Deep-Learning-Based Earthquake Detection for Fiber-Optic Distributed Acoustic Sensing
In this paper, deep learning models trained with real seismic data are proposed and proven to detect earthquakes in fiber-optic distributed acoustic sensor (DAS) measurements. The proposed neural network architectures cover the three classical deep learning paradigms: fully connected artificial neur...
Saved in:
Published in | Journal of lightwave technology Vol. 40; no. 8; pp. 2639 - 2650 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0733-8724 1558-2213 |
DOI | 10.1109/JLT.2021.3138724 |
Cover
Loading…
Abstract | In this paper, deep learning models trained with real seismic data are proposed and proven to detect earthquakes in fiber-optic distributed acoustic sensor (DAS) measurements. The proposed neural network architectures cover the three classical deep learning paradigms: fully connected artificial neural networks (FC-ANNs), convolutional neural networks (CNNs) and recurrent neural networks (RNNs). Results demonstrate that training these networks with seismic waveforms measured by traditional broadband seismometers can extract and learn relevant features of earthquakes, enabling the reliable detection of seismic waves in DAS measurements. The intrinsic differences between DAS and seismograph waveforms, and eventual errors in the labelling of the DAS data, slightly reduce the performance of the models when tested with the distributed acoustic measurements. Despites of that, trained models can still reach up to 96.94% accuracy in the case of CNN and 93.86% in the case of CNN+RNN. The method and results here reported could represent an important contribution to the development of an early warning earthquake system based on DAS technology. |
---|---|
AbstractList | In this paper, deep learning models trained with real seismic data are proposed and proven to detect earthquakes in fiber-optic distributed acoustic sensor (DAS) measurements. The proposed neural network architectures cover the three classical deep learning paradigms: fully connected artificial neural networks (FC-ANNs), convolutional neural networks (CNNs) and recurrent neural networks (RNNs). Results demonstrate that training these networks with seismic waveforms measured by traditional broadband seismometers can extract and learn relevant features of earthquakes, enabling the reliable detection of seismic waves in DAS measurements. The intrinsic differences between DAS and seismograph waveforms, and eventual errors in the labelling of the DAS data, slightly reduce the performance of the models when tested with the distributed acoustic measurements. Despites of that, trained models can still reach up to 96.94% accuracy in the case of CNN and 93.86% in the case of CNN+RNN. The method and results here reported could represent an important contribution to the development of an early warning earthquake system based on DAS technology. |
Author | Hernandez, Pablo D. Ramirez, Jaime A. Soto, Marcelo A. |
Author_xml | – sequence: 1 givenname: Pablo D. orcidid: 0000-0003-0646-9144 surname: Hernandez fullname: Hernandez, Pablo D. email: pablo.hernandezdo.13@sansano.usm.cl organization: Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile – sequence: 2 givenname: Jaime A. surname: Ramirez fullname: Ramirez, Jaime A. email: jaime@novelcode.io organization: Novelcode SpA, Viña del Mar, Chile – sequence: 3 givenname: Marcelo A. orcidid: 0000-0002-2140-2012 surname: Soto fullname: Soto, Marcelo A. email: marcelo.sotoh@usm.cl organization: Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile |
BookMark | eNp9kDtPwzAURi1UJNrCjsQSiTnFj9hxxtIHD0XqQDtbjnMDLiVJbWfg35OoFQMD05WuvvNd3TNBo7qpAaFbgmeE4OzhNd_OKKZkxgiTKU0u0JhwLmNKCRuhMU4Zi4f9FZp4v8eYJIlMx2i3BGjjHLSrbf0eP2oPZbTSLnwcO_0J0RICmGCbOqoaF61tAS7etMGaaGl9cLboQg_MTdP5YfkGte97rtFlpQ8ebs5zinbr1XbxHOebp5fFPI8NYyzEFWFaUCAZo4IDpaZMypRqzoUWmTSmYFJSXmqMeVERqApjcMGJAa0ZlbRiU3R_6m1dc-zAB7VvOlf3JxUVSZrQVBLZp8QpZVzjvYNKGRv08FRw2h4UwWpQqHqFalCozgp7EP8BW2e_tPv-D7k7IRYAfuOZEAnLOPsBoah-CQ |
CODEN | JLTEDG |
CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126865 crossref_primary_10_1002_aisy_202200140 crossref_primary_10_1016_j_optcom_2024_130382 crossref_primary_10_1029_2024JB029102 crossref_primary_10_1109_TIM_2025_3538088 crossref_primary_10_1016_j_measurement_2022_112340 crossref_primary_10_1146_annurev_earth_071822_100323 crossref_primary_10_1109_JSEN_2023_3276792 crossref_primary_10_1109_JPHOT_2024_3496559 crossref_primary_10_1007_s13369_024_09448_x crossref_primary_10_1364_JOCN_537881 crossref_primary_10_1364_OE_477175 crossref_primary_10_1364_AO_476614 crossref_primary_10_1190_geo2023_0079_1 crossref_primary_10_3390_s24072200 crossref_primary_10_1109_JLT_2022_3200332 crossref_primary_10_3390_rs14143417 crossref_primary_10_1109_JSEN_2024_3390425 crossref_primary_10_1093_gji_ggae400 crossref_primary_10_1109_JLT_2023_3273268 crossref_primary_10_1038_s44172_024_00274_5 crossref_primary_10_1364_OE_455454 crossref_primary_10_1186_s43074_025_00160_z crossref_primary_10_1016_j_optlastec_2024_112083 crossref_primary_10_1109_JLT_2024_3401244 crossref_primary_10_3390_s23146486 crossref_primary_10_1007_s11831_024_10099_2 crossref_primary_10_1109_IOTM_001_2300287 crossref_primary_10_1016_j_optlastec_2023_110476 crossref_primary_10_1063_5_0252755 crossref_primary_10_1109_JLT_2024_3472488 crossref_primary_10_1007_s00521_024_10244_9 crossref_primary_10_1016_j_cageo_2024_105625 crossref_primary_10_1109_JLT_2024_3397798 crossref_primary_10_1109_JSEN_2024_3513433 crossref_primary_10_3390_s23136187 crossref_primary_10_1038_s41598_024_82087_2 crossref_primary_10_1515_teme_2022_0098 crossref_primary_10_1093_gji_ggae459 crossref_primary_10_2139_ssrn_4160510 crossref_primary_10_3390_s23167116 crossref_primary_10_1109_JSEN_2023_3311088 crossref_primary_10_1109_JLT_2024_3425865 crossref_primary_10_1007_s12596_023_01212_y crossref_primary_10_1016_j_optlaseng_2022_107302 |
Cites_doi | 10.1038/s41598-020-58908-5 10.1038/323533a0 10.1038/s41467-018-04860-y 10.1038/s41598-019-45748-1 10.1038/s41467-019-13262-7 10.1364/OE.28.002925 10.1007/978-3-319-98074-4 10.1029/2018GL081195 10.1038/s41467-020-17591-w 10.1111/j.1365-246X.1995.tb01851.x 10.1109/JLT.2021.3059771 10.1785/BSSA0850010308 10.1093/gji/ggy359 10.3390/s18092841 10.1002/2017GL075722 10.1038/s41467-019-13793-z 10.1109/ACCESS.2019.2947848 10.1364/OE.22.008823 10.1201/9781315119014 10.1029/2018JB016661 10.1029/2019GL085976 10.1162/neco.1997.9.8.1735 10.1109/JLT.2019.2919713 10.5555/3104322.3104425 10.3390/app7080841 10.1109/TGRS.2018.2852302 10.1007/s13349-021-00483-y 10.1109/TVT.2019.2962334 10.1109/LGRS.2021.3059422 10.1063/1.5139602 10.1126/science.aat4458 10.1109/JLT.2019.2913284 10.1038/s41598-017-12610-1 10.1109/5.726791 10.1111/1365-2478.12141 10.1111/1365-2478.12116 10.1785/BSSA0680051521 10.1093/gji/ggy102 10.1093/gji/ggaa233 10.1785/0220180311 10.1126/sciadv.1700578 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1109/JLT.2021.3138724 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1558-2213 |
EndPage | 2650 |
ExternalDocumentID | 10_1109_JLT_2021_3138724 9664395 |
Genre | orig-research |
GrantInformation_xml | – fundername: ANID Chilean National Agency for Research and Development grantid: FONDECYT Regular 1200299; FONDEF IDeA I+D ID20I10089; Fondequip EQM180026; Basal FB0008 |
GroupedDBID | -~X 0R~ 29K 4.4 5GY 6IK 85S 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK AEDJG AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 D-I DSZJF DU5 EBS ESBDL HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL OFLFD OPJBK P2P RIA RIE RNS ROL ROS TN5 TR6 ZCA AAYXX CITATION 7SP 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c333t-f13a62e193265e22cd4d72a556a698ccb38825da005bf1efbcc0b51ceaa3282f3 |
IEDL.DBID | RIE |
ISSN | 0733-8724 |
IngestDate | Mon Jun 30 10:11:36 EDT 2025 Tue Jul 01 01:02:03 EDT 2025 Thu Apr 24 22:53:15 EDT 2025 Wed Aug 27 02:40:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-f13a62e193265e22cd4d72a556a698ccb38825da005bf1efbcc0b51ceaa3282f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2140-2012 0000-0003-0646-9144 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9664395 |
PQID | 2647427818 |
PQPubID | 85485 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_JLT_2021_3138724 proquest_journals_2647427818 ieee_primary_9664395 crossref_primary_10_1109_JLT_2021_3138724 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-15 |
PublicationDateYYYYMMDD | 2022-04-15 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of lightwave technology |
PublicationTitleAbbrev | JLT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 Ioffe (ref40) ref1 Sladen (ref45) 2019 ref17 ref39 ref16 ref38 ref19 ref18 (ref46) 2016 Srivastava (ref42) 2014; 15 Zhang (ref33) 2019; 37 Williams (ref47) 2019 ref24 ref23 ref26 ref48 ref25 ref20 ref41 ref22 ref44 ref21 ref43 Chollet (ref35) 2017 ref28 ref27 ref29 ref8 ref7 Goodfellow (ref34) 2016 ref9 ref4 ref3 ref6 ref5 Fernndez (ref37) 2018 |
References_xml | – year: 2019 ident: ref45 article-title: A meust-NUMerEnvKM3NeT DAS experiment Feb. 2018 – ident: ref27 doi: 10.1038/s41598-020-58908-5 – ident: ref36 doi: 10.1038/323533a0 – ident: ref16 doi: 10.1038/s41467-018-04860-y – start-page: 448 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref40 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – volume-title: CaltechDATA year: 2019 ident: ref47 article-title: Belgium distributed acoustic sensing array raw data (version 1.0) [data set] – ident: ref41 doi: 10.1038/s41598-019-45748-1 – volume-title: Deep Learning year: 2016 ident: ref34 – ident: ref19 doi: 10.1038/s41467-019-13262-7 – year: 2016 ident: ref46 article-title: Bradys geothermal field DAS earthquake data [data set] – ident: ref8 doi: 10.1364/OE.28.002925 – volume-title: Learning from Imbalanced Data Sets year: 2018 ident: ref37 doi: 10.1007/978-3-319-98074-4 – ident: ref15 doi: 10.1029/2018GL081195 – ident: ref25 doi: 10.1038/s41467-020-17591-w – ident: ref21 doi: 10.1111/j.1365-246X.1995.tb01851.x – ident: ref2 doi: 10.1109/JLT.2021.3059771 – ident: ref20 doi: 10.1785/BSSA0850010308 – volume-title: Deep Learning with Python year: 2017 ident: ref35 – ident: ref14 doi: 10.1093/gji/ggy359 – ident: ref3 doi: 10.3390/s18092841 – ident: ref12 doi: 10.1002/2017GL075722 – ident: ref18 doi: 10.1038/s41467-019-13793-z – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: ref42 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref44 doi: 10.1109/ACCESS.2019.2947848 – ident: ref32 doi: 10.1364/OE.22.008823 – ident: ref1 doi: 10.1201/9781315119014 – ident: ref24 doi: 10.1029/2018JB016661 – ident: ref28 doi: 10.1029/2019GL085976 – ident: ref43 doi: 10.1162/neco.1997.9.8.1735 – ident: ref31 doi: 10.1109/JLT.2019.2919713 – ident: ref38 doi: 10.5555/3104322.3104425 – ident: ref9 doi: 10.3390/app7080841 – ident: ref22 doi: 10.1109/TGRS.2018.2852302 – ident: ref4 doi: 10.1007/s13349-021-00483-y – ident: ref7 doi: 10.1109/TVT.2019.2962334 – ident: ref29 doi: 10.1109/LGRS.2021.3059422 – ident: ref6 doi: 10.1063/1.5139602 – ident: ref17 doi: 10.1126/science.aat4458 – volume: 37 start-page: 4590 issue: 18 year: 2019 ident: ref33 article-title: Long-range distributed static strain sensing with <100 nano-strain resolution realized using OFDR publication-title: J. Lightw. Technol. doi: 10.1109/JLT.2019.2913284 – ident: ref5 doi: 10.1038/s41598-017-12610-1 – ident: ref39 doi: 10.1109/5.726791 – ident: ref11 doi: 10.1111/1365-2478.12141 – ident: ref10 doi: 10.1111/1365-2478.12116 – ident: ref48 doi: 10.1785/BSSA0680051521 – ident: ref13 doi: 10.1093/gji/ggy102 – ident: ref30 doi: 10.1093/gji/ggaa233 – ident: ref23 doi: 10.1785/0220180311 – ident: ref26 doi: 10.1126/sciadv.1700578 |
SSID | ssj0014487 |
Score | 2.585552 |
Snippet | In this paper, deep learning models trained with real seismic data are proposed and proven to detect earthquakes in fiber-optic distributed acoustic sensor... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2639 |
SubjectTerms | Acoustic measurement Acoustic measurements Acoustics Artificial neural networks Broadband Computer architecture Deep learning Distributed acoustic sensing Early warning systems earthquake detection Earthquakes Feature extraction Fiber optics machine learning Neural networks Optical fiber networks Optical fiber sensors Optical fibers Recurrent neural networks Seismic measurements Seismic waves Waveforms |
Title | Deep-Learning-Based Earthquake Detection for Fiber-Optic Distributed Acoustic Sensing |
URI | https://ieeexplore.ieee.org/document/9664395 https://www.proquest.com/docview/2647427818 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4B0iRegMEmCmXyw14mzW1jx0nzWCgVQmM8QCXeIvtyYRIoZWv6wl_P2XUrwdC0t0jxRZa-O9938f0A-MouzGBlE6mZ3Mp0iLVkL0dSobMcDWQJGl_gfPUzu5iml3fmbgO-r2thiCgkn1HPP4a7_GqGC_-rrM_UnP2n2YRNVrNlrdb6xoA_HEqjc63ZwlW6upIcFP3LH7ccCKqE41PtX71yQWGmyl8HcfAuk124Wu1rmVTy0Fu0rofPb1o2_u_G92An0kwxWurFR9igZh92I-UU0aDn-_AhZIDi_ACmY6InGdut3stT9m6VOGfF-vV7YR9IjKkNWVuNYJorJj7RRF7zeYNi7Hvv-rFZLDDCWRgPJm58Ynxz_wmmk_PbswsZZy5I1Fq3sk60zRQFWmdIKazSKlfWmMxmxRDRaabkprJsvK5OqHaIA2cSJGs1R2-1_gxbzayhQxCFszWTUZU5qtNBZdyQyUyOdYp5UlBFHeivYCgxNiT3czEeyxCYDIqSgSs9cGUErgPf1hJPy2Yc_1h74HFYr4sQdKC7QrqM1jovmRTmfuRIMjx6X-oYtpUve_A9Hk0Xtto_CzphMtK6L0ELXwA8ftrJ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4aQwguG2xMlA3wgQsSbhs7TprjRleV0Y4DrbRbZL-8DGko3db0wl-_Z9etxA8hbpFiR5Y-P3_fi98PgPdMYQYrm0jN4lamA6wlsxxJhc6yN5AlaHyC8_QyG8_TiytztQMft7kwRBSCz6jrH8NdfrXAlf9V1mNpzvxpHsFj5v3UrLO1tncG_OmQHJ1rzTau0s2lZL_oXUxm7AqqhD1U7V_9QkKhq8ofR3Hgl9E-TDcrW4eV3HRXreviz9-KNv7v0p_DXhSa4nS9M17ADjUHsB9Fp4gmvTyAJyEGFJeHMB8S3cpYcPVanjG_VeKct9b3u5W9ITGkNsRtNYKFrhj5UBP5lU8cFENffdc3zuIJp7gIDcLENx8a31y_hPnofPZpLGPXBYla61bWibaZoiDsDCmFVVrlyhqT2awYIDrNotxUls3X1QnVDrHvTIJkrWb_rdZHsNssGnoFonC2ZjmqMkd12q-MG7CcybFOMU8KqqgDvQ0MJcaS5L4zxo8yuCb9omTgSg9cGYHrwIftjNt1OY5_jD30OGzHRQg6cLJBuoz2uixZFua-6UgyeP33We_g6Xg2nZSTz5dfjuGZ8kkQvuKjOYHd9n5Fb1iatO5t2JEP2abeFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning-Based+Earthquake+Detection+for+Fiber-Optic+Distributed+Acoustic+Sensing&rft.jtitle=Journal+of+lightwave+technology&rft.au=Hernandez%2C+Pablo+D.&rft.au=Ramirez%2C+Jaime+A.&rft.au=Soto%2C+Marcelo+A.&rft.date=2022-04-15&rft.pub=IEEE&rft.issn=0733-8724&rft.volume=40&rft.issue=8&rft.spage=2639&rft.epage=2650&rft_id=info:doi/10.1109%2FJLT.2021.3138724&rft.externalDocID=9664395 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon |