Development of an upwinding kernel in SPH-SWEs model for 1D trans-critical open channel flows
•An upwinding kernel function is developed in SPH-SWEs model to predict 1D open channel flows.•The degree of upwinding is subject to the satisfaction of the DRP property.•Four combinations of the in/out-flow boundary conditions are used to test the proposed model. In this study, an upwinding SPH mod...
Saved in:
Published in | Journal of hydro-environment research Vol. 15; pp. 13 - 26 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An upwinding kernel function is developed in SPH-SWEs model to predict 1D open channel flows.•The degree of upwinding is subject to the satisfaction of the DRP property.•Four combinations of the in/out-flow boundary conditions are used to test the proposed model.
In this study, an upwinding SPH model with a non-symmetric kernel function is proposed to predict one-dimensional open channel flows. Due to the application of non-symmetric kernel function biased in favor of the upstream side, numerical diffusion is intrinsically added into the discretized momentum equation using SPH. The proposed model thus has shown to have good potential to resolve steep gradient or discontinuous solutions without the need of exactly adding artificial viscosity to the discretized equation. Furthermore, an upwinding coefficient for the determination of the degree of upwinding is derived to accommodate the dispersion-relation-preserving (DRP) property. In wave number space, the error between the discretized SPH equations and the original partial differential equations is minimized, thereby yielding the optimized upwinding coefficient. The proposed model has been validated by solving four benchmark problems involving non-rectangular cross section, varying channel width, non-uniform bed slope and hydraulic jump. Comparison of the numerical and exact solutions shows that the proposed model has the ability of accurately predicting various open channel flows involving complicated transcritical flows. The consistency condition of the proposed model is also analyzed theoretically for the sake of completeness. |
---|---|
AbstractList | •An upwinding kernel function is developed in SPH-SWEs model to predict 1D open channel flows.•The degree of upwinding is subject to the satisfaction of the DRP property.•Four combinations of the in/out-flow boundary conditions are used to test the proposed model.
In this study, an upwinding SPH model with a non-symmetric kernel function is proposed to predict one-dimensional open channel flows. Due to the application of non-symmetric kernel function biased in favor of the upstream side, numerical diffusion is intrinsically added into the discretized momentum equation using SPH. The proposed model thus has shown to have good potential to resolve steep gradient or discontinuous solutions without the need of exactly adding artificial viscosity to the discretized equation. Furthermore, an upwinding coefficient for the determination of the degree of upwinding is derived to accommodate the dispersion-relation-preserving (DRP) property. In wave number space, the error between the discretized SPH equations and the original partial differential equations is minimized, thereby yielding the optimized upwinding coefficient. The proposed model has been validated by solving four benchmark problems involving non-rectangular cross section, varying channel width, non-uniform bed slope and hydraulic jump. Comparison of the numerical and exact solutions shows that the proposed model has the ability of accurately predicting various open channel flows involving complicated transcritical flows. The consistency condition of the proposed model is also analyzed theoretically for the sake of completeness. In this study, an upwinding SPH model with a non-symmetric kernel function is proposed to predict one-dimensional open channel flows. Due to the application of non-symmetric kernel function biased in favor of the upstream side, numerical diffusion is intrinsically added into the discretized momentum equation using SPH. The proposed model thus has shown to have good potential to resolve steep gradient or discontinuous solutions without the need of exactly adding artificial viscosity to the discretized equation. Furthermore, an upwinding coefficient for the determination of the degree of upwinding is derived to accommodate the dispersion-relation-preserving (DRP) property. In wave number space, the error between the discretized SPH equations and the original partial differential equations is minimized, thereby yielding the optimized upwinding coefficient. The proposed model has been validated by solving four benchmark problems involving non-rectangular cross section, varying channel width, non-uniform bed slope and hydraulic jump. Comparison of the numerical and exact solutions shows that the proposed model has the ability of accurately predicting various open channel flows involving complicated transcritical flows. The consistency condition of the proposed model is also analyzed theoretically for the sake of completeness. |
Author | Chang, Kao-Hua Wen-Hann Sheu, Tony Chang, Tsang-Jung |
Author_xml | – sequence: 1 givenname: Kao-Hua surname: Chang fullname: Chang, Kao-Hua email: f94622026@ntu.edu.tw organization: Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan – sequence: 2 givenname: Tsang-Jung surname: Chang fullname: Chang, Tsang-Jung email: tjchang@ntu.edu.tw organization: Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan – sequence: 3 givenname: Tony surname: Wen-Hann Sheu fullname: Wen-Hann Sheu, Tony email: twhsheu@ntu.edu.tw organization: Center for Advanced Studies in Theoretical Sciences (CASTS), National Taiwan University, Taipei 106, Taiwan |
BookMark | eNp9kEFr3DAQhUVJIWmaP5CTjr3YGVn2yoZcyu4mW1hoYVt6KkIejxttvJIreRPy7yuzOeWQucww876B9z6xM-cdMXYtIBcgFjf7fP9AIS9AqBxEDiA-sAtRq0VWpjpLc6UgW5SlPGdXMe5hLgUFLC7YnxU90eDHA7mJ-54bx4_js3WddX_5IwVHA7eO735sst3vdeQH36VN7wMXKz4F42KGwU4WzcD9SI7jg3Ez1A_-OX5mH3szRLp67Zfs193653KTbb_ff1t-3WYopZwy6ipq26oSLTbSSBBlU_VkWlBKYG0qbEpQdVkTAKHqFSnEtm0MlkAFEspL9uX0dwz-35HipA82Ig2DceSPURfJsKyaRtZJWp-kGHyMgXqNdjKT9S65sYMWoOdQ9V7Poeo5VA1Cp1ATWrxBx2APJry8D92eIEr-n2y6RrTkkDobCCfdefse_h-3BJLy |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2022_127566 crossref_primary_10_3390_w9020132 crossref_primary_10_1080_00221686_2020_1866689 crossref_primary_10_1016_j_oceaneng_2023_114532 crossref_primary_10_1016_j_jher_2017_11_003 crossref_primary_10_1016_j_jhydrol_2024_131002 crossref_primary_10_1016_j_jhydrol_2023_129581 crossref_primary_10_1007_s40430_022_03453_7 crossref_primary_10_1029_2020WR028742 crossref_primary_10_1016_j_advwatres_2018_03_009 |
Cites_doi | 10.1086/191344 10.1016/S0309-1708(03)00030-7 10.1002/fld.2646 10.1002/fld.1650140902 10.1061/(ASCE)0733-9429(2006)132:6(605) 10.1016/j.jhydrol.2011.07.023 10.1016/j.envsoft.2005.04.027 10.18869/acadpub.jafm.67.223.23311 10.1016/0925-8574(95)00039-9 10.1016/S0045-7825(96)01090-0 10.1016/S0045-7825(99)00051-1 10.1088/0034-4885/68/8/R01 10.1016/S0309-1708(03)00075-7 10.1061/(ASCE)0733-9429(1999)125:11(1217) 10.1061/(ASCE)0733-9429(1984)110:4(450) 10.1002/nme.1617 10.1002/fld.3687 10.1016/0022-1694(91)90182-H 10.1016/j.euromechflu.2012.02.002 10.1016/j.advwatres.2013.05.004 10.1080/00221686.2010.9641252 10.1080/00221686.2010.9641242 10.1006/jcph.1997.5649 10.1006/jcph.2001.6904 10.1061/(ASCE)HY.1943-7900.0000782 10.1002/num.20692 10.1016/0045-7825(82)90071-8 10.1080/00221686.2004.9728402 10.1016/j.compstruc.2004.11.025 10.1002/fld.2559 10.1061/(ASCE)0733-9429(2004)130:10(977) 10.1016/j.compfluid.2007.07.017 10.1016/0167-7977(85)90010-3 10.1006/jcph.1993.1142 10.1002/fld.801 10.1016/j.oceaneng.2015.06.018 10.1080/00221689209498949 10.1016/j.jhydrol.2012.05.004 |
ContentType | Journal Article |
Copyright | 2017 International Association for Hydro-environment Engineering and Research, Asia Pacific Division |
Copyright_xml | – notice: 2017 International Association for Hydro-environment Engineering and Research, Asia Pacific Division |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jher.2017.01.001 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1876-4444 |
EndPage | 26 |
ExternalDocumentID | 10_1016_j_jher_2017_01_001 S1570644315300599 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AAEDT AAIKJ AALRI AAOAW AAQFI AAXUO ABJNI ABXDB ABYKQ ACGFO ACGFS ADBBV ADEZE ADMUD ADQTV AEKER AENEX AEQOU AFTJW AGHFR AGUBO AGYEJ AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW BLXMC CBWCG CS3 EBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU GBLVA HVGLF HZ~ IHE J1W M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES T5K ~02 AAHBH AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AFJKZ APXCP CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c333t-ed5ebb551bc93a301495feab0771c8a5c9407848e00ec7f7e7ccbb9ac40e2cec3 |
IEDL.DBID | .~1 |
ISSN | 1570-6443 |
IngestDate | Fri Jul 11 15:39:11 EDT 2025 Tue Jul 01 01:37:26 EDT 2025 Thu Apr 24 22:52:18 EDT 2025 Fri Feb 23 02:19:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dispersion-relation-preserving Smoothed particle hydrodynamics Upwinding Open channel |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-ed5ebb551bc93a301495feab0771c8a5c9407848e00ec7f7e7ccbb9ac40e2cec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000359938 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2000359938 crossref_citationtrail_10_1016_j_jher_2017_01_001 crossref_primary_10_1016_j_jher_2017_01_001 elsevier_sciencedirect_doi_10_1016_j_jher_2017_01_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2017 2017-06-00 20170601 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
PublicationDecade | 2010 |
PublicationTitle | Journal of hydro-environment research |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Liu (b0120) 2003 Diaz, Ferndndez-Nieto, Ferreiro (b0060) 2008; 37 Sturm (b0175) 2010 Ata, Soulaimani (b0020) 2005; 47 Wang, Shen (b0210) 1999; 125 Alcrudo, Garcia-Navarro, Saviron (b0005) 1992; 14 Chang, Kao, Chang, Hsu (b0040) 2011; 408 Hernquist, Katz (b0080) 1989; 70 Vacondio, Rogers, Stansby (b0195) 2012; 69 De Leffe, Le Touze, Alessandrini (b0055) 2010; 48 Ying, Khan, Wang (b0220) 2004; 130 Gomez-Gesteira, Rogers, Dalrymple, Crespo (b0075) 2010; 48(SI) Anderson, Rutherfurd, Western (b0010) 2006; 21 Jadhav, Buchberger (b0095) 1995; 5 Huang, Sheu (b0090) 2012; 28 Tam, Webb (b0185) 1993; 107 Aristodemo, Marrone, Federico (b0015) 2015; 105 Bonet, Lok (b0025) 1999; 180 Hsu, Fu, Liu (b0085) 2006; 132 Vacondio, Rogers, Stansby (b0190) 2012; 69 Randles, Libersky (b0155) 1996; 139 Lin, Lai, Guo (b0115) 2003; 26 Papanicolaou, Bdour, Wicklein (b0145) 2004; 42 Rodriguez-Paz, Bonet (b0160) 2005; 83 Cheong, Lee (b0050) 2001; 174 Katopodes (b0105) 1984; 110 Ogami (b0140) 1999; 8 Szymkiewicz (b0180) 1991; 122 Li (b0110) 1997; 133 Monaghan (b0135) 2005; 68 MacDonald, I., Baines, M.J., Nichols, N.K., Samuels, P.G., 1995. Comparisons of some steady state Saint-Venant solvers for some test problems with analytic solutions. Numerical analysis reports 2/95. Monaghan (b0130) 1985; 3 Violeau (b0205) 2012 Federico, Marrone, Colagrossi, Aristodemo, Antuono (b0065) 2012; 34 Chang, Chang (b0035) 2013; 139 Vacondio, Rogers, Stansby, Mignosa (b0200) 2013; 71 Shao, Lo (b0165) 2003; 26 Stoker (b0170) 1992 Xia, Liang, Pastor, Zou, Zhuang (b0215) 2013; 59 Brooks, Hughes (b0030) 1982; 32 Chen, Shao, Liu, Zhou (b0045) 2015; 8 Garcia-Navarro, Saviron (b0070) 1992; 30 Kao, Chang (b0100) 2012; 448 Quinlan, Basa, Lastiwka (b0150) 2006; 66 Sturm (10.1016/j.jher.2017.01.001_b0175) 2010 Ata (10.1016/j.jher.2017.01.001_b0020) 2005; 47 10.1016/j.jher.2017.01.001_b0125 Quinlan (10.1016/j.jher.2017.01.001_b0150) 2006; 66 Katopodes (10.1016/j.jher.2017.01.001_b0105) 1984; 110 De Leffe (10.1016/j.jher.2017.01.001_b0055) 2010; 48 Vacondio (10.1016/j.jher.2017.01.001_b0190) 2012; 69 Vacondio (10.1016/j.jher.2017.01.001_b0200) 2013; 71 Garcia-Navarro (10.1016/j.jher.2017.01.001_b0070) 1992; 30 Randles (10.1016/j.jher.2017.01.001_b0155) 1996; 139 Hernquist (10.1016/j.jher.2017.01.001_b0080) 1989; 70 Xia (10.1016/j.jher.2017.01.001_b0215) 2013; 59 Stoker (10.1016/j.jher.2017.01.001_b0170) 1992 Ying (10.1016/j.jher.2017.01.001_b0220) 2004; 130 Rodriguez-Paz (10.1016/j.jher.2017.01.001_b0160) 2005; 83 Wang (10.1016/j.jher.2017.01.001_b0210) 1999; 125 Szymkiewicz (10.1016/j.jher.2017.01.001_b0180) 1991; 122 Tam (10.1016/j.jher.2017.01.001_b0185) 1993; 107 Chang (10.1016/j.jher.2017.01.001_b0035) 2013; 139 Lin (10.1016/j.jher.2017.01.001_b0115) 2003; 26 Ogami (10.1016/j.jher.2017.01.001_b0140) 1999; 8 Kao (10.1016/j.jher.2017.01.001_b0100) 2012; 448 Cheong (10.1016/j.jher.2017.01.001_b0050) 2001; 174 Monaghan (10.1016/j.jher.2017.01.001_b0135) 2005; 68 Chang (10.1016/j.jher.2017.01.001_b0040) 2011; 408 Shao (10.1016/j.jher.2017.01.001_b0165) 2003; 26 Hsu (10.1016/j.jher.2017.01.001_b0085) 2006; 132 Bonet (10.1016/j.jher.2017.01.001_b0025) 1999; 180 Huang (10.1016/j.jher.2017.01.001_b0090) 2012; 28 Liu (10.1016/j.jher.2017.01.001_b0120) 2003 Vacondio (10.1016/j.jher.2017.01.001_b0195) 2012; 69 Monaghan (10.1016/j.jher.2017.01.001_b0130) 1985; 3 Gomez-Gesteira (10.1016/j.jher.2017.01.001_b0075) 2010; 48(SI) Chen (10.1016/j.jher.2017.01.001_b0045) 2015; 8 Federico (10.1016/j.jher.2017.01.001_b0065) 2012; 34 Violeau (10.1016/j.jher.2017.01.001_b0205) 2012 Alcrudo (10.1016/j.jher.2017.01.001_b0005) 1992; 14 Li (10.1016/j.jher.2017.01.001_b0110) 1997; 133 Brooks (10.1016/j.jher.2017.01.001_b0030) 1982; 32 Diaz (10.1016/j.jher.2017.01.001_b0060) 2008; 37 Anderson (10.1016/j.jher.2017.01.001_b0010) 2006; 21 Papanicolaou (10.1016/j.jher.2017.01.001_b0145) 2004; 42 Aristodemo (10.1016/j.jher.2017.01.001_b0015) 2015; 105 Jadhav (10.1016/j.jher.2017.01.001_b0095) 1995; 5 |
References_xml | – volume: 8 start-page: 863 year: 2015 end-page: 870 ident: b0045 article-title: Applications of shallow water SPH model in mountainous rivers publication-title: J. Appl. Fluid Mech. – volume: 28 start-page: 1574 year: 2012 end-page: 1597 ident: b0090 article-title: Development of an upwinding particle interaction kernel for simulating incompressible Navier-Stokes equations publication-title: Numer. Methods Partial Differ. Equ. – volume: 34 start-page: 35 year: 2012 end-page: 46 ident: b0065 article-title: Simulating 2D open-channel flow through an SPH model publication-title: Eur. J. Mech. B Fluid – volume: 139 start-page: 1142 year: 2013 end-page: 1149 ident: b0035 article-title: SPH modeling of one-dimensional nonrectangular and nonprismatic channel flows with open boundaries publication-title: J. Hydraul. Eng. ASCE – volume: 48(SI) start-page: 6 year: 2010 end-page: 27 ident: b0075 article-title: State-of-the-art of classical SPH for free-surface flows publication-title: J. Hydraul. Res – volume: 408 start-page: 78 year: 2011 end-page: 90 ident: b0040 article-title: Numerical simulation of shallow-water dam break flows in open channels using smoothed particle hydrodynamics publication-title: J. Hydrol. – volume: 122 start-page: 275 year: 1991 end-page: 287 ident: b0180 article-title: Finite-element method for the solution of the Saint Venant equations in an open channel network publication-title: J. Hydrol. – volume: 32 start-page: 199 year: 1982 end-page: 259 ident: b0030 article-title: Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations publication-title: Comput. Methods Appl. M – volume: 26 start-page: 861 year: 2003 end-page: 873 ident: b0115 article-title: Finite-volume component-wise TVD schemes for 2D shallow water equations publication-title: Adv. Water. Resour. – volume: 71 start-page: 850 year: 2013 end-page: 872 ident: b0200 article-title: A correction for balancing discontinuous bed slopes in two-dimensional smoothed particle hydrodynamics shallow water modeling publication-title: Int. J. Numer. Methods Fluids – year: 2012 ident: b0205 article-title: Fluid Mechanics and the SPH Method: Theory and Applications – volume: 139 start-page: 375 year: 1996 end-page: 408 ident: b0155 article-title: Smoothed particle hydrodynamics: some recent improvements and applications publication-title: Comput. Method. Appl. Mech. – volume: 68 start-page: 1703 year: 2005 end-page: 1759 ident: b0135 article-title: Smoothed particle hydrodynamics publication-title: Rep. Prog. Phys. – volume: 37 start-page: 299 year: 2008 end-page: 316 ident: b0060 article-title: Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods publication-title: Comput. Fluids – volume: 132 start-page: 605 year: 2006 end-page: 619 ident: b0085 article-title: Dynamic routing model with real-time roughness updating for flood forecasting publication-title: J. Hydraul. Eng. ASCE – volume: 8 start-page: 383 year: 1999 end-page: 392 ident: b0140 article-title: A pure Lagrangian method for unsteady compressible viscous flow publication-title: Comput. Fluid. Dyn. J. – volume: 30 start-page: 95 year: 1992 end-page: 105 ident: b0070 article-title: McCormack method for the numerical-simulation of one-dimensional discontinuous unsteady open channel flow publication-title: J. Hydraul. Res. – year: 2010 ident: b0175 article-title: Open Channel Hydraulics – volume: 59 start-page: 25 year: 2013 end-page: 38 ident: b0215 article-title: Balancing the source terms in a SPH model for solving the shallow water equations publication-title: Adv. Water. Resour. – volume: 21 start-page: 1290 year: 2006 end-page: 1296 ident: b0010 article-title: An analysis of the influence of riparian vegetation on the propagation of flood waves publication-title: Environ. Modell. Softw. – volume: 48 start-page: 118 year: 2010 end-page: 125 ident: b0055 article-title: SPH modeling of shallow-water coastal flows publication-title: J. Hydraul. Res. – volume: 130 start-page: 977 year: 2004 end-page: 987 ident: b0220 article-title: Upwind conservative scheme for the Saint Venant equations publication-title: J. Hydraul. Eng. ASCE – volume: 69 start-page: 226 year: 2012 end-page: 253 ident: b0190 article-title: Smoothed particle hydrodynamics: approximate zero-consistent 2-D boundary conditions and still shallow-water tests publication-title: Int. J. Numer. Methods Fluids – volume: 448 start-page: 232 year: 2012 end-page: 244 ident: b0100 article-title: Numerical modeling of dambreak-induced flood and inundation using smoothed particle hydrodynamics publication-title: J. Hydrol. – volume: 105 start-page: 160 year: 2015 end-page: 175 ident: b0015 article-title: SPH modelling of plane jets into water bodies through an inflow/outflow publication-title: Ocean. Eng. – volume: 5 start-page: 481 year: 1995 end-page: 496 ident: b0095 article-title: Effects of vegetation on flow through free water surface wetlands publication-title: Ecol. Eng. – volume: 14 start-page: 1009 year: 1992 end-page: 1018 ident: b0005 article-title: Flux difference splitting for 1d open channel flow equations publication-title: Int. J. Numer. Methods Fl. – volume: 70 start-page: 419 year: 1989 end-page: 446 ident: b0080 article-title: TREESPH: a unification of sph with the hierarchical tree method publication-title: Astrophys. J. Suppl. Ser. – volume: 107 start-page: 262 year: 1993 end-page: 281 ident: b0185 article-title: Dispersion-relation-preserving finite-difference schemes for computational acoustics publication-title: J. Comput. Phys. – volume: 133 start-page: 235 year: 1997 end-page: 255 ident: b0110 article-title: Wavenumber-extended high-order upwind-biased finite-difference schemes for convective scalar transport publication-title: J. Comput. Phys. – reference: MacDonald, I., Baines, M.J., Nichols, N.K., Samuels, P.G., 1995. Comparisons of some steady state Saint-Venant solvers for some test problems with analytic solutions. Numerical analysis reports 2/95. – volume: 125 start-page: 1217 year: 1999 end-page: 1220 ident: b0210 article-title: Lagrangian simulation of one-dimensional dam-break flow publication-title: J. Hydraul. Eng. ASCE – volume: 83 start-page: 1396 year: 2005 end-page: 1410 ident: b0160 article-title: A corrected smooth particle hydrodynamics formulation of the shallow-water equations publication-title: Comput. Struct. – volume: 69 start-page: 1377 year: 2012 end-page: 1410 ident: b0195 article-title: Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing publication-title: Int. J. Numer. Methods Fluids – volume: 110 start-page: 450 year: 1984 end-page: 466 ident: b0105 article-title: A dissipative Galerkin scheme for open-channel flow publication-title: J. Hydraul. Eng. ASCE – volume: 3 start-page: 71 year: 1985 end-page: 124 ident: b0130 article-title: Particle methods for hydrodynamics publication-title: Comput. Phys. Rep. – volume: 42 start-page: 357 year: 2004 end-page: 375 ident: b0145 article-title: One-dimensional hydrodynamic/sediment transport model applicable to steep mountain streams publication-title: J. Hydraul. Res. – year: 2003 ident: b0120 article-title: Smoothed Particle Hydrodynamics: A Meshfree Particle Method – volume: 180 start-page: 97 year: 1999 end-page: 115 ident: b0025 article-title: Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations publication-title: Comput. Methods Appl. M – volume: 26 start-page: 787 year: 2003 end-page: 800 ident: b0165 article-title: Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface publication-title: Adv. Water. Resour. – volume: 47 start-page: 139 year: 2005 end-page: 159 ident: b0020 article-title: A stabilized SPH method for inviscid shallow water flows publication-title: Int. J. Numer. Methods Fl. – year: 1992 ident: b0170 article-title: Water Waves: The Mathematical Theory With Applications – volume: 66 start-page: 2064 year: 2006 end-page: 2085 ident: b0150 article-title: Truncation error in mesh-free particle methods publication-title: Int. J. Numer. Methods Eng. – volume: 174 start-page: 248 year: 2001 end-page: 276 ident: b0050 article-title: Grid-optimized dispersion-relation-preserving schemes on general geometries for computational aeroacoustics publication-title: J. Comput. Phys. – volume: 70 start-page: 419 issue: 2 year: 1989 ident: 10.1016/j.jher.2017.01.001_b0080 article-title: TREESPH: a unification of sph with the hierarchical tree method publication-title: Astrophys. J. Suppl. Ser. doi: 10.1086/191344 – volume: 26 start-page: 787 issue: 7 year: 2003 ident: 10.1016/j.jher.2017.01.001_b0165 article-title: Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface publication-title: Adv. Water. Resour. doi: 10.1016/S0309-1708(03)00030-7 – volume: 69 start-page: 1377 issue: 8 year: 2012 ident: 10.1016/j.jher.2017.01.001_b0195 article-title: Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.2646 – volume: 14 start-page: 1009 issue: 9 year: 1992 ident: 10.1016/j.jher.2017.01.001_b0005 article-title: Flux difference splitting for 1d open channel flow equations publication-title: Int. J. Numer. Methods Fl. doi: 10.1002/fld.1650140902 – volume: 132 start-page: 605 issue: 6 year: 2006 ident: 10.1016/j.jher.2017.01.001_b0085 article-title: Dynamic routing model with real-time roughness updating for flood forecasting publication-title: J. Hydraul. Eng. ASCE doi: 10.1061/(ASCE)0733-9429(2006)132:6(605) – volume: 408 start-page: 78 issue: 1–2 year: 2011 ident: 10.1016/j.jher.2017.01.001_b0040 article-title: Numerical simulation of shallow-water dam break flows in open channels using smoothed particle hydrodynamics publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.07.023 – volume: 21 start-page: 1290 issue: 9 year: 2006 ident: 10.1016/j.jher.2017.01.001_b0010 article-title: An analysis of the influence of riparian vegetation on the propagation of flood waves publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2005.04.027 – volume: 8 start-page: 863 issue: 4 year: 2015 ident: 10.1016/j.jher.2017.01.001_b0045 article-title: Applications of shallow water SPH model in mountainous rivers publication-title: J. Appl. Fluid Mech. doi: 10.18869/acadpub.jafm.67.223.23311 – volume: 5 start-page: 481 issue: 4 year: 1995 ident: 10.1016/j.jher.2017.01.001_b0095 article-title: Effects of vegetation on flow through free water surface wetlands publication-title: Ecol. Eng. doi: 10.1016/0925-8574(95)00039-9 – volume: 139 start-page: 375 issue: 1–4 year: 1996 ident: 10.1016/j.jher.2017.01.001_b0155 article-title: Smoothed particle hydrodynamics: some recent improvements and applications publication-title: Comput. Method. Appl. Mech. doi: 10.1016/S0045-7825(96)01090-0 – volume: 180 start-page: 97 issue: 1–2 year: 1999 ident: 10.1016/j.jher.2017.01.001_b0025 article-title: Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations publication-title: Comput. Methods Appl. M doi: 10.1016/S0045-7825(99)00051-1 – volume: 68 start-page: 1703 issue: 8 year: 2005 ident: 10.1016/j.jher.2017.01.001_b0135 article-title: Smoothed particle hydrodynamics publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/68/8/R01 – year: 1992 ident: 10.1016/j.jher.2017.01.001_b0170 – volume: 26 start-page: 861 issue: 8 year: 2003 ident: 10.1016/j.jher.2017.01.001_b0115 article-title: Finite-volume component-wise TVD schemes for 2D shallow water equations publication-title: Adv. Water. Resour. doi: 10.1016/S0309-1708(03)00075-7 – ident: 10.1016/j.jher.2017.01.001_b0125 – volume: 125 start-page: 1217 issue: 11 year: 1999 ident: 10.1016/j.jher.2017.01.001_b0210 article-title: Lagrangian simulation of one-dimensional dam-break flow publication-title: J. Hydraul. Eng. ASCE doi: 10.1061/(ASCE)0733-9429(1999)125:11(1217) – volume: 110 start-page: 450 issue: 4 year: 1984 ident: 10.1016/j.jher.2017.01.001_b0105 article-title: A dissipative Galerkin scheme for open-channel flow publication-title: J. Hydraul. Eng. ASCE doi: 10.1061/(ASCE)0733-9429(1984)110:4(450) – volume: 66 start-page: 2064 issue: 13 year: 2006 ident: 10.1016/j.jher.2017.01.001_b0150 article-title: Truncation error in mesh-free particle methods publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1617 – year: 2012 ident: 10.1016/j.jher.2017.01.001_b0205 – volume: 71 start-page: 850 year: 2013 ident: 10.1016/j.jher.2017.01.001_b0200 article-title: A correction for balancing discontinuous bed slopes in two-dimensional smoothed particle hydrodynamics shallow water modeling publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.3687 – volume: 122 start-page: 275 issue: 1–4 year: 1991 ident: 10.1016/j.jher.2017.01.001_b0180 article-title: Finite-element method for the solution of the Saint Venant equations in an open channel network publication-title: J. Hydrol. doi: 10.1016/0022-1694(91)90182-H – volume: 34 start-page: 35 year: 2012 ident: 10.1016/j.jher.2017.01.001_b0065 article-title: Simulating 2D open-channel flow through an SPH model publication-title: Eur. J. Mech. B Fluid doi: 10.1016/j.euromechflu.2012.02.002 – volume: 59 start-page: 25 year: 2013 ident: 10.1016/j.jher.2017.01.001_b0215 article-title: Balancing the source terms in a SPH model for solving the shallow water equations publication-title: Adv. Water. Resour. doi: 10.1016/j.advwatres.2013.05.004 – volume: 48 start-page: 118 year: 2010 ident: 10.1016/j.jher.2017.01.001_b0055 article-title: SPH modeling of shallow-water coastal flows publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2010.9641252 – volume: 48(SI) start-page: 6 year: 2010 ident: 10.1016/j.jher.2017.01.001_b0075 article-title: State-of-the-art of classical SPH for free-surface flows publication-title: J. Hydraul. Res doi: 10.1080/00221686.2010.9641242 – volume: 133 start-page: 235 issue: 2 year: 1997 ident: 10.1016/j.jher.2017.01.001_b0110 article-title: Wavenumber-extended high-order upwind-biased finite-difference schemes for convective scalar transport publication-title: J. Comput. Phys. doi: 10.1006/jcph.1997.5649 – volume: 174 start-page: 248 issue: 1 year: 2001 ident: 10.1016/j.jher.2017.01.001_b0050 article-title: Grid-optimized dispersion-relation-preserving schemes on general geometries for computational aeroacoustics publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6904 – volume: 139 start-page: 1142 issue: 11 year: 2013 ident: 10.1016/j.jher.2017.01.001_b0035 article-title: SPH modeling of one-dimensional nonrectangular and nonprismatic channel flows with open boundaries publication-title: J. Hydraul. Eng. ASCE doi: 10.1061/(ASCE)HY.1943-7900.0000782 – volume: 28 start-page: 1574 issue: 5 year: 2012 ident: 10.1016/j.jher.2017.01.001_b0090 article-title: Development of an upwinding particle interaction kernel for simulating incompressible Navier-Stokes equations publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.20692 – volume: 32 start-page: 199 issue: 1–3 year: 1982 ident: 10.1016/j.jher.2017.01.001_b0030 article-title: Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations publication-title: Comput. Methods Appl. M doi: 10.1016/0045-7825(82)90071-8 – volume: 42 start-page: 357 issue: 4 year: 2004 ident: 10.1016/j.jher.2017.01.001_b0145 article-title: One-dimensional hydrodynamic/sediment transport model applicable to steep mountain streams publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2004.9728402 – volume: 83 start-page: 1396 issue: 17–18 year: 2005 ident: 10.1016/j.jher.2017.01.001_b0160 article-title: A corrected smooth particle hydrodynamics formulation of the shallow-water equations publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2004.11.025 – volume: 69 start-page: 226 issue: 1 year: 2012 ident: 10.1016/j.jher.2017.01.001_b0190 article-title: Smoothed particle hydrodynamics: approximate zero-consistent 2-D boundary conditions and still shallow-water tests publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.2559 – volume: 130 start-page: 977 issue: 10 year: 2004 ident: 10.1016/j.jher.2017.01.001_b0220 article-title: Upwind conservative scheme for the Saint Venant equations publication-title: J. Hydraul. Eng. ASCE doi: 10.1061/(ASCE)0733-9429(2004)130:10(977) – volume: 37 start-page: 299 issue: 3 year: 2008 ident: 10.1016/j.jher.2017.01.001_b0060 article-title: Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2007.07.017 – volume: 3 start-page: 71 year: 1985 ident: 10.1016/j.jher.2017.01.001_b0130 article-title: Particle methods for hydrodynamics publication-title: Comput. Phys. Rep. doi: 10.1016/0167-7977(85)90010-3 – volume: 107 start-page: 262 issue: 2 year: 1993 ident: 10.1016/j.jher.2017.01.001_b0185 article-title: Dispersion-relation-preserving finite-difference schemes for computational acoustics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1993.1142 – volume: 47 start-page: 139 issue: 2 year: 2005 ident: 10.1016/j.jher.2017.01.001_b0020 article-title: A stabilized SPH method for inviscid shallow water flows publication-title: Int. J. Numer. Methods Fl. doi: 10.1002/fld.801 – year: 2010 ident: 10.1016/j.jher.2017.01.001_b0175 – year: 2003 ident: 10.1016/j.jher.2017.01.001_b0120 – volume: 8 start-page: 383 issue: 3 year: 1999 ident: 10.1016/j.jher.2017.01.001_b0140 article-title: A pure Lagrangian method for unsteady compressible viscous flow publication-title: Comput. Fluid. Dyn. J. – volume: 105 start-page: 160 year: 2015 ident: 10.1016/j.jher.2017.01.001_b0015 article-title: SPH modelling of plane jets into water bodies through an inflow/outflow publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2015.06.018 – volume: 30 start-page: 95 issue: 1 year: 1992 ident: 10.1016/j.jher.2017.01.001_b0070 article-title: McCormack method for the numerical-simulation of one-dimensional discontinuous unsteady open channel flow publication-title: J. Hydraul. Res. doi: 10.1080/00221689209498949 – volume: 448 start-page: 232 year: 2012 ident: 10.1016/j.jher.2017.01.001_b0100 article-title: Numerical modeling of dambreak-induced flood and inundation using smoothed particle hydrodynamics publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.05.004 |
SSID | ssj0000070206 |
Score | 2.129179 |
Snippet | •An upwinding kernel function is developed in SPH-SWEs model to predict 1D open channel flows.•The degree of upwinding is subject to the satisfaction of the... In this study, an upwinding SPH model with a non-symmetric kernel function is proposed to predict one-dimensional open channel flows. Due to the application of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13 |
SubjectTerms | Dispersion-relation-preserving equations momentum Open channel prediction seeds Smoothed particle hydrodynamics Upwinding viscosity |
Title | Development of an upwinding kernel in SPH-SWEs model for 1D trans-critical open channel flows |
URI | https://dx.doi.org/10.1016/j.jher.2017.01.001 https://www.proquest.com/docview/2000359938 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA_DJ30QP3F-EcE3iWubZm0fZW4MQRHmcC9SkjSBzdGOrWNv_u3m0nRMkT342JIL5XK5uzR3vx9CtyyRzNMZI1nb58REKEm4F2hibEW1mTYxikNz8vNLuz8Mn0Zs1ECduhcGyiqd7698uvXW7k3LabM1G49bA59FJp6a6Rm1KCPQwR5GYOX3X_76Pwvg2QSWYhPGExBwvTNVmdfEqAYqvCKL3um4Yf6IT788tQ0_vQO07_JG_FB92iFqqPwI7W2gCR6jj40CIFxozHO8nK3Gtm0Ff6p5rqZ4nOPBa58M3rsLbElwsElasf-IS4hZRDriAwykWhiagkFIT4vV4gQNe923Tp849gQiKaUlURlTQpiESMiEcmqPQlpx4UWRL2POZAJXeGGsPE_JSEcqklKIhMvQU4FUkp6inbzI1RnCMk5EyBJNIRuAAxuPNdNB5nuZ8Y5KN5Ff6yyVDlocGC6maV1DNklBzynoOfV8KKRroru1zKwC1tg6mtVLkf4wj9R4_q1yN_W6pWbfwGUIz1WxXAD9JqAXJjQ-_-fcF2gXnqq6sUu0U86X6spkKKW4tib4DdQN46Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5eHtQH8Yp3I_gmcW3TrO2j6GTqNoRt6IuENE1gOrqxC3vzt5uTpjJF9uBr2xPKSXLOafOd70PokiWSeTpjJKv6gpgMJYnwAk3MWlFVpk2OEtCc3GxV693w8ZW9LqHbshcGYJUu9hcx3UZrd6XivFkZ9nqVts8ik0_N8IxalpFltBqa7Qu78_rT__7RAoQ2gdXYBAMCFq55psB5vRvfAMQrsvSdThzmjwT1K1Tb_HO_hTZd4YhvinfbRksq30Ebc3SCu-htDgGEBxqLHE-Hs57tW8EfapSrPu7luP1cJ-2X2hhbFRxsqlbs3-EJJC0infIBBlUtDF3BYKT7g9l4D3Xva53bOnHyCURSSidEZUylqamIUplQQe23kFYi9aLIl7FgMoEzvDBWnqdkpCMVSZmmiZChpwKpJN1HK_kgVwcIyzhJQ5ZoCuUAfLGJWDMdZL6XmfCo9CHyS59x6bjFQeKiz0sQ2TsHP3PwM_d8QNIdoqtvm2HBrLHwaVZOBf-xPrgJ_QvtLsp542bjwGmIyNVgOgb9TaAvTGh89M-xz9FavdNs8MZD6-kYrcOdAkR2glYmo6k6NeXKJD2zy_ELQ-Xmvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+an+upwinding+kernel+in+SPH-SWEs+model+for+1D+trans-critical+open+channel+flows&rft.jtitle=Journal+of+hydro-environment+research&rft.au=Chang%2C+Kao-Hua&rft.au=Chang%2C+Tsang-Jung&rft.au=Wen-Hann+Sheu%2C+Tony&rft.date=2017-06-01&rft.pub=Elsevier+B.V&rft.issn=1570-6443&rft.eissn=1876-4444&rft.volume=15&rft.spage=13&rft.epage=26&rft_id=info:doi/10.1016%2Fj.jher.2017.01.001&rft.externalDocID=S1570644315300599 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-6443&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-6443&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-6443&client=summon |