhI6-jvxV3FOD8PNpiPvVg1KMl82zT3y_vfDMW1WyzPr4Bmq_hqhtvThbR__JL8zST28Z0Ihvq6R2J4zd_ZQktFDgUd3LDWUYzJvmJ5gcViWv2Cz10cJJODE4TDFcx-ElwKlgk2p1ado582yNOY9x39bVusCusk2FAwk5IFJQnVkQXiTeOGRqropoEfikxkK2g0cnx6LDnFQUaPEVg9POUloBwmBC0zcBZEGPxZlsHmsqmppq1Q0FipZQvo9iHQIvEJNKBUS0hmzENySqaTdLErCHcio0CHREZqYhSIYRuagGWoiIifEApdbRXaoqrgrzc1tC44zntss9tE3JowjrarSQfcsKOD2T-OGVXAmJ8axPcQsb_DU95_7R7dMm65xwEd0pr4NDt7FqKSEw6zTiBsA3QEYNHOc1--i7euRx04bj-VcEdNNcbDS74xdmwv4F-5KtXNudtE81OxlOzBSBoIredsT8DcHUGJA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF5VRKrgUCgPEaCwSBWcHBLvrh0fE0KgpIkQDxWph9U-ewDsCCcS4td3dv0AKipVPVm2xq-d2Zlv7NlvEPoamcjEHZkE1koTUJWEgehAzqO7RhkmQeW-f8p4Ep3d0PNbdltWVbq1MAU_RP3Bzc0M76_dBJ9qe_RCGiryB9mK3Zr1Bo0ASDhAdFlTRwHML5ItFtIAgh6tiGfb4VF15ptQ1HCj-vQGZ75Gqz7cDJfRz-pBiyqTu9Z8Jlvq-Q8Ox_97kxX0qUShuFeYzWf0waSraGlcU7jma2jaw2k2MzhLMRzF4CXBpWCRar_ruDmKRY84s3jku2v9wr6tTo4BB3shURKeOBFdlt14Xmisyl4S-KXBQL6Orocn18dnQdmeIVAEYl-gtAR8w4SgXQaughiHNrs60lS2NdWsGwtilVKhTGwIaRaxJNGRUR0h25bGZAMtpFlqNhHuWKNARUQmKqFUCKHbWoCdqISIEDBKEx1WiuKqpC53HTTueUG6HHI3hByGsIn2a8lpQdfxjsyB13UtIB7vXHlbzPiPySkfnfYHV6x_zkFwrzIGDpPO_UkRqcnmOSeQtAE2YnApr9i_3ov3rsZ92G79q-Ae-ngxGPLv3yajbbRY_LpyBW87aGH2ODdfAAHN5K439d9pnATT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+note+on+the+choice+and+the+estimation+of+Kriging+models+for+the+analysis+of+deterministic+computer+experiments&rft.jtitle=Applied+stochastic+models+in+business+and+industry&rft.au=Ginsbourger%2C+David&rft.au=Dupuy%2C+Delphine&rft.au=Badea%2C+Anca&rft.au=Carraro%2C+Laurent&rft.date=2009-03-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1524-1904&rft.eissn=1526-4025&rft.volume=25&rft.issue=2&rft.spage=115&rft.epage=131&rft_id=info:doi/10.1002%2Fasmb.741&rft.externalDBID=10.1002%252Fasmb.741&rft.externalDocID=ASMB741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-1904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-1904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-1904&client=summon |