On the Exponential Stability of Primal-Dual Gradient Dynamics

Continuous time primal-dual gradient dynamics (PDGD) that find a saddle point of a Lagrangian of an optimization problem have been widely used in systems and control. While the global asymptotic stability of such dynamics has been well-studied, it is less studied whether they are globally exponentia...

Full description

Saved in:
Bibliographic Details
Published inIEEE control systems letters Vol. 3; no. 1; pp. 43 - 48
Main Authors Qu, Guannan, Li, Na
Format Journal Article
LanguageEnglish
Published IEEE 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Continuous time primal-dual gradient dynamics (PDGD) that find a saddle point of a Lagrangian of an optimization problem have been widely used in systems and control. While the global asymptotic stability of such dynamics has been well-studied, it is less studied whether they are globally exponentially stable. In this letter, we study the PDGD for convex optimization with strongly convex and smooth objectives and affine equality or inequality constraints, and prove global exponential stability for such dynamics. Bounds on decaying rates are provided.
AbstractList Continuous time primal-dual gradient dynamics (PDGD) that find a saddle point of a Lagrangian of an optimization problem have been widely used in systems and control. While the global asymptotic stability of such dynamics has been well-studied, it is less studied whether they are globally exponentially stable. In this letter, we study the PDGD for convex optimization with strongly convex and smooth objectives and affine equality or inequality constraints, and prove global exponential stability for such dynamics. Bounds on decaying rates are provided.
Author Na Li
Guannan Qu
Author_xml – sequence: 1
  givenname: Guannan
  orcidid: 0000-0002-5466-3550
  surname: Qu
  fullname: Qu, Guannan
– sequence: 2
  givenname: Na
  orcidid: 0000-0001-9545-3050
  surname: Li
  fullname: Li, Na
BookMark eNp9kE1LxDAQhoOs4LruH9BL_0BrJmma5uBBuh8KhRWqB08h204w0m2XNoL7723dRcSDpxmY93lhnksyadoGCbkGGgFQdZtnxWsRMQppxFIBXIozMmWxFCHEIpn82i_IvO_fKR2iTFKmpuRu0wT-DYPl534obbwzdVB4s3W184egtcFT53amDhcfw2HdmcoNoWBxaMzOlf0VObem7nF-mjPyslo-Zw9hvlk_Zvd5WHLOfYi4jZlkICWXFUOwtpSGSaCxoUZxqURFQSRWVAKxUtamFiwXFiGJLcOUz0h67C27tu87tLp03njXNr4zrtZA9WhCf5vQowl9MjGg7A-6Hz_qDv9DN0fIIeIPkHKlYkX5F7moa70
CODEN ICSLBO
CitedBy_id crossref_primary_10_1016_j_sysconle_2020_104754
crossref_primary_10_1109_TAC_2021_3103865
crossref_primary_10_1021_acs_iecr_4c02108
crossref_primary_10_1016_j_jfranklin_2024_107405
crossref_primary_10_1080_00036811_2022_2104260
crossref_primary_10_1109_LCSYS_2024_3516632
crossref_primary_10_1016_j_automatica_2019_108712
crossref_primary_10_1109_LCSYS_2020_3019222
crossref_primary_10_1109_TAC_2018_2867589
crossref_primary_10_1109_TIA_2021_3114388
crossref_primary_10_1109_TCNS_2021_3128498
crossref_primary_10_1515_jnma_2022_0056
crossref_primary_10_1016_j_automatica_2021_109585
crossref_primary_10_3934_math_2020236
crossref_primary_10_1109_TAC_2021_3073096
crossref_primary_10_1016_j_ifacol_2020_12_1254
crossref_primary_10_1109_TAC_2022_3176795
crossref_primary_10_1515_phys_2021_0031
crossref_primary_10_3390_sym12010051
crossref_primary_10_1109_JAS_2022_105485
crossref_primary_10_1109_TAC_2020_2989274
crossref_primary_10_1137_20M1381873
crossref_primary_10_1007_s11590_022_01910_9
crossref_primary_10_1109_TCYB_2020_3034930
crossref_primary_10_1109_TAC_2020_3045124
crossref_primary_10_1109_TAC_2024_3368967
crossref_primary_10_1109_LCSYS_2023_3341987
crossref_primary_10_1109_LCSYS_2020_3002687
crossref_primary_10_1016_j_arcontrol_2019_05_006
crossref_primary_10_1080_00207721_2022_2141594
crossref_primary_10_3390_sym13101816
crossref_primary_10_1109_TCSI_2023_3285933
crossref_primary_10_1109_TAC_2020_3028838
crossref_primary_10_3934_math_2019_6_1554
crossref_primary_10_1016_j_automatica_2020_109361
crossref_primary_10_1109_TAC_2022_3176527
crossref_primary_10_3390_math7111028
crossref_primary_10_3390_math10203753
crossref_primary_10_1109_ACCESS_2023_3341295
crossref_primary_10_1016_j_automatica_2020_109003
crossref_primary_10_1109_LCSYS_2020_3037876
crossref_primary_10_1109_LCSYS_2024_3368008
crossref_primary_10_1109_TNNLS_2022_3208086
crossref_primary_10_1016_j_apenergy_2023_120740
crossref_primary_10_1109_TCNS_2022_3203486
crossref_primary_10_1109_TCYB_2022_3179519
crossref_primary_10_1002_rnc_6699
crossref_primary_10_1109_LCSYS_2020_3004196
crossref_primary_10_1109_TAC_2022_3213763
crossref_primary_10_1016_j_neucom_2021_11_073
crossref_primary_10_1155_2022_8575563
crossref_primary_10_3390_sym12020222
crossref_primary_10_1109_LCSYS_2019_2918095
crossref_primary_10_1109_TAC_2022_3213626
crossref_primary_10_1145_3428336
crossref_primary_10_1109_TSG_2023_3315207
crossref_primary_10_1016_j_automatica_2020_109311
crossref_primary_10_1016_j_automatica_2022_110227
crossref_primary_10_3934_naco_2020035
crossref_primary_10_1016_j_ifacol_2020_12_1561
crossref_primary_10_1109_TCYB_2021_3080818
crossref_primary_10_18466_cbayarfbe_1106792
crossref_primary_10_1109_JAS_2021_1004114
crossref_primary_10_1007_s10107_023_02051_2
crossref_primary_10_1109_TAC_2020_3001436
crossref_primary_10_1109_TCNS_2021_3112762
crossref_primary_10_1109_TPWRS_2021_3132348
Cites_doi 10.1137/100783509
10.1016/j.automatica.2010.08.011
10.1007/s10957-009-9522-7
10.1109/CDC.2014.7039535
10.1109/TSP.2011.2169407
10.1137/15M1026924
10.1016/0041-5553(70)90036-4
10.1017/S0962492904000212
10.1016/j.sysconle.2015.10.006
10.1287/opre.47.1.93
10.1109/TCNS.2015.2459451
10.1109/TAC.2014.2298140
10.1007/978-3-642-65471-8
10.1109/JPROC.2006.887322
10.1016/j.automatica.2013.02.062
10.2307/1905259
10.1109/CDC.2011.6161503
10.1017/S0962492900002488
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LCSYS.2018.2851375
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2475-1456
EndPage 48
ExternalDocumentID 10_1109_LCSYS_2018_2851375
8399490
Genre orig-research
GrantInformation_xml – fundername: ARPA-E through the NODES Program
– fundername: AFOSR YIP
– fundername: NSF CAREER
  grantid: 1553407
– fundername: National Science Foundation
  grantid: 1608509
  funderid: 10.13039/100000001
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c333t-eeb427217737d2e1ffc7a27104a0a93795d0156f5d5eed9ff8f1f35fe164f2e83
IEDL.DBID RIE
ISSN 2475-1456
IngestDate Thu Apr 24 22:59:53 EDT 2025
Tue Jul 01 04:06:33 EDT 2025
Wed Aug 27 02:53:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-eeb427217737d2e1ffc7a27104a0a93795d0156f5d5eed9ff8f1f35fe164f2e83
ORCID 0000-0001-9545-3050
0000-0002-5466-3550
PageCount 6
ParticipantIDs crossref_citationtrail_10_1109_LCSYS_2018_2851375
crossref_primary_10_1109_LCSYS_2018_2851375
ieee_primary_8399490
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Jan.
2019-1-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-Jan.
PublicationDecade 2010
PublicationTitle IEEE control systems letters
PublicationTitleAbbrev LCSYS
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
References ref14
ref11
ref1
ref17
arrow (ref2) 1958
ref19
ref18
uzawa (ref10) 1958
ortega (ref28) 1970; 30
golshtein (ref12) 1974; 10
ref23
ref26
ref20
ref22
bertsekas (ref25) 1982
kallio (ref15) 1994
bertsekas (ref29) 1999
qu (ref31) 2018
ref27
korpelevich (ref16) 1976; 12
ref7
stetter (ref24) 1973; 23
zabotin (ref13) 1988; 15
niederländer (ref8) 2016
ref9
dhingra (ref30) 2016
ref4
cherukuri (ref21) 0
ref3
ref6
ref5
(ref32) 2012
References_xml – ident: ref27
  doi: 10.1137/100783509
– ident: ref18
  doi: 10.1016/j.automatica.2010.08.011
– year: 1958
  ident: ref10
  article-title: Iterative methods in concave programming
  publication-title: Studies in Linear and Non-linear Programming
– ident: ref17
  doi: 10.1007/s10957-009-9522-7
– year: 1999
  ident: ref29
  publication-title: Nonlinear Programming
– ident: ref19
  doi: 10.1109/CDC.2014.7039535
– volume: 12
  start-page: 747
  year: 1976
  ident: ref16
  article-title: An extragradient method for finding saddle points and for other problems
  publication-title: Ekonomika i Matematicheskiye Metody
– ident: ref6
  doi: 10.1109/TSP.2011.2169407
– year: 2018
  ident: ref31
  article-title: On the exponential stability of primal-dual gradient dynamics
  publication-title: arXiv preprint arXiv 1803 01825
– volume: 10
  start-page: 36
  year: 1974
  ident: ref12
  article-title: Generalized gradient method for finding saddlepoints
  publication-title: Matekon
– ident: ref22
  doi: 10.1137/15M1026924
– ident: ref11
  doi: 10.1016/0041-5553(70)90036-4
– ident: ref26
  doi: 10.1017/S0962492904000212
– year: 2016
  ident: ref30
  article-title: The proximal augmented Lagrangian method for nonsmooth composite optimization
  publication-title: arXiv preprint arXiv 1610 04514
– ident: ref20
  doi: 10.1016/j.sysconle.2015.10.006
– volume: 30
  year: 1970
  ident: ref28
  publication-title: Iterative Solution of Nonlinear Equations in Several Variables
– year: 1958
  ident: ref2
  publication-title: Studies in Linear and Non-linear Programming
– ident: ref14
  doi: 10.1287/opre.47.1.93
– ident: ref4
  doi: 10.1109/TCNS.2015.2459451
– ident: ref3
  doi: 10.1109/TAC.2014.2298140
– volume: 23
  year: 1973
  ident: ref24
  publication-title: Analysis of Discretization Methods for Ordinary Differential Equations
  doi: 10.1007/978-3-642-65471-8
– ident: ref5
  doi: 10.1109/JPROC.2006.887322
– ident: ref9
  doi: 10.1016/j.automatica.2013.02.062
– ident: ref1
  doi: 10.2307/1905259
– year: 1982
  ident: ref25
  publication-title: Constrained Optimization and Lagrange Multiplier Methods
– ident: ref7
  doi: 10.1109/CDC.2011.6161503
– year: 2012
  ident: ref32
  publication-title: Logistic Regression
– year: 0
  ident: ref21
  article-title: The role of convexity on saddle-point dynamics: Lyapunov function and robustness
  publication-title: IEEE Trans Autom Control
– volume: 15
  start-page: 6
  year: 1988
  ident: ref13
  article-title: A subgradient method for finding a saddle point of a convex-concave function
  publication-title: Issledovaniya Po Prikladnoi Matematike
– ident: ref23
  doi: 10.1017/S0962492900002488
– year: 1994
  ident: ref15
  publication-title: Perturbation Methods for Saddle Point Computation
– year: 2016
  ident: ref8
  article-title: Distributed coordination for nonsmooth convex optimization via saddle-point dynamics
  publication-title: arXiv preprint arXiv 1606 09298
SSID ssj0001827029
Score 2.4847388
Snippet Continuous time primal-dual gradient dynamics (PDGD) that find a saddle point of a Lagrangian of an optimization problem have been widely used in systems and...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 43
SubjectTerms Asymptotic stability
Control theory
Convergence
Lyapunov methods
Optimization
Power system dynamics
Stability
stability of nonlinear systems
Symmetric matrices
Title On the Exponential Stability of Primal-Dual Gradient Dynamics
URI https://ieeexplore.ieee.org/document/8399490
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJy9-MMX5RQ_etF2btGly8CD7cIhTYQ7mqaRNcnF0Y7ag_vW-pN0cIuKttC8QXgLv915_v_cQuoBTDYlkxMWSChcinnJTX2MzRED6WGQi1kY7PHqgw0l4N42mDXS11sIopSz5THnm0f7Ll_OsNKWyDgRzHnJI0Lcgcau0Wt_1FGaUVXyli_F55747fhkb8hbzMOAKYqiEG7FnY5iKjSWDXTRa7aKikLx6ZZF62eePBo3_3eYe2qlBpXNT3YJ91FB5C10_5g6gO6f_vpjnhhMEFgAtLRn2w5lr58k0mpi5vRI-3C4t9atwetWE-rcDNBn0n7tDtx6W4GaEkMJVKg0xpHNxTGKJVaB1FgsM-CEUvgAMwiNpVNM6khGERa4104EmkVaQL2msGDlEzRy2c4ScWPqxEjQQVGSQ_glBGaWhpJyp1FcsbKNg5cYkqzuJm4EWs8RmFD5PrOsT4_qkdn0bXa7XLKo-Gn9at4xb15a1R49_f32CtmExrwojp6hZLEt1BlChSM_tHfkC0_67ZQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMsDCQwXxJgMbpE3ixLEHBtQHBdqC1FYqU-TE9kKVViWRgF_P2UlLhRBii5JLZH22dN9dvrtD6BJ21ceCYtsThNvg8aQdO8rTQwSE4_GEh0rXDvcHpDv2HybBpIKuV7UwUkojPpN1fWn-5YtZkutUWQOcOfMZBOgb4PcDt6jW-s6oUF1bxZaVMQ5r9JrDl6GWb9G6B8wCazHhmvdZG6divElnB_WX6yhEJK_1PIvryeePFo3_Xegu2i5ppXVbnIM9VJFpDd08pRbwO6v9Pp-lWhUEFkAujRz2w5op61m3mpjarRwe3C2M-CuzWsWM-rd9NO60R82uXY5LsBOMcWZLGfseBHRhiEPhSVepJOQeMAifOxxYCAuErptWgQjAMTKlqHIVDpSEiEl5kuIDVE1hOYfICoUTSk5cTngCASDnhBLiC8KojB1J_SPkLmGMkrKXuB5pMY1MTOGwyEAfaeijEvojdLV6Z1500vjTuqZhXVmWiB7_fvsCbXZH_V7Uux88nqAt-BAr0iSnqJotcnkGxCGLz815-QLJ9r6u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Exponential+Stability+of+Primal-Dual+Gradient+Dynamics&rft.jtitle=IEEE+control+systems+letters&rft.au=Qu%2C+Guannan&rft.au=Li%2C+Na&rft.date=2019-01-01&rft.issn=2475-1456&rft.eissn=2475-1456&rft.volume=3&rft.issue=1&rft.spage=43&rft.epage=48&rft_id=info:doi/10.1109%2FLCSYS.2018.2851375&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCSYS_2018_2851375
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon