On the Exponential Stability of Primal-Dual Gradient Dynamics
Continuous time primal-dual gradient dynamics (PDGD) that find a saddle point of a Lagrangian of an optimization problem have been widely used in systems and control. While the global asymptotic stability of such dynamics has been well-studied, it is less studied whether they are globally exponentia...
Saved in:
Published in | IEEE control systems letters Vol. 3; no. 1; pp. 43 - 48 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Continuous time primal-dual gradient dynamics (PDGD) that find a saddle point of a Lagrangian of an optimization problem have been widely used in systems and control. While the global asymptotic stability of such dynamics has been well-studied, it is less studied whether they are globally exponentially stable. In this letter, we study the PDGD for convex optimization with strongly convex and smooth objectives and affine equality or inequality constraints, and prove global exponential stability for such dynamics. Bounds on decaying rates are provided. |
---|---|
AbstractList | Continuous time primal-dual gradient dynamics (PDGD) that find a saddle point of a Lagrangian of an optimization problem have been widely used in systems and control. While the global asymptotic stability of such dynamics has been well-studied, it is less studied whether they are globally exponentially stable. In this letter, we study the PDGD for convex optimization with strongly convex and smooth objectives and affine equality or inequality constraints, and prove global exponential stability for such dynamics. Bounds on decaying rates are provided. |
Author | Na Li Guannan Qu |
Author_xml | – sequence: 1 givenname: Guannan orcidid: 0000-0002-5466-3550 surname: Qu fullname: Qu, Guannan – sequence: 2 givenname: Na orcidid: 0000-0001-9545-3050 surname: Li fullname: Li, Na |
BookMark | eNp9kE1LxDAQhoOs4LruH9BL_0BrJmma5uBBuh8KhRWqB08h204w0m2XNoL7723dRcSDpxmY93lhnksyadoGCbkGGgFQdZtnxWsRMQppxFIBXIozMmWxFCHEIpn82i_IvO_fKR2iTFKmpuRu0wT-DYPl534obbwzdVB4s3W184egtcFT53amDhcfw2HdmcoNoWBxaMzOlf0VObem7nF-mjPyslo-Zw9hvlk_Zvd5WHLOfYi4jZlkICWXFUOwtpSGSaCxoUZxqURFQSRWVAKxUtamFiwXFiGJLcOUz0h67C27tu87tLp03njXNr4zrtZA9WhCf5vQowl9MjGg7A-6Hz_qDv9DN0fIIeIPkHKlYkX5F7moa70 |
CODEN | ICSLBO |
CitedBy_id | crossref_primary_10_1016_j_sysconle_2020_104754 crossref_primary_10_1109_TAC_2021_3103865 crossref_primary_10_1021_acs_iecr_4c02108 crossref_primary_10_1016_j_jfranklin_2024_107405 crossref_primary_10_1080_00036811_2022_2104260 crossref_primary_10_1109_LCSYS_2024_3516632 crossref_primary_10_1016_j_automatica_2019_108712 crossref_primary_10_1109_LCSYS_2020_3019222 crossref_primary_10_1109_TAC_2018_2867589 crossref_primary_10_1109_TIA_2021_3114388 crossref_primary_10_1109_TCNS_2021_3128498 crossref_primary_10_1515_jnma_2022_0056 crossref_primary_10_1016_j_automatica_2021_109585 crossref_primary_10_3934_math_2020236 crossref_primary_10_1109_TAC_2021_3073096 crossref_primary_10_1016_j_ifacol_2020_12_1254 crossref_primary_10_1109_TAC_2022_3176795 crossref_primary_10_1515_phys_2021_0031 crossref_primary_10_3390_sym12010051 crossref_primary_10_1109_JAS_2022_105485 crossref_primary_10_1109_TAC_2020_2989274 crossref_primary_10_1137_20M1381873 crossref_primary_10_1007_s11590_022_01910_9 crossref_primary_10_1109_TCYB_2020_3034930 crossref_primary_10_1109_TAC_2020_3045124 crossref_primary_10_1109_TAC_2024_3368967 crossref_primary_10_1109_LCSYS_2023_3341987 crossref_primary_10_1109_LCSYS_2020_3002687 crossref_primary_10_1016_j_arcontrol_2019_05_006 crossref_primary_10_1080_00207721_2022_2141594 crossref_primary_10_3390_sym13101816 crossref_primary_10_1109_TCSI_2023_3285933 crossref_primary_10_1109_TAC_2020_3028838 crossref_primary_10_3934_math_2019_6_1554 crossref_primary_10_1016_j_automatica_2020_109361 crossref_primary_10_1109_TAC_2022_3176527 crossref_primary_10_3390_math7111028 crossref_primary_10_3390_math10203753 crossref_primary_10_1109_ACCESS_2023_3341295 crossref_primary_10_1016_j_automatica_2020_109003 crossref_primary_10_1109_LCSYS_2020_3037876 crossref_primary_10_1109_LCSYS_2024_3368008 crossref_primary_10_1109_TNNLS_2022_3208086 crossref_primary_10_1016_j_apenergy_2023_120740 crossref_primary_10_1109_TCNS_2022_3203486 crossref_primary_10_1109_TCYB_2022_3179519 crossref_primary_10_1002_rnc_6699 crossref_primary_10_1109_LCSYS_2020_3004196 crossref_primary_10_1109_TAC_2022_3213763 crossref_primary_10_1016_j_neucom_2021_11_073 crossref_primary_10_1155_2022_8575563 crossref_primary_10_3390_sym12020222 crossref_primary_10_1109_LCSYS_2019_2918095 crossref_primary_10_1109_TAC_2022_3213626 crossref_primary_10_1145_3428336 crossref_primary_10_1109_TSG_2023_3315207 crossref_primary_10_1016_j_automatica_2020_109311 crossref_primary_10_1016_j_automatica_2022_110227 crossref_primary_10_3934_naco_2020035 crossref_primary_10_1016_j_ifacol_2020_12_1561 crossref_primary_10_1109_TCYB_2021_3080818 crossref_primary_10_18466_cbayarfbe_1106792 crossref_primary_10_1109_JAS_2021_1004114 crossref_primary_10_1007_s10107_023_02051_2 crossref_primary_10_1109_TAC_2020_3001436 crossref_primary_10_1109_TCNS_2021_3112762 crossref_primary_10_1109_TPWRS_2021_3132348 |
Cites_doi | 10.1137/100783509 10.1016/j.automatica.2010.08.011 10.1007/s10957-009-9522-7 10.1109/CDC.2014.7039535 10.1109/TSP.2011.2169407 10.1137/15M1026924 10.1016/0041-5553(70)90036-4 10.1017/S0962492904000212 10.1016/j.sysconle.2015.10.006 10.1287/opre.47.1.93 10.1109/TCNS.2015.2459451 10.1109/TAC.2014.2298140 10.1007/978-3-642-65471-8 10.1109/JPROC.2006.887322 10.1016/j.automatica.2013.02.062 10.2307/1905259 10.1109/CDC.2011.6161503 10.1017/S0962492900002488 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/LCSYS.2018.2851375 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2475-1456 |
EndPage | 48 |
ExternalDocumentID | 10_1109_LCSYS_2018_2851375 8399490 |
Genre | orig-research |
GrantInformation_xml | – fundername: ARPA-E through the NODES Program – fundername: AFOSR YIP – fundername: NSF CAREER grantid: 1553407 – fundername: National Science Foundation grantid: 1608509 funderid: 10.13039/100000001 |
GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c333t-eeb427217737d2e1ffc7a27104a0a93795d0156f5d5eed9ff8f1f35fe164f2e83 |
IEDL.DBID | RIE |
ISSN | 2475-1456 |
IngestDate | Thu Apr 24 22:59:53 EDT 2025 Tue Jul 01 04:06:33 EDT 2025 Wed Aug 27 02:53:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-eeb427217737d2e1ffc7a27104a0a93795d0156f5d5eed9ff8f1f35fe164f2e83 |
ORCID | 0000-0001-9545-3050 0000-0002-5466-3550 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1109_LCSYS_2018_2851375 crossref_primary_10_1109_LCSYS_2018_2851375 ieee_primary_8399490 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Jan. 2019-1-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-Jan. |
PublicationDecade | 2010 |
PublicationTitle | IEEE control systems letters |
PublicationTitleAbbrev | LCSYS |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref14 ref11 ref1 ref17 arrow (ref2) 1958 ref19 ref18 uzawa (ref10) 1958 ortega (ref28) 1970; 30 golshtein (ref12) 1974; 10 ref23 ref26 ref20 ref22 bertsekas (ref25) 1982 kallio (ref15) 1994 bertsekas (ref29) 1999 qu (ref31) 2018 ref27 korpelevich (ref16) 1976; 12 ref7 stetter (ref24) 1973; 23 zabotin (ref13) 1988; 15 niederländer (ref8) 2016 ref9 dhingra (ref30) 2016 ref4 cherukuri (ref21) 0 ref3 ref6 ref5 (ref32) 2012 |
References_xml | – ident: ref27 doi: 10.1137/100783509 – ident: ref18 doi: 10.1016/j.automatica.2010.08.011 – year: 1958 ident: ref10 article-title: Iterative methods in concave programming publication-title: Studies in Linear and Non-linear Programming – ident: ref17 doi: 10.1007/s10957-009-9522-7 – year: 1999 ident: ref29 publication-title: Nonlinear Programming – ident: ref19 doi: 10.1109/CDC.2014.7039535 – volume: 12 start-page: 747 year: 1976 ident: ref16 article-title: An extragradient method for finding saddle points and for other problems publication-title: Ekonomika i Matematicheskiye Metody – ident: ref6 doi: 10.1109/TSP.2011.2169407 – year: 2018 ident: ref31 article-title: On the exponential stability of primal-dual gradient dynamics publication-title: arXiv preprint arXiv 1803 01825 – volume: 10 start-page: 36 year: 1974 ident: ref12 article-title: Generalized gradient method for finding saddlepoints publication-title: Matekon – ident: ref22 doi: 10.1137/15M1026924 – ident: ref11 doi: 10.1016/0041-5553(70)90036-4 – ident: ref26 doi: 10.1017/S0962492904000212 – year: 2016 ident: ref30 article-title: The proximal augmented Lagrangian method for nonsmooth composite optimization publication-title: arXiv preprint arXiv 1610 04514 – ident: ref20 doi: 10.1016/j.sysconle.2015.10.006 – volume: 30 year: 1970 ident: ref28 publication-title: Iterative Solution of Nonlinear Equations in Several Variables – year: 1958 ident: ref2 publication-title: Studies in Linear and Non-linear Programming – ident: ref14 doi: 10.1287/opre.47.1.93 – ident: ref4 doi: 10.1109/TCNS.2015.2459451 – ident: ref3 doi: 10.1109/TAC.2014.2298140 – volume: 23 year: 1973 ident: ref24 publication-title: Analysis of Discretization Methods for Ordinary Differential Equations doi: 10.1007/978-3-642-65471-8 – ident: ref5 doi: 10.1109/JPROC.2006.887322 – ident: ref9 doi: 10.1016/j.automatica.2013.02.062 – ident: ref1 doi: 10.2307/1905259 – year: 1982 ident: ref25 publication-title: Constrained Optimization and Lagrange Multiplier Methods – ident: ref7 doi: 10.1109/CDC.2011.6161503 – year: 2012 ident: ref32 publication-title: Logistic Regression – year: 0 ident: ref21 article-title: The role of convexity on saddle-point dynamics: Lyapunov function and robustness publication-title: IEEE Trans Autom Control – volume: 15 start-page: 6 year: 1988 ident: ref13 article-title: A subgradient method for finding a saddle point of a convex-concave function publication-title: Issledovaniya Po Prikladnoi Matematike – ident: ref23 doi: 10.1017/S0962492900002488 – year: 1994 ident: ref15 publication-title: Perturbation Methods for Saddle Point Computation – year: 2016 ident: ref8 article-title: Distributed coordination for nonsmooth convex optimization via saddle-point dynamics publication-title: arXiv preprint arXiv 1606 09298 |
SSID | ssj0001827029 |
Score | 2.4847388 |
Snippet | Continuous time primal-dual gradient dynamics (PDGD) that find a saddle point of a Lagrangian of an optimization problem have been widely used in systems and... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 43 |
SubjectTerms | Asymptotic stability Control theory Convergence Lyapunov methods Optimization Power system dynamics Stability stability of nonlinear systems Symmetric matrices |
Title | On the Exponential Stability of Primal-Dual Gradient Dynamics |
URI | https://ieeexplore.ieee.org/document/8399490 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJy9-MMX5RQ_etF2btGly8CD7cIhTYQ7mqaRNcnF0Y7ag_vW-pN0cIuKttC8QXgLv915_v_cQuoBTDYlkxMWSChcinnJTX2MzRED6WGQi1kY7PHqgw0l4N42mDXS11sIopSz5THnm0f7Ll_OsNKWyDgRzHnJI0Lcgcau0Wt_1FGaUVXyli_F55747fhkb8hbzMOAKYqiEG7FnY5iKjSWDXTRa7aKikLx6ZZF62eePBo3_3eYe2qlBpXNT3YJ91FB5C10_5g6gO6f_vpjnhhMEFgAtLRn2w5lr58k0mpi5vRI-3C4t9atwetWE-rcDNBn0n7tDtx6W4GaEkMJVKg0xpHNxTGKJVaB1FgsM-CEUvgAMwiNpVNM6khGERa4104EmkVaQL2msGDlEzRy2c4ScWPqxEjQQVGSQ_glBGaWhpJyp1FcsbKNg5cYkqzuJm4EWs8RmFD5PrOsT4_qkdn0bXa7XLKo-Gn9at4xb15a1R49_f32CtmExrwojp6hZLEt1BlChSM_tHfkC0_67ZQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMsDCQwXxJgMbpE3ixLEHBtQHBdqC1FYqU-TE9kKVViWRgF_P2UlLhRBii5JLZH22dN9dvrtD6BJ21ceCYtsThNvg8aQdO8rTQwSE4_GEh0rXDvcHpDv2HybBpIKuV7UwUkojPpN1fWn-5YtZkutUWQOcOfMZBOgb4PcDt6jW-s6oUF1bxZaVMQ5r9JrDl6GWb9G6B8wCazHhmvdZG6divElnB_WX6yhEJK_1PIvryeePFo3_Xegu2i5ppXVbnIM9VJFpDd08pRbwO6v9Pp-lWhUEFkAujRz2w5op61m3mpjarRwe3C2M-CuzWsWM-rd9NO60R82uXY5LsBOMcWZLGfseBHRhiEPhSVepJOQeMAifOxxYCAuErptWgQjAMTKlqHIVDpSEiEl5kuIDVE1hOYfICoUTSk5cTngCASDnhBLiC8KojB1J_SPkLmGMkrKXuB5pMY1MTOGwyEAfaeijEvojdLV6Z1500vjTuqZhXVmWiB7_fvsCbXZH_V7Uux88nqAt-BAr0iSnqJotcnkGxCGLz815-QLJ9r6u |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Exponential+Stability+of+Primal-Dual+Gradient+Dynamics&rft.jtitle=IEEE+control+systems+letters&rft.au=Qu%2C+Guannan&rft.au=Li%2C+Na&rft.date=2019-01-01&rft.issn=2475-1456&rft.eissn=2475-1456&rft.volume=3&rft.issue=1&rft.spage=43&rft.epage=48&rft_id=info:doi/10.1109%2FLCSYS.2018.2851375&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCSYS_2018_2851375 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon |