Development of an upwinding kernel in SPH-SWEs model for 1D trans-critical open channel flows

•An upwinding kernel function is developed in SPH-SWEs model to predict 1D open channel flows.•The degree of upwinding is subject to the satisfaction of the DRP property.•Four combinations of the in/out-flow boundary conditions are used to test the proposed model. In this study, an upwinding SPH mod...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydro-environment research Vol. 15; pp. 13 - 26
Main Authors Chang, Kao-Hua, Chang, Tsang-Jung, Wen-Hann Sheu, Tony
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An upwinding kernel function is developed in SPH-SWEs model to predict 1D open channel flows.•The degree of upwinding is subject to the satisfaction of the DRP property.•Four combinations of the in/out-flow boundary conditions are used to test the proposed model. In this study, an upwinding SPH model with a non-symmetric kernel function is proposed to predict one-dimensional open channel flows. Due to the application of non-symmetric kernel function biased in favor of the upstream side, numerical diffusion is intrinsically added into the discretized momentum equation using SPH. The proposed model thus has shown to have good potential to resolve steep gradient or discontinuous solutions without the need of exactly adding artificial viscosity to the discretized equation. Furthermore, an upwinding coefficient for the determination of the degree of upwinding is derived to accommodate the dispersion-relation-preserving (DRP) property. In wave number space, the error between the discretized SPH equations and the original partial differential equations is minimized, thereby yielding the optimized upwinding coefficient. The proposed model has been validated by solving four benchmark problems involving non-rectangular cross section, varying channel width, non-uniform bed slope and hydraulic jump. Comparison of the numerical and exact solutions shows that the proposed model has the ability of accurately predicting various open channel flows involving complicated transcritical flows. The consistency condition of the proposed model is also analyzed theoretically for the sake of completeness.
AbstractList •An upwinding kernel function is developed in SPH-SWEs model to predict 1D open channel flows.•The degree of upwinding is subject to the satisfaction of the DRP property.•Four combinations of the in/out-flow boundary conditions are used to test the proposed model. In this study, an upwinding SPH model with a non-symmetric kernel function is proposed to predict one-dimensional open channel flows. Due to the application of non-symmetric kernel function biased in favor of the upstream side, numerical diffusion is intrinsically added into the discretized momentum equation using SPH. The proposed model thus has shown to have good potential to resolve steep gradient or discontinuous solutions without the need of exactly adding artificial viscosity to the discretized equation. Furthermore, an upwinding coefficient for the determination of the degree of upwinding is derived to accommodate the dispersion-relation-preserving (DRP) property. In wave number space, the error between the discretized SPH equations and the original partial differential equations is minimized, thereby yielding the optimized upwinding coefficient. The proposed model has been validated by solving four benchmark problems involving non-rectangular cross section, varying channel width, non-uniform bed slope and hydraulic jump. Comparison of the numerical and exact solutions shows that the proposed model has the ability of accurately predicting various open channel flows involving complicated transcritical flows. The consistency condition of the proposed model is also analyzed theoretically for the sake of completeness.
In this study, an upwinding SPH model with a non-symmetric kernel function is proposed to predict one-dimensional open channel flows. Due to the application of non-symmetric kernel function biased in favor of the upstream side, numerical diffusion is intrinsically added into the discretized momentum equation using SPH. The proposed model thus has shown to have good potential to resolve steep gradient or discontinuous solutions without the need of exactly adding artificial viscosity to the discretized equation. Furthermore, an upwinding coefficient for the determination of the degree of upwinding is derived to accommodate the dispersion-relation-preserving (DRP) property. In wave number space, the error between the discretized SPH equations and the original partial differential equations is minimized, thereby yielding the optimized upwinding coefficient. The proposed model has been validated by solving four benchmark problems involving non-rectangular cross section, varying channel width, non-uniform bed slope and hydraulic jump. Comparison of the numerical and exact solutions shows that the proposed model has the ability of accurately predicting various open channel flows involving complicated transcritical flows. The consistency condition of the proposed model is also analyzed theoretically for the sake of completeness.
Author Chang, Kao-Hua
Wen-Hann Sheu, Tony
Chang, Tsang-Jung
Author_xml – sequence: 1
  givenname: Kao-Hua
  surname: Chang
  fullname: Chang, Kao-Hua
  email: f94622026@ntu.edu.tw
  organization: Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
– sequence: 2
  givenname: Tsang-Jung
  surname: Chang
  fullname: Chang, Tsang-Jung
  email: tjchang@ntu.edu.tw
  organization: Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
– sequence: 3
  givenname: Tony
  surname: Wen-Hann Sheu
  fullname: Wen-Hann Sheu, Tony
  email: twhsheu@ntu.edu.tw
  organization: Center for Advanced Studies in Theoretical Sciences (CASTS), National Taiwan University, Taipei 106, Taiwan
BookMark eNp9kEFr3DAQhUVJIWmaP5CTjr3YGVn2yoZcyu4mW1hoYVt6KkIejxttvJIreRPy7yuzOeWQucww876B9z6xM-cdMXYtIBcgFjf7fP9AIS9AqBxEDiA-sAtRq0VWpjpLc6UgW5SlPGdXMe5hLgUFLC7YnxU90eDHA7mJ-54bx4_js3WddX_5IwVHA7eO735sst3vdeQH36VN7wMXKz4F42KGwU4WzcD9SI7jg3Ez1A_-OX5mH3szRLp67Zfs193653KTbb_ff1t-3WYopZwy6ipq26oSLTbSSBBlU_VkWlBKYG0qbEpQdVkTAKHqFSnEtm0MlkAFEspL9uX0dwz-35HipA82Ig2DceSPURfJsKyaRtZJWp-kGHyMgXqNdjKT9S65sYMWoOdQ9V7Poeo5VA1Cp1ATWrxBx2APJry8D92eIEr-n2y6RrTkkDobCCfdefse_h-3BJLy
CitedBy_id crossref_primary_10_1016_j_jhydrol_2022_127566
crossref_primary_10_3390_w9020132
crossref_primary_10_1080_00221686_2020_1866689
crossref_primary_10_1016_j_oceaneng_2023_114532
crossref_primary_10_1016_j_jher_2017_11_003
crossref_primary_10_1016_j_jhydrol_2024_131002
crossref_primary_10_1016_j_jhydrol_2023_129581
crossref_primary_10_1007_s40430_022_03453_7
crossref_primary_10_1029_2020WR028742
crossref_primary_10_1016_j_advwatres_2018_03_009
Cites_doi 10.1086/191344
10.1016/S0309-1708(03)00030-7
10.1002/fld.2646
10.1002/fld.1650140902
10.1061/(ASCE)0733-9429(2006)132:6(605)
10.1016/j.jhydrol.2011.07.023
10.1016/j.envsoft.2005.04.027
10.18869/acadpub.jafm.67.223.23311
10.1016/0925-8574(95)00039-9
10.1016/S0045-7825(96)01090-0
10.1016/S0045-7825(99)00051-1
10.1088/0034-4885/68/8/R01
10.1016/S0309-1708(03)00075-7
10.1061/(ASCE)0733-9429(1999)125:11(1217)
10.1061/(ASCE)0733-9429(1984)110:4(450)
10.1002/nme.1617
10.1002/fld.3687
10.1016/0022-1694(91)90182-H
10.1016/j.euromechflu.2012.02.002
10.1016/j.advwatres.2013.05.004
10.1080/00221686.2010.9641252
10.1080/00221686.2010.9641242
10.1006/jcph.1997.5649
10.1006/jcph.2001.6904
10.1061/(ASCE)HY.1943-7900.0000782
10.1002/num.20692
10.1016/0045-7825(82)90071-8
10.1080/00221686.2004.9728402
10.1016/j.compstruc.2004.11.025
10.1002/fld.2559
10.1061/(ASCE)0733-9429(2004)130:10(977)
10.1016/j.compfluid.2007.07.017
10.1016/0167-7977(85)90010-3
10.1006/jcph.1993.1142
10.1002/fld.801
10.1016/j.oceaneng.2015.06.018
10.1080/00221689209498949
10.1016/j.jhydrol.2012.05.004
ContentType Journal Article
Copyright 2017 International Association for Hydro-environment Engineering and Research, Asia Pacific Division
Copyright_xml – notice: 2017 International Association for Hydro-environment Engineering and Research, Asia Pacific Division
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jher.2017.01.001
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1876-4444
EndPage 26
ExternalDocumentID 10_1016_j_jher_2017_01_001
S1570644315300599
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAEDT
AAIKJ
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABXDB
ABYKQ
ACGFO
ACGFS
ADBBV
ADEZE
ADMUD
ADQTV
AEKER
AENEX
AEQOU
AFTJW
AGHFR
AGUBO
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
BLXMC
CBWCG
CS3
EBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
T5K
~02
AAHBH
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AFJKZ
APXCP
CITATION
7S9
L.6
ID FETCH-LOGICAL-c333t-ed5ebb551bc93a301495feab0771c8a5c9407848e00ec7f7e7ccbb9ac40e2cec3
IEDL.DBID .~1
ISSN 1570-6443
IngestDate Fri Jul 11 15:39:11 EDT 2025
Tue Jul 01 01:37:26 EDT 2025
Thu Apr 24 22:52:18 EDT 2025
Fri Feb 23 02:19:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dispersion-relation-preserving
Smoothed particle hydrodynamics
Upwinding
Open channel
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-ed5ebb551bc93a301495feab0771c8a5c9407848e00ec7f7e7ccbb9ac40e2cec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000359938
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_2000359938
crossref_citationtrail_10_1016_j_jher_2017_01_001
crossref_primary_10_1016_j_jher_2017_01_001
elsevier_sciencedirect_doi_10_1016_j_jher_2017_01_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2017
2017-06-00
20170601
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: June 2017
PublicationDecade 2010
PublicationTitle Journal of hydro-environment research
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Liu (b0120) 2003
Diaz, Ferndndez-Nieto, Ferreiro (b0060) 2008; 37
Sturm (b0175) 2010
Ata, Soulaimani (b0020) 2005; 47
Wang, Shen (b0210) 1999; 125
Alcrudo, Garcia-Navarro, Saviron (b0005) 1992; 14
Chang, Kao, Chang, Hsu (b0040) 2011; 408
Hernquist, Katz (b0080) 1989; 70
Vacondio, Rogers, Stansby (b0195) 2012; 69
De Leffe, Le Touze, Alessandrini (b0055) 2010; 48
Ying, Khan, Wang (b0220) 2004; 130
Gomez-Gesteira, Rogers, Dalrymple, Crespo (b0075) 2010; 48(SI)
Anderson, Rutherfurd, Western (b0010) 2006; 21
Jadhav, Buchberger (b0095) 1995; 5
Huang, Sheu (b0090) 2012; 28
Tam, Webb (b0185) 1993; 107
Aristodemo, Marrone, Federico (b0015) 2015; 105
Bonet, Lok (b0025) 1999; 180
Hsu, Fu, Liu (b0085) 2006; 132
Vacondio, Rogers, Stansby (b0190) 2012; 69
Randles, Libersky (b0155) 1996; 139
Lin, Lai, Guo (b0115) 2003; 26
Papanicolaou, Bdour, Wicklein (b0145) 2004; 42
Rodriguez-Paz, Bonet (b0160) 2005; 83
Cheong, Lee (b0050) 2001; 174
Katopodes (b0105) 1984; 110
Ogami (b0140) 1999; 8
Szymkiewicz (b0180) 1991; 122
Li (b0110) 1997; 133
Monaghan (b0135) 2005; 68
MacDonald, I., Baines, M.J., Nichols, N.K., Samuels, P.G., 1995. Comparisons of some steady state Saint-Venant solvers for some test problems with analytic solutions. Numerical analysis reports 2/95.
Monaghan (b0130) 1985; 3
Violeau (b0205) 2012
Federico, Marrone, Colagrossi, Aristodemo, Antuono (b0065) 2012; 34
Chang, Chang (b0035) 2013; 139
Vacondio, Rogers, Stansby, Mignosa (b0200) 2013; 71
Shao, Lo (b0165) 2003; 26
Stoker (b0170) 1992
Xia, Liang, Pastor, Zou, Zhuang (b0215) 2013; 59
Brooks, Hughes (b0030) 1982; 32
Chen, Shao, Liu, Zhou (b0045) 2015; 8
Garcia-Navarro, Saviron (b0070) 1992; 30
Kao, Chang (b0100) 2012; 448
Quinlan, Basa, Lastiwka (b0150) 2006; 66
Sturm (10.1016/j.jher.2017.01.001_b0175) 2010
Ata (10.1016/j.jher.2017.01.001_b0020) 2005; 47
10.1016/j.jher.2017.01.001_b0125
Quinlan (10.1016/j.jher.2017.01.001_b0150) 2006; 66
Katopodes (10.1016/j.jher.2017.01.001_b0105) 1984; 110
De Leffe (10.1016/j.jher.2017.01.001_b0055) 2010; 48
Vacondio (10.1016/j.jher.2017.01.001_b0190) 2012; 69
Vacondio (10.1016/j.jher.2017.01.001_b0200) 2013; 71
Garcia-Navarro (10.1016/j.jher.2017.01.001_b0070) 1992; 30
Randles (10.1016/j.jher.2017.01.001_b0155) 1996; 139
Hernquist (10.1016/j.jher.2017.01.001_b0080) 1989; 70
Xia (10.1016/j.jher.2017.01.001_b0215) 2013; 59
Stoker (10.1016/j.jher.2017.01.001_b0170) 1992
Ying (10.1016/j.jher.2017.01.001_b0220) 2004; 130
Rodriguez-Paz (10.1016/j.jher.2017.01.001_b0160) 2005; 83
Wang (10.1016/j.jher.2017.01.001_b0210) 1999; 125
Szymkiewicz (10.1016/j.jher.2017.01.001_b0180) 1991; 122
Tam (10.1016/j.jher.2017.01.001_b0185) 1993; 107
Chang (10.1016/j.jher.2017.01.001_b0035) 2013; 139
Lin (10.1016/j.jher.2017.01.001_b0115) 2003; 26
Ogami (10.1016/j.jher.2017.01.001_b0140) 1999; 8
Kao (10.1016/j.jher.2017.01.001_b0100) 2012; 448
Cheong (10.1016/j.jher.2017.01.001_b0050) 2001; 174
Monaghan (10.1016/j.jher.2017.01.001_b0135) 2005; 68
Chang (10.1016/j.jher.2017.01.001_b0040) 2011; 408
Shao (10.1016/j.jher.2017.01.001_b0165) 2003; 26
Hsu (10.1016/j.jher.2017.01.001_b0085) 2006; 132
Bonet (10.1016/j.jher.2017.01.001_b0025) 1999; 180
Huang (10.1016/j.jher.2017.01.001_b0090) 2012; 28
Liu (10.1016/j.jher.2017.01.001_b0120) 2003
Vacondio (10.1016/j.jher.2017.01.001_b0195) 2012; 69
Monaghan (10.1016/j.jher.2017.01.001_b0130) 1985; 3
Gomez-Gesteira (10.1016/j.jher.2017.01.001_b0075) 2010; 48(SI)
Chen (10.1016/j.jher.2017.01.001_b0045) 2015; 8
Federico (10.1016/j.jher.2017.01.001_b0065) 2012; 34
Violeau (10.1016/j.jher.2017.01.001_b0205) 2012
Alcrudo (10.1016/j.jher.2017.01.001_b0005) 1992; 14
Li (10.1016/j.jher.2017.01.001_b0110) 1997; 133
Brooks (10.1016/j.jher.2017.01.001_b0030) 1982; 32
Diaz (10.1016/j.jher.2017.01.001_b0060) 2008; 37
Anderson (10.1016/j.jher.2017.01.001_b0010) 2006; 21
Papanicolaou (10.1016/j.jher.2017.01.001_b0145) 2004; 42
Aristodemo (10.1016/j.jher.2017.01.001_b0015) 2015; 105
Jadhav (10.1016/j.jher.2017.01.001_b0095) 1995; 5
References_xml – volume: 8
  start-page: 863
  year: 2015
  end-page: 870
  ident: b0045
  article-title: Applications of shallow water SPH model in mountainous rivers
  publication-title: J. Appl. Fluid Mech.
– volume: 28
  start-page: 1574
  year: 2012
  end-page: 1597
  ident: b0090
  article-title: Development of an upwinding particle interaction kernel for simulating incompressible Navier-Stokes equations
  publication-title: Numer. Methods Partial Differ. Equ.
– volume: 34
  start-page: 35
  year: 2012
  end-page: 46
  ident: b0065
  article-title: Simulating 2D open-channel flow through an SPH model
  publication-title: Eur. J. Mech. B Fluid
– volume: 139
  start-page: 1142
  year: 2013
  end-page: 1149
  ident: b0035
  article-title: SPH modeling of one-dimensional nonrectangular and nonprismatic channel flows with open boundaries
  publication-title: J. Hydraul. Eng. ASCE
– volume: 48(SI)
  start-page: 6
  year: 2010
  end-page: 27
  ident: b0075
  article-title: State-of-the-art of classical SPH for free-surface flows
  publication-title: J. Hydraul. Res
– volume: 408
  start-page: 78
  year: 2011
  end-page: 90
  ident: b0040
  article-title: Numerical simulation of shallow-water dam break flows in open channels using smoothed particle hydrodynamics
  publication-title: J. Hydrol.
– volume: 122
  start-page: 275
  year: 1991
  end-page: 287
  ident: b0180
  article-title: Finite-element method for the solution of the Saint Venant equations in an open channel network
  publication-title: J. Hydrol.
– volume: 32
  start-page: 199
  year: 1982
  end-page: 259
  ident: b0030
  article-title: Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations
  publication-title: Comput. Methods Appl. M
– volume: 26
  start-page: 861
  year: 2003
  end-page: 873
  ident: b0115
  article-title: Finite-volume component-wise TVD schemes for 2D shallow water equations
  publication-title: Adv. Water. Resour.
– volume: 71
  start-page: 850
  year: 2013
  end-page: 872
  ident: b0200
  article-title: A correction for balancing discontinuous bed slopes in two-dimensional smoothed particle hydrodynamics shallow water modeling
  publication-title: Int. J. Numer. Methods Fluids
– year: 2012
  ident: b0205
  article-title: Fluid Mechanics and the SPH Method: Theory and Applications
– volume: 139
  start-page: 375
  year: 1996
  end-page: 408
  ident: b0155
  article-title: Smoothed particle hydrodynamics: some recent improvements and applications
  publication-title: Comput. Method. Appl. Mech.
– volume: 68
  start-page: 1703
  year: 2005
  end-page: 1759
  ident: b0135
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Prog. Phys.
– volume: 37
  start-page: 299
  year: 2008
  end-page: 316
  ident: b0060
  article-title: Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods
  publication-title: Comput. Fluids
– volume: 132
  start-page: 605
  year: 2006
  end-page: 619
  ident: b0085
  article-title: Dynamic routing model with real-time roughness updating for flood forecasting
  publication-title: J. Hydraul. Eng. ASCE
– volume: 8
  start-page: 383
  year: 1999
  end-page: 392
  ident: b0140
  article-title: A pure Lagrangian method for unsteady compressible viscous flow
  publication-title: Comput. Fluid. Dyn. J.
– volume: 30
  start-page: 95
  year: 1992
  end-page: 105
  ident: b0070
  article-title: McCormack method for the numerical-simulation of one-dimensional discontinuous unsteady open channel flow
  publication-title: J. Hydraul. Res.
– year: 2010
  ident: b0175
  article-title: Open Channel Hydraulics
– volume: 59
  start-page: 25
  year: 2013
  end-page: 38
  ident: b0215
  article-title: Balancing the source terms in a SPH model for solving the shallow water equations
  publication-title: Adv. Water. Resour.
– volume: 21
  start-page: 1290
  year: 2006
  end-page: 1296
  ident: b0010
  article-title: An analysis of the influence of riparian vegetation on the propagation of flood waves
  publication-title: Environ. Modell. Softw.
– volume: 48
  start-page: 118
  year: 2010
  end-page: 125
  ident: b0055
  article-title: SPH modeling of shallow-water coastal flows
  publication-title: J. Hydraul. Res.
– volume: 130
  start-page: 977
  year: 2004
  end-page: 987
  ident: b0220
  article-title: Upwind conservative scheme for the Saint Venant equations
  publication-title: J. Hydraul. Eng. ASCE
– volume: 69
  start-page: 226
  year: 2012
  end-page: 253
  ident: b0190
  article-title: Smoothed particle hydrodynamics: approximate zero-consistent 2-D boundary conditions and still shallow-water tests
  publication-title: Int. J. Numer. Methods Fluids
– volume: 448
  start-page: 232
  year: 2012
  end-page: 244
  ident: b0100
  article-title: Numerical modeling of dambreak-induced flood and inundation using smoothed particle hydrodynamics
  publication-title: J. Hydrol.
– volume: 105
  start-page: 160
  year: 2015
  end-page: 175
  ident: b0015
  article-title: SPH modelling of plane jets into water bodies through an inflow/outflow
  publication-title: Ocean. Eng.
– volume: 5
  start-page: 481
  year: 1995
  end-page: 496
  ident: b0095
  article-title: Effects of vegetation on flow through free water surface wetlands
  publication-title: Ecol. Eng.
– volume: 14
  start-page: 1009
  year: 1992
  end-page: 1018
  ident: b0005
  article-title: Flux difference splitting for 1d open channel flow equations
  publication-title: Int. J. Numer. Methods Fl.
– volume: 70
  start-page: 419
  year: 1989
  end-page: 446
  ident: b0080
  article-title: TREESPH: a unification of sph with the hierarchical tree method
  publication-title: Astrophys. J. Suppl. Ser.
– volume: 107
  start-page: 262
  year: 1993
  end-page: 281
  ident: b0185
  article-title: Dispersion-relation-preserving finite-difference schemes for computational acoustics
  publication-title: J. Comput. Phys.
– volume: 133
  start-page: 235
  year: 1997
  end-page: 255
  ident: b0110
  article-title: Wavenumber-extended high-order upwind-biased finite-difference schemes for convective scalar transport
  publication-title: J. Comput. Phys.
– reference: MacDonald, I., Baines, M.J., Nichols, N.K., Samuels, P.G., 1995. Comparisons of some steady state Saint-Venant solvers for some test problems with analytic solutions. Numerical analysis reports 2/95.
– volume: 125
  start-page: 1217
  year: 1999
  end-page: 1220
  ident: b0210
  article-title: Lagrangian simulation of one-dimensional dam-break flow
  publication-title: J. Hydraul. Eng. ASCE
– volume: 83
  start-page: 1396
  year: 2005
  end-page: 1410
  ident: b0160
  article-title: A corrected smooth particle hydrodynamics formulation of the shallow-water equations
  publication-title: Comput. Struct.
– volume: 69
  start-page: 1377
  year: 2012
  end-page: 1410
  ident: b0195
  article-title: Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing
  publication-title: Int. J. Numer. Methods Fluids
– volume: 110
  start-page: 450
  year: 1984
  end-page: 466
  ident: b0105
  article-title: A dissipative Galerkin scheme for open-channel flow
  publication-title: J. Hydraul. Eng. ASCE
– volume: 3
  start-page: 71
  year: 1985
  end-page: 124
  ident: b0130
  article-title: Particle methods for hydrodynamics
  publication-title: Comput. Phys. Rep.
– volume: 42
  start-page: 357
  year: 2004
  end-page: 375
  ident: b0145
  article-title: One-dimensional hydrodynamic/sediment transport model applicable to steep mountain streams
  publication-title: J. Hydraul. Res.
– year: 2003
  ident: b0120
  article-title: Smoothed Particle Hydrodynamics: A Meshfree Particle Method
– volume: 180
  start-page: 97
  year: 1999
  end-page: 115
  ident: b0025
  article-title: Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations
  publication-title: Comput. Methods Appl. M
– volume: 26
  start-page: 787
  year: 2003
  end-page: 800
  ident: b0165
  article-title: Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface
  publication-title: Adv. Water. Resour.
– volume: 47
  start-page: 139
  year: 2005
  end-page: 159
  ident: b0020
  article-title: A stabilized SPH method for inviscid shallow water flows
  publication-title: Int. J. Numer. Methods Fl.
– year: 1992
  ident: b0170
  article-title: Water Waves: The Mathematical Theory With Applications
– volume: 66
  start-page: 2064
  year: 2006
  end-page: 2085
  ident: b0150
  article-title: Truncation error in mesh-free particle methods
  publication-title: Int. J. Numer. Methods Eng.
– volume: 174
  start-page: 248
  year: 2001
  end-page: 276
  ident: b0050
  article-title: Grid-optimized dispersion-relation-preserving schemes on general geometries for computational aeroacoustics
  publication-title: J. Comput. Phys.
– volume: 70
  start-page: 419
  issue: 2
  year: 1989
  ident: 10.1016/j.jher.2017.01.001_b0080
  article-title: TREESPH: a unification of sph with the hierarchical tree method
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.1086/191344
– volume: 26
  start-page: 787
  issue: 7
  year: 2003
  ident: 10.1016/j.jher.2017.01.001_b0165
  article-title: Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface
  publication-title: Adv. Water. Resour.
  doi: 10.1016/S0309-1708(03)00030-7
– volume: 69
  start-page: 1377
  issue: 8
  year: 2012
  ident: 10.1016/j.jher.2017.01.001_b0195
  article-title: Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.2646
– volume: 14
  start-page: 1009
  issue: 9
  year: 1992
  ident: 10.1016/j.jher.2017.01.001_b0005
  article-title: Flux difference splitting for 1d open channel flow equations
  publication-title: Int. J. Numer. Methods Fl.
  doi: 10.1002/fld.1650140902
– volume: 132
  start-page: 605
  issue: 6
  year: 2006
  ident: 10.1016/j.jher.2017.01.001_b0085
  article-title: Dynamic routing model with real-time roughness updating for flood forecasting
  publication-title: J. Hydraul. Eng. ASCE
  doi: 10.1061/(ASCE)0733-9429(2006)132:6(605)
– volume: 408
  start-page: 78
  issue: 1–2
  year: 2011
  ident: 10.1016/j.jher.2017.01.001_b0040
  article-title: Numerical simulation of shallow-water dam break flows in open channels using smoothed particle hydrodynamics
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.07.023
– volume: 21
  start-page: 1290
  issue: 9
  year: 2006
  ident: 10.1016/j.jher.2017.01.001_b0010
  article-title: An analysis of the influence of riparian vegetation on the propagation of flood waves
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2005.04.027
– volume: 8
  start-page: 863
  issue: 4
  year: 2015
  ident: 10.1016/j.jher.2017.01.001_b0045
  article-title: Applications of shallow water SPH model in mountainous rivers
  publication-title: J. Appl. Fluid Mech.
  doi: 10.18869/acadpub.jafm.67.223.23311
– volume: 5
  start-page: 481
  issue: 4
  year: 1995
  ident: 10.1016/j.jher.2017.01.001_b0095
  article-title: Effects of vegetation on flow through free water surface wetlands
  publication-title: Ecol. Eng.
  doi: 10.1016/0925-8574(95)00039-9
– volume: 139
  start-page: 375
  issue: 1–4
  year: 1996
  ident: 10.1016/j.jher.2017.01.001_b0155
  article-title: Smoothed particle hydrodynamics: some recent improvements and applications
  publication-title: Comput. Method. Appl. Mech.
  doi: 10.1016/S0045-7825(96)01090-0
– volume: 180
  start-page: 97
  issue: 1–2
  year: 1999
  ident: 10.1016/j.jher.2017.01.001_b0025
  article-title: Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations
  publication-title: Comput. Methods Appl. M
  doi: 10.1016/S0045-7825(99)00051-1
– volume: 68
  start-page: 1703
  issue: 8
  year: 2005
  ident: 10.1016/j.jher.2017.01.001_b0135
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/68/8/R01
– year: 1992
  ident: 10.1016/j.jher.2017.01.001_b0170
– volume: 26
  start-page: 861
  issue: 8
  year: 2003
  ident: 10.1016/j.jher.2017.01.001_b0115
  article-title: Finite-volume component-wise TVD schemes for 2D shallow water equations
  publication-title: Adv. Water. Resour.
  doi: 10.1016/S0309-1708(03)00075-7
– ident: 10.1016/j.jher.2017.01.001_b0125
– volume: 125
  start-page: 1217
  issue: 11
  year: 1999
  ident: 10.1016/j.jher.2017.01.001_b0210
  article-title: Lagrangian simulation of one-dimensional dam-break flow
  publication-title: J. Hydraul. Eng. ASCE
  doi: 10.1061/(ASCE)0733-9429(1999)125:11(1217)
– volume: 110
  start-page: 450
  issue: 4
  year: 1984
  ident: 10.1016/j.jher.2017.01.001_b0105
  article-title: A dissipative Galerkin scheme for open-channel flow
  publication-title: J. Hydraul. Eng. ASCE
  doi: 10.1061/(ASCE)0733-9429(1984)110:4(450)
– volume: 66
  start-page: 2064
  issue: 13
  year: 2006
  ident: 10.1016/j.jher.2017.01.001_b0150
  article-title: Truncation error in mesh-free particle methods
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1617
– year: 2012
  ident: 10.1016/j.jher.2017.01.001_b0205
– volume: 71
  start-page: 850
  year: 2013
  ident: 10.1016/j.jher.2017.01.001_b0200
  article-title: A correction for balancing discontinuous bed slopes in two-dimensional smoothed particle hydrodynamics shallow water modeling
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.3687
– volume: 122
  start-page: 275
  issue: 1–4
  year: 1991
  ident: 10.1016/j.jher.2017.01.001_b0180
  article-title: Finite-element method for the solution of the Saint Venant equations in an open channel network
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(91)90182-H
– volume: 34
  start-page: 35
  year: 2012
  ident: 10.1016/j.jher.2017.01.001_b0065
  article-title: Simulating 2D open-channel flow through an SPH model
  publication-title: Eur. J. Mech. B Fluid
  doi: 10.1016/j.euromechflu.2012.02.002
– volume: 59
  start-page: 25
  year: 2013
  ident: 10.1016/j.jher.2017.01.001_b0215
  article-title: Balancing the source terms in a SPH model for solving the shallow water equations
  publication-title: Adv. Water. Resour.
  doi: 10.1016/j.advwatres.2013.05.004
– volume: 48
  start-page: 118
  year: 2010
  ident: 10.1016/j.jher.2017.01.001_b0055
  article-title: SPH modeling of shallow-water coastal flows
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2010.9641252
– volume: 48(SI)
  start-page: 6
  year: 2010
  ident: 10.1016/j.jher.2017.01.001_b0075
  article-title: State-of-the-art of classical SPH for free-surface flows
  publication-title: J. Hydraul. Res
  doi: 10.1080/00221686.2010.9641242
– volume: 133
  start-page: 235
  issue: 2
  year: 1997
  ident: 10.1016/j.jher.2017.01.001_b0110
  article-title: Wavenumber-extended high-order upwind-biased finite-difference schemes for convective scalar transport
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1997.5649
– volume: 174
  start-page: 248
  issue: 1
  year: 2001
  ident: 10.1016/j.jher.2017.01.001_b0050
  article-title: Grid-optimized dispersion-relation-preserving schemes on general geometries for computational aeroacoustics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6904
– volume: 139
  start-page: 1142
  issue: 11
  year: 2013
  ident: 10.1016/j.jher.2017.01.001_b0035
  article-title: SPH modeling of one-dimensional nonrectangular and nonprismatic channel flows with open boundaries
  publication-title: J. Hydraul. Eng. ASCE
  doi: 10.1061/(ASCE)HY.1943-7900.0000782
– volume: 28
  start-page: 1574
  issue: 5
  year: 2012
  ident: 10.1016/j.jher.2017.01.001_b0090
  article-title: Development of an upwinding particle interaction kernel for simulating incompressible Navier-Stokes equations
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20692
– volume: 32
  start-page: 199
  issue: 1–3
  year: 1982
  ident: 10.1016/j.jher.2017.01.001_b0030
  article-title: Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations
  publication-title: Comput. Methods Appl. M
  doi: 10.1016/0045-7825(82)90071-8
– volume: 42
  start-page: 357
  issue: 4
  year: 2004
  ident: 10.1016/j.jher.2017.01.001_b0145
  article-title: One-dimensional hydrodynamic/sediment transport model applicable to steep mountain streams
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2004.9728402
– volume: 83
  start-page: 1396
  issue: 17–18
  year: 2005
  ident: 10.1016/j.jher.2017.01.001_b0160
  article-title: A corrected smooth particle hydrodynamics formulation of the shallow-water equations
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2004.11.025
– volume: 69
  start-page: 226
  issue: 1
  year: 2012
  ident: 10.1016/j.jher.2017.01.001_b0190
  article-title: Smoothed particle hydrodynamics: approximate zero-consistent 2-D boundary conditions and still shallow-water tests
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.2559
– volume: 130
  start-page: 977
  issue: 10
  year: 2004
  ident: 10.1016/j.jher.2017.01.001_b0220
  article-title: Upwind conservative scheme for the Saint Venant equations
  publication-title: J. Hydraul. Eng. ASCE
  doi: 10.1061/(ASCE)0733-9429(2004)130:10(977)
– volume: 37
  start-page: 299
  issue: 3
  year: 2008
  ident: 10.1016/j.jher.2017.01.001_b0060
  article-title: Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2007.07.017
– volume: 3
  start-page: 71
  year: 1985
  ident: 10.1016/j.jher.2017.01.001_b0130
  article-title: Particle methods for hydrodynamics
  publication-title: Comput. Phys. Rep.
  doi: 10.1016/0167-7977(85)90010-3
– volume: 107
  start-page: 262
  issue: 2
  year: 1993
  ident: 10.1016/j.jher.2017.01.001_b0185
  article-title: Dispersion-relation-preserving finite-difference schemes for computational acoustics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1993.1142
– volume: 47
  start-page: 139
  issue: 2
  year: 2005
  ident: 10.1016/j.jher.2017.01.001_b0020
  article-title: A stabilized SPH method for inviscid shallow water flows
  publication-title: Int. J. Numer. Methods Fl.
  doi: 10.1002/fld.801
– year: 2010
  ident: 10.1016/j.jher.2017.01.001_b0175
– year: 2003
  ident: 10.1016/j.jher.2017.01.001_b0120
– volume: 8
  start-page: 383
  issue: 3
  year: 1999
  ident: 10.1016/j.jher.2017.01.001_b0140
  article-title: A pure Lagrangian method for unsteady compressible viscous flow
  publication-title: Comput. Fluid. Dyn. J.
– volume: 105
  start-page: 160
  year: 2015
  ident: 10.1016/j.jher.2017.01.001_b0015
  article-title: SPH modelling of plane jets into water bodies through an inflow/outflow
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2015.06.018
– volume: 30
  start-page: 95
  issue: 1
  year: 1992
  ident: 10.1016/j.jher.2017.01.001_b0070
  article-title: McCormack method for the numerical-simulation of one-dimensional discontinuous unsteady open channel flow
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221689209498949
– volume: 448
  start-page: 232
  year: 2012
  ident: 10.1016/j.jher.2017.01.001_b0100
  article-title: Numerical modeling of dambreak-induced flood and inundation using smoothed particle hydrodynamics
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.05.004
SSID ssj0000070206
Score 2.129179
Snippet •An upwinding kernel function is developed in SPH-SWEs model to predict 1D open channel flows.•The degree of upwinding is subject to the satisfaction of the...
In this study, an upwinding SPH model with a non-symmetric kernel function is proposed to predict one-dimensional open channel flows. Due to the application of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13
SubjectTerms Dispersion-relation-preserving
equations
momentum
Open channel
prediction
seeds
Smoothed particle hydrodynamics
Upwinding
viscosity
Title Development of an upwinding kernel in SPH-SWEs model for 1D trans-critical open channel flows
URI https://dx.doi.org/10.1016/j.jher.2017.01.001
https://www.proquest.com/docview/2000359938
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA_DJ30QP3F-EcE3iWubZm0fZW4MQRHmcC9SkjSBzdGOrWNv_u3m0nRMkT342JIL5XK5uzR3vx9CtyyRzNMZI1nb58REKEm4F2hibEW1mTYxikNz8vNLuz8Mn0Zs1ECduhcGyiqd7698uvXW7k3LabM1G49bA59FJp6a6Rm1KCPQwR5GYOX3X_76Pwvg2QSWYhPGExBwvTNVmdfEqAYqvCKL3um4Yf6IT788tQ0_vQO07_JG_FB92iFqqPwI7W2gCR6jj40CIFxozHO8nK3Gtm0Ff6p5rqZ4nOPBa58M3rsLbElwsElasf-IS4hZRDriAwykWhiagkFIT4vV4gQNe923Tp849gQiKaUlURlTQpiESMiEcmqPQlpx4UWRL2POZAJXeGGsPE_JSEcqklKIhMvQU4FUkp6inbzI1RnCMk5EyBJNIRuAAxuPNdNB5nuZ8Y5KN5Ff6yyVDlocGC6maV1DNklBzynoOfV8KKRroru1zKwC1tg6mtVLkf4wj9R4_q1yN_W6pWbfwGUIz1WxXAD9JqAXJjQ-_-fcF2gXnqq6sUu0U86X6spkKKW4tib4DdQN46Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5eHtQH8Yp3I_gmcW3TrO2j6GTqNoRt6IuENE1gOrqxC3vzt5uTpjJF9uBr2xPKSXLOafOd70PokiWSeTpjJKv6gpgMJYnwAk3MWlFVpk2OEtCc3GxV693w8ZW9LqHbshcGYJUu9hcx3UZrd6XivFkZ9nqVts8ik0_N8IxalpFltBqa7Qu78_rT__7RAoQ2gdXYBAMCFq55psB5vRvfAMQrsvSdThzmjwT1K1Tb_HO_hTZd4YhvinfbRksq30Ebc3SCu-htDgGEBxqLHE-Hs57tW8EfapSrPu7luP1cJ-2X2hhbFRxsqlbs3-EJJC0infIBBlUtDF3BYKT7g9l4D3Xva53bOnHyCURSSidEZUylqamIUplQQe23kFYi9aLIl7FgMoEzvDBWnqdkpCMVSZmmiZChpwKpJN1HK_kgVwcIyzhJQ5ZoCuUAfLGJWDMdZL6XmfCo9CHyS59x6bjFQeKiz0sQ2TsHP3PwM_d8QNIdoqtvm2HBrLHwaVZOBf-xPrgJ_QvtLsp542bjwGmIyNVgOgb9TaAvTGh89M-xz9FavdNs8MZD6-kYrcOdAkR2glYmo6k6NeXKJD2zy_ELQ-Xmvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+an+upwinding+kernel+in+SPH-SWEs+model+for+1D+trans-critical+open+channel+flows&rft.jtitle=Journal+of+hydro-environment+research&rft.au=Chang%2C+Kao-Hua&rft.au=Chang%2C+Tsang-Jung&rft.au=Wen-Hann+Sheu%2C+Tony&rft.date=2017-06-01&rft.pub=Elsevier+B.V&rft.issn=1570-6443&rft.eissn=1876-4444&rft.volume=15&rft.spage=13&rft.epage=26&rft_id=info:doi/10.1016%2Fj.jher.2017.01.001&rft.externalDocID=S1570644315300599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-6443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-6443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-6443&client=summon