Deep-Learning-Based Earthquake Detection for Fiber-Optic Distributed Acoustic Sensing

In this paper, deep learning models trained with real seismic data are proposed and proven to detect earthquakes in fiber-optic distributed acoustic sensor (DAS) measurements. The proposed neural network architectures cover the three classical deep learning paradigms: fully connected artificial neur...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 40; no. 8; pp. 2639 - 2650
Main Authors Hernandez, Pablo D., Ramirez, Jaime A., Soto, Marcelo A.
Format Journal Article
LanguageEnglish
Published New York IEEE 15.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0733-8724
1558-2213
DOI10.1109/JLT.2021.3138724

Cover

Loading…
Abstract In this paper, deep learning models trained with real seismic data are proposed and proven to detect earthquakes in fiber-optic distributed acoustic sensor (DAS) measurements. The proposed neural network architectures cover the three classical deep learning paradigms: fully connected artificial neural networks (FC-ANNs), convolutional neural networks (CNNs) and recurrent neural networks (RNNs). Results demonstrate that training these networks with seismic waveforms measured by traditional broadband seismometers can extract and learn relevant features of earthquakes, enabling the reliable detection of seismic waves in DAS measurements. The intrinsic differences between DAS and seismograph waveforms, and eventual errors in the labelling of the DAS data, slightly reduce the performance of the models when tested with the distributed acoustic measurements. Despites of that, trained models can still reach up to 96.94% accuracy in the case of CNN and 93.86% in the case of CNN+RNN. The method and results here reported could represent an important contribution to the development of an early warning earthquake system based on DAS technology.
AbstractList In this paper, deep learning models trained with real seismic data are proposed and proven to detect earthquakes in fiber-optic distributed acoustic sensor (DAS) measurements. The proposed neural network architectures cover the three classical deep learning paradigms: fully connected artificial neural networks (FC-ANNs), convolutional neural networks (CNNs) and recurrent neural networks (RNNs). Results demonstrate that training these networks with seismic waveforms measured by traditional broadband seismometers can extract and learn relevant features of earthquakes, enabling the reliable detection of seismic waves in DAS measurements. The intrinsic differences between DAS and seismograph waveforms, and eventual errors in the labelling of the DAS data, slightly reduce the performance of the models when tested with the distributed acoustic measurements. Despites of that, trained models can still reach up to 96.94% accuracy in the case of CNN and 93.86% in the case of CNN+RNN. The method and results here reported could represent an important contribution to the development of an early warning earthquake system based on DAS technology.
Author Hernandez, Pablo D.
Ramirez, Jaime A.
Soto, Marcelo A.
Author_xml – sequence: 1
  givenname: Pablo D.
  orcidid: 0000-0003-0646-9144
  surname: Hernandez
  fullname: Hernandez, Pablo D.
  email: pablo.hernandezdo.13@sansano.usm.cl
  organization: Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile
– sequence: 2
  givenname: Jaime A.
  surname: Ramirez
  fullname: Ramirez, Jaime A.
  email: jaime@novelcode.io
  organization: Novelcode SpA, Viña del Mar, Chile
– sequence: 3
  givenname: Marcelo A.
  orcidid: 0000-0002-2140-2012
  surname: Soto
  fullname: Soto, Marcelo A.
  email: marcelo.sotoh@usm.cl
  organization: Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile
BookMark eNp9kDtPwzAURi1UJNrCjsQSiTnFj9hxxtIHD0XqQDtbjnMDLiVJbWfg35OoFQMD05WuvvNd3TNBo7qpAaFbgmeE4OzhNd_OKKZkxgiTKU0u0JhwLmNKCRuhMU4Zi4f9FZp4v8eYJIlMx2i3BGjjHLSrbf0eP2oPZbTSLnwcO_0J0RICmGCbOqoaF61tAS7etMGaaGl9cLboQg_MTdP5YfkGte97rtFlpQ8ebs5zinbr1XbxHOebp5fFPI8NYyzEFWFaUCAZo4IDpaZMypRqzoUWmTSmYFJSXmqMeVERqApjcMGJAa0ZlbRiU3R_6m1dc-zAB7VvOlf3JxUVSZrQVBLZp8QpZVzjvYNKGRv08FRw2h4UwWpQqHqFalCozgp7EP8BW2e_tPv-D7k7IRYAfuOZEAnLOPsBoah-CQ
CODEN JLTEDG
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126865
crossref_primary_10_1002_aisy_202200140
crossref_primary_10_1016_j_optcom_2024_130382
crossref_primary_10_1029_2024JB029102
crossref_primary_10_1109_TIM_2025_3538088
crossref_primary_10_1016_j_measurement_2022_112340
crossref_primary_10_1146_annurev_earth_071822_100323
crossref_primary_10_1109_JSEN_2023_3276792
crossref_primary_10_1109_JPHOT_2024_3496559
crossref_primary_10_1007_s13369_024_09448_x
crossref_primary_10_1364_JOCN_537881
crossref_primary_10_1364_OE_477175
crossref_primary_10_1364_AO_476614
crossref_primary_10_1190_geo2023_0079_1
crossref_primary_10_3390_s24072200
crossref_primary_10_1109_JLT_2022_3200332
crossref_primary_10_3390_rs14143417
crossref_primary_10_1109_JSEN_2024_3390425
crossref_primary_10_1093_gji_ggae400
crossref_primary_10_1109_JLT_2023_3273268
crossref_primary_10_1038_s44172_024_00274_5
crossref_primary_10_1364_OE_455454
crossref_primary_10_1186_s43074_025_00160_z
crossref_primary_10_1016_j_optlastec_2024_112083
crossref_primary_10_1109_JLT_2024_3401244
crossref_primary_10_3390_s23146486
crossref_primary_10_1007_s11831_024_10099_2
crossref_primary_10_1109_IOTM_001_2300287
crossref_primary_10_1016_j_optlastec_2023_110476
crossref_primary_10_1063_5_0252755
crossref_primary_10_1109_JLT_2024_3472488
crossref_primary_10_1007_s00521_024_10244_9
crossref_primary_10_1016_j_cageo_2024_105625
crossref_primary_10_1109_JLT_2024_3397798
crossref_primary_10_1109_JSEN_2024_3513433
crossref_primary_10_3390_s23136187
crossref_primary_10_1038_s41598_024_82087_2
crossref_primary_10_1515_teme_2022_0098
crossref_primary_10_1093_gji_ggae459
crossref_primary_10_2139_ssrn_4160510
crossref_primary_10_3390_s23167116
crossref_primary_10_1109_JSEN_2023_3311088
crossref_primary_10_1109_JLT_2024_3425865
crossref_primary_10_1007_s12596_023_01212_y
crossref_primary_10_1016_j_optlaseng_2022_107302
Cites_doi 10.1038/s41598-020-58908-5
10.1038/323533a0
10.1038/s41467-018-04860-y
10.1038/s41598-019-45748-1
10.1038/s41467-019-13262-7
10.1364/OE.28.002925
10.1007/978-3-319-98074-4
10.1029/2018GL081195
10.1038/s41467-020-17591-w
10.1111/j.1365-246X.1995.tb01851.x
10.1109/JLT.2021.3059771
10.1785/BSSA0850010308
10.1093/gji/ggy359
10.3390/s18092841
10.1002/2017GL075722
10.1038/s41467-019-13793-z
10.1109/ACCESS.2019.2947848
10.1364/OE.22.008823
10.1201/9781315119014
10.1029/2018JB016661
10.1029/2019GL085976
10.1162/neco.1997.9.8.1735
10.1109/JLT.2019.2919713
10.5555/3104322.3104425
10.3390/app7080841
10.1109/TGRS.2018.2852302
10.1007/s13349-021-00483-y
10.1109/TVT.2019.2962334
10.1109/LGRS.2021.3059422
10.1063/1.5139602
10.1126/science.aat4458
10.1109/JLT.2019.2913284
10.1038/s41598-017-12610-1
10.1109/5.726791
10.1111/1365-2478.12141
10.1111/1365-2478.12116
10.1785/BSSA0680051521
10.1093/gji/ggy102
10.1093/gji/ggaa233
10.1785/0220180311
10.1126/sciadv.1700578
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1109/JLT.2021.3138724
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1558-2213
EndPage 2650
ExternalDocumentID 10_1109_JLT_2021_3138724
9664395
Genre orig-research
GrantInformation_xml – fundername: ANID Chilean National Agency for Research and Development
  grantid: FONDECYT Regular 1200299; FONDEF IDeA I+D ID20I10089; Fondequip EQM180026; Basal FB0008
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AEDJG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RNS
ROL
ROS
TN5
TR6
ZCA
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c333t-f13a62e193265e22cd4d72a556a698ccb38825da005bf1efbcc0b51ceaa3282f3
IEDL.DBID RIE
ISSN 0733-8724
IngestDate Mon Jun 30 10:11:36 EDT 2025
Tue Jul 01 01:02:03 EDT 2025
Thu Apr 24 22:53:15 EDT 2025
Wed Aug 27 02:40:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-f13a62e193265e22cd4d72a556a698ccb38825da005bf1efbcc0b51ceaa3282f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2140-2012
0000-0003-0646-9144
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9664395
PQID 2647427818
PQPubID 85485
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_JLT_2021_3138724
proquest_journals_2647427818
ieee_primary_9664395
crossref_primary_10_1109_JLT_2021_3138724
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-15
PublicationDateYYYYMMDD 2022-04-15
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
Ioffe (ref40)
ref1
Sladen (ref45) 2019
ref17
ref39
ref16
ref38
ref19
ref18
(ref46) 2016
Srivastava (ref42) 2014; 15
Zhang (ref33) 2019; 37
Williams (ref47) 2019
ref24
ref23
ref26
ref48
ref25
ref20
ref41
ref22
ref44
ref21
ref43
Chollet (ref35) 2017
ref28
ref27
ref29
ref8
ref7
Goodfellow (ref34) 2016
ref9
ref4
ref3
ref6
ref5
Fernndez (ref37) 2018
References_xml – year: 2019
  ident: ref45
  article-title: A meust-NUMerEnvKM3NeT DAS experiment Feb. 2018
– ident: ref27
  doi: 10.1038/s41598-020-58908-5
– ident: ref36
  doi: 10.1038/323533a0
– ident: ref16
  doi: 10.1038/s41467-018-04860-y
– start-page: 448
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref40
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– volume-title: CaltechDATA
  year: 2019
  ident: ref47
  article-title: Belgium distributed acoustic sensing array raw data (version 1.0) [data set]
– ident: ref41
  doi: 10.1038/s41598-019-45748-1
– volume-title: Deep Learning
  year: 2016
  ident: ref34
– ident: ref19
  doi: 10.1038/s41467-019-13262-7
– year: 2016
  ident: ref46
  article-title: Bradys geothermal field DAS earthquake data [data set]
– ident: ref8
  doi: 10.1364/OE.28.002925
– volume-title: Learning from Imbalanced Data Sets
  year: 2018
  ident: ref37
  doi: 10.1007/978-3-319-98074-4
– ident: ref15
  doi: 10.1029/2018GL081195
– ident: ref25
  doi: 10.1038/s41467-020-17591-w
– ident: ref21
  doi: 10.1111/j.1365-246X.1995.tb01851.x
– ident: ref2
  doi: 10.1109/JLT.2021.3059771
– ident: ref20
  doi: 10.1785/BSSA0850010308
– volume-title: Deep Learning with Python
  year: 2017
  ident: ref35
– ident: ref14
  doi: 10.1093/gji/ggy359
– ident: ref3
  doi: 10.3390/s18092841
– ident: ref12
  doi: 10.1002/2017GL075722
– ident: ref18
  doi: 10.1038/s41467-019-13793-z
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: ref42
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref44
  doi: 10.1109/ACCESS.2019.2947848
– ident: ref32
  doi: 10.1364/OE.22.008823
– ident: ref1
  doi: 10.1201/9781315119014
– ident: ref24
  doi: 10.1029/2018JB016661
– ident: ref28
  doi: 10.1029/2019GL085976
– ident: ref43
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref31
  doi: 10.1109/JLT.2019.2919713
– ident: ref38
  doi: 10.5555/3104322.3104425
– ident: ref9
  doi: 10.3390/app7080841
– ident: ref22
  doi: 10.1109/TGRS.2018.2852302
– ident: ref4
  doi: 10.1007/s13349-021-00483-y
– ident: ref7
  doi: 10.1109/TVT.2019.2962334
– ident: ref29
  doi: 10.1109/LGRS.2021.3059422
– ident: ref6
  doi: 10.1063/1.5139602
– ident: ref17
  doi: 10.1126/science.aat4458
– volume: 37
  start-page: 4590
  issue: 18
  year: 2019
  ident: ref33
  article-title: Long-range distributed static strain sensing with <100 nano-strain resolution realized using OFDR
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2019.2913284
– ident: ref5
  doi: 10.1038/s41598-017-12610-1
– ident: ref39
  doi: 10.1109/5.726791
– ident: ref11
  doi: 10.1111/1365-2478.12141
– ident: ref10
  doi: 10.1111/1365-2478.12116
– ident: ref48
  doi: 10.1785/BSSA0680051521
– ident: ref13
  doi: 10.1093/gji/ggy102
– ident: ref30
  doi: 10.1093/gji/ggaa233
– ident: ref23
  doi: 10.1785/0220180311
– ident: ref26
  doi: 10.1126/sciadv.1700578
SSID ssj0014487
Score 2.585552
Snippet In this paper, deep learning models trained with real seismic data are proposed and proven to detect earthquakes in fiber-optic distributed acoustic sensor...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2639
SubjectTerms Acoustic measurement
Acoustic measurements
Acoustics
Artificial neural networks
Broadband
Computer architecture
Deep learning
Distributed acoustic sensing
Early warning systems
earthquake detection
Earthquakes
Feature extraction
Fiber optics
machine learning
Neural networks
Optical fiber networks
Optical fiber sensors
Optical fibers
Recurrent neural networks
Seismic measurements
Seismic waves
Waveforms
Title Deep-Learning-Based Earthquake Detection for Fiber-Optic Distributed Acoustic Sensing
URI https://ieeexplore.ieee.org/document/9664395
https://www.proquest.com/docview/2647427818
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4B0iRegMEmCmXyw14mzW1jx0nzWCgVQmM8QCXeIvtyYRIoZWv6wl_P2XUrwdC0t0jxRZa-O9938f0A-MouzGBlE6mZ3Mp0iLVkL0dSobMcDWQJGl_gfPUzu5iml3fmbgO-r2thiCgkn1HPP4a7_GqGC_-rrM_UnP2n2YRNVrNlrdb6xoA_HEqjc63ZwlW6upIcFP3LH7ccCKqE41PtX71yQWGmyl8HcfAuk124Wu1rmVTy0Fu0rofPb1o2_u_G92An0kwxWurFR9igZh92I-UU0aDn-_AhZIDi_ACmY6InGdut3stT9m6VOGfF-vV7YR9IjKkNWVuNYJorJj7RRF7zeYNi7Hvv-rFZLDDCWRgPJm58Ynxz_wmmk_PbswsZZy5I1Fq3sk60zRQFWmdIKazSKlfWmMxmxRDRaabkprJsvK5OqHaIA2cSJGs1R2-1_gxbzayhQxCFszWTUZU5qtNBZdyQyUyOdYp5UlBFHeivYCgxNiT3czEeyxCYDIqSgSs9cGUErgPf1hJPy2Yc_1h74HFYr4sQdKC7QrqM1jovmRTmfuRIMjx6X-oYtpUve_A9Hk0Xtto_CzphMtK6L0ELXwA8ftrJ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4aQwguG2xMlA3wgQsSbhs7TprjRleV0Y4DrbRbZL-8DGko3db0wl-_Z9etxA8hbpFiR5Y-P3_fi98PgPdMYQYrm0jN4lamA6wlsxxJhc6yN5AlaHyC8_QyG8_TiytztQMft7kwRBSCz6jrH8NdfrXAlf9V1mNpzvxpHsFj5v3UrLO1tncG_OmQHJ1rzTau0s2lZL_oXUxm7AqqhD1U7V_9QkKhq8ofR3Hgl9E-TDcrW4eV3HRXreviz9-KNv7v0p_DXhSa4nS9M17ADjUHsB9Fp4gmvTyAJyEGFJeHMB8S3cpYcPVanjG_VeKct9b3u5W9ITGkNsRtNYKFrhj5UBP5lU8cFENffdc3zuIJp7gIDcLENx8a31y_hPnofPZpLGPXBYla61bWibaZoiDsDCmFVVrlyhqT2awYIDrNotxUls3X1QnVDrHvTIJkrWb_rdZHsNssGnoFonC2ZjmqMkd12q-MG7CcybFOMU8KqqgDvQ0MJcaS5L4zxo8yuCb9omTgSg9cGYHrwIftjNt1OY5_jD30OGzHRQg6cLJBuoz2uixZFua-6UgyeP33We_g6Xg2nZSTz5dfjuGZ8kkQvuKjOYHd9n5Fb1iatO5t2JEP2abeFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning-Based+Earthquake+Detection+for+Fiber-Optic+Distributed+Acoustic+Sensing&rft.jtitle=Journal+of+lightwave+technology&rft.au=Hernandez%2C+Pablo+D.&rft.au=Ramirez%2C+Jaime+A.&rft.au=Soto%2C+Marcelo+A.&rft.date=2022-04-15&rft.pub=IEEE&rft.issn=0733-8724&rft.volume=40&rft.issue=8&rft.spage=2639&rft.epage=2650&rft_id=info:doi/10.1109%2FJLT.2021.3138724&rft.externalDocID=9664395
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon