A note on the choice and the estimation of Kriging models for the analysis of deterministic computer experiments

Our goal in the present article to give an insight on some important questions to be asked when choosing a Kriging model for the analysis of numerical experiments. We are especially concerned about the cases where the size of the design of experiments is relatively small to the algebraic dimension o...

Full description

Saved in:
Bibliographic Details
Published inApplied stochastic models in business and industry Vol. 25; no. 2; pp. 115 - 131
Main Authors Ginsbourger, David, Dupuy, Delphine, Badea, Anca, Carraro, Laurent, Roustant, Olivier
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.03.2009
Subjects
Online AccessGet full text
ISSN1524-1904
1526-4025
DOI10.1002/asmb.741

Cover

Abstract Our goal in the present article to give an insight on some important questions to be asked when choosing a Kriging model for the analysis of numerical experiments. We are especially concerned about the cases where the size of the design of experiments is relatively small to the algebraic dimension of the inputs. We first fix the notations and recall some basic properties of Kriging. Then we expose two experimental studies on subjects that are often skipped in the field of computer simulation analysis: the lack of reliability of likelihood maximization with few data and the consequences of a trend misspecification. We finally propose an example from a porous media application, with the introduction of an original Kriging method in which a non‐linear additive model is used as an external trend. Copyright © 2009 John Wiley & Sons, Ltd.
AbstractList Our goal in the present article to give an insight on some important questions to be asked when choosing a Kriging model for the analysis of numerical experiments. We are especially concerned about the cases where the size of the design of experiments is relatively small to the algebraic dimension of the inputs. We first fix the notations and recall some basic properties of Kriging. Then we expose two experimental studies on subjects that are often skipped in the field of computer simulation analysis: the lack of reliability of likelihood maximization with few data and the consequences of a trend misspecification. We finally propose an example from a porous media application, with the introduction of an original Kriging method in which a non-linear additive model is used as an external trend.
Our goal in the present article to give an insight on some important questions to be asked when choosing a Kriging model for the analysis of numerical experiments. We are especially concerned about the cases where the size of the design of experiments is relatively small to the algebraic dimension of the inputs. We first fix the notations and recall some basic properties of Kriging. Then we expose two experimental studies on subjects that are often skipped in the field of computer simulation analysis: the lack of reliability of likelihood maximization with few data and the consequences of a trend misspecification. We finally propose an example from a porous media application, with the introduction of an original Kriging method in which a non‐linear additive model is used as an external trend. Copyright © 2009 John Wiley & Sons, Ltd.
Author Roustant, Olivier
Dupuy, Delphine
Ginsbourger, David
Badea, Anca
Carraro, Laurent
Author_xml – sequence: 1
  givenname: David
  surname: Ginsbourger
  fullname: Ginsbourger, David
  email: ginsbourger@emse.fr, ginsbourger@gmail.com
  organization: Département 3MI, Ecole Nationale Supérieure des Mines, 158 cours Fauriel, 42023 Saint-Etienne, France
– sequence: 2
  givenname: Delphine
  surname: Dupuy
  fullname: Dupuy, Delphine
  organization: Département 3MI, Ecole Nationale Supérieure des Mines, 158 cours Fauriel, 42023 Saint-Etienne, France
– sequence: 3
  givenname: Anca
  surname: Badea
  fullname: Badea, Anca
  organization: Département 3MI, Ecole Nationale Supérieure des Mines, 158 cours Fauriel, 42023 Saint-Etienne, France
– sequence: 4
  givenname: Laurent
  surname: Carraro
  fullname: Carraro, Laurent
  organization: Département 3MI, Ecole Nationale Supérieure des Mines, 158 cours Fauriel, 42023 Saint-Etienne, France
– sequence: 5
  givenname: Olivier
  surname: Roustant
  fullname: Roustant, Olivier
  organization: Département 3MI, Ecole Nationale Supérieure des Mines, 158 cours Fauriel, 42023 Saint-Etienne, France
BookMark eNp1kEtvGyEUhVGVSLXTSv0JrKpuxoEB5rG03cR5totE6hIxcCemnYEJjJX43wfbVaRU6eq-vnOlc6boyHkHCH2hZEYJyU9V7JtZyekHNKEiLzJOcnG073lGa8I_ommMvwmhlJd0goY5dn4E7B0e14D12lsNWDmzHyGOtlejTVff4utgH6x7wL030EXc-rCHlFPdNtq4QwyMEHrrbBJqrH0_bNICw_MAwfbgxvgJHbeqi_D5bz1B9-dn98uL7Obn6nI5v8k0Y5xm2jSkYEIpXgnCCANC6royheENMdyIqlSs1VrnTd3mRS5Yy2pTgKaqIS0v2Qn6eng7BP-4ST5kb6OGrlMO_CZKxvMqp5VI4OwA6uBjDNBKbce95TEo20lK5C5XuctVplyT4Ns_giFZU2H7Hpod0Cfbwfa_nJzf3S7e8Ck-eH7lVfgji5KVQv76sZLXq8X3O7G4kpS9AJX1mmM
CitedBy_id crossref_primary_10_1007_s00366_015_0397_y
crossref_primary_10_1007_s00158_021_02895_2
crossref_primary_10_1007_s11069_018_3470_1
crossref_primary_10_1007_s00158_024_03906_8
crossref_primary_10_1111_rssc_12516
crossref_primary_10_1007_s00180_023_01424_7
crossref_primary_10_1002_asmb_2656
crossref_primary_10_3390_vibration5020020
crossref_primary_10_1016_j_csda_2020_107155
crossref_primary_10_4304_jnw_8_3_576_587
crossref_primary_10_5802_afst_1342
crossref_primary_10_1007_s00158_018_2127_8
crossref_primary_10_51387_23_NEJSDS26
crossref_primary_10_1016_j_fishres_2023_106816
crossref_primary_10_1016_j_cpc_2024_109464
crossref_primary_10_3390_ma15124117
crossref_primary_10_1007_s00339_018_1916_7
crossref_primary_10_1007_s00704_012_0716_9
Cites_doi 10.1093/biomet/71.1.135
10.1214/ss/1177012413
10.2514/6.2004-4483
10.1007/978-1-4757-3799-8
10.1214/aos/1176345208
10.1137/1.9781611970128
10.1007/978-0-387-21606-5
10.2307/3315678
10.1111/1467-9469.00168
10.2514/1.8650
10.1198/004017004000000671
10.2113/gsecongeo.58.8.1246
10.1007/978-1-4612-1494-6
10.1023/A:1008306431147
10.1016/j.ress.2005.11.025
10.1002/9781119115151
10.1007/BF00893318
ContentType Journal Article
Copyright Copyright © 2009 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2009 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
7TA
8FD
JG9
JQ2
L7M
L~C
L~D
DOI 10.1002/asmb.741
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Materials Business File
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Materials Business File
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1526-4025
EndPage 131
ExternalDocumentID 10_1002_asmb_741
ASMB741
ark_67375_WNG_KGBDS5BJ_1
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBA
EBO
EBR
EBS
EBU
EJD
EMK
EPL
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
K1G
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
QWB
R.K
ROL
RWI
RX1
RYL
SUPJJ
TH9
UB1
W8V
W99
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YHZ
ZL0
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AHQJS
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
1OB
7SC
7TA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3341-cdb0635aa4850303e00998d6d4b0d4d587a3fccc2b9f26253f39d6ec1ab0f473
IEDL.DBID DR2
ISSN 1524-1904
IngestDate Fri Sep 05 14:58:00 EDT 2025
Tue Jul 01 04:27:33 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Wed Jan 22 17:10:39 EST 2025
Wed Oct 30 09:50:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3341-cdb0635aa4850303e00998d6d4b0d4d587a3fccc2b9f26253f39d6ec1ab0f473
Notes ark:/67375/WNG-KGBDS5BJ-1
ArticleID:ASMB741
istex:598830D1ADD9B963F2C1F54C15809D99F2D3680D
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 34282185
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_34282185
crossref_citationtrail_10_1002_asmb_741
crossref_primary_10_1002_asmb_741
wiley_primary_10_1002_asmb_741_ASMB741
istex_primary_ark_67375_WNG_KGBDS5BJ_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-03
March/April 2009
2009-03-00
20090301
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Applied stochastic models in business and industry
PublicationTitleAlternate Appl. Stochastic Models Bus. Ind
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Li R, Sudjianto A. Analysis of computer experiments using penalized likelihood in gaussian Kriging models. Technometrics 2005; 47:111-120.
O'Hagan A. Bayesian analysis of computer code outputs: a tutorial. Reliability Engineering and System Safety 2006; 91:1290-1300.
Sweeting TJ. Uniform asymptotic normality of the maximum likelihood estimator. The Annals of Statistics 1980; 8(6):1375-1381.
Abt M. Estimating the prediction mean squared error in gaussian stochastic processes with exponential covariance structure. Scandinavian Journal of Statistics 1999; 26:563-578.
Jourdan A. Approches statistiques des expériences simulées. Revue de Statistiques Appliquées 2002; 50:49-64.
Wahba G. Spline Models for Observational Data. SIAM: Philadelphia, PA, 1990.
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2006. ISBN 3-900051-07-0.
Hastie T, Tibshirani R. Generalized Additive Models. Chapman & Hall: London, 1991.
Abt M, Welch WJ. Fisher information and maximum-likelihood estimation of covariance parameters in gaussian stochastic processes. The Canadian Journal of Statistics 1998; 26:127-137.
Journel AG, Rossi ME. When do we need a trend model in Kriging? Mathematical Geology 1989; 21(7):715-739.
Mardia KV, Marshall RJ. Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 1984; 71:135-146.
Santner TJ, Williams BJ, Notz WJ. The Design and Analysis of Computer Experiments. Springer: Berlin, 2003.
Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and analysis of computer experiments. Statistical Science 1989; 4(4):409-435.
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Springer: Berlin, 2001.
Stein ML. Interpolation of Spatial Data, Some Theory for Kriging. Springer: Berlin, 1999.
Martin JD, Simpson TW. Use of Kriging models to approximate deterministic computer models. AIAA Journal 2005; 43(4):853-863.
Matheron G. Principles of geostatistics. Economic Geology 1963; 58:1246-1266.
Jones DR, Schonlau M, Welch WJ. Efficient global optimization of expensive black-box functions. Journal of Global Optimization 1998; 13:455-492.
1963; 58
1998; 26
1989; 4
2006; 91
1984; 71
1989; 21
2001
1990
2002; 50
1999; 26
1980; 8
1996
2005; 43
2006
1993
2004
2003
1991
1998; 13
2005; 47
1999
Hastie T (e_1_2_1_20_2) 1991
Jourdan A (e_1_2_1_7_2) 2002; 50
R Development Core Team (e_1_2_1_22_2) 2006
e_1_2_1_6_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_23_2
e_1_2_1_10_2
e_1_2_1_21_2
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_24_2
e_1_2_1_14_2
e_1_2_1_25_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: Abt M. Estimating the prediction mean squared error in gaussian stochastic processes with exponential covariance structure. Scandinavian Journal of Statistics 1999; 26:563-578.
– reference: Li R, Sudjianto A. Analysis of computer experiments using penalized likelihood in gaussian Kriging models. Technometrics 2005; 47:111-120.
– reference: O'Hagan A. Bayesian analysis of computer code outputs: a tutorial. Reliability Engineering and System Safety 2006; 91:1290-1300.
– reference: Abt M, Welch WJ. Fisher information and maximum-likelihood estimation of covariance parameters in gaussian stochastic processes. The Canadian Journal of Statistics 1998; 26:127-137.
– reference: Wahba G. Spline Models for Observational Data. SIAM: Philadelphia, PA, 1990.
– reference: Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and analysis of computer experiments. Statistical Science 1989; 4(4):409-435.
– reference: Matheron G. Principles of geostatistics. Economic Geology 1963; 58:1246-1266.
– reference: Santner TJ, Williams BJ, Notz WJ. The Design and Analysis of Computer Experiments. Springer: Berlin, 2003.
– reference: Sweeting TJ. Uniform asymptotic normality of the maximum likelihood estimator. The Annals of Statistics 1980; 8(6):1375-1381.
– reference: Journel AG, Rossi ME. When do we need a trend model in Kriging? Mathematical Geology 1989; 21(7):715-739.
– reference: Hastie T, Tibshirani R. Generalized Additive Models. Chapman & Hall: London, 1991.
– reference: Jourdan A. Approches statistiques des expériences simulées. Revue de Statistiques Appliquées 2002; 50:49-64.
– reference: Mardia KV, Marshall RJ. Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 1984; 71:135-146.
– reference: Martin JD, Simpson TW. Use of Kriging models to approximate deterministic computer models. AIAA Journal 2005; 43(4):853-863.
– reference: Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Springer: Berlin, 2001.
– reference: Stein ML. Interpolation of Spatial Data, Some Theory for Kriging. Springer: Berlin, 1999.
– reference: R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2006. ISBN 3-900051-07-0.
– reference: Jones DR, Schonlau M, Welch WJ. Efficient global optimization of expensive black-box functions. Journal of Global Optimization 1998; 13:455-492.
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  article-title: Efficient global optimization of expensive black‐box functions
  publication-title: Journal of Global Optimization
– volume: 43
  start-page: 853
  issue: 4
  year: 2005
  end-page: 863
  article-title: Use of Kriging models to approximate deterministic computer models
  publication-title: AIAA Journal
– volume: 21
  start-page: 715
  issue: 7
  year: 1989
  end-page: 739
  article-title: When do we need a trend model in Kriging?
  publication-title: Mathematical Geology
– volume: 26
  start-page: 563
  year: 1999
  end-page: 578
  article-title: Estimating the prediction mean squared error in gaussian stochastic processes with exponential covariance structure
  publication-title: Scandinavian Journal of Statistics
– start-page: 4483
– volume: 71
  start-page: 135
  year: 1984
  end-page: 146
  article-title: Maximum likelihood estimation of models for residual covariance in spatial regression
  publication-title: Biometrika
– year: 2001
– year: 2006
– year: 2003
– year: 2004
– year: 1996
– volume: 26
  start-page: 127
  year: 1998
  end-page: 137
  article-title: Fisher information and maximum‐likelihood estimation of covariance parameters in gaussian stochastic processes
  publication-title: The Canadian Journal of Statistics
– volume: 47
  start-page: 111
  year: 2005
  end-page: 120
  article-title: Analysis of computer experiments using penalized likelihood in gaussian Kriging models
  publication-title: Technometrics
– volume: 91
  start-page: 1290
  year: 2006
  end-page: 1300
  article-title: Bayesian analysis of computer code outputs: a tutorial
  publication-title: Reliability Engineering and System Safety
– volume: 4
  start-page: 409
  issue: 4
  year: 1989
  end-page: 435
  article-title: Design and analysis of computer experiments
  publication-title: Statistical Science
– volume: 50
  start-page: 49
  year: 2002
  end-page: 64
  article-title: Approches statistiques des expériences simulées
  publication-title: Revue de Statistiques Appliquées
– year: 1991
– volume: 8
  start-page: 1375
  issue: 6
  year: 1980
  end-page: 1381
  article-title: Uniform asymptotic normality of the maximum likelihood estimator
  publication-title: The Annals of Statistics
– year: 1990
– year: 1993
– volume: 58
  start-page: 1246
  year: 1963
  end-page: 1266
  article-title: Principles of geostatistics
  publication-title: Economic Geology
– year: 1999
– ident: e_1_2_1_12_2
  doi: 10.1093/biomet/71.1.135
– ident: e_1_2_1_14_2
– ident: e_1_2_1_4_2
  doi: 10.1214/ss/1177012413
– ident: e_1_2_1_9_2
  doi: 10.2514/6.2004-4483
– ident: e_1_2_1_25_2
– ident: e_1_2_1_6_2
  doi: 10.1007/978-1-4757-3799-8
– ident: e_1_2_1_11_2
  doi: 10.1214/aos/1176345208
– ident: e_1_2_1_21_2
  doi: 10.1137/1.9781611970128
– ident: e_1_2_1_17_2
  doi: 10.1007/978-0-387-21606-5
– ident: e_1_2_1_24_2
– ident: e_1_2_1_13_2
  doi: 10.2307/3315678
– volume: 50
  start-page: 49
  year: 2002
  ident: e_1_2_1_7_2
  article-title: Approches statistiques des expériences simulées
  publication-title: Revue de Statistiques Appliquées
– ident: e_1_2_1_15_2
  doi: 10.1111/1467-9469.00168
– ident: e_1_2_1_8_2
  doi: 10.2514/1.8650
– ident: e_1_2_1_16_2
  doi: 10.1198/004017004000000671
– ident: e_1_2_1_23_2
– ident: e_1_2_1_2_2
  doi: 10.2113/gsecongeo.58.8.1246
– ident: e_1_2_1_18_2
  doi: 10.1007/978-1-4612-1494-6
– ident: e_1_2_1_5_2
  doi: 10.1023/A:1008306431147
– ident: e_1_2_1_10_2
  doi: 10.1016/j.ress.2005.11.025
– volume-title: Generalized Additive Models
  year: 1991
  ident: e_1_2_1_20_2
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2006
  ident: e_1_2_1_22_2
– ident: e_1_2_1_3_2
  doi: 10.1002/9781119115151
– ident: e_1_2_1_19_2
  doi: 10.1007/BF00893318
SSID ssj0011471
Score 1.8923576
Snippet Our goal in the present article to give an insight on some important questions to be asked when choosing a Kriging model for the analysis of numerical...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115
SubjectTerms additive models
deterministic drift
Kriging
maximum likelihood
metamodeling
Title A note on the choice and the estimation of Kriging models for the analysis of deterministic computer experiments
URI https://api.istex.fr/ark:/67375/WNG-KGBDS5BJ-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasmb.741
https://www.proquest.com/docview/34282185
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3rwLdbnCqKn1Ca7mzTH1vpAaQ9WUfCw7Cse1ERMC-Kvd3bz0IqCeAoJk9fO7Mw3yew3CO2HJjSRL2MvSaTxqIoDT_iQ8-i2UYZJULnrn9IfhOc39OKO3ZVVlXYtTMEPUX9wszPD-Ws7wYXMjz5JQ0X-LJuRW7Puk9DS5veuauYoQPlFrsUC6kHMoxXvbCs4qk6ciEQzdlDfJmDmV7Dqos3pArqvnrMoMnlsjkeyqd6_UTj-70UW0XwJQnGnsJolNGXSZTTXrxlc8xX00sFpNjI4SzEcxeAkwaNgkWq3a6k5ijWPOEvwpWuu9YBdV50cAwx2QqLkO7Eiuqy6cbTQWJWtJPBnf4F8FV2fnlwfn3tldwZPEQh9ntIS4A0TgrYZeApiLNhs61BT2dJUs3YkSKKUCmScBJBlkYTEOjTKF7KV0Iisoek0S806wn5iFKiIyFjFlAohdEsLMBMVExEARGmgw0pRXJXM5baBxhMvOJcDboeQwxA20F4t-VKwdfwgc-B0XQuI10db3RYxfjs445dn3d6QdS84CO5WxsBhztkfKSI12TjnBHI2gEYMLuUU--u9eGfY78J246-Cm2i2-F1li9y20PTodWy2AfWM5I6z7w9eJAIF
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQPbAceOyCKE8jrZZTShvbSSNOLa9CaQ9L0XJYyfIrHIAENa2E-PWMnQcPgYQ4RYkmL894_I09_gah34EJTNiSkRfH0nhURb4nWhDz6LZRhklQuaufMhgGvSt6fs2uZ9BBuRcm54eoJtxsz3D-2nZwOyG9_8IaKrJ72QjtpvUaBZxhI6-jvxV3FOD8PNpiPvVg1KMl82zT3y_vfDMW1WyzPr4Bmq_hqhtvThbR__JL8zST28Z0Ihvq6R2J4zd_ZQktFDgUd3LDWUYzJvmJ5gcViWv2Cz10cJJODE4TDFcx-ElwKlgk2p1ado582yNOY9x39bVusCusk2FAwk5IFJQnVkQXiTeOGRqropoEfikxkK2g0cnx6LDnFQUaPEVg9POUloBwmBC0zcBZEGPxZlsHmsqmppq1Q0FipZQvo9iHQIvEJNKBUS0hmzENySqaTdLErCHcio0CHREZqYhSIYRuagGWoiIifEApdbRXaoqrgrzc1tC44zntss9tE3JowjrarSQfcsKOD2T-OGVXAmJ8axPcQsb_DU95_7R7dMm65xwEd0pr4NDt7FqKSEw6zTiBsA3QEYNHOc1--i7euRx04bj-VcEdNNcbDS74xdmwv4F-5KtXNudtE81OxlOzBSBoIredsT8DcHUGJA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF5VRKrgUCgPEaCwSBWcHBLvrh0fE0KgpIkQDxWph9U-ewDsCCcS4td3dv0AKipVPVm2xq-d2Zlv7NlvEPoamcjEHZkE1koTUJWEgehAzqO7RhkmQeW-f8p4Ep3d0PNbdltWVbq1MAU_RP3Bzc0M76_dBJ9qe_RCGiryB9mK3Zr1Bo0ASDhAdFlTRwHML5ItFtIAgh6tiGfb4VF15ptQ1HCj-vQGZ75Gqz7cDJfRz-pBiyqTu9Z8Jlvq-Q8Ox_97kxX0qUShuFeYzWf0waSraGlcU7jma2jaw2k2MzhLMRzF4CXBpWCRar_ruDmKRY84s3jku2v9wr6tTo4BB3shURKeOBFdlt14Xmisyl4S-KXBQL6Orocn18dnQdmeIVAEYl-gtAR8w4SgXQaughiHNrs60lS2NdWsGwtilVKhTGwIaRaxJNGRUR0h25bGZAMtpFlqNhHuWKNARUQmKqFUCKHbWoCdqISIEDBKEx1WiuKqpC53HTTueUG6HHI3hByGsIn2a8lpQdfxjsyB13UtIB7vXHlbzPiPySkfnfYHV6x_zkFwrzIGDpPO_UkRqcnmOSeQtAE2YnApr9i_3ov3rsZ92G79q-Ae-ngxGPLv3yajbbRY_LpyBW87aGH2ODdfAAHN5K439d9pnATT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+note+on+the+choice+and+the+estimation+of+Kriging+models+for+the+analysis+of+deterministic+computer+experiments&rft.jtitle=Applied+stochastic+models+in+business+and+industry&rft.au=Ginsbourger%2C+David&rft.au=Dupuy%2C+Delphine&rft.au=Badea%2C+Anca&rft.au=Carraro%2C+Laurent&rft.date=2009-03-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1524-1904&rft.eissn=1526-4025&rft.volume=25&rft.issue=2&rft.spage=115&rft.epage=131&rft_id=info:doi/10.1002%2Fasmb.741&rft.externalDBID=10.1002%252Fasmb.741&rft.externalDocID=ASMB741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-1904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-1904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-1904&client=summon