Joint Power and Blocklength Optimization for URLLC in a Factory Automation Scenario

Ultra-reliable and low-latency communication (URLLC) is one of three pillar applications defined in the fifth generation new radio (5G NR), and its research is still in its infancy due to the difficulties in guaranteeing extremely high reliability (say 10 -9 packet loss probability) and low latency...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 19; no. 3; pp. 1786 - 1801
Main Authors Ren, Hong, Pan, Cunhua, Deng, Yansha, Elkashlan, Maged, Nallanathan, Arumugam
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-1276
1558-2248
DOI10.1109/TWC.2019.2957745

Cover

Loading…
Abstract Ultra-reliable and low-latency communication (URLLC) is one of three pillar applications defined in the fifth generation new radio (5G NR), and its research is still in its infancy due to the difficulties in guaranteeing extremely high reliability (say 10 -9 packet loss probability) and low latency (say 1 ms) simultaneously. In URLLC, short packet transmission is adopted to reduce latency, such that conventional Shannon's capacity formula is no longer applicable, and the achievable data rate in finite blocklength becomes a complex expression with respect to the decoding error probability and the blocklength. To provide URLLC service in a factory automation scenario, we consider that the central controller transmits different packets to a robot and an actuator, where the actuator is located far from the controller, and the robot can move between the controller and the actuator. In this scenario, we consider four fundamental downlink transmission schemes, including orthogonal multiple access (OMA), non-orthogonal multiple access (NOMA), relay-assisted, and cooperative NOMA (C-NOMA) schemes. For all these transmission schemes, we aim for jointly optimizing the blocklength and power allocation to minimize the decoding error probability of the actuator subject to the reliability requirement of the robot, the total energy constraints, as well as the latency constraints. We further develop low-complexity algorithms to address the optimization problems for each transmission scheme. For the general case with more than two devices, we also develop a low-complexity efficient algorithm for the OMA scheme. Our results show that the relay-assisted transmission significantly outperforms the OMA scheme, while the NOMA scheme performs well when the blocklength is very limited. We further show that the relay-assisted transmission has superior performance over the C-NOMA scheme due to larger feasible region of the former scheme.
AbstractList Ultra-reliable and low-latency communication (URLLC) is one of three pillar applications defined in the fifth generation new radio (5G NR), and its research is still in its infancy due to the difficulties in guaranteeing extremely high reliability (say 10−9 packet loss probability) and low latency (say 1 ms) simultaneously. In URLLC, short packet transmission is adopted to reduce latency, such that conventional Shannon’s capacity formula is no longer applicable, and the achievable data rate in finite blocklength becomes a complex expression with respect to the decoding error probability and the blocklength. To provide URLLC service in a factory automation scenario, we consider that the central controller transmits different packets to a robot and an actuator, where the actuator is located far from the controller, and the robot can move between the controller and the actuator. In this scenario, we consider four fundamental downlink transmission schemes, including orthogonal multiple access (OMA), non-orthogonal multiple access (NOMA), relay-assisted, and cooperative NOMA (C-NOMA) schemes. For all these transmission schemes, we aim for jointly optimizing the blocklength and power allocation to minimize the decoding error probability of the actuator subject to the reliability requirement of the robot, the total energy constraints, as well as the latency constraints. We further develop low-complexity algorithms to address the optimization problems for each transmission scheme. For the general case with more than two devices, we also develop a low-complexity efficient algorithm for the OMA scheme. Our results show that the relay-assisted transmission significantly outperforms the OMA scheme, while the NOMA scheme performs well when the blocklength is very limited. We further show that the relay-assisted transmission has superior performance over the C-NOMA scheme due to larger feasible region of the former scheme.
Ultra-reliable and low-latency communication (URLLC) is one of three pillar applications defined in the fifth generation new radio (5G NR), and its research is still in its infancy due to the difficulties in guaranteeing extremely high reliability (say 10 -9 packet loss probability) and low latency (say 1 ms) simultaneously. In URLLC, short packet transmission is adopted to reduce latency, such that conventional Shannon's capacity formula is no longer applicable, and the achievable data rate in finite blocklength becomes a complex expression with respect to the decoding error probability and the blocklength. To provide URLLC service in a factory automation scenario, we consider that the central controller transmits different packets to a robot and an actuator, where the actuator is located far from the controller, and the robot can move between the controller and the actuator. In this scenario, we consider four fundamental downlink transmission schemes, including orthogonal multiple access (OMA), non-orthogonal multiple access (NOMA), relay-assisted, and cooperative NOMA (C-NOMA) schemes. For all these transmission schemes, we aim for jointly optimizing the blocklength and power allocation to minimize the decoding error probability of the actuator subject to the reliability requirement of the robot, the total energy constraints, as well as the latency constraints. We further develop low-complexity algorithms to address the optimization problems for each transmission scheme. For the general case with more than two devices, we also develop a low-complexity efficient algorithm for the OMA scheme. Our results show that the relay-assisted transmission significantly outperforms the OMA scheme, while the NOMA scheme performs well when the blocklength is very limited. We further show that the relay-assisted transmission has superior performance over the C-NOMA scheme due to larger feasible region of the former scheme.
Author Deng, Yansha
Elkashlan, Maged
Ren, Hong
Pan, Cunhua
Nallanathan, Arumugam
Author_xml – sequence: 1
  givenname: Hong
  orcidid: 0000-0002-3477-1087
  surname: Ren
  fullname: Ren, Hong
  email: h.ren@qmul.ac.uk
  organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K
– sequence: 2
  givenname: Cunhua
  orcidid: 0000-0001-5286-7958
  surname: Pan
  fullname: Pan, Cunhua
  email: c.pan@qmul.ac.uk
  organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K
– sequence: 3
  givenname: Yansha
  orcidid: 0000-0003-1001-7036
  surname: Deng
  fullname: Deng, Yansha
  email: yansha.deng@kcl.ac.uk
  organization: Department of Informatics, King's College London, London, U.K
– sequence: 4
  givenname: Maged
  orcidid: 0000-0002-5168-0160
  surname: Elkashlan
  fullname: Elkashlan, Maged
  email: maged.elkashlan@qmul.ac.uk
  organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K
– sequence: 5
  givenname: Arumugam
  orcidid: 0000-0001-8337-5884
  surname: Nallanathan
  fullname: Nallanathan, Arumugam
  email: a.nallanathan@qmul.ac.uk
  organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K
BookMark eNp9kM1LwzAYh4NMcJveBS8Bz535aJLmOIvzg4LiNjyWLEs1s0tmmiHzr7ezw4MHT3khz_N-_Aag57wzAJxjNMIYyavZSz4iCMsRkUyIlB2BPmYsSwhJs96-pjzBRPATMGiaFUJYcMb6YPrgrYvwyX-aAJVbwuva6_fauNf4Bh830a7tl4rWO1j5AOfPRZFD66CCE6WjDzs43ka_7oipNk4F60_BcaXqxpwd3iGYT25m-V1SPN7e5-Mi0ZTSmBjDjZSZJKmWhC40qwhRHCmBFipFihumFUurymhNMM0QXpolwgskU8UVTis6BJdd303wH1vTxHLlt8G1I0tCBRcpF1i2FO8oHXzTBFOV2safhWNQti4xKvcBlm2A5T7A8hBgK6I_4ibYtQq7_5SLTrHGmF88k-297e83WWZ9MQ
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_TCOMM_2024_3385923
crossref_primary_10_1109_TWC_2022_3143002
crossref_primary_10_1109_TWC_2022_3144618
crossref_primary_10_3390_s22041566
crossref_primary_10_1109_ACCESS_2024_3428928
crossref_primary_10_1016_j_comcom_2021_06_007
crossref_primary_10_1109_ACCESS_2022_3173754
crossref_primary_10_1109_TWC_2023_3290936
crossref_primary_10_1109_TVT_2024_3483449
crossref_primary_10_1109_JSYST_2024_3507049
crossref_primary_10_1109_JSYST_2024_3437232
crossref_primary_10_1109_TCOMM_2021_3125057
crossref_primary_10_1109_TNSE_2023_3282870
crossref_primary_10_1109_TVT_2024_3393533
crossref_primary_10_1109_ACCESS_2021_3078165
crossref_primary_10_1109_TCOMM_2024_3381712
crossref_primary_10_1109_ACCESS_2022_3210510
crossref_primary_10_1109_TGCN_2024_3373911
crossref_primary_10_1109_TVT_2021_3066367
crossref_primary_10_1109_TVT_2022_3195696
crossref_primary_10_1016_j_dsp_2021_103253
crossref_primary_10_1016_j_phycom_2023_102063
crossref_primary_10_1109_ACCESS_2021_3119268
crossref_primary_10_1109_JIOT_2020_3014039
crossref_primary_10_1109_TWC_2023_3309900
crossref_primary_10_1007_s11276_022_02996_w
crossref_primary_10_1109_TCOMM_2022_3224388
crossref_primary_10_1109_LCOMM_2022_3180396
crossref_primary_10_1109_TWC_2024_3392929
crossref_primary_10_3390_e26080651
crossref_primary_10_1109_OJCOMS_2024_3376950
crossref_primary_10_1109_JSYST_2024_3426096
crossref_primary_10_1109_LWC_2024_3446033
crossref_primary_10_1109_TVT_2023_3292423
crossref_primary_10_1109_TCOMM_2023_3253698
crossref_primary_10_1109_TWC_2021_3096818
crossref_primary_10_1109_TNSM_2024_3406350
crossref_primary_10_1109_LWC_2020_3021505
crossref_primary_10_1109_OJCOMS_2021_3089281
crossref_primary_10_1109_TVT_2023_3287806
crossref_primary_10_1007_s44196_024_00530_8
crossref_primary_10_1109_JSAC_2023_3280994
crossref_primary_10_1109_JIOT_2022_3156038
crossref_primary_10_1109_TWC_2021_3104742
crossref_primary_10_1109_ACCESS_2020_2991861
crossref_primary_10_1109_ACCESS_2021_3083095
crossref_primary_10_1109_LCOMM_2021_3136880
crossref_primary_10_1109_TCOMM_2020_2999628
crossref_primary_10_1109_LCOMM_2021_3118032
crossref_primary_10_1109_TVT_2024_3424398
crossref_primary_10_1109_TMLCN_2024_3437351
crossref_primary_10_1109_TVT_2021_3125401
crossref_primary_10_1109_TVT_2022_3152408
crossref_primary_10_1109_TVT_2022_3206998
crossref_primary_10_1109_TWC_2022_3211454
crossref_primary_10_1109_JSAC_2020_2980910
crossref_primary_10_1109_TWC_2023_3278573
crossref_primary_10_1007_s11432_021_3328_y
crossref_primary_10_1007_s12083_023_01578_7
crossref_primary_10_1109_LWC_2022_3203478
crossref_primary_10_1109_JIOT_2022_3148115
crossref_primary_10_1109_TVT_2023_3325464
crossref_primary_10_1049_cmu2_12661
crossref_primary_10_1109_TWC_2024_3462450
crossref_primary_10_1109_TVT_2024_3370554
crossref_primary_10_1109_TWC_2022_3165888
crossref_primary_10_1109_JSAC_2023_3280972
crossref_primary_10_1109_TWC_2024_3402550
crossref_primary_10_1109_TVT_2021_3061157
crossref_primary_10_1109_TVT_2023_3243571
crossref_primary_10_1109_TWC_2021_3104043
crossref_primary_10_1109_TWC_2024_3389019
crossref_primary_10_1109_LCOMM_2023_3290109
crossref_primary_10_1109_TCOMM_2020_3031930
crossref_primary_10_3390_s21217052
crossref_primary_10_1109_TVT_2022_3213726
crossref_primary_10_1002_ett_4424
crossref_primary_10_1109_TII_2021_3131608
crossref_primary_10_3390_s22145279
crossref_primary_10_1109_LWC_2021_3135299
crossref_primary_10_1109_TWC_2023_3303041
crossref_primary_10_1109_TII_2023_3272696
crossref_primary_10_1109_TVT_2022_3148124
crossref_primary_10_1109_TWC_2024_3424493
crossref_primary_10_1109_LCOMM_2020_3015688
crossref_primary_10_1109_JIOT_2024_3361772
crossref_primary_10_1109_TCOMM_2022_3224502
crossref_primary_10_1109_JIOT_2020_3027149
crossref_primary_10_1109_TWC_2021_3103861
crossref_primary_10_1109_TWC_2021_3090197
crossref_primary_10_1109_TWC_2022_3168083
crossref_primary_10_1109_TWC_2024_3509135
crossref_primary_10_1109_LWC_2023_3293810
crossref_primary_10_1109_TWC_2022_3208659
crossref_primary_10_1109_LCOMM_2021_3115125
crossref_primary_10_1007_s11276_023_03326_4
crossref_primary_10_1109_JSYST_2021_3116112
crossref_primary_10_1109_TWC_2022_3215450
crossref_primary_10_1109_TVT_2021_3058402
crossref_primary_10_1109_TCOMM_2020_3036046
crossref_primary_10_1109_TVT_2024_3379985
crossref_primary_10_1109_TWC_2024_3506035
crossref_primary_10_1109_TVT_2023_3245293
Cites_doi 10.1109/TVT.2018.2869793
10.1109/JSAC.2016.2525398
10.1109/TCOMM.2018.2874993
10.1109/TWC.2016.2542245
10.1109/MCOM.2017.1601092
10.1109/JSAC.2017.2692307
10.1109/LSP.2017.2782828
10.1109/LCOMM.2019.2894696
10.1109/TIT.2010.2043769
10.1109/TVT.2015.2406952
10.1109/PIMRC.2017.8292490
10.1109/TCOMM.2017.2666791
10.1109/ICC.2017.7997203
10.1002/j.1538-7305.1948.tb01338.x
10.1109/JSAC.2018.2872361
10.1109/IC3I.2014.7019732
10.1109/ICCW.2015.7247339
10.1109/JPROC.2016.2537298
10.1109/MVT.2018.2811244
10.1109/COMST.2019.2902862
10.1109/TWC.2018.2836937
10.1109/TCOMM.2018.2791598
10.1109/TWC.2018.2827368
10.1109/JSAC.2016.2549378
10.1109/TCOMM.2018.2851244
10.1109/TIT.2014.2318726
10.1109/TCOMM.2017.2771478
10.1017/CBO9780511804441
10.1109/JPROC.2018.2867029
10.1109/MCOM.2017.1600435CM
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2019.2957745
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 1801
ExternalDocumentID 10_1109_TWC_2019_2957745
8933345
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-ee6e998924c923bc5f22a60a70ba40a6e5ca54ffecc213801ded01b094a6a14f3
IEDL.DBID RIE
ISSN 1536-1276
IngestDate Fri Jul 25 12:27:19 EDT 2025
Thu Apr 24 23:00:38 EDT 2025
Tue Jul 01 04:13:26 EDT 2025
Wed Aug 27 02:42:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-ee6e998924c923bc5f22a60a70ba40a6e5ca54ffecc213801ded01b094a6a14f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5286-7958
0000-0002-3477-1087
0000-0003-1001-7036
0000-0001-8337-5884
0000-0002-5168-0160
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8933345
PQID 2376746719
PQPubID 105736
PageCount 16
ParticipantIDs proquest_journals_2376746719
crossref_citationtrail_10_1109_TWC_2019_2957745
crossref_primary_10_1109_TWC_2019_2957745
ieee_primary_8933345
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-March
2020-3-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-March
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
popovski (ref4) 2017
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
(ref33) 2010
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref3
ref6
pan (ref32) 2019
ref5
References_xml – ident: ref9
  doi: 10.1109/TVT.2018.2869793
– ident: ref8
  doi: 10.1109/JSAC.2016.2525398
– ident: ref18
  doi: 10.1109/TCOMM.2018.2874993
– ident: ref20
  doi: 10.1109/TWC.2016.2542245
– ident: ref5
  doi: 10.1109/MCOM.2017.1601092
– ident: ref1
  doi: 10.1109/JSAC.2017.2692307
– ident: ref21
  doi: 10.1109/LSP.2017.2782828
– ident: ref27
  doi: 10.1109/LCOMM.2019.2894696
– ident: ref15
  doi: 10.1109/TIT.2010.2043769
– ident: ref19
  doi: 10.1109/TVT.2015.2406952
– ident: ref23
  doi: 10.1109/PIMRC.2017.8292490
– ident: ref16
  doi: 10.1109/TCOMM.2017.2666791
– ident: ref22
  doi: 10.1109/ICC.2017.7997203
– ident: ref28
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: ref26
  doi: 10.1109/JSAC.2018.2872361
– ident: ref11
  doi: 10.1109/IC3I.2014.7019732
– ident: ref13
  doi: 10.1109/ICCW.2015.7247339
– ident: ref14
  doi: 10.1109/JPROC.2016.2537298
– ident: ref10
  doi: 10.1109/MVT.2018.2811244
– year: 2010
  ident: ref33
  publication-title: Further Advancements for E-UTRA Physical Layer Aspects
– ident: ref7
  doi: 10.1109/COMST.2019.2902862
– ident: ref12
  doi: 10.1109/TWC.2018.2836937
– ident: ref25
  doi: 10.1109/TCOMM.2018.2791598
– ident: ref24
  doi: 10.1109/TWC.2018.2827368
– ident: ref30
  doi: 10.1109/JSAC.2016.2549378
– ident: ref17
  doi: 10.1109/TCOMM.2018.2851244
– year: 2017
  ident: ref4
  article-title: Wireless access for ultra-reliable low-latency communication (URLLC): Principles and building blocks
  publication-title: arXiv 1708 07862
– ident: ref29
  doi: 10.1109/TIT.2014.2318726
– ident: ref6
  doi: 10.1109/TCOMM.2017.2771478
– year: 2019
  ident: ref32
  article-title: Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer
  publication-title: arXiv 1908 04863
– ident: ref31
  doi: 10.1017/CBO9780511804441
– ident: ref3
  doi: 10.1109/JPROC.2018.2867029
– ident: ref2
  doi: 10.1109/MCOM.2017.1600435CM
SSID ssj0017655
Score 2.6542172
Snippet Ultra-reliable and low-latency communication (URLLC) is one of three pillar applications defined in the fifth generation new radio (5G NR), and its research is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1786
SubjectTerms 5G NR
Actuators
Algorithms
Automation
Codes
Complexity
Controllers
Decoding
Error probability
IIoT
mission-critical IoT
MTC
NOMA
Nonorthogonal multiple access
Optimization
Packet transmission
Power management
Relay
Reliability
Robots
Ultra reliable low latency communication
URLLC
Title Joint Power and Blocklength Optimization for URLLC in a Factory Automation Scenario
URI https://ieeexplore.ieee.org/document/8933345
https://www.proquest.com/docview/2376746719
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EYWCPLAgkTZObKcZS0WFEC8BFWyR7TiiAhIE6QC_nrOTRryE2DLYknVn-74vvrsPYC_lTBmuA0-ngfCYjJmnhDSeCnuIRxGgR8bWDp-di-MRO7njdzNw0NTCGGNc8pnp2E_3lp8WemJ_lXWtNHzI-CzMInGrarWaF4NIOIVTPMBWVyZqniT9uHtzO7A5XHEniDmiHf4lBDlNlR8XsYsuwyU4m66rSip56ExK1dHv31o2_nfhy7BYw0zSr_bFCsyYfBUWPjUfXIPrk2Kcl-TSyqQRmafkEOPagxVWKe_JBd4kT3WJJkFcS0ZXp6cDMs6JJEMn0fNG-pOyqAofybU2OZLuYh1Gw6ObwbFXSyx4GldUesYIg4QLSZhGpKc0z4JACl9GvpLMlwLdKDmzmSU6oOg-mprUpwo5oRSSsizcgLm8yM0mEMmpphHlWZrFrIdDROQLnfUoT5UJQ96C7tTqia77j1sZjMfE8RA_TtBPifVTUvupBfvNjOeq98YfY9es2ZtxtcVb0J46NqkP52tiE4GsygqNt36ftQ3zgaXVLtWsDXPly8TsIPYo1a7bdB_NvNUI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6V8jB4YLAyUejAD7wgkTZObKd57KpVpbRloq3YW2Q7jqgKCdrSB_j1nJ00GhtCvOXhLJ3ubN938d19AG9TzpThOvB0GgiPyZh5SkjjqXCIeBQBemRs7_BiKaYbNrviVy143_TCGGNc8Znp20_3lp8Wem9_lQ0sNXzI-AN4iHGfxVW3VvNmEAnHcYpH2DLLRM2jpB8P1l_Gtoor7gcxR7zD_whCjlXl3lXs4svkGBYHzaqykl1_X6q-_nVnaOP_qv4UntRAk4yqnfEMWiY_gce3xg92YDUrtnlJLi1RGpF5Ss4xsu0stUr5lXzCu-R73aRJENmSzef5fEy2OZFk4kh6fpLRviyq1key0ibHtLt4DpvJxXo89WqSBU-jRqVnjDCYcmEaphHrKc2zIJDCl5GvJPOlQEdKzmxtiQ4oOpCmJvWpwqxQCklZFp5COy9y8wKI5FTTiPIszWI2RBER-UJnQ8pTZcKQd2FwsHqi6wnklgjjW-IyET9O0E-J9VNS-6kL75oVP6rpG_-Q7VizN3K1xbvQOzg2qY_nTWJLgSzPCo1f_n3VGziarhfzZP5h-fEVPApsku0Kz3rQLq_35gyRSKleuw34Gyf82Fg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Power+and+Blocklength+Optimization+for+URLLC+in+a+Factory+Automation+Scenario&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Ren%2C+Hong&rft.au=Pan%2C+Cunhua&rft.au=Deng%2C+Yansha&rft.au=Elkashlan%2C+Maged&rft.date=2020-03-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=19&rft.issue=3&rft.spage=1786&rft.epage=1801&rft_id=info:doi/10.1109%2FTWC.2019.2957745&rft.externalDocID=8933345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon