A review on CFD simulation of biomass pyrolysis in fluidized bed reactors with emphasis on particle-scale models
This paper reviews the recent advances in multi-scale computational fluid dynamics (CFD) simulations of biomass pyrolysis in fluidized bed reactors. The interconnection among molecular-scale, particle-scale, CFD cell-scale, and reactor-scale are first introduced, together with the Eulerian-Lagrangia...
Saved in:
Published in | Journal of analytical and applied pyrolysis Vol. 162; p. 105433 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-2370 1873-250X |
DOI | 10.1016/j.jaap.2022.105433 |
Cover
Loading…
Abstract | This paper reviews the recent advances in multi-scale computational fluid dynamics (CFD) simulations of biomass pyrolysis in fluidized bed reactors. The interconnection among molecular-scale, particle-scale, CFD cell-scale, and reactor-scale are first introduced, together with the Eulerian-Lagrangian (E-L) and Eulerian multi-fluid model (MFM) frameworks. Then an overview of the theoretical basis and practical applications of four main particle-scale models, i.e, uniform conversion model, progressive conversion model, interface-based model, and corrected uniform conversion model, are highlighted. The coupling of particle-scale models with CFD cell-scale models is discussed, as well as with molecular-scale models. Finally, the perspective of future work to develop reliable and efficient CFD models for simulating biomass pyrolysis in fluidized bed reactors is outlined.
•Multi-scale CFD simulation of biomass pyrolysis in fluidized beds is reviewed.•Particle-scale models plays an important role in multi-scale CFD simulation.•Comprehensive efforts on developing accurate particle-scale models are discussed.•Interconnection between particle-scale models with adjacent scale models is shown.•Perspective on developing reliable and efficient particle-scale models is outlined. |
---|---|
AbstractList | This paper reviews the recent advances in multi-scale computational fluid dynamics (CFD) simulations of biomass pyrolysis in fluidized bed reactors. The interconnection among molecular-scale, particle-scale, CFD cell-scale, and reactor-scale are first introduced, together with the Eulerian-Lagrangian (E-L) and Eulerian multi-fluid model (MFM) frameworks. Then an overview of the theoretical basis and practical applications of four main particle-scale models, i.e, uniform conversion model, progressive conversion model, interface-based model, and corrected uniform conversion model, are highlighted. The coupling of particle-scale models with CFD cell-scale models is discussed, as well as with molecular-scale models. Finally, the perspective of future work to develop reliable and efficient CFD models for simulating biomass pyrolysis in fluidized bed reactors is outlined. This paper reviews the recent advances in multi-scale computational fluid dynamics (CFD) simulations of biomass pyrolysis in fluidized bed reactors. The interconnection among molecular-scale, particle-scale, CFD cell-scale, and reactor-scale are first introduced, together with the Eulerian-Lagrangian (E-L) and Eulerian multi-fluid model (MFM) frameworks. Then an overview of the theoretical basis and practical applications of four main particle-scale models, i.e, uniform conversion model, progressive conversion model, interface-based model, and corrected uniform conversion model, are highlighted. The coupling of particle-scale models with CFD cell-scale models is discussed, as well as with molecular-scale models. Finally, the perspective of future work to develop reliable and efficient CFD models for simulating biomass pyrolysis in fluidized bed reactors is outlined. •Multi-scale CFD simulation of biomass pyrolysis in fluidized beds is reviewed.•Particle-scale models plays an important role in multi-scale CFD simulation.•Comprehensive efforts on developing accurate particle-scale models are discussed.•Interconnection between particle-scale models with adjacent scale models is shown.•Perspective on developing reliable and efficient particle-scale models is outlined. |
ArticleNumber | 105433 |
Author | Xiong, Qingang Liu, Xinyan Shi, Xiaogang Wu, Xiaoqin Luo, Hao Wang, Xiaobao |
Author_xml | – sequence: 1 givenname: Hao surname: Luo fullname: Luo, Hao organization: School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China – sequence: 2 givenname: Xiaobao surname: Wang fullname: Wang, Xiaobao organization: School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China – sequence: 3 givenname: Xinyan surname: Liu fullname: Liu, Xinyan email: liuxinyan@wust.edu.cn organization: School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China – sequence: 4 givenname: Xiaoqin surname: Wu fullname: Wu, Xiaoqin organization: School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China – sequence: 5 givenname: Xiaogang surname: Shi fullname: Shi, Xiaogang organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China – sequence: 6 givenname: Qingang surname: Xiong fullname: Xiong, Qingang email: qingangxiong@scut.edu.cn organization: State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China |
BookMark | eNp9kLFO5DAQhi0E0i0cL3CVS5rsOfbGTqRr0HIcSEg0FNdZjjMWs3LinO0F7T09DktFQTEazcz_TfGdk9MpTEDIj5qta1bLn7v1zph5zRnnZdFshDghq7pVouIN-3tKViXUVFwo9o2cp7RjjElZtysyX9MILwivNEx0e3tDE457bzKWMTjaYxhNSnQ-xOAPCRPFiTq_xwH_w0D7UhGMzSEm-or5mcI4P5slV_jZxIzWQ5Ws8UDHMIBP38mZMz7B5Ue_IE-3v5-2d9XD45_77fVDZYUQuYIaVC8duM621pVBDD2obuhYa1inutbxToJqlJMbB5z1tunMRkG5NtI4cUGujm_nGP7tIWU9YrLgvZkg7JPmUki16YTiJdoeozaGlCI4bTG_G8jRoNc104tjvdOLY7041kfHBeWf0DniaOLha-jXESo2FvVRJ4swWRgwgs16CPgV_gY655mP |
CitedBy_id | crossref_primary_10_1016_j_biteb_2022_101221 crossref_primary_10_1016_j_ecoenv_2023_115066 crossref_primary_10_3390_app13074190 crossref_primary_10_1016_j_psep_2022_04_024 crossref_primary_10_1039_D4RE00086B crossref_primary_10_3390_en16237839 crossref_primary_10_1016_j_ces_2024_120211 crossref_primary_10_1016_j_renene_2024_121054 crossref_primary_10_1016_j_ces_2023_119060 crossref_primary_10_3390_su16219506 crossref_primary_10_1016_j_fuel_2022_127104 crossref_primary_10_1016_j_cej_2024_153611 crossref_primary_10_1039_D3RE00152K crossref_primary_10_1016_j_joei_2023_101199 crossref_primary_10_1016_j_ces_2022_117922 crossref_primary_10_1016_j_jaap_2022_105569 crossref_primary_10_1016_j_jaap_2022_105661 crossref_primary_10_1002_aic_18393 crossref_primary_10_1016_j_cscee_2023_100439 crossref_primary_10_1063_5_0243244 crossref_primary_10_1016_j_jaap_2024_106477 crossref_primary_10_1016_j_joei_2025_101997 crossref_primary_10_1016_j_partic_2022_12_009 crossref_primary_10_1016_j_biombioe_2022_106619 crossref_primary_10_1016_j_cej_2023_141813 crossref_primary_10_1016_j_jaap_2023_106093 crossref_primary_10_1016_j_apcata_2022_118769 crossref_primary_10_1016_j_heliyon_2023_e21255 crossref_primary_10_3390_su162210119 crossref_primary_10_1016_j_energy_2024_133913 crossref_primary_10_1021_acs_iecr_3c00706 crossref_primary_10_1016_j_enconman_2023_117070 crossref_primary_10_1016_j_ecmx_2023_100424 crossref_primary_10_1016_j_biteb_2023_101641 crossref_primary_10_1021_acs_energyfuels_3c01269 crossref_primary_10_1007_s10494_023_00436_z crossref_primary_10_1016_j_jaap_2024_106687 crossref_primary_10_1021_acs_energyfuels_2c03675 crossref_primary_10_1016_j_cej_2023_141368 crossref_primary_10_1016_j_jaap_2023_106163 crossref_primary_10_1016_j_energy_2022_124863 crossref_primary_10_1016_j_icheatmasstransfer_2023_107132 crossref_primary_10_1016_j_csite_2025_105989 crossref_primary_10_1016_j_fuproc_2024_108158 crossref_primary_10_3390_fluids9120301 crossref_primary_10_1016_j_jaap_2024_106835 crossref_primary_10_3390_agronomy14081861 crossref_primary_10_1021_acs_iecr_3c01454 crossref_primary_10_1080_00102202_2023_2260553 crossref_primary_10_1016_j_wasman_2023_03_008 crossref_primary_10_3390_polym17050628 crossref_primary_10_1016_j_applthermaleng_2024_123514 crossref_primary_10_1016_j_energy_2022_126458 crossref_primary_10_1007_s13399_022_03206_5 crossref_primary_10_1016_j_fuel_2023_127635 crossref_primary_10_1016_j_jaap_2022_105633 |
Cites_doi | 10.1016/j.powtec.2014.04.062 10.1016/j.jaap.2015.11.015 10.1016/j.compchemeng.2011.07.005 10.1016/j.energy.2015.11.025 10.1016/j.fuel.2015.11.062 10.1016/j.ces.2014.07.011 10.1016/j.ces.2016.01.010 10.1021/acs.energyfuels.0c03107 10.1016/S0010-2180(01)00371-6 10.1016/j.ces.2016.07.003 10.1021/acs.energyfuels.0c01155 10.1016/j.pecs.2006.12.001 10.1016/j.fuel.2013.09.009 10.1016/j.powtec.2018.04.027 10.1016/j.cej.2009.01.036 10.1016/j.ces.2011.06.026 10.1088/1757-899X/508/1/012067 10.1016/j.biortech.2010.08.010 10.1016/j.fuproc.2021.106799 10.1016/j.energy.2018.03.090 10.1016/j.energy.2018.08.146 10.1016/j.applthermaleng.2017.10.122 10.1016/j.partic.2017.04.009 10.1016/j.fuproc.2021.106919 10.1016/j.biortech.2009.01.007 10.1021/ie404239u 10.1016/j.fuproc.2015.01.002 10.1021/acssuschemeng.6b02634 10.1016/j.cej.2020.127789 10.1016/j.fuel.2010.03.034 10.1016/j.cej.2021.129564 10.1016/j.biombioe.2016.02.020 10.1016/j.pecs.2018.10.006 10.1016/j.ces.2011.03.010 10.1021/ef501134e 10.1016/j.ces.2013.05.050 10.1016/j.ces.2009.04.024 10.1016/j.applthermaleng.2011.09.034 10.1016/j.ijhydene.2015.05.111 10.1016/j.fuproc.2016.09.015 10.1016/S0009-2509(03)00238-0 10.1016/j.biortech.2018.08.099 10.1016/j.biortech.2016.02.042 10.1016/j.cej.2014.11.058 10.1021/acs.iecr.8b05279 10.1016/j.ijhydene.2016.04.205 10.1016/j.ces.2020.115550 10.1016/j.fuproc.2011.11.021 10.1016/j.cej.2003.08.006 10.1021/ef0340357 10.1016/j.enconman.2017.05.080 10.1016/j.pecs.2017.07.004 10.1016/S1540-7489(02)80054-2 10.3390/en13205358 10.1515/ijcre-2014-0185 10.1021/ie2007278 10.1021/ef3008745 10.1002/cjce.23180 10.1016/j.ijhydene.2019.01.146 10.1016/0016-2361(85)90364-3 10.1016/j.fuel.2019.116755 10.1016/j.combustflame.2012.10.005 10.1016/j.applthermaleng.2013.04.054 10.1002/ep.11922 10.1080/00102202.2014.883255 10.1002/aic.14130 10.1016/S0032-5910(00)00302-8 10.1063/1.5003889 10.1016/j.ces.2008.05.045 10.1016/j.cpc.2014.02.012 10.1016/j.apenergy.2015.09.065 10.1016/0017-9310(78)90080-7 10.1016/j.ces.2013.06.017 10.1016/j.cej.2019.123964 10.1016/j.applthermaleng.2015.10.033 10.1021/ie303467k 10.1016/j.pecs.2015.10.002 10.1016/j.cej.2011.01.041 10.1016/j.powtec.2014.04.008 10.1016/j.ces.2016.01.017 10.1002/aic.11481 10.1021/acs.iecr.8b04778 10.1016/j.egypro.2015.02.057 10.1017/S0022112001005663 10.1021/acs.energyfuels.5b01753 10.1016/j.pecs.2009.12.002 10.1021/ie049773c 10.1016/j.ces.2016.01.006 10.1016/j.ces.2019.115428 10.1021/ie400420p 10.1016/j.ces.2006.08.017 10.1016/j.fuel.2006.07.012 10.1016/j.cej.2021.131847 10.1016/j.fuproc.2017.04.012 10.1016/j.apenergy.2015.05.109 10.1016/j.renene.2020.06.001 10.1016/j.cej.2011.02.073 10.1016/j.powtec.2019.05.011 10.1016/j.powtec.2015.01.019 10.1063/1.4967717 10.1021/acssuschemeng.6b01020 10.1016/j.partic.2009.04.004 10.1007/s13399-021-01384-2 10.1016/j.compchemeng.2013.11.016 10.3390/en14041018 10.1016/j.rser.2011.02.015 10.1016/j.fuel.2020.118397 10.1016/S0196-8904(02)00252-2 10.1016/j.applthermaleng.2014.10.086 10.1016/j.powtec.2014.01.087 10.1016/j.ces.2006.08.054 10.1002/aic.17211 10.1016/j.fuel.2013.06.049 10.1016/j.applthermaleng.2019.113767 10.1016/j.powtec.2015.06.028 10.1016/j.ijmultiphaseflow.2009.01.008 10.1016/j.cej.2017.04.145 10.1016/j.ces.2014.01.017 10.1016/j.energy.2019.116414 10.1016/j.rser.2018.09.010 10.1016/j.biortech.2016.09.089 10.1016/j.ces.2021.117003 10.1021/ef800006z 10.1016/j.renene.2018.11.097 10.1016/j.powtec.2016.05.024 10.1016/j.fuproc.2019.106146 10.1021/acs.energyfuels.1c01107 10.1016/j.renene.2020.03.134 10.1016/j.supflu.2017.07.022 10.1016/j.cej.2011.01.076 10.1016/j.ces.2011.07.020 10.1016/j.jaap.2020.105011 10.1016/j.powtec.2015.09.005 10.1002/aic.16755 10.1080/00102209708935670 10.1016/j.energy.2020.119533 10.1016/j.powtec.2014.04.006 10.1021/ie501996v 10.1016/j.biortech.2012.06.080 10.1016/j.fuel.2011.09.054 10.1021/ef800551t 10.1016/B978-0-444-59520-1.50082-8 10.1016/j.ces.2008.11.007 10.1021/ef501504k 10.1016/j.apenergy.2012.12.057 10.1016/j.applthermaleng.2016.06.102 10.1016/0009-2509(89)85096-1 10.1016/j.fuel.2015.09.074 10.1016/j.fuel.2018.07.070 10.1016/j.fuel.2019.05.172 10.1016/j.cep.2018.06.018 10.1021/ef060042u 10.1016/j.fuel.2012.02.065 10.1021/ef501095r 10.1016/0360-1285(93)90022-7 10.1016/j.ces.2021.117131 10.1016/j.fuel.2018.07.017 10.1016/j.ces.2017.05.007 10.1016/j.fuel.2019.115790 10.1016/j.enconman.2015.07.059 10.1016/j.biortech.2011.07.075 10.1021/ie503806p 10.1016/j.renene.2019.07.001 10.1016/j.fuel.2019.116410 10.1021/acssuschemeng.6b02360 10.1016/j.apenergy.2016.12.113 10.1021/ef4012966 10.1021/acs.iecr.5b02164 10.1002/aic.13917 10.1016/0301-9322(88)90023-7 10.1016/j.cej.2021.129347 10.1002/aic.17121 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jaap.2022.105433 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-250X |
ExternalDocumentID | 10_1016_j_jaap_2022_105433 S0165237022000031 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCH SDF SDG SES SEW SPC SPCBC SSK SSZ T5K TN5 WUQ YK3 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c333t-e1e7b6fef9c8cf1e73dbe79d908a09798f296e757f64fe20bc59a47e8a056af3 |
IEDL.DBID | AIKHN |
ISSN | 0165-2370 |
IngestDate | Fri Sep 05 03:06:44 EDT 2025 Thu Apr 24 23:10:03 EDT 2025 Tue Jul 01 01:23:52 EDT 2025 Fri Feb 23 02:41:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-scale modelling Intra-particle heat transfer Computational fluid dynamics Particle-scale model Biomass pyrolysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-e1e7b6fef9c8cf1e73dbe79d908a09798f296e757f64fe20bc59a47e8a056af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2636749372 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636749372 crossref_citationtrail_10_1016_j_jaap_2022_105433 crossref_primary_10_1016_j_jaap_2022_105433 elsevier_sciencedirect_doi_10_1016_j_jaap_2022_105433 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of analytical and applied pyrolysis |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Figueroa, Ardila, Lunelli, Filho, Maciel (bib33) 2012; 30 Xiong, Zhang, Xu, Wiggins, Stuart Daw (bib48) 2016; 117 Wang, Ku, Lin, Yang (bib87) 2021; 35 Ranz, Marshall (bib154) 1952; 48 Wang, Lu, Xu, Wu, Zhang, Duan (bib60) 2021; 216 Espekvist, Li, Glarborg, Løvås, Jensen (bib182) 2021; 14 Huang, Wang, Li, Tang, Chi, Yan (bib167) 2014; 28 Agrawal, Loezos, Syamlal, Sundaresan (bib140) 2001; 445 Gómez, Porteiro, Patiño, Míguez (bib181) 2015; 105 Xie, Zhong, Jin, Shao, Liu (bib92) 2014; 28 Sia, Wang (bib124) 2020; 155 Yu, Hassan, Ocone, Makkawi (bib156) 2015; 133 Bharadwaj, Baxter, Robinson (bib161) 2004; 18 Hu, Luo, Wang, Sun, Fan (bib77) 2019; 58 Xue, Fox (bib137) 2015; 54 Dong, Luo, Wang (bib61) 2017; 161 Papadikis, Gu, Bridgwater (bib29) 2009; 149 Lee, Park, Choi (bib113) 2017; 5 Liu, Papadikis, Gu, Fidalgo, Longhurst, Li, Kolios (bib106) 2017; 164 Q. Eri, B. Wang, J. Peng, X. Zhao, T. Li, Detailed CFD Modelling of Fast Pyrolysis of Different Biomass Types in Fluidized Bed Reactors, (2018). Lu, Gao, Dietiker, Shahnam, Rogers (bib22) 2022; 248 Ku, Shen, Jin, Lin, Li (bib59) 2019; 58 Anca-Couce (bib14) 2016; 53 Haseli, van Oijen, de Goey (bib165) 2011; 102 Leth-Espensen, Li, Glarborg, Løvås, Jensen (bib180) 2020; 264 Blasi (bib45) 2008; 34 Debiagi, Pecchi, Gentile, Frassoldati, Cuoci, Faravelli, Ranzi (bib131) 2015 Thunman, Leckner, Niklasson, Johnsson (bib172) 2002; 129 Gerber, Oevermann (bib68) 2014; 115 Li, Eri (bib85) 2021 Karl, Pröll (bib5) 2018; 98 Zhong, Xie, Shao, Liu, Jin (bib67) 2015; 88 Jalalifar, Masoudi, Abbassi, Garaniya, Ghiji, Salehi (bib112) 2020; 191 Shi, Wang, Li (bib153) 2011; 66 Lu, Zhang, Wang, Li, Chiu, Kang (bib186) 2013; 59 Couto, Silva, Monteiro, Rouboa, Brito (bib120) 2017; 109 Hooshdaran, Haghshenasfard, Hosseini, Esfahany, Lopez, Olazar (bib125) 2021; 154 Mehrabian, Zahirovic, Scharler, Obernberger, Kleditzsch, Wirtz, Scherer, Lu, Baxter (bib175) 2012; 95 . L. Zhu, L. Xie, J. Xiao, Z. Luo, Filtered model for the cold-model gas – solid fl ow in a large-scale MTO fl uidized bed reactor, 143 (2016) 369–383. Eri, Peng, Zhao (bib107) 2018; 129 Zhong, Xu, Zhang, Zhu, Liang, Niu, Zhang (bib123) 2019; 135 Wang, Shen (bib83) 2020; 159 Gerber, Behrendt, Oevermann (bib90) 2010; 89 J. Chen, G. Yu, B. Dai, D. Liu, L. Zhao, CFD Simulation of a Bubbling Fluidized Bed Gasifier Using a Bubble-Based Drag Model, (2014). Chan, Kelbon, Krieger (bib129) 1985; 64 Yu, Blanco, Makkawi, Bridgwater (bib110) 2018; 130 Ismail, Abd El-Salam, Monteiro, Rouboa (bib114) 2016; 106 Huilin, Gidaspow (bib152) 2003; 58 Lu, Gao, Gel, Wiggins, Crowley, Pecha, Shahnam, Rogers, Parks, Ciesielski (bib41) 2021; 421 Milioli, Milioli, Holloway, Agrawal, Sundaresan (bib143) 2013; 59 Zhao, Lu (bib80) 2018; 131 Luo, Lin, Song, Li, Dam-Johansen, Wu (bib15) 2019; 195 Radl, Sundaresan (bib135) 2014; 117 Wang, Li (bib35) 2007; 62 Lu, Wang, Li (bib36) 2011; 66 Anca-Couce, Obernberger (bib51) 2016; 167 Daizo, Levenspiel (bib95) 1991 Gómez-Barea, Leckner (bib8) 2010; 36 Xiong, Kong, Passalacqua (bib97) 2013; 99 Babu, Chaurasia (bib163) 2003; 44 Galgano, Di Blasi, Horvat, Sinai (bib174) 2006; 20 Mehrabian, Scharler, Obernberger (bib178) 2012; 93 Lu, Zhang, Luo, Wang, Li, Ye, Liu, Li (bib43) 2017; 171 Wang, Luo, Fan (bib81) 2020; 217 Huang, Zhang, Jiang, Zhou (bib158) 2020; 66 Xue, Fox (bib94) 2014; 265 Qi, Lei, Yan, Chen, Li, Fatehi, Wang, Bai (bib79) 2019; 44 Xiong, Kong (bib39) 2014; 262 Ström, Thunman (bib176) 2013; 112 Wang, Chen, Lu, Liu, Sun (bib20) 2015; 155 Schneiderbauer, Puttinger, Pirker, Aguayo, Kanellopoulos (bib134) 2015; 264 Xiong, Aramideh, Kong (bib99) 2014; 33 Ciesielski, Brennan Pecha, Thornburg, Crowley, Gao, Oyedeji, Sitaraman, Brunhart-Lupo (bib21) 2021; 0 Mellin, Kantarelis, Yang (bib52) 2014; 117 Blasi (bib44) 1993; 19 Peng, Eri, Zhao (bib108) 2018; 10 Hwang, Sohn, Do Lee, Hwang (bib86) 2021; 219 Ranganathan, Gu (bib119) 2016; 213 Xue, Heindel, Fox (bib93) 2011; 66 Mellin, Yang, Yu (bib103) 2015; 66 Pan, Chen, Liang, Zhu, Luo (bib24) 2016; 299 Cardoso, Silva, Eusébio, Brito, Hall, Tarelho (bib121) 2018; 151 J.M. Johansen, Power Plant Burners for Bio-Dust Combustion - DTU Findit, Technical University of Denmark, 2015. Chen, Fan, Yan, Wang, Liu, Lu (bib148) 2016; 153 Zhong, Xiong, Yin, Zhang, Zhu, Liang, Niu, Zhang (bib122) 2020; 152 Lei, Zhu, Luo (bib159) 2021; 67 Seo, Nguyen, Il Lim, Kim, Park, Song, Kim (bib18) 2011; 168 Gerber, Behrendt, Oevermann, Gerber, Behrendt, Oevermann (bib91) 2010 Yang, Wan, Wang, Wang (bib84) 2021; 9 Zhang, Li, Ström, Løvås (bib177) 2020; 387 Zhong, Xiong, Zhu, Liang, Zhang, Niu, Zhang (bib62) 2019; 141 Kraft, Kirnbauer, Hofbauer (bib136) 2018; 36 Remacha, Jiménez, Ballester (bib184) 2018; 234 Y. Igci, S. Pannala, S. Benyahia, S. Sundaresan, Validation studies on filtered model equations for gas-particle flows in risers Validation studies on filtered model equations for gas-particle flows in risers by, 2011. 2094–2103. Jalalifar, Abbassi, Garaniya, Hawboldt, Ghiji (bib111) 2018; 234 Li, Gel, Pannala, Syamlal (bib139) 2014; 265 Yan, Cao, Zhou, He (bib19) 2018; 269 Johansen, Jensen, Glarborg, Mancini, Weber, Mitchell (bib166) 2016; 95 Wang, Luo, Hu, Sun, Fan (bib76) 2018; 333 Girardi, Radl, Sundaresan (bib144) 2016; 144 Xiong, Aramideh, Passalacqua, Kong (bib98) 2014; 185 Papadikis, Gu, Bridgwater (bib63) 2009; 64 Mellin, Zhang, Kantarelis, Yang (bib101) 2013; 58 Azizi, Mowla (bib116) 2016; 14 Nguyen, Seo, Lim, Song, Kim (bib17) 2012; 36 Ostermeier, Fischer, Fendt, DeYoung, Spliethoff (bib78) 2019; 255 Syamlal, O’Brien (bib28) 1988; 14 Kong, Luo, Wang, Yu, Fan (bib88) 2022; 428 Cherubini, Strømman (bib3) 2011; 102 D. Gidaspow, R. Bezburuah, J. Ding, Hydrodynamics of circulating fluidized beds: kinetic theory approach, Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Chemical Engineering, 1991. Miller, BELLAN (bib183) 1997; 126 Chen, Yin, Wang, Yu, Li, Hu, Lin (bib117) 2017; 148 Oevermann, Gerber, Behrendt (bib69) 2009; 7 Kraft, Kuba, Kirnbauer, Bosch, Hofbauer (bib72) 2016; 89 Luo, Lin, Dam-Johansen, Wu (bib32) 2020 Yang, Wang, Ge, Li (bib141) 2003; 96 Lu, Gao, Shahnam, Rogers (bib169) 2021; 67 Ranzi, Cuoci, Faravelli, Frassoldati, Migliavacca, Pierucci, Sommariva (bib49) 2008; 22 Xiong, Kong (bib9) 2016; 4 K. Hong, Z. Shi, W. Wang, J. Li, A structure-dependent multi- fl uid model ( SFM) for heterogeneous gas – solid fl ow, 99 (2013) 191–202. Chen, Ku, Lin, Ström (bib82) 2020; 13 Chen, Yin, Wang, Meng, Yu, Hu, Lin (bib118) 2016; 8 Benedikt, Schmid, Fuchs, Mauerhofer, Müller, Hofbauer (bib6) 2018; 164 Beetstra, van der Hoef, Kuipers (bib89) 2007; 62 Liu, Cattolica, Seiser (bib30) 2015; 41 Wang, Lei, Xu, Ma, Xiao (bib16) 2014; 256 Xiong, Xu, Ramirez, Pannala, Daw (bib100) 2016; 164 Wang (bib23) 2020; 215 Xu, Qiao (bib130) 2012; 26 Chen, Fan, Yan, Wang, Lu (bib146) 2016; 287 Zhao, Li, Ye, Liu (bib150) 2013; 52 Sadhukhan, Gupta, Saha (bib164) 2009; 100 Wickramaarachchi, Narayana (bib170) 2020; 146 Lu, Luo, Li, Wang, Ye, Liu, Li (bib149) 2016; 143 Igci, Andrews, Sundaresan, Pannala, O’Brien (bib40) 2008; 54 Alves, Figueiredo (bib162) 1989; 44 Yang, Sharifi, Swithenbank, Ma, I, Jones, Pourkashanian, Williams, Darvell (bib126) 2008 Bin Yang, Phan, Ryu, Sharifi, Swithenbank (bib127) 2007; 86 Lu, Gao, Shahnam, Rogers (bib58) 2021; 419 Wahyudi, Rosyadi, Pinem (bib115) 2019; 508 Shah, Myöhänen, Kallio, Ritvanen, Hyppänen (bib187) 2015; 274 Stern (bib4) 2015; 40 Liu, Cattolica, Seiser, hsien Liao (bib65) 2015; 160 Xiong, Aramideh, Kong (bib96) 2013; 27 Pielsticker, Schlögel, Kreitzberg, Hatzfeld, Kneer (bib185) 2019; 254 Luo, Lu, Jensen, Glarborg, Lin, Dam-Johansen, Wu (bib54) 2020; 260 Gao, Lu, Shahnam, Rogers, Smith, Gaston, Robichaud, Brennan Pecha, Crowley, Ciesielski, Debiagi, Faravelli, Wiggins, Finney, Parks (bib50) 2021; 418 Haseli, van Oijen, de Goey (bib168) 2011; 169 Kraft, Kirnbauer, Hofbauer (bib73) 2017; 190 Shah, Utikar, Tade, Pareek (bib147) 2011; 168 Yue, You, Snyder (bib2) 2014; 66 C.Y. Wen, Y. Yu, Mechanics of fluidization, in: Chem. Eng. Prog. Symp. Ser., 2013: p. 100. Haberle, Skreiberg, Łazar, Haugen (bib46) 2017; 63 Cai, Luo, Zhou, Wang (bib12) 2021; 221 Mahmoudi, Hoffmann, Peters (bib66) 2016; 93 (accessed September 18, 2018). Ström, Thunman (bib173) 2013; 160 El-Sayed, Noseir (bib70) 2019; 158 Chen, Ku, Lin, Jin (bib179) 2019; 353 Lu, Wang, Li (bib38) 2009; 64 Jin (bib56) 2013; 52 Gunn (bib155) 1978; 21 Lu, Robert, Peirce, Ripa, Baxter (bib160) 2008; 22 Papadikis, Bridgwater, Gu (bib55) 2008; 63 Yan, Lim, Yue, He, Grace (bib75) 2016; 221 Yang, Wang, Ge, Wang, Li (bib132) 2004; 43 Mellin, Yu, Yang, Blasiak (bib104) 2015; 54 Liu, Elkamel, Lohi, Biglari (bib109) 2014; 53 Wang, Lu, Zhang, Shi, Li (bib25) 2010; 36 Sheng, Azevedo (bib53) 2002; 29 Saidur, Abdelaziz, Demirbas, Hossain, Mekhilef (bib1) 2011; 15 Wang, Dai, Yang, Xiong, Wang, Zhou, Li, Wang (bib10) 2020; 34 Fatehi, Bai (bib128) 2014; 186 Yang, Wang, Wei, Hu, Chew (bib74) 2019 Yang, Lu, Wang (bib145) 2021; 246 Xue, Dalluge, Heindel, Fox, Brown (bib34) 2012; 97 Xiong, Yang, Xu, Pan, Zhang, Hong, Lorenzini, Wang (bib7) 2017; 5 Pitt (bib47) 1962; 41 Armellini (bib138) 2015; 43 Boateng, Mtui (bib57) 2012; 33–34 Loha, Chattopadhyay, Chatterjee (bib64) 2014; 109 Xie, Zhong, Jin, Shao, Liu (bib71) 2012; 121 Li, Mason, A, B (bib157) 2000; 112 Li, Yin, Knudsen Kær, Condra (bib171) 2020; 278 Luo, Lu, Zhang, Wu, Wang (bib37) 2017; 326 Sharifzadeh, Sadeqzadeh, Guo, Borhani, Murthy Konda, Garcia, Wang, Hallett, Shah (bib13) 2019; 71 Ozarkar, Yan, Wang, Milioli, Milioli, Sundaresan (bib42) 2015; 284 Mellin, Kantarelis, Zhou, Yang (bib102) 2014; 53 Lu (10.1016/j.jaap.2022.105433_bib149) 2016; 143 Ostermeier (10.1016/j.jaap.2022.105433_bib78) 2019; 255 Xue (10.1016/j.jaap.2022.105433_bib137) 2015; 54 Gerber (10.1016/j.jaap.2022.105433_bib68) 2014; 115 Espekvist (10.1016/j.jaap.2022.105433_bib182) 2021; 14 Liu (10.1016/j.jaap.2022.105433_bib30) 2015; 41 Daizo (10.1016/j.jaap.2022.105433_bib95) 1991 Chen (10.1016/j.jaap.2022.105433_bib146) 2016; 287 Wang (10.1016/j.jaap.2022.105433_bib10) 2020; 34 Wahyudi (10.1016/j.jaap.2022.105433_bib115) 2019; 508 Xiong (10.1016/j.jaap.2022.105433_bib9) 2016; 4 Xiong (10.1016/j.jaap.2022.105433_bib48) 2016; 117 Wang (10.1016/j.jaap.2022.105433_bib81) 2020; 217 Shah (10.1016/j.jaap.2022.105433_bib187) 2015; 274 Blasi (10.1016/j.jaap.2022.105433_bib45) 2008; 34 Yu (10.1016/j.jaap.2022.105433_bib156) 2015; 133 Xiong (10.1016/j.jaap.2022.105433_bib98) 2014; 185 Cardoso (10.1016/j.jaap.2022.105433_bib121) 2018; 151 Anca-Couce (10.1016/j.jaap.2022.105433_bib51) 2016; 167 10.1016/j.jaap.2022.105433_bib26 10.1016/j.jaap.2022.105433_bib27 Papadikis (10.1016/j.jaap.2022.105433_bib63) 2009; 64 Leth-Espensen (10.1016/j.jaap.2022.105433_bib180) 2020; 264 Mehrabian (10.1016/j.jaap.2022.105433_bib178) 2012; 93 Ranzi (10.1016/j.jaap.2022.105433_bib49) 2008; 22 Radl (10.1016/j.jaap.2022.105433_bib135) 2014; 117 Chen (10.1016/j.jaap.2022.105433_bib179) 2019; 353 Sia (10.1016/j.jaap.2022.105433_bib124) 2020; 155 Pitt (10.1016/j.jaap.2022.105433_bib47) 1962; 41 Saidur (10.1016/j.jaap.2022.105433_bib1) 2011; 15 Blasi (10.1016/j.jaap.2022.105433_bib44) 1993; 19 Xue (10.1016/j.jaap.2022.105433_bib34) 2012; 97 Cherubini (10.1016/j.jaap.2022.105433_bib3) 2011; 102 Gerber (10.1016/j.jaap.2022.105433_bib90) 2010; 89 Wang (10.1016/j.jaap.2022.105433_bib25) 2010; 36 Xiong (10.1016/j.jaap.2022.105433_bib97) 2013; 99 Ranz (10.1016/j.jaap.2022.105433_bib154) 1952; 48 Xue (10.1016/j.jaap.2022.105433_bib94) 2014; 265 10.1016/j.jaap.2022.105433_bib105 Lu (10.1016/j.jaap.2022.105433_bib36) 2011; 66 Zhao (10.1016/j.jaap.2022.105433_bib80) 2018; 131 Mahmoudi (10.1016/j.jaap.2022.105433_bib66) 2016; 93 Thunman (10.1016/j.jaap.2022.105433_bib172) 2002; 129 Loha (10.1016/j.jaap.2022.105433_bib64) 2014; 109 Xiong (10.1016/j.jaap.2022.105433_bib96) 2013; 27 Lu (10.1016/j.jaap.2022.105433_bib41) 2021; 421 Oevermann (10.1016/j.jaap.2022.105433_bib69) 2009; 7 Karl (10.1016/j.jaap.2022.105433_bib5) 2018; 98 10.1016/j.jaap.2022.105433_bib11 Wang (10.1016/j.jaap.2022.105433_bib83) 2020; 159 Yan (10.1016/j.jaap.2022.105433_bib75) 2016; 221 Xiong (10.1016/j.jaap.2022.105433_bib7) 2017; 5 Ciesielski (10.1016/j.jaap.2022.105433_bib21) 2021; 0 Yang (10.1016/j.jaap.2022.105433_bib141) 2003; 96 Yang (10.1016/j.jaap.2022.105433_bib145) 2021; 246 Xiong (10.1016/j.jaap.2022.105433_bib39) 2014; 262 Luo (10.1016/j.jaap.2022.105433_bib32) 2020 Dong (10.1016/j.jaap.2022.105433_bib61) 2017; 161 Chen (10.1016/j.jaap.2022.105433_bib82) 2020; 13 Sharifzadeh (10.1016/j.jaap.2022.105433_bib13) 2019; 71 Wang (10.1016/j.jaap.2022.105433_bib60) 2021; 216 Xu (10.1016/j.jaap.2022.105433_bib130) 2012; 26 Wang (10.1016/j.jaap.2022.105433_bib87) 2021; 35 Mellin (10.1016/j.jaap.2022.105433_bib103) 2015; 66 Luo (10.1016/j.jaap.2022.105433_bib15) 2019; 195 Gómez (10.1016/j.jaap.2022.105433_bib181) 2015; 105 Lu (10.1016/j.jaap.2022.105433_bib58) 2021; 419 Ismail (10.1016/j.jaap.2022.105433_bib114) 2016; 106 Yu (10.1016/j.jaap.2022.105433_bib110) 2018; 130 Yang (10.1016/j.jaap.2022.105433_bib126) 2008 Chan (10.1016/j.jaap.2022.105433_bib129) 1985; 64 Liu (10.1016/j.jaap.2022.105433_bib65) 2015; 160 Yan (10.1016/j.jaap.2022.105433_bib19) 2018; 269 Igci (10.1016/j.jaap.2022.105433_bib40) 2008; 54 Haberle (10.1016/j.jaap.2022.105433_bib46) 2017; 63 Lu (10.1016/j.jaap.2022.105433_bib43) 2017; 171 Jin (10.1016/j.jaap.2022.105433_bib56) 2013; 52 Gerber (10.1016/j.jaap.2022.105433_bib91) 2010 Jalalifar (10.1016/j.jaap.2022.105433_bib112) 2020; 191 Liu (10.1016/j.jaap.2022.105433_bib106) 2017; 164 Bin Yang (10.1016/j.jaap.2022.105433_bib127) 2007; 86 Li (10.1016/j.jaap.2022.105433_bib139) 2014; 265 Wang (10.1016/j.jaap.2022.105433_bib20) 2015; 155 Cai (10.1016/j.jaap.2022.105433_bib12) 2021; 221 Agrawal (10.1016/j.jaap.2022.105433_bib140) 2001; 445 Mellin (10.1016/j.jaap.2022.105433_bib52) 2014; 117 Kraft (10.1016/j.jaap.2022.105433_bib73) 2017; 190 Yue (10.1016/j.jaap.2022.105433_bib2) 2014; 66 Babu (10.1016/j.jaap.2022.105433_bib163) 2003; 44 Liu (10.1016/j.jaap.2022.105433_bib109) 2014; 53 Huang (10.1016/j.jaap.2022.105433_bib158) 2020; 66 Ström (10.1016/j.jaap.2022.105433_bib176) 2013; 112 10.1016/j.jaap.2022.105433_bib31 Luo (10.1016/j.jaap.2022.105433_bib37) 2017; 326 Seo (10.1016/j.jaap.2022.105433_bib18) 2011; 168 Li (10.1016/j.jaap.2022.105433_bib157) 2000; 112 Xie (10.1016/j.jaap.2022.105433_bib92) 2014; 28 Sheng (10.1016/j.jaap.2022.105433_bib53) 2002; 29 Couto (10.1016/j.jaap.2022.105433_bib120) 2017; 109 Lee (10.1016/j.jaap.2022.105433_bib113) 2017; 5 Pielsticker (10.1016/j.jaap.2022.105433_bib185) 2019; 254 Zhong (10.1016/j.jaap.2022.105433_bib122) 2020; 152 Wang (10.1016/j.jaap.2022.105433_bib23) 2020; 215 Zhong (10.1016/j.jaap.2022.105433_bib62) 2019; 141 10.1016/j.jaap.2022.105433_bib151 Yang (10.1016/j.jaap.2022.105433_bib74) 2019 Girardi (10.1016/j.jaap.2022.105433_bib144) 2016; 144 Nguyen (10.1016/j.jaap.2022.105433_bib17) 2012; 36 Ozarkar (10.1016/j.jaap.2022.105433_bib42) 2015; 284 Xiong (10.1016/j.jaap.2022.105433_bib100) 2016; 164 Mellin (10.1016/j.jaap.2022.105433_bib101) 2013; 58 Lu (10.1016/j.jaap.2022.105433_bib38) 2009; 64 Ranganathan (10.1016/j.jaap.2022.105433_bib119) 2016; 213 Kraft (10.1016/j.jaap.2022.105433_bib72) 2016; 89 Wang (10.1016/j.jaap.2022.105433_bib76) 2018; 333 Hu (10.1016/j.jaap.2022.105433_bib77) 2019; 58 Sadhukhan (10.1016/j.jaap.2022.105433_bib164) 2009; 100 Ström (10.1016/j.jaap.2022.105433_bib173) 2013; 160 Lu (10.1016/j.jaap.2022.105433_bib169) 2021; 67 Lu (10.1016/j.jaap.2022.105433_bib22) 2022; 248 Shah (10.1016/j.jaap.2022.105433_bib147) 2011; 168 Lei (10.1016/j.jaap.2022.105433_bib159) 2021; 67 Chen (10.1016/j.jaap.2022.105433_bib117) 2017; 148 Mehrabian (10.1016/j.jaap.2022.105433_bib175) 2012; 95 Papadikis (10.1016/j.jaap.2022.105433_bib29) 2009; 149 Xiong (10.1016/j.jaap.2022.105433_bib99) 2014; 33 Huang (10.1016/j.jaap.2022.105433_bib167) 2014; 28 Xie (10.1016/j.jaap.2022.105433_bib71) 2012; 121 Schneiderbauer (10.1016/j.jaap.2022.105433_bib134) 2015; 264 Zhao (10.1016/j.jaap.2022.105433_bib150) 2013; 52 Gunn (10.1016/j.jaap.2022.105433_bib155) 1978; 21 Stern (10.1016/j.jaap.2022.105433_bib4) 2015; 40 10.1016/j.jaap.2022.105433_bib142 Hwang (10.1016/j.jaap.2022.105433_bib86) 2021; 219 Wang (10.1016/j.jaap.2022.105433_bib35) 2007; 62 Johansen (10.1016/j.jaap.2022.105433_bib166) 2016; 95 El-Sayed (10.1016/j.jaap.2022.105433_bib70) 2019; 158 Miller (10.1016/j.jaap.2022.105433_bib183) 1997; 126 Yang (10.1016/j.jaap.2022.105433_bib132) 2004; 43 Shi (10.1016/j.jaap.2022.105433_bib153) 2011; 66 Haseli (10.1016/j.jaap.2022.105433_bib165) 2011; 102 Wang (10.1016/j.jaap.2022.105433_bib16) 2014; 256 Lu (10.1016/j.jaap.2022.105433_bib186) 2013; 59 Figueroa (10.1016/j.jaap.2022.105433_bib33) 2012; 30 Alves (10.1016/j.jaap.2022.105433_bib162) 1989; 44 Azizi (10.1016/j.jaap.2022.105433_bib116) 2016; 14 Beetstra (10.1016/j.jaap.2022.105433_bib89) 2007; 62 Bharadwaj (10.1016/j.jaap.2022.105433_bib161) 2004; 18 Gómez-Barea (10.1016/j.jaap.2022.105433_bib8) 2010; 36 Mellin (10.1016/j.jaap.2022.105433_bib102) 2014; 53 Chen (10.1016/j.jaap.2022.105433_bib118) 2016; 8 10.1016/j.jaap.2022.105433_bib133 Li (10.1016/j.jaap.2022.105433_bib171) 2020; 278 Chen (10.1016/j.jaap.2022.105433_bib148) 2016; 153 Haseli (10.1016/j.jaap.2022.105433_bib168) 2011; 169 Milioli (10.1016/j.jaap.2022.105433_bib143) 2013; 59 Anca-Couce (10.1016/j.jaap.2022.105433_bib14) 2016; 53 Kong (10.1016/j.jaap.2022.105433_bib88) 2022; 428 Galgano (10.1016/j.jaap.2022.105433_bib174) 2006; 20 Kraft (10.1016/j.jaap.2022.105433_bib136) 2018; 36 Eri (10.1016/j.jaap.2022.105433_bib107) 2018; 129 Li (10.1016/j.jaap.2022.105433_bib85) 2021 Debiagi (10.1016/j.jaap.2022.105433_bib131) 2015 Benedikt (10.1016/j.jaap.2022.105433_bib6) 2018; 164 Luo (10.1016/j.jaap.2022.105433_bib54) 2020; 260 Yang (10.1016/j.jaap.2022.105433_bib84) 2021; 9 Peng (10.1016/j.jaap.2022.105433_bib108) 2018; 10 Papadikis (10.1016/j.jaap.2022.105433_bib55) 2008; 63 Remacha (10.1016/j.jaap.2022.105433_bib184) 2018; 234 Fatehi (10.1016/j.jaap.2022.105433_bib128) 2014; 186 Mellin (10.1016/j.jaap.2022.105433_bib104) 2015; 54 Huilin (10.1016/j.jaap.2022.105433_bib152) 2003; 58 Wickramaarachchi (10.1016/j.jaap.2022.105433_bib170) 2020; 146 Ku (10.1016/j.jaap.2022.105433_bib59) 2019; 58 Zhang (10.1016/j.jaap.2022.105433_bib177) 2020; 387 Pan (10.1016/j.jaap.2022.105433_bib24) 2016; 299 Armellini (10.1016/j.jaap.2022.105433_bib138) 2015; 43 Syamlal (10.1016/j.jaap.2022.105433_bib28) 1988; 14 Boateng (10.1016/j.jaap.2022.105433_bib57) 2012; 33–34 Jalalifar (10.1016/j.jaap.2022.105433_bib111) 2018; 234 Zhong (10.1016/j.jaap.2022.105433_bib123) 2019; 135 Lu (10.1016/j.jaap.2022.105433_bib160) 2008; 22 Gao (10.1016/j.jaap.2022.105433_bib50) 2021; 418 Zhong (10.1016/j.jaap.2022.105433_bib67) 2015; 88 Hooshdaran (10.1016/j.jaap.2022.105433_bib125) 2021; 154 Qi (10.1016/j.jaap.2022.105433_bib79) 2019; 44 Xue (10.1016/j.jaap.2022.105433_bib93) 2011; 66 |
References_xml | – volume: 15 start-page: 2262 year: 2011 end-page: 2289 ident: bib1 article-title: A review on biomass as a fuel for boilers publication-title: Renew. Sustain. Energy Rev. – volume: 161 start-page: 199 year: 2017 end-page: 203 ident: bib61 article-title: Modeling of biomass pyrolysis in a bubbling fluidized bed reactor: Impact of intra-particle heat conduction publication-title: Fuel Process. Technol. – year: 2020 ident: bib32 article-title: Heat-transfer-corrected isothermal model for devolatilization of thermally thick biomass particles publication-title: Energy Fuels – volume: 66 year: 2020 ident: bib158 article-title: Development of a filtered interphase heat transfer model based on fine-grid simulations of gas–solid flows publication-title: AIChE J. – reference: D. Gidaspow, R. Bezburuah, J. Ding, Hydrodynamics of circulating fluidized beds: kinetic theory approach, Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Chemical Engineering, 1991. – volume: 58 start-page: 1404 year: 2019 end-page: 1416 ident: bib77 article-title: Computational fluid dynamics/discrete element method investigation on the biomass fast pyrolysis: the influences of shrinkage patterns and operating parameters publication-title: Ind. Eng. Chem. Res. – volume: 58 start-page: 3777 year: 2003 end-page: 3792 ident: bib152 article-title: Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures publication-title: Chem. Eng. Sci. – volume: 213 start-page: 333 year: 2016 end-page: 341 ident: bib119 article-title: Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes publication-title: Bioresour. Technol. – volume: 18 start-page: 1021 year: 2004 end-page: 1031 ident: bib161 article-title: Effects of intraparticle heat and mass transfer on biomass devolatilization: experimental results and model predictions publication-title: Energy Fuels – volume: 53 start-page: 5554 year: 2014 end-page: 5563 ident: bib109 article-title: Effect of char combustion product distribution coefficient on the CFD modeling of biomass gasification in a circulating fluidized bed publication-title: Ind. Eng. Chem. Res. – volume: 89 start-page: 31 year: 2016 end-page: 39 ident: bib72 article-title: Optimization of a 50 MW bubbling fluidized bed biomass combustion chamber by means of computational particle fluid dynamics publication-title: Biomass-.-. Bioenergy – volume: 264 year: 2020 ident: bib180 article-title: The influence of size and morphology on devolatilization of biomass particles publication-title: Fuel – volume: 0 year: 2021 ident: bib21 article-title: Bridging scales in bioenergy and catalysis: a review of mesoscale modeling applications, methods, and future directions publication-title: Energy amp; Fuels – volume: 265 start-page: 23 year: 2014 end-page: 34 ident: bib94 article-title: Reprint of: Multi-fluid CFD modeling of biomass gasification in polydisperse fluidized-bed gasifiers publication-title: Powder Technol. – volume: 52 start-page: 11354 year: 2013 end-page: 11364 ident: bib150 article-title: 3D numerical simulation of a large scale mto fluidized bed reactor publication-title: Ind. Eng. Chem. Res. – volume: 269 start-page: 384 year: 2018 end-page: 392 ident: bib19 article-title: Investigation on biomass steam gasification in a dual fluidized bed reactor with the granular kinetic theory publication-title: Bioresour. Technol. – volume: 135 start-page: 208 year: 2019 end-page: 217 ident: bib123 article-title: Variation of Geldart classification in MFM simulation of biomass fast pyrolysis considering the decrease of particle density and diameter publication-title: Renew. Energy – volume: 54 start-page: 8344 year: 2015 end-page: 8355 ident: bib104 article-title: Influence of reaction atmosphere (H2O, N2,H2,CO publication-title: Ind. Eng. Chem. Res. – volume: 508 start-page: 12067 year: 2019 ident: bib115 article-title: Eulerian multi-fluid simulation of biomass gasification in circulating fluidized beds: effects of equivalence ratio publication-title: IOP Conf. Ser. Mater. Sci. Eng. – volume: 191 year: 2020 ident: bib112 article-title: A hybrid SVR-PSO model to predict a CFD-based optimised bubbling fluidised bed pyrolysis reactor publication-title: Energy – volume: 20 start-page: 2223 year: 2006 end-page: 2232 ident: bib174 article-title: Experimental validation of a coupled solid- and gas-phase model for combustion and gasification of wood logs publication-title: Energy Fuels – year: 1991 ident: bib95 article-title: Fluidization engineering – volume: 169 start-page: 299 year: 2011 end-page: 312 ident: bib168 article-title: Numerical study of the conversion time of single pyrolyzing biomass particles at high heating conditions publication-title: Chem. Eng. J. – volume: 43 start-page: 5548 year: 2004 end-page: 5561 ident: bib132 article-title: Simulation of heterogeneous structure in a circulating fluidized-bed riser by combining the two-fluid model with the EMMS approach publication-title: Ind. Eng. Chem. Res. – volume: 215 year: 2020 ident: bib23 article-title: Continuum theory for dense gas-solid flow: a state-of-the-art review publication-title: Chem. Eng. Sci. – volume: 10 start-page: 13104 year: 2018 ident: bib108 article-title: Detailed simulations of fast pyrolysis of biomass in a fluidized bed reactor publication-title: J. Renew. Sustain. Energy – volume: 71 start-page: 1 year: 2019 end-page: 80 ident: bib13 article-title: The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: review of the state of art and future research directions publication-title: Prog. Energy Combust. Sci. – volume: 66 start-page: 36 year: 2014 end-page: 56 ident: bib2 article-title: Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges publication-title: Comput. Chem. Eng. – volume: 234 start-page: 616 year: 2018 end-page: 625 ident: bib111 article-title: Parametric analysis of pyrolysis process on the product yields in a bubbling fluidized bed reactor publication-title: Fuel – volume: 95 start-page: 279 year: 2016 end-page: 290 ident: bib166 article-title: Extension of apparent devolatilization kinetics from thermally thin to thermally thick particles in zero dimensions for woody biomass publication-title: Energy – volume: 256 start-page: 324 year: 2014 end-page: 335 ident: bib16 article-title: Simulation and experimental verification of a hydrodynamic model for a dual fluidized Bed gasifier publication-title: Powder Technol. – volume: 41 start-page: 11974 year: 2015 end-page: 11989 ident: bib30 article-title: CFD studies on biomass gasification in a pilot-scale dual fluidized-bed system publication-title: Int. J. Hydrog. Energy – volume: 27 start-page: 5948 year: 2013 end-page: 5956 ident: bib96 article-title: Modeling effects of operating conditions on biomass fast pyrolysis in bubbling fluidized bed reactors publication-title: Energy Fuels – volume: 278 year: 2020 ident: bib171 article-title: A detailed pyrolysis model for a thermally large biomass particle publication-title: Fuel – reference: Q. Eri, B. Wang, J. Peng, X. Zhao, T. Li, Detailed CFD Modelling of Fast Pyrolysis of Different Biomass Types in Fluidized Bed Reactors, (2018). – volume: 168 start-page: 803 year: 2011 end-page: 811 ident: bib18 article-title: Solid circulation and loop-seal characteristics of a dual circulating fluidized bed: experiments and CFD simulation publication-title: Chem. Eng. J. – volume: 133 start-page: 51 year: 2015 end-page: 63 ident: bib156 article-title: A CFD study of biomass pyrolysis in a downer reactor equipped with a novel gas-solid separator-II thermochemical performance and products publication-title: Fuel Process. Technol. – volume: 195 year: 2019 ident: bib15 article-title: Three dimensional full-loop CFD simulation of hydrodynamics in a pilot-scale dual fluidized bed system for biomass gasification publication-title: Fuel Process. Technol. – volume: 219 year: 2021 ident: bib86 article-title: CFD-DEM simulation of air-blown gasification of biomass in a bubbling fluidized bed gasifier: effects of equivalence ratio and fluidization number publication-title: Energy – volume: 14 start-page: 1 year: 2021 end-page: 18 ident: bib182 article-title: Determination of zero dimensional, apparent devolatilization kinetics for biomass particles at suspension firing conditions publication-title: Energies – volume: 155 start-page: 719 year: 2015 end-page: 727 ident: bib20 article-title: Multi-scale simulation of chemical looping combustion in dual circulating fluidized bed publication-title: Appl. Energy – volume: 19 start-page: 71 year: 1993 end-page: 104 ident: bib44 article-title: Modeling and simulation of combustion processes of charring and non-charring solid fuels publication-title: Prog. Energy Combust. Sci. – volume: 33–34 start-page: 190 year: 2012 end-page: 198 ident: bib57 article-title: CFD modeling of space-time evolution of fast pyrolysis products in a bench-scale fluidized-bed reactor publication-title: Appl. Therm. Eng. – reference: J.M. Johansen, Power Plant Burners for Bio-Dust Combustion - DTU Findit, Technical University of Denmark, 2015. – volume: 33 start-page: 756 year: 2014 end-page: 761 ident: bib99 article-title: Assessment of devolatilization schemes in predicting product yields of biomass fast pyrolysis publication-title: Environ. Prog. Sustain. Energy – volume: 30 start-page: 1118 year: 2012 end-page: 1122 ident: bib33 article-title: Sugarcane bagasse as raw material to Syngas production: 3D simulation of gasification process publication-title: 22nd Eur. Symp. Comput. Aided Process Eng. – volume: 36 start-page: 70 year: 2018 end-page: 81 ident: bib136 article-title: Influence of drag laws on pressure and bed material recirculation rate in a cold flow model of an 8 MW dual fluidized bed system by means of CPFD publication-title: Particuology – volume: 112 start-page: 273 year: 2000 end-page: 282 ident: bib157 article-title: A computational investigation of transient heat transfer in pneumatic transport of granular particles - ScienceDirect publication-title: Powder Technol. – volume: 151 start-page: 520 year: 2018 end-page: 535 ident: bib121 article-title: Comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substrates publication-title: Energy – volume: 387 year: 2020 ident: bib177 article-title: Grid-independent Eulerian-Lagrangian approaches for simulations of solid fuel particle combustion publication-title: Chem. Eng. J. – volume: 428 year: 2022 ident: bib88 article-title: Particle behaviours of biomass gasification in a bubbling fluidized bed publication-title: Chem. Eng. J. – volume: 155 start-page: 248 year: 2020 end-page: 256 ident: bib124 article-title: Numerical simulations of fluidized bed fast pyrolysis of biomass through computational fluid dynamics publication-title: Renew. Energy – volume: 216 year: 2021 ident: bib60 article-title: Experimental and simulated study on fluidization characteristics of particle shrinkage in a multi-chamber fluidized bed for biomass fast pyrolysis publication-title: Fuel Process. Technol. – volume: 144 start-page: 224 year: 2016 end-page: 238 ident: bib144 article-title: Simulating wet gas – solid fl uidized beds using coarse-grid CFD-DEM publication-title: Chem. Eng. Sci. – volume: 36 start-page: 48 year: 2012 end-page: 56 ident: bib17 article-title: CFD simulation with experiments in a dual circulating fluidized bed gasifier publication-title: Comput. Chem. Eng. – volume: 106 start-page: 1391 year: 2016 end-page: 1402 ident: bib114 article-title: Eulerian - Eulerian CFD model on fluidized bed gasifier using coffee husks as fuel publication-title: Appl. Therm. Eng. – volume: 418 year: 2021 ident: bib50 article-title: Assessment of a detailed biomass pyrolysis kinetic scheme in multiscale simulations of a single-particle pyrolyzer and a pilot-scale entrained flow pyrolyzer publication-title: Chem. Eng. J. – volume: 109 start-page: 53 year: 2014 end-page: 64 ident: bib64 article-title: Three dimensional kinetic modeling of fluidized bed biomass gasification publication-title: Chem. Eng. Sci. – volume: 22 start-page: 2826 year: 2008 end-page: 2839 ident: bib160 article-title: Comprehensive study of biomass particle combustion publication-title: Energy Fuels – volume: 164 start-page: 51 year: 2017 end-page: 68 ident: bib106 article-title: CFD modelling of particle shrinkage in a fluidized bed for biomass fast pyrolysis with quadrature method of moment publication-title: Fuel Process. Technol. – volume: 4 start-page: 5456 year: 2016 end-page: 5461 ident: bib9 article-title: High-resolution particle-scale simulation of biomass pyrolysis publication-title: ACS Sustain. Chem. Eng. – volume: 217 year: 2020 ident: bib81 article-title: CFD-DEM coupled with thermochemical sub-models for biomass gasification: validation and sensitivity analysis publication-title: Chem. Eng. Sci. – volume: 152 start-page: 613 year: 2020 end-page: 626 ident: bib122 article-title: CFD-based reduced-order modeling of fluidized-bed biomass fast pyrolysis using artificial neural network, Renew publication-title: Energy – volume: 262 start-page: 96 year: 2014 end-page: 105 ident: bib39 article-title: Modeling effects of interphase transport coefficients on biomass pyrolysis in fluidized beds publication-title: Powder Technol. – volume: 102 start-page: 9772 year: 2011 end-page: 9782 ident: bib165 article-title: A detailed one-dimensional model of combustion of a woody biomass particle publication-title: Bioresour. Technol. – volume: 88 start-page: 322 year: 2015 end-page: 333 ident: bib67 article-title: Three-dimensional modeling of olive cake combustion in CFB publication-title: Appl. Therm. Eng. – volume: 264 start-page: 99 year: 2015 end-page: 112 ident: bib134 article-title: CFD modeling and simulation of industrial scale olefin polymerization fluidized bed reactors publication-title: Chem. Eng. J. – reference: K. Hong, Z. Shi, W. Wang, J. Li, A structure-dependent multi- fl uid model ( SFM) for heterogeneous gas – solid fl ow, 99 (2013) 191–202. – volume: 167 start-page: 158 year: 2016 end-page: 167 ident: bib51 article-title: Application of a detailed biomass pyrolysis kinetic scheme to hardwood and softwood torrefaction publication-title: Fuel – volume: 58 start-page: 1720 year: 2019 end-page: 1731 ident: bib59 article-title: Simulation of biomass pyrolysis in a fluidized bed reactor using thermally thick treatment publication-title: Ind. Eng. Chem. Res. – volume: 117 start-page: 416 year: 2014 end-page: 425 ident: bib135 article-title: A drag model for filtered Euler–Lagrange simulations of clustered gas–particle suspensions publication-title: Chem. Eng. Sci. – volume: 67 year: 2021 ident: bib159 article-title: Study of filtered interphase heat transfer using highly resolved CFD–DEM simulations publication-title: AIChE J. – volume: 40 start-page: 9885 year: 2015 end-page: 9906 ident: bib4 article-title: Design of an efficient, high purity hydrogen generation apparatus and method for a sustainable, closed clean energy cycle publication-title: Int. J. Hydrog. Energy – volume: 98 start-page: 64 year: 2018 end-page: 78 ident: bib5 article-title: Steam gasification of biomass in dual fluidized bed gasifiers: a review publication-title: Renew. Sustain. Energy Rev. – volume: 63 start-page: 4218 year: 2008 end-page: 4227 ident: bib55 article-title: CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors, Part A: Eulerian computation of momentum transport in bubbling fluidised beds publication-title: Chem. Eng. Sci. – volume: 89 start-page: 2903 year: 2010 end-page: 2917 ident: bib90 article-title: An Eulerian modeling approach of wood gasification in a bubbling fluidized bed reactor using char as bed material publication-title: Fuel – volume: 117 start-page: 704 year: 2014 end-page: 715 ident: bib52 article-title: Computational fluid dynamics modeling of biomass fast pyrolysis in a fluidized bed reactor, using a comprehensive chemistry scheme publication-title: Fuel – volume: 160 start-page: 417 year: 2013 end-page: 431 ident: bib173 article-title: CFD simulations of biofuel bed conversion: a submodel for the drying and devolatilization of thermally thick wood particles publication-title: Combust. Flame. – volume: 353 start-page: 110 year: 2019 end-page: 124 ident: bib179 article-title: Modelling the combustion of thermally thick biomass particles publication-title: Powder Technol. – volume: 148 start-page: 506 year: 2017 end-page: 516 ident: bib117 article-title: Modelling of coal/biomass co-gasification in internal circulating fluidized bed using kinetic theory of granular mixture publication-title: Energy Convers. Manag. – reference: L. Zhu, L. Xie, J. Xiao, Z. Luo, Filtered model for the cold-model gas – solid fl ow in a large-scale MTO fl uidized bed reactor, 143 (2016) 369–383. – volume: 164 start-page: 329 year: 2018 end-page: 343 ident: bib6 article-title: Fuel flexible gasification with an advanced 100 kW dual fluidized bed steam gasification pilot plant publication-title: Energy – volume: 52 start-page: 11344 year: 2013 end-page: 11353 ident: bib56 article-title: A multiscale coupling framework for modeling of large-size biomass particle gasification in fluidized beds publication-title: Ind. Eng. Chem. Res. – start-page: 306 year: 2008 end-page: 316 ident: bib126 article-title: Combustion of a single particle of biomass combustion of a single particle of biomass publication-title: Energy – volume: 445 start-page: 151 year: 2001 end-page: 185 ident: bib140 article-title: The role of meso-scale structures in rapid gas–solid flows publication-title: J. Fluid Mech. – volume: 160 start-page: 489 year: 2015 end-page: 501 ident: bib65 article-title: Three-dimensional full-loop simulation of a dual fluidized-bed biomass gasifier publication-title: Appl. Energy – volume: 186 start-page: 574 year: 2014 end-page: 593 ident: bib128 article-title: A comprehensive mathematical model for biomass combustion publication-title: Combust. Sci. Technol. – start-page: 490 year: 2010 end-page: 494 ident: bib91 article-title: A comparative study of euler-euler and euler-lagrange modelling of wood gasification in a dense fluidized bed publication-title: Proc. 20th Int. Conf. Fluid. Bed Combust. – volume: 130 start-page: 284 year: 2018 end-page: 295 ident: bib110 article-title: CFD and experimental studies on a circulating fluidised bed reactor for biomass gasification publication-title: Chem. Eng. Process. - Process. Intensif. – volume: 159 start-page: 1146 year: 2020 end-page: 1164 ident: bib83 article-title: CFD-DEM study of biomass gasification in a fluidized bed reactor: effects of key operating parameters publication-title: Renew. Energy – volume: 115 start-page: 385 year: 2014 end-page: 400 ident: bib68 article-title: A two dimensional Euler-Lagrangian model of wood gasification in a charcoal bed - Part I: model description and base scenario publication-title: Fuel – volume: 86 start-page: 169 year: 2007 end-page: 180 ident: bib127 article-title: Mathematical modelling of slow pyrolysis of segregated solid wastes in a packed-bed pyrolyser publication-title: Fuel – volume: 36 start-page: 444 year: 2010 end-page: 509 ident: bib8 article-title: Modeling of biomass gasification in fluidized bed publication-title: Prog. Energy Combust. Sci. – volume: 221 year: 2021 ident: bib12 article-title: A review on the selection of raw materials and reactors for biomass fast pyrolysis in China publication-title: Fuel Process. Technol. – volume: 95 start-page: 96 year: 2012 end-page: 108 ident: bib175 article-title: A CFD model for thermal conversion of thermally thick biomass particles publication-title: Fuel Process. Technol. – volume: 141 start-page: 236 year: 2019 end-page: 245 ident: bib62 article-title: CFD modeling of the effects of particle shrinkage and intra-particle heat conduction on biomass fast pyrolysis, Renew publication-title: Energy – volume: 14 start-page: 463 year: 2016 end-page: 480 ident: bib116 article-title: CFD modeling of algae flash pyrolysis in the batch fluidized bed reactor including heat carrier particles publication-title: Int. J. Chem. React. Eng. – volume: 43 year: 2015 ident: bib138 article-title: Effect of different gas-solid drag models in a high-flux circulating fluidized bed riser publication-title: Chem. Eng. Trans. – volume: 67 year: 2021 ident: bib169 article-title: Open source implementation of glued sphere discrete element method and nonspherical biomass fast pyrolysis simulation publication-title: AIChE J. – volume: 143 start-page: 341 year: 2016 end-page: 350 ident: bib149 article-title: Speeding up CFD simulation of fluidized bed reactor for MTO by coupling CRE model publication-title: Chem. Eng. Sci. – volume: 299 start-page: 235 year: 2016 end-page: 258 ident: bib24 article-title: CFD simulations of gas-liquid-solid flow in fluidized bed reactors - a review publication-title: Powder Technol. – volume: 58 start-page: 344 year: 2013 end-page: 353 ident: bib101 article-title: An Euler-Euler approach to modeling biomass fast pyrolysis in fluidized-bed reactors - focusing on the gas phase publication-title: Appl. Therm. Eng. – volume: 21 start-page: 467 year: 1978 end-page: 476 ident: bib155 article-title: Transfer of heat or mass to particles in fixed and fluidised beds publication-title: Int. J. Heat. Mass Transf. – volume: 168 start-page: 812 year: 2011 end-page: 821 ident: bib147 article-title: Hydrodynamics of an FCC riser using energy minimization multiscale drag model publication-title: Chem. Eng. J. – volume: 34 start-page: 15557 year: 2020 end-page: 15578 ident: bib10 article-title: A review of recent advances in biomass pyrolysis publication-title: Energy Fuels – volume: 421 year: 2021 ident: bib41 article-title: Investigating biomass composition and size effects on fast pyrolysis using global sensitivity analysis and CFD simulations publication-title: Chem. Eng. J. – volume: 5 start-page: 2783 year: 2017 end-page: 2798 ident: bib7 article-title: Overview of computational fluid dynamics simulation of reactor-scale biomass pyrolysis publication-title: ACS Sustain. Chem. Eng. – volume: 64 start-page: 1505 year: 1985 end-page: 1513 ident: bib129 article-title: Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle publication-title: Fuel – volume: 190 start-page: 408 year: 2017 end-page: 420 ident: bib73 article-title: CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8 MW fuel input publication-title: Appl. Energy – volume: 63 start-page: 204 year: 2017 end-page: 252 ident: bib46 article-title: Numerical models for thermochemical degradation of thermally thick woody biomass, and their application in domestic wood heating appliances and grate furnaces publication-title: Prog. Energy Combust. Sci. – volume: 64 start-page: 1036 year: 2009 end-page: 1045 ident: bib63 article-title: CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B. Heat, momentum and mass transport in bubbling fluidised beds publication-title: Chem. Eng. Sci. – volume: 66 start-page: 4624 year: 2011 end-page: 4635 ident: bib36 article-title: Eulerian simulation of gas-solid flows with particles of Geldart groups A, B and D using EMMS-based meso-scale model publication-title: Chem. Eng. Sci. – volume: 29 start-page: 407 year: 2002 end-page: 414 ident: bib53 article-title: Modeling biomass devolatilization using the chemical percolation devolatilization model for the main components publication-title: Proc. Combust. Inst. – volume: 66 start-page: 5541 year: 2011 end-page: 5555 ident: bib153 article-title: A bubble-based EMMS model for gas-solid bubbling fluidization publication-title: Chem. Eng. Sci. – volume: 129 start-page: 1358 year: 2018 end-page: 1368 ident: bib107 article-title: CFD simulation of biomass steam gasification in a fluidized bed based on a multi-composition multi-step kinetic model publication-title: Appl. Therm. Eng. – volume: 109 start-page: 248 year: 2017 end-page: 261 ident: bib120 article-title: An experimental and numerical study on the Miscanthus gasification by using a pilot scale gasifier, Renew publication-title: Energy – volume: 62 start-page: 208 year: 2007 end-page: 231 ident: bib35 article-title: Simulation of gas-solid two-phase flow by a multi-scale CFD approach-of the EMMS model to the sub-grid level publication-title: Chem. Eng. Sci. – volume: 117 start-page: 176 year: 2016 end-page: 181 ident: bib48 article-title: Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized beds publication-title: J. Anal. Appl. Pyrolysis – start-page: 6544 year: 2015 end-page: 6555 ident: bib131 article-title: Extractives extend the applicability of multistep kinetic scheme of biomass pyrolysis publication-title: Energy Fuels – volume: 22 start-page: 4292 year: 2008 end-page: 4300 ident: bib49 article-title: Chemical Kinetics of Biomass Pyrolysis publication-title: Energy Fuels – reference: C.Y. Wen, Y. Yu, Mechanics of fluidization, in: Chem. Eng. Prog. Symp. Ser., 2013: p. 100. – volume: 8 year: 2016 ident: bib118 article-title: Analysis of biomass gasification in bubbling fluidized bed with two-fluid model publication-title: J. Renew. Sustain. Energy – volume: 149 start-page: 417 year: 2009 end-page: 427 ident: bib29 article-title: CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors: Modelling the impact of biomass shrinkage publication-title: Chem. Eng. J. – volume: 158 year: 2019 ident: bib70 article-title: Simulation of combustion of sesame and broad bean stalks in the freeboard zone inside a pilot-scale bubbling fluidized bed combustor using CFD modeling publication-title: Appl. Therm. Eng. – volume: 185 start-page: 1739 year: 2014 end-page: 1746 ident: bib98 article-title: BIOTC: An open-source CFD code for simulating biomass fast pyrolysis publication-title: Comput. Phys. Commun. – volume: 154 year: 2021 ident: bib125 article-title: CFD modeling and experimental validation of biomass fast pyrolysis in a conical spouted bed reactor publication-title: J. Anal. Appl. Pyrolysis – volume: 105 start-page: 30 year: 2015 end-page: 44 ident: bib181 article-title: Fast-solving thermally thick model of biomass particles embedded in a CFD code for the simulation of fixed-bed burners publication-title: Energy Convers. Manag. – volume: 164 start-page: 11 year: 2016 end-page: 17 ident: bib100 article-title: Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis publication-title: Fuel – volume: 66 start-page: 281 year: 2015 end-page: 284 ident: bib103 article-title: Comprehensive secondary pyrolysis in fluidized-bed fast pyrolysis of biomass, a fluid dynamics based modelling effort publication-title: Energy Procedia – volume: 59 start-page: 3265 year: 2013 end-page: 3275 ident: bib143 article-title: Filtered two‐fluid models of fluidized gas‐particle flows: new constitutive relations publication-title: AIChE J. – volume: 44 start-page: 2251 year: 2003 end-page: 2275 ident: bib163 article-title: Modeling for pyrolysis of solid particle: kinetics and heat transfer effects publication-title: Energy Convers. Manag. – volume: 234 start-page: 707 year: 2018 end-page: 722 ident: bib184 article-title: Devolatilization of millimeter-sized biomass particles at high temperatures and heating rates. Part 2: modeling and validation for thermally-thin and -thick regimes publication-title: Fuel – volume: 255 year: 2019 ident: bib78 article-title: Coarse-grained CFD-DEM simulation of biomass gasification in a fluidized bed reactor publication-title: Fuel – volume: 102 start-page: 437 year: 2011 end-page: 451 ident: bib3 article-title: Life cycle assessment of bioenergy systems: state of the art and future challenges publication-title: Bioresour. Technol. – volume: 265 start-page: 2 year: 2014 end-page: 12 ident: bib139 article-title: Reprint of “CFD simulations of circulating fluidized bed risers, part I: Grid study” publication-title: Powder Technol. – volume: 96 start-page: 71 year: 2003 end-page: 80 ident: bib141 article-title: CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient publication-title: Chem. Eng. J. – volume: 100 start-page: 3134 year: 2009 end-page: 3139 ident: bib164 article-title: Modelling of pyrolysis of large wood particles publication-title: Bioresour. Technol. – volume: 62 start-page: 246 year: 2007 end-page: 255 ident: bib89 article-title: Numerical study of segregation using a new drag force correlation for polydisperse systems derived from lattice-Boltzmann simulations publication-title: Chem. Eng. Sci. – volume: 53 start-page: 12129 year: 2014 end-page: 12142 ident: bib102 article-title: Simulation of bed dynamics and primary products from fast pyrolysis of biomass: steam compared to nitrogen as a fluidizing agent publication-title: Ind. Eng. Chem. Res. – volume: 112 start-page: 808 year: 2013 end-page: 817 ident: bib176 article-title: A computationally efficient particle submodel for CFD-simulations of fixed-bed conversion publication-title: Appl. Energy – volume: 126 start-page: 97 year: 1997 end-page: 137 ident: bib183 article-title: A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics publication-title: Combust. Sci. Technol. – volume: 64 start-page: 3437 year: 2009 end-page: 3447 ident: bib38 article-title: Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows publication-title: Chem. Eng. Sci. – volume: 246 year: 2021 ident: bib145 article-title: Coupling Artificial Neural Network with EMMS drag for simulation of dense fluidized beds publication-title: Chem. Eng. Sci. – volume: 129 start-page: 30 year: 2002 end-page: 46 ident: bib172 article-title: Combustion of wood particles - a particle model for Eulerian calculations publication-title: Combust. Flame. – volume: 274 start-page: 239 year: 2015 end-page: 249 ident: bib187 article-title: CFD modeling of gas-solids flow in a large scale circulating fluidized bed furnace publication-title: Powder Technol. – volume: 9 year: 2021 ident: bib84 article-title: Reactive MP-PIC investigation of heat and mass transfer behaviors during the biomass pyrolysis in a fluidized bed reactor publication-title: J. Environ. Chem. Eng. – volume: 171 start-page: 244 year: 2017 end-page: 255 ident: bib43 article-title: Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors publication-title: Chem. Eng. Sci. – volume: 54 start-page: 4084 year: 2015 end-page: 4094 ident: bib137 article-title: Computational modeling of biomass thermochemical conversion in fluidized beds: particle density variation and size distribution publication-title: Ind. Eng. Chem. Res. – volume: 248 year: 2022 ident: bib22 article-title: MFiX based multi-scale CFD simulations of biomass fast pyrolysis: a review publication-title: Chem. Eng. Sci. – volume: 28 start-page: 6398 year: 2014 end-page: 6406 ident: bib167 article-title: Modeling and experimental studies of the effects of volume shrinkage on the pyrolysis of waste wood sphere publication-title: Energy Fuels – volume: 326 start-page: 47 year: 2017 end-page: 57 ident: bib37 article-title: A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization publication-title: Chem. Eng. J. – volume: 48 start-page: 141 year: 1952 end-page: 148 ident: bib154 article-title: Evaporation from drops - part 1 publication-title: Chem. Eng. Prog. – volume: 146 start-page: 1153 year: 2020 end-page: 1165 ident: bib170 article-title: Pyrolysis of single biomass particle using three-dimensional Computational Fluid Dynamics modelling publication-title: Renew. Energy – year: 2019 ident: bib74 article-title: Eulerian-Lagrangian simulation of air-steam biomass gasification in a three-dimensional bubbling fluidized gasifier publication-title: Energy – volume: 221 start-page: 625 year: 2016 end-page: 635 ident: bib75 article-title: Simulation of biomass-steam gasification in fluidized bed reactors: model setup, comparisons and preliminary predictions publication-title: Bioresour. Technol. – volume: 5 start-page: 2196 year: 2017 end-page: 2204 ident: bib113 article-title: Numerical Study on Fast Pyrolysis of Lignocellulosic Biomass with Varying Column Size of Bubbling Fluidized Bed publication-title: ACS Sustain. Chem. Eng. – volume: 44 start-page: 6448 year: 2019 end-page: 6460 ident: bib79 article-title: Biomass steam gasification in bubbling fluidized bed for higher-H2 syngas: CFD simulation with coarse grain model publication-title: Int. J. Hydrog. Energy – volume: 131 start-page: 26 year: 2018 end-page: 36 ident: bib80 article-title: Hydrogen production by biomass gasification in a supercritical water fluidized bed reactor: a CFD-DEM study publication-title: J. Supercrit. Fluids – volume: 26 start-page: 5759 year: 2012 end-page: 5768 ident: bib130 article-title: Mathematical modeling of coal gasification processes in a well-stirred reactor: effects of devolatilization and moisture content publication-title: Energy Fuels – volume: 34 start-page: 47 year: 2008 end-page: 90 ident: bib45 article-title: Modeling chemical and physical processes of wood and biomass pyrolysis publication-title: Prog. Energy Combust. Sci. – volume: 7 start-page: 307 year: 2009 end-page: 316 ident: bib69 article-title: Euler-Lagrange/DEM simulation of wood gasification in a bubbling fluidized bed reactor publication-title: Particuology – volume: 44 start-page: 2861 year: 1989 end-page: 2869 ident: bib162 article-title: A model for pyrolysis of wet wood publication-title: Chem. Eng. Sci. – volume: 53 start-page: 41 year: 2016 end-page: 79 ident: bib14 article-title: Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis publication-title: Prog. Energy Combust. Sci. – volume: 284 start-page: 159 year: 2015 end-page: 169 ident: bib42 article-title: Validation of filtered two-fluid models for gas-particle flows against experimental data from bubbling fluidized bed publication-title: Powder Technol. – volume: 333 start-page: 304 year: 2018 end-page: 316 ident: bib76 article-title: Impact of operating parameters on biomass gasification in a fluidized bed reactor: an Eulerian-Lagrangian approach publication-title: Powder Technol. – year: 2021 ident: bib85 article-title: Comparison between two Eulerian-Lagrangian methods: CFD-DEM and MPPIC on the biomass gasification in a fluidized bed publication-title: Biomass-.-. Convers. Biorefinery – volume: 35 start-page: 10035 year: 2021 end-page: 10050 ident: bib87 article-title: Impact of the reactor structure on biomass pyrolysis in fluidized-bed reactors: a coarse-grained CFD-DEM study publication-title: Energy Fuels – volume: 153 start-page: 58 year: 2016 end-page: 74 ident: bib148 article-title: CFD optimization of feedstock injection angle in a FCC riser publication-title: Chem. Eng. Sci. – reference: (accessed September 18, 2018). – volume: 66 start-page: 2440 year: 2011 end-page: 2452 ident: bib93 article-title: A CFD model for biomass fast pyrolysis in fluidized-bed reactors publication-title: Chem. Eng. Sci. – reference: Y. Igci, S. Pannala, S. Benyahia, S. Sundaresan, Validation studies on filtered model equations for gas-particle flows in risers Validation studies on filtered model equations for gas-particle flows in risers by, 2011. 2094–2103. – volume: 41 start-page: 267 year: 1962 end-page: 274 ident: bib47 article-title: The kinetics of the evolution of volatile products from coal publication-title: Fuel – volume: 121 start-page: 36 year: 2012 end-page: 46 ident: bib71 article-title: Simulation on gasification of forestry residues in fluidized beds by Eulerian-Lagrangian approach publication-title: Bioresour. Technol. – volume: 419 year: 2021 ident: bib58 article-title: Simulations of biomass pyrolysis using glued-sphere CFD-DEM with 3-D intra-particle models publication-title: Chem. Eng. J. – volume: 59 start-page: 1108 year: 2013 end-page: 1117 ident: bib186 article-title: 3-D full-loop simulation of an industrial-scale circulating fluidized-bed boiler publication-title: AIChE J. – volume: 93 start-page: 567 year: 2012 end-page: 575 ident: bib178 article-title: Effects of pyrolysis conditions on the heating rate in biomass particles and applicability of TGA kinetic parameters in particle thermal conversion modelling publication-title: Fuel – reference: . – volume: 260 year: 2020 ident: bib54 article-title: Experimental and modelling study on the influence of wood type, density, water content, and temperature on wood devolatilization publication-title: Fuel – volume: 254 year: 2019 ident: bib185 article-title: Biomass pyrolysis kinetics in a fluidized bed reactor: measurements and plausibility verification for reaction conditions publication-title: Fuel – volume: 99 start-page: 305 year: 2013 end-page: 313 ident: bib97 article-title: Development of a generalized numerical framework for simulating biomass fast pyrolysis in fluidized-bed reactors publication-title: Chem. Eng. Sci. – volume: 28 start-page: 5523 year: 2014 end-page: 5533 ident: bib92 article-title: Three-dimensional eulerian-eulerian modeling of gaseous pollutant emissions from circulating fluidized-bed combustors publication-title: Energy Fuels – volume: 14 start-page: 473 year: 1988 end-page: 481 ident: bib28 article-title: Simulation of granular layer inversion in liquid fluidized beds publication-title: Int. J. Multiph. Flow. – volume: 13 year: 2020 ident: bib82 article-title: CFD-DEM simulation of biomass pyrolysis in fluidized-bed reactor with a multistep kinetic scheme publication-title: Energies – reference: J. Chen, G. Yu, B. Dai, D. Liu, L. Zhao, CFD Simulation of a Bubbling Fluidized Bed Gasifier Using a Bubble-Based Drag Model, (2014). – volume: 36 start-page: 109 year: 2010 end-page: 118 ident: bib25 article-title: A review of multiscale CFD for gas-solid CFB modeling publication-title: Int. J. Multiph. Flow. – volume: 97 start-page: 757 year: 2012 end-page: 769 ident: bib34 article-title: Experimental validation and CFD modeling study of biomass fast pyrolysis in fluidized-bed reactors publication-title: Fuel – volume: 93 start-page: 1091 year: 2016 end-page: 1104 ident: bib66 article-title: Semi-resolved modeling of heat-up, drying and pyrolysis of biomass solid particles as a new feature in XDEM publication-title: Appl. Therm. Eng. – volume: 54 start-page: 1431 year: 2008 end-page: 1448 ident: bib40 article-title: Filtered two-fluid models for fluidized gas-particle suspensions publication-title: AIChE J. – volume: 287 start-page: 29 year: 2016 end-page: 42 ident: bib146 article-title: CFD simulation of gas-solid two-phase flow and mixing in a FCC riser with feedstock injection publication-title: Powder Technol. – volume: 262 start-page: 96 year: 2014 ident: 10.1016/j.jaap.2022.105433_bib39 article-title: Modeling effects of interphase transport coefficients on biomass pyrolysis in fluidized beds publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.04.062 – volume: 117 start-page: 176 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib48 article-title: Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized beds publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2015.11.015 – volume: 41 start-page: 267 year: 1962 ident: 10.1016/j.jaap.2022.105433_bib47 article-title: The kinetics of the evolution of volatile products from coal publication-title: Fuel – volume: 36 start-page: 48 year: 2012 ident: 10.1016/j.jaap.2022.105433_bib17 article-title: CFD simulation with experiments in a dual circulating fluidized bed gasifier publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2011.07.005 – volume: 95 start-page: 279 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib166 article-title: Extension of apparent devolatilization kinetics from thermally thin to thermally thick particles in zero dimensions for woody biomass publication-title: Energy doi: 10.1016/j.energy.2015.11.025 – volume: 167 start-page: 158 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib51 article-title: Application of a detailed biomass pyrolysis kinetic scheme to hardwood and softwood torrefaction publication-title: Fuel doi: 10.1016/j.fuel.2015.11.062 – volume: 117 start-page: 416 year: 2014 ident: 10.1016/j.jaap.2022.105433_bib135 article-title: A drag model for filtered Euler–Lagrange simulations of clustered gas–particle suspensions publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.07.011 – volume: 143 start-page: 341 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib149 article-title: Speeding up CFD simulation of fluidized bed reactor for MTO by coupling CRE model publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.01.010 – volume: 34 start-page: 15557 year: 2020 ident: 10.1016/j.jaap.2022.105433_bib10 article-title: A review of recent advances in biomass pyrolysis publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c03107 – volume: 129 start-page: 30 year: 2002 ident: 10.1016/j.jaap.2022.105433_bib172 article-title: Combustion of wood particles - a particle model for Eulerian calculations publication-title: Combust. Flame. doi: 10.1016/S0010-2180(01)00371-6 – volume: 153 start-page: 58 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib148 article-title: CFD optimization of feedstock injection angle in a FCC riser publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.07.003 – year: 2020 ident: 10.1016/j.jaap.2022.105433_bib32 article-title: Heat-transfer-corrected isothermal model for devolatilization of thermally thick biomass particles publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c01155 – volume: 34 start-page: 47 year: 2008 ident: 10.1016/j.jaap.2022.105433_bib45 article-title: Modeling chemical and physical processes of wood and biomass pyrolysis publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2006.12.001 – volume: 117 start-page: 704 year: 2014 ident: 10.1016/j.jaap.2022.105433_bib52 article-title: Computational fluid dynamics modeling of biomass fast pyrolysis in a fluidized bed reactor, using a comprehensive chemistry scheme publication-title: Fuel doi: 10.1016/j.fuel.2013.09.009 – volume: 333 start-page: 304 year: 2018 ident: 10.1016/j.jaap.2022.105433_bib76 article-title: Impact of operating parameters on biomass gasification in a fluidized bed reactor: an Eulerian-Lagrangian approach publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.04.027 – volume: 149 start-page: 417 year: 2009 ident: 10.1016/j.jaap.2022.105433_bib29 article-title: CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors: Modelling the impact of biomass shrinkage publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.01.036 – volume: 66 start-page: 4624 year: 2011 ident: 10.1016/j.jaap.2022.105433_bib36 article-title: Eulerian simulation of gas-solid flows with particles of Geldart groups A, B and D using EMMS-based meso-scale model publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.06.026 – volume: 508 start-page: 12067 year: 2019 ident: 10.1016/j.jaap.2022.105433_bib115 article-title: Eulerian multi-fluid simulation of biomass gasification in circulating fluidized beds: effects of equivalence ratio publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/508/1/012067 – volume: 102 start-page: 437 year: 2011 ident: 10.1016/j.jaap.2022.105433_bib3 article-title: Life cycle assessment of bioenergy systems: state of the art and future challenges publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.08.010 – volume: 216 year: 2021 ident: 10.1016/j.jaap.2022.105433_bib60 article-title: Experimental and simulated study on fluidization characteristics of particle shrinkage in a multi-chamber fluidized bed for biomass fast pyrolysis publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2021.106799 – year: 2019 ident: 10.1016/j.jaap.2022.105433_bib74 article-title: Eulerian-Lagrangian simulation of air-steam biomass gasification in a three-dimensional bubbling fluidized gasifier publication-title: Energy – volume: 151 start-page: 520 year: 2018 ident: 10.1016/j.jaap.2022.105433_bib121 article-title: Comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substrates publication-title: Energy doi: 10.1016/j.energy.2018.03.090 – volume: 164 start-page: 329 year: 2018 ident: 10.1016/j.jaap.2022.105433_bib6 article-title: Fuel flexible gasification with an advanced 100 kW dual fluidized bed steam gasification pilot plant publication-title: Energy doi: 10.1016/j.energy.2018.08.146 – volume: 129 start-page: 1358 year: 2018 ident: 10.1016/j.jaap.2022.105433_bib107 article-title: CFD simulation of biomass steam gasification in a fluidized bed based on a multi-composition multi-step kinetic model publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.10.122 – volume: 36 start-page: 70 year: 2018 ident: 10.1016/j.jaap.2022.105433_bib136 article-title: Influence of drag laws on pressure and bed material recirculation rate in a cold flow model of an 8 MW dual fluidized bed system by means of CPFD publication-title: Particuology doi: 10.1016/j.partic.2017.04.009 – volume: 221 year: 2021 ident: 10.1016/j.jaap.2022.105433_bib12 article-title: A review on the selection of raw materials and reactors for biomass fast pyrolysis in China publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2021.106919 – volume: 109 start-page: 248 year: 2017 ident: 10.1016/j.jaap.2022.105433_bib120 article-title: An experimental and numerical study on the Miscanthus gasification by using a pilot scale gasifier, Renew publication-title: Energy – volume: 100 start-page: 3134 year: 2009 ident: 10.1016/j.jaap.2022.105433_bib164 article-title: Modelling of pyrolysis of large wood particles publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.01.007 – volume: 53 start-page: 5554 year: 2014 ident: 10.1016/j.jaap.2022.105433_bib109 article-title: Effect of char combustion product distribution coefficient on the CFD modeling of biomass gasification in a circulating fluidized bed publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie404239u – volume: 133 start-page: 51 year: 2015 ident: 10.1016/j.jaap.2022.105433_bib156 article-title: A CFD study of biomass pyrolysis in a downer reactor equipped with a novel gas-solid separator-II thermochemical performance and products publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2015.01.002 – volume: 5 start-page: 2783 year: 2017 ident: 10.1016/j.jaap.2022.105433_bib7 article-title: Overview of computational fluid dynamics simulation of reactor-scale biomass pyrolysis publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b02634 – volume: 421 year: 2021 ident: 10.1016/j.jaap.2022.105433_bib41 article-title: Investigating biomass composition and size effects on fast pyrolysis using global sensitivity analysis and CFD simulations publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127789 – volume: 89 start-page: 2903 year: 2010 ident: 10.1016/j.jaap.2022.105433_bib90 article-title: An Eulerian modeling approach of wood gasification in a bubbling fluidized bed reactor using char as bed material publication-title: Fuel doi: 10.1016/j.fuel.2010.03.034 – ident: 10.1016/j.jaap.2022.105433_bib26 – volume: 419 year: 2021 ident: 10.1016/j.jaap.2022.105433_bib58 article-title: Simulations of biomass pyrolysis using glued-sphere CFD-DEM with 3-D intra-particle models publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129564 – volume: 89 start-page: 31 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib72 article-title: Optimization of a 50 MW bubbling fluidized bed biomass combustion chamber by means of computational particle fluid dynamics publication-title: Biomass-.-. Bioenergy doi: 10.1016/j.biombioe.2016.02.020 – volume: 71 start-page: 1 year: 2019 ident: 10.1016/j.jaap.2022.105433_bib13 article-title: The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: review of the state of art and future research directions publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2018.10.006 – volume: 66 start-page: 2440 year: 2011 ident: 10.1016/j.jaap.2022.105433_bib93 article-title: A CFD model for biomass fast pyrolysis in fluidized-bed reactors publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.03.010 – ident: 10.1016/j.jaap.2022.105433_bib105 doi: 10.1021/ef501134e – ident: 10.1016/j.jaap.2022.105433_bib142 doi: 10.1016/j.ces.2013.05.050 – volume: 64 start-page: 3437 year: 2009 ident: 10.1016/j.jaap.2022.105433_bib38 article-title: Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.04.024 – volume: 33–34 start-page: 190 year: 2012 ident: 10.1016/j.jaap.2022.105433_bib57 article-title: CFD modeling of space-time evolution of fast pyrolysis products in a bench-scale fluidized-bed reactor publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.09.034 – volume: 40 start-page: 9885 year: 2015 ident: 10.1016/j.jaap.2022.105433_bib4 article-title: Design of an efficient, high purity hydrogen generation apparatus and method for a sustainable, closed clean energy cycle publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.05.111 – volume: 161 start-page: 199 year: 2017 ident: 10.1016/j.jaap.2022.105433_bib61 article-title: Modeling of biomass pyrolysis in a bubbling fluidized bed reactor: Impact of intra-particle heat conduction publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.09.015 – volume: 43 year: 2015 ident: 10.1016/j.jaap.2022.105433_bib138 article-title: Effect of different gas-solid drag models in a high-flux circulating fluidized bed riser publication-title: Chem. Eng. Trans. – volume: 58 start-page: 3777 year: 2003 ident: 10.1016/j.jaap.2022.105433_bib152 article-title: Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(03)00238-0 – volume: 269 start-page: 384 year: 2018 ident: 10.1016/j.jaap.2022.105433_bib19 article-title: Investigation on biomass steam gasification in a dual fluidized bed reactor with the granular kinetic theory publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.08.099 – volume: 213 start-page: 333 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib119 article-title: Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.02.042 – volume: 264 start-page: 99 year: 2015 ident: 10.1016/j.jaap.2022.105433_bib134 article-title: CFD modeling and simulation of industrial scale olefin polymerization fluidized bed reactors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.11.058 – volume: 58 start-page: 1404 year: 2019 ident: 10.1016/j.jaap.2022.105433_bib77 article-title: Computational fluid dynamics/discrete element method investigation on the biomass fast pyrolysis: the influences of shrinkage patterns and operating parameters publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b05279 – volume: 41 start-page: 11974 year: 2015 ident: 10.1016/j.jaap.2022.105433_bib30 article-title: CFD studies on biomass gasification in a pilot-scale dual fluidized-bed system publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.04.205 – volume: 217 year: 2020 ident: 10.1016/j.jaap.2022.105433_bib81 article-title: CFD-DEM coupled with thermochemical sub-models for biomass gasification: validation and sensitivity analysis publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.115550 – volume: 95 start-page: 96 year: 2012 ident: 10.1016/j.jaap.2022.105433_bib175 article-title: A CFD model for thermal conversion of thermally thick biomass particles publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2011.11.021 – volume: 96 start-page: 71 year: 2003 ident: 10.1016/j.jaap.2022.105433_bib141 article-title: CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2003.08.006 – volume: 18 start-page: 1021 year: 2004 ident: 10.1016/j.jaap.2022.105433_bib161 article-title: Effects of intraparticle heat and mass transfer on biomass devolatilization: experimental results and model predictions publication-title: Energy Fuels doi: 10.1021/ef0340357 – volume: 148 start-page: 506 year: 2017 ident: 10.1016/j.jaap.2022.105433_bib117 article-title: Modelling of coal/biomass co-gasification in internal circulating fluidized bed using kinetic theory of granular mixture publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.05.080 – volume: 63 start-page: 204 year: 2017 ident: 10.1016/j.jaap.2022.105433_bib46 article-title: Numerical models for thermochemical degradation of thermally thick woody biomass, and their application in domestic wood heating appliances and grate furnaces publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2017.07.004 – volume: 29 start-page: 407 year: 2002 ident: 10.1016/j.jaap.2022.105433_bib53 article-title: Modeling biomass devolatilization using the chemical percolation devolatilization model for the main components publication-title: Proc. Combust. Inst. doi: 10.1016/S1540-7489(02)80054-2 – volume: 13 year: 2020 ident: 10.1016/j.jaap.2022.105433_bib82 article-title: CFD-DEM simulation of biomass pyrolysis in fluidized-bed reactor with a multistep kinetic scheme publication-title: Energies doi: 10.3390/en13205358 – volume: 14 start-page: 463 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib116 article-title: CFD modeling of algae flash pyrolysis in the batch fluidized bed reactor including heat carrier particles publication-title: Int. J. Chem. React. Eng. doi: 10.1515/ijcre-2014-0185 – ident: 10.1016/j.jaap.2022.105433_bib133 doi: 10.1021/ie2007278 – volume: 26 start-page: 5759 year: 2012 ident: 10.1016/j.jaap.2022.105433_bib130 article-title: Mathematical modeling of coal gasification processes in a well-stirred reactor: effects of devolatilization and moisture content publication-title: Energy Fuels doi: 10.1021/ef3008745 – ident: 10.1016/j.jaap.2022.105433_bib31 doi: 10.1002/cjce.23180 – volume: 44 start-page: 6448 year: 2019 ident: 10.1016/j.jaap.2022.105433_bib79 article-title: Biomass steam gasification in bubbling fluidized bed for higher-H2 syngas: CFD simulation with coarse grain model publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.01.146 – volume: 64 start-page: 1505 year: 1985 ident: 10.1016/j.jaap.2022.105433_bib129 article-title: Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle publication-title: Fuel doi: 10.1016/0016-2361(85)90364-3 – volume: 264 year: 2020 ident: 10.1016/j.jaap.2022.105433_bib180 article-title: The influence of size and morphology on devolatilization of biomass particles publication-title: Fuel doi: 10.1016/j.fuel.2019.116755 – year: 1991 ident: 10.1016/j.jaap.2022.105433_bib95 – volume: 160 start-page: 417 year: 2013 ident: 10.1016/j.jaap.2022.105433_bib173 article-title: CFD simulations of biofuel bed conversion: a submodel for the drying and devolatilization of thermally thick wood particles publication-title: Combust. Flame. doi: 10.1016/j.combustflame.2012.10.005 – volume: 58 start-page: 344 year: 2013 ident: 10.1016/j.jaap.2022.105433_bib101 article-title: An Euler-Euler approach to modeling biomass fast pyrolysis in fluidized-bed reactors - focusing on the gas phase publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.04.054 – volume: 33 start-page: 756 year: 2014 ident: 10.1016/j.jaap.2022.105433_bib99 article-title: Assessment of devolatilization schemes in predicting product yields of biomass fast pyrolysis publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.11922 – volume: 186 start-page: 574 year: 2014 ident: 10.1016/j.jaap.2022.105433_bib128 article-title: A comprehensive mathematical model for biomass combustion publication-title: Combust. Sci. Technol. doi: 10.1080/00102202.2014.883255 – volume: 59 start-page: 3265 year: 2013 ident: 10.1016/j.jaap.2022.105433_bib143 article-title: Filtered two‐fluid models of fluidized gas‐particle flows: new constitutive relations publication-title: AIChE J. doi: 10.1002/aic.14130 – volume: 112 start-page: 273 year: 2000 ident: 10.1016/j.jaap.2022.105433_bib157 article-title: A computational investigation of transient heat transfer in pneumatic transport of granular particles - ScienceDirect publication-title: Powder Technol. doi: 10.1016/S0032-5910(00)00302-8 – volume: 10 start-page: 13104 year: 2018 ident: 10.1016/j.jaap.2022.105433_bib108 article-title: Detailed simulations of fast pyrolysis of biomass in a fluidized bed reactor publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.5003889 – volume: 63 start-page: 4218 year: 2008 ident: 10.1016/j.jaap.2022.105433_bib55 article-title: CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors, Part A: Eulerian computation of momentum transport in bubbling fluidised beds publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.05.045 – volume: 141 start-page: 236 year: 2019 ident: 10.1016/j.jaap.2022.105433_bib62 article-title: CFD modeling of the effects of particle shrinkage and intra-particle heat conduction on biomass fast pyrolysis, Renew publication-title: Energy – volume: 185 start-page: 1739 year: 2014 ident: 10.1016/j.jaap.2022.105433_bib98 article-title: BIOTC: An open-source CFD code for simulating biomass fast pyrolysis publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.02.012 – volume: 160 start-page: 489 year: 2015 ident: 10.1016/j.jaap.2022.105433_bib65 article-title: Three-dimensional full-loop simulation of a dual fluidized-bed biomass gasifier publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.09.065 – volume: 21 start-page: 467 year: 1978 ident: 10.1016/j.jaap.2022.105433_bib155 article-title: Transfer of heat or mass to particles in fixed and fluidised beds publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/0017-9310(78)90080-7 – volume: 99 start-page: 305 year: 2013 ident: 10.1016/j.jaap.2022.105433_bib97 article-title: Development of a generalized numerical framework for simulating biomass fast pyrolysis in fluidized-bed reactors publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.06.017 – volume: 387 year: 2020 ident: 10.1016/j.jaap.2022.105433_bib177 article-title: Grid-independent Eulerian-Lagrangian approaches for simulations of solid fuel particle combustion publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123964 – volume: 93 start-page: 1091 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib66 article-title: Semi-resolved modeling of heat-up, drying and pyrolysis of biomass solid particles as a new feature in XDEM publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.10.033 – volume: 52 start-page: 11354 year: 2013 ident: 10.1016/j.jaap.2022.105433_bib150 article-title: 3D numerical simulation of a large scale mto fluidized bed reactor publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie303467k – volume: 53 start-page: 41 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib14 article-title: Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2015.10.002 – volume: 168 start-page: 803 year: 2011 ident: 10.1016/j.jaap.2022.105433_bib18 article-title: Solid circulation and loop-seal characteristics of a dual circulating fluidized bed: experiments and CFD simulation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.01.041 – volume: 265 start-page: 2 year: 2014 ident: 10.1016/j.jaap.2022.105433_bib139 article-title: Reprint of “CFD simulations of circulating fluidized bed risers, part I: Grid study” publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.04.008 – volume: 144 start-page: 224 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib144 article-title: Simulating wet gas – solid fl uidized beds using coarse-grid CFD-DEM publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.01.017 – volume: 9 year: 2021 ident: 10.1016/j.jaap.2022.105433_bib84 article-title: Reactive MP-PIC investigation of heat and mass transfer behaviors during the biomass pyrolysis in a fluidized bed reactor publication-title: J. Environ. Chem. Eng. – volume: 54 start-page: 1431 year: 2008 ident: 10.1016/j.jaap.2022.105433_bib40 article-title: Filtered two-fluid models for fluidized gas-particle suspensions publication-title: AIChE J. doi: 10.1002/aic.11481 – volume: 58 start-page: 1720 year: 2019 ident: 10.1016/j.jaap.2022.105433_bib59 article-title: Simulation of biomass pyrolysis in a fluidized bed reactor using thermally thick treatment publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b04778 – volume: 66 start-page: 281 year: 2015 ident: 10.1016/j.jaap.2022.105433_bib103 article-title: Comprehensive secondary pyrolysis in fluidized-bed fast pyrolysis of biomass, a fluid dynamics based modelling effort publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.02.057 – volume: 445 start-page: 151 year: 2001 ident: 10.1016/j.jaap.2022.105433_bib140 article-title: The role of meso-scale structures in rapid gas–solid flows publication-title: J. Fluid Mech. doi: 10.1017/S0022112001005663 – start-page: 490 year: 2010 ident: 10.1016/j.jaap.2022.105433_bib91 article-title: A comparative study of euler-euler and euler-lagrange modelling of wood gasification in a dense fluidized bed publication-title: Proc. 20th Int. Conf. Fluid. Bed Combust. – start-page: 6544 year: 2015 ident: 10.1016/j.jaap.2022.105433_bib131 article-title: Extractives extend the applicability of multistep kinetic scheme of biomass pyrolysis publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b01753 – volume: 36 start-page: 444 year: 2010 ident: 10.1016/j.jaap.2022.105433_bib8 article-title: Modeling of biomass gasification in fluidized bed publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2009.12.002 – volume: 43 start-page: 5548 year: 2004 ident: 10.1016/j.jaap.2022.105433_bib132 article-title: Simulation of heterogeneous structure in a circulating fluidized-bed riser by combining the two-fluid model with the EMMS approach publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie049773c – ident: 10.1016/j.jaap.2022.105433_bib151 doi: 10.1016/j.ces.2016.01.006 – volume: 215 year: 2020 ident: 10.1016/j.jaap.2022.105433_bib23 article-title: Continuum theory for dense gas-solid flow: a state-of-the-art review publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.115428 – volume: 52 start-page: 11344 year: 2013 ident: 10.1016/j.jaap.2022.105433_bib56 article-title: A multiscale coupling framework for modeling of large-size biomass particle gasification in fluidized beds publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie400420p – volume: 62 start-page: 208 year: 2007 ident: 10.1016/j.jaap.2022.105433_bib35 article-title: Simulation of gas-solid two-phase flow by a multi-scale CFD approach-of the EMMS model to the sub-grid level publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.08.017 – volume: 86 start-page: 169 year: 2007 ident: 10.1016/j.jaap.2022.105433_bib127 article-title: Mathematical modelling of slow pyrolysis of segregated solid wastes in a packed-bed pyrolyser publication-title: Fuel doi: 10.1016/j.fuel.2006.07.012 – volume: 428 year: 2022 ident: 10.1016/j.jaap.2022.105433_bib88 article-title: Particle behaviours of biomass gasification in a bubbling fluidized bed publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131847 – volume: 164 start-page: 51 year: 2017 ident: 10.1016/j.jaap.2022.105433_bib106 article-title: CFD modelling of particle shrinkage in a fluidized bed for biomass fast pyrolysis with quadrature method of moment publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2017.04.012 – volume: 155 start-page: 719 year: 2015 ident: 10.1016/j.jaap.2022.105433_bib20 article-title: Multi-scale simulation of chemical looping combustion in dual circulating fluidized bed publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.05.109 – volume: 159 start-page: 1146 year: 2020 ident: 10.1016/j.jaap.2022.105433_bib83 article-title: CFD-DEM study of biomass gasification in a fluidized bed reactor: effects of key operating parameters publication-title: Renew. Energy doi: 10.1016/j.renene.2020.06.001 – volume: 169 start-page: 299 year: 2011 ident: 10.1016/j.jaap.2022.105433_bib168 article-title: Numerical study of the conversion time of single pyrolyzing biomass particles at high heating conditions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.02.073 – volume: 353 start-page: 110 year: 2019 ident: 10.1016/j.jaap.2022.105433_bib179 article-title: Modelling the combustion of thermally thick biomass particles publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.05.011 – volume: 274 start-page: 239 year: 2015 ident: 10.1016/j.jaap.2022.105433_bib187 article-title: CFD modeling of gas-solids flow in a large scale circulating fluidized bed furnace publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.01.019 – volume: 8 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib118 article-title: Analysis of biomass gasification in bubbling fluidized bed with two-fluid model publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.4967717 – volume: 4 start-page: 5456 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib9 article-title: High-resolution particle-scale simulation of biomass pyrolysis publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b01020 – volume: 7 start-page: 307 year: 2009 ident: 10.1016/j.jaap.2022.105433_bib69 article-title: Euler-Lagrange/DEM simulation of wood gasification in a bubbling fluidized bed reactor publication-title: Particuology doi: 10.1016/j.partic.2009.04.004 – year: 2021 ident: 10.1016/j.jaap.2022.105433_bib85 article-title: Comparison between two Eulerian-Lagrangian methods: CFD-DEM and MPPIC on the biomass gasification in a fluidized bed publication-title: Biomass-.-. Convers. Biorefinery doi: 10.1007/s13399-021-01384-2 – volume: 66 start-page: 36 year: 2014 ident: 10.1016/j.jaap.2022.105433_bib2 article-title: Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2013.11.016 – start-page: 306 year: 2008 ident: 10.1016/j.jaap.2022.105433_bib126 article-title: Combustion of a single particle of biomass combustion of a single particle of biomass publication-title: Energy – volume: 14 start-page: 1 year: 2021 ident: 10.1016/j.jaap.2022.105433_bib182 article-title: Determination of zero dimensional, apparent devolatilization kinetics for biomass particles at suspension firing conditions publication-title: Energies doi: 10.3390/en14041018 – volume: 15 start-page: 2262 year: 2011 ident: 10.1016/j.jaap.2022.105433_bib1 article-title: A review on biomass as a fuel for boilers publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2011.02.015 – volume: 278 year: 2020 ident: 10.1016/j.jaap.2022.105433_bib171 article-title: A detailed pyrolysis model for a thermally large biomass particle publication-title: Fuel doi: 10.1016/j.fuel.2020.118397 – volume: 44 start-page: 2251 year: 2003 ident: 10.1016/j.jaap.2022.105433_bib163 article-title: Modeling for pyrolysis of solid particle: kinetics and heat transfer effects publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(02)00252-2 – volume: 88 start-page: 322 year: 2015 ident: 10.1016/j.jaap.2022.105433_bib67 article-title: Three-dimensional modeling of olive cake combustion in CFB publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.10.086 – volume: 256 start-page: 324 year: 2014 ident: 10.1016/j.jaap.2022.105433_bib16 article-title: Simulation and experimental verification of a hydrodynamic model for a dual fluidized Bed gasifier publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.01.087 – volume: 62 start-page: 246 year: 2007 ident: 10.1016/j.jaap.2022.105433_bib89 article-title: Numerical study of segregation using a new drag force correlation for polydisperse systems derived from lattice-Boltzmann simulations publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.08.054 – volume: 67 year: 2021 ident: 10.1016/j.jaap.2022.105433_bib169 article-title: Open source implementation of glued sphere discrete element method and nonspherical biomass fast pyrolysis simulation publication-title: AIChE J. doi: 10.1002/aic.17211 – volume: 115 start-page: 385 year: 2014 ident: 10.1016/j.jaap.2022.105433_bib68 article-title: A two dimensional Euler-Lagrangian model of wood gasification in a charcoal bed - Part I: model description and base scenario publication-title: Fuel doi: 10.1016/j.fuel.2013.06.049 – volume: 158 year: 2019 ident: 10.1016/j.jaap.2022.105433_bib70 article-title: Simulation of combustion of sesame and broad bean stalks in the freeboard zone inside a pilot-scale bubbling fluidized bed combustor using CFD modeling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.113767 – ident: 10.1016/j.jaap.2022.105433_bib11 – volume: 284 start-page: 159 year: 2015 ident: 10.1016/j.jaap.2022.105433_bib42 article-title: Validation of filtered two-fluid models for gas-particle flows against experimental data from bubbling fluidized bed publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.06.028 – volume: 36 start-page: 109 year: 2010 ident: 10.1016/j.jaap.2022.105433_bib25 article-title: A review of multiscale CFD for gas-solid CFB modeling publication-title: Int. J. Multiph. Flow. doi: 10.1016/j.ijmultiphaseflow.2009.01.008 – volume: 326 start-page: 47 year: 2017 ident: 10.1016/j.jaap.2022.105433_bib37 article-title: A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.04.145 – volume: 109 start-page: 53 year: 2014 ident: 10.1016/j.jaap.2022.105433_bib64 article-title: Three dimensional kinetic modeling of fluidized bed biomass gasification publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.01.017 – volume: 191 year: 2020 ident: 10.1016/j.jaap.2022.105433_bib112 article-title: A hybrid SVR-PSO model to predict a CFD-based optimised bubbling fluidised bed pyrolysis reactor publication-title: Energy doi: 10.1016/j.energy.2019.116414 – volume: 98 start-page: 64 year: 2018 ident: 10.1016/j.jaap.2022.105433_bib5 article-title: Steam gasification of biomass in dual fluidized bed gasifiers: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.09.010 – volume: 221 start-page: 625 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib75 article-title: Simulation of biomass-steam gasification in fluidized bed reactors: model setup, comparisons and preliminary predictions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.09.089 – volume: 246 year: 2021 ident: 10.1016/j.jaap.2022.105433_bib145 article-title: Coupling Artificial Neural Network with EMMS drag for simulation of dense fluidized beds publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.117003 – volume: 22 start-page: 2826 year: 2008 ident: 10.1016/j.jaap.2022.105433_bib160 article-title: Comprehensive study of biomass particle combustion publication-title: Energy Fuels doi: 10.1021/ef800006z – volume: 135 start-page: 208 year: 2019 ident: 10.1016/j.jaap.2022.105433_bib123 article-title: Variation of Geldart classification in MFM simulation of biomass fast pyrolysis considering the decrease of particle density and diameter publication-title: Renew. Energy doi: 10.1016/j.renene.2018.11.097 – volume: 299 start-page: 235 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib24 article-title: CFD simulations of gas-liquid-solid flow in fluidized bed reactors - a review publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.05.024 – volume: 195 year: 2019 ident: 10.1016/j.jaap.2022.105433_bib15 article-title: Three dimensional full-loop CFD simulation of hydrodynamics in a pilot-scale dual fluidized bed system for biomass gasification publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2019.106146 – volume: 35 start-page: 10035 year: 2021 ident: 10.1016/j.jaap.2022.105433_bib87 article-title: Impact of the reactor structure on biomass pyrolysis in fluidized-bed reactors: a coarse-grained CFD-DEM study publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c01107 – volume: 155 start-page: 248 year: 2020 ident: 10.1016/j.jaap.2022.105433_bib124 article-title: Numerical simulations of fluidized bed fast pyrolysis of biomass through computational fluid dynamics publication-title: Renew. Energy doi: 10.1016/j.renene.2020.03.134 – volume: 131 start-page: 26 year: 2018 ident: 10.1016/j.jaap.2022.105433_bib80 article-title: Hydrogen production by biomass gasification in a supercritical water fluidized bed reactor: a CFD-DEM study publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2017.07.022 – volume: 168 start-page: 812 year: 2011 ident: 10.1016/j.jaap.2022.105433_bib147 article-title: Hydrodynamics of an FCC riser using energy minimization multiscale drag model publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.01.076 – volume: 66 start-page: 5541 year: 2011 ident: 10.1016/j.jaap.2022.105433_bib153 article-title: A bubble-based EMMS model for gas-solid bubbling fluidization publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.07.020 – volume: 154 year: 2021 ident: 10.1016/j.jaap.2022.105433_bib125 article-title: CFD modeling and experimental validation of biomass fast pyrolysis in a conical spouted bed reactor publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2020.105011 – volume: 287 start-page: 29 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib146 article-title: CFD simulation of gas-solid two-phase flow and mixing in a FCC riser with feedstock injection publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.09.005 – volume: 66 year: 2020 ident: 10.1016/j.jaap.2022.105433_bib158 article-title: Development of a filtered interphase heat transfer model based on fine-grid simulations of gas–solid flows publication-title: AIChE J. doi: 10.1002/aic.16755 – volume: 126 start-page: 97 year: 1997 ident: 10.1016/j.jaap.2022.105433_bib183 article-title: A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics publication-title: Combust. Sci. Technol. doi: 10.1080/00102209708935670 – volume: 219 year: 2021 ident: 10.1016/j.jaap.2022.105433_bib86 article-title: CFD-DEM simulation of air-blown gasification of biomass in a bubbling fluidized bed gasifier: effects of equivalence ratio and fluidization number publication-title: Energy doi: 10.1016/j.energy.2020.119533 – volume: 265 start-page: 23 year: 2014 ident: 10.1016/j.jaap.2022.105433_bib94 article-title: Reprint of: Multi-fluid CFD modeling of biomass gasification in polydisperse fluidized-bed gasifiers publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.04.006 – volume: 53 start-page: 12129 year: 2014 ident: 10.1016/j.jaap.2022.105433_bib102 article-title: Simulation of bed dynamics and primary products from fast pyrolysis of biomass: steam compared to nitrogen as a fluidizing agent publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie501996v – volume: 121 start-page: 36 year: 2012 ident: 10.1016/j.jaap.2022.105433_bib71 article-title: Simulation on gasification of forestry residues in fluidized beds by Eulerian-Lagrangian approach publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.06.080 – volume: 93 start-page: 567 year: 2012 ident: 10.1016/j.jaap.2022.105433_bib178 article-title: Effects of pyrolysis conditions on the heating rate in biomass particles and applicability of TGA kinetic parameters in particle thermal conversion modelling publication-title: Fuel doi: 10.1016/j.fuel.2011.09.054 – volume: 22 start-page: 4292 year: 2008 ident: 10.1016/j.jaap.2022.105433_bib49 article-title: Chemical Kinetics of Biomass Pyrolysis publication-title: Energy Fuels doi: 10.1021/ef800551t – ident: 10.1016/j.jaap.2022.105433_bib27 – volume: 30 start-page: 1118 year: 2012 ident: 10.1016/j.jaap.2022.105433_bib33 article-title: Sugarcane bagasse as raw material to Syngas production: 3D simulation of gasification process publication-title: 22nd Eur. Symp. Comput. Aided Process Eng. doi: 10.1016/B978-0-444-59520-1.50082-8 – volume: 64 start-page: 1036 year: 2009 ident: 10.1016/j.jaap.2022.105433_bib63 article-title: CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B. Heat, momentum and mass transport in bubbling fluidised beds publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.11.007 – volume: 28 start-page: 6398 year: 2014 ident: 10.1016/j.jaap.2022.105433_bib167 article-title: Modeling and experimental studies of the effects of volume shrinkage on the pyrolysis of waste wood sphere publication-title: Energy Fuels doi: 10.1021/ef501504k – volume: 112 start-page: 808 year: 2013 ident: 10.1016/j.jaap.2022.105433_bib176 article-title: A computationally efficient particle submodel for CFD-simulations of fixed-bed conversion publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.12.057 – volume: 106 start-page: 1391 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib114 article-title: Eulerian - Eulerian CFD model on fluidized bed gasifier using coffee husks as fuel publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.06.102 – volume: 44 start-page: 2861 year: 1989 ident: 10.1016/j.jaap.2022.105433_bib162 article-title: A model for pyrolysis of wet wood publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(89)85096-1 – volume: 0 year: 2021 ident: 10.1016/j.jaap.2022.105433_bib21 article-title: Bridging scales in bioenergy and catalysis: a review of mesoscale modeling applications, methods, and future directions publication-title: Energy amp; Fuels – volume: 164 start-page: 11 year: 2016 ident: 10.1016/j.jaap.2022.105433_bib100 article-title: Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis publication-title: Fuel doi: 10.1016/j.fuel.2015.09.074 – volume: 234 start-page: 616 year: 2018 ident: 10.1016/j.jaap.2022.105433_bib111 article-title: Parametric analysis of pyrolysis process on the product yields in a bubbling fluidized bed reactor publication-title: Fuel doi: 10.1016/j.fuel.2018.07.070 – volume: 254 year: 2019 ident: 10.1016/j.jaap.2022.105433_bib185 article-title: Biomass pyrolysis kinetics in a fluidized bed reactor: measurements and plausibility verification for reaction conditions publication-title: Fuel doi: 10.1016/j.fuel.2019.05.172 – volume: 152 start-page: 613 year: 2020 ident: 10.1016/j.jaap.2022.105433_bib122 article-title: CFD-based reduced-order modeling of fluidized-bed biomass fast pyrolysis using artificial neural network, Renew publication-title: Energy – volume: 130 start-page: 284 year: 2018 ident: 10.1016/j.jaap.2022.105433_bib110 article-title: CFD and experimental studies on a circulating fluidised bed reactor for biomass gasification publication-title: Chem. Eng. Process. - Process. Intensif. doi: 10.1016/j.cep.2018.06.018 – volume: 20 start-page: 2223 year: 2006 ident: 10.1016/j.jaap.2022.105433_bib174 article-title: Experimental validation of a coupled solid- and gas-phase model for combustion and gasification of wood logs publication-title: Energy Fuels doi: 10.1021/ef060042u – volume: 97 start-page: 757 year: 2012 ident: 10.1016/j.jaap.2022.105433_bib34 article-title: Experimental validation and CFD modeling study of biomass fast pyrolysis in fluidized-bed reactors publication-title: Fuel doi: 10.1016/j.fuel.2012.02.065 – volume: 28 start-page: 5523 year: 2014 ident: 10.1016/j.jaap.2022.105433_bib92 article-title: Three-dimensional eulerian-eulerian modeling of gaseous pollutant emissions from circulating fluidized-bed combustors publication-title: Energy Fuels doi: 10.1021/ef501095r – volume: 19 start-page: 71 year: 1993 ident: 10.1016/j.jaap.2022.105433_bib44 article-title: Modeling and simulation of combustion processes of charring and non-charring solid fuels publication-title: Prog. Energy Combust. Sci. doi: 10.1016/0360-1285(93)90022-7 – volume: 48 start-page: 141 year: 1952 ident: 10.1016/j.jaap.2022.105433_bib154 article-title: Evaporation from drops - part 1 publication-title: Chem. Eng. Prog. – volume: 248 year: 2022 ident: 10.1016/j.jaap.2022.105433_bib22 article-title: MFiX based multi-scale CFD simulations of biomass fast pyrolysis: a review publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.117131 – volume: 234 start-page: 707 year: 2018 ident: 10.1016/j.jaap.2022.105433_bib184 article-title: Devolatilization of millimeter-sized biomass particles at high temperatures and heating rates. Part 2: modeling and validation for thermally-thin and -thick regimes publication-title: Fuel doi: 10.1016/j.fuel.2018.07.017 – volume: 171 start-page: 244 year: 2017 ident: 10.1016/j.jaap.2022.105433_bib43 article-title: Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.05.007 – volume: 255 year: 2019 ident: 10.1016/j.jaap.2022.105433_bib78 article-title: Coarse-grained CFD-DEM simulation of biomass gasification in a fluidized bed reactor publication-title: Fuel doi: 10.1016/j.fuel.2019.115790 – volume: 105 start-page: 30 year: 2015 ident: 10.1016/j.jaap.2022.105433_bib181 article-title: Fast-solving thermally thick model of biomass particles embedded in a CFD code for the simulation of fixed-bed burners publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.07.059 – volume: 102 start-page: 9772 year: 2011 ident: 10.1016/j.jaap.2022.105433_bib165 article-title: A detailed one-dimensional model of combustion of a woody biomass particle publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.07.075 – volume: 54 start-page: 4084 year: 2015 ident: 10.1016/j.jaap.2022.105433_bib137 article-title: Computational modeling of biomass thermochemical conversion in fluidized beds: particle density variation and size distribution publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie503806p – volume: 146 start-page: 1153 year: 2020 ident: 10.1016/j.jaap.2022.105433_bib170 article-title: Pyrolysis of single biomass particle using three-dimensional Computational Fluid Dynamics modelling publication-title: Renew. Energy doi: 10.1016/j.renene.2019.07.001 – volume: 260 year: 2020 ident: 10.1016/j.jaap.2022.105433_bib54 article-title: Experimental and modelling study on the influence of wood type, density, water content, and temperature on wood devolatilization publication-title: Fuel doi: 10.1016/j.fuel.2019.116410 – volume: 5 start-page: 2196 year: 2017 ident: 10.1016/j.jaap.2022.105433_bib113 article-title: Numerical Study on Fast Pyrolysis of Lignocellulosic Biomass with Varying Column Size of Bubbling Fluidized Bed publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b02360 – volume: 190 start-page: 408 year: 2017 ident: 10.1016/j.jaap.2022.105433_bib73 article-title: CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8 MW fuel input publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.12.113 – volume: 27 start-page: 5948 year: 2013 ident: 10.1016/j.jaap.2022.105433_bib96 article-title: Modeling effects of operating conditions on biomass fast pyrolysis in bubbling fluidized bed reactors publication-title: Energy Fuels doi: 10.1021/ef4012966 – volume: 54 start-page: 8344 year: 2015 ident: 10.1016/j.jaap.2022.105433_bib104 article-title: Influence of reaction atmosphere (H2O, N2,H2,CO2, CO) on fluidized-bed fast pyrolysis of biomass using detailed tar vapor chemistry in computational fluid dynamics publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b02164 – volume: 59 start-page: 1108 year: 2013 ident: 10.1016/j.jaap.2022.105433_bib186 article-title: 3-D full-loop simulation of an industrial-scale circulating fluidized-bed boiler publication-title: AIChE J. doi: 10.1002/aic.13917 – volume: 14 start-page: 473 year: 1988 ident: 10.1016/j.jaap.2022.105433_bib28 article-title: Simulation of granular layer inversion in liquid fluidized beds publication-title: Int. J. Multiph. Flow. doi: 10.1016/0301-9322(88)90023-7 – volume: 418 year: 2021 ident: 10.1016/j.jaap.2022.105433_bib50 article-title: Assessment of a detailed biomass pyrolysis kinetic scheme in multiscale simulations of a single-particle pyrolyzer and a pilot-scale entrained flow pyrolyzer publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129347 – volume: 67 year: 2021 ident: 10.1016/j.jaap.2022.105433_bib159 article-title: Study of filtered interphase heat transfer using highly resolved CFD–DEM simulations publication-title: AIChE J. doi: 10.1002/aic.17121 |
SSID | ssj0006618 |
Score | 2.5679388 |
Snippet | This paper reviews the recent advances in multi-scale computational fluid dynamics (CFD) simulations of biomass pyrolysis in fluidized bed reactors. The... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105433 |
SubjectTerms | biomass Biomass pyrolysis Computational fluid dynamics fluid mechanics fluidized beds Intra-particle heat transfer Multi-scale modelling Particle-scale model pyrolysis |
Title | A review on CFD simulation of biomass pyrolysis in fluidized bed reactors with emphasis on particle-scale models |
URI | https://dx.doi.org/10.1016/j.jaap.2022.105433 https://www.proquest.com/docview/2636749372 |
Volume | 162 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QE4oLaAKNDKSNxQ2F0_4uS42na1LaIXitSbZXttKVWbRN3dAxz47cwkTgVI9NBDDk48UTSfNfPFngfARzR5hSukyiK3NpPc6cxJ53Etq8LHiXA60Ib-14t8-V2eX6mrHZgPuTAUVplsf2_TO2ud7oyTNsdtVY2_USIOF5pSRYnZ4y_QLhdlrkawOzv7sry4N8jogoq-xLfKSCDlzvRhXtfWUtlKzqnjrRTif_7pH0vduZ_FHrxIvJHN-k_bh51QH8DT-dCu7QCe_1FZ8CW0M9YnpbCmZvPFCVtXt6lRF2sio6R7ZM2s_XHXdDVJWFWzeLOtVtXPsGIOLySTXSceRju1LCDoluahfJv0k60R38C6XjrrV3C5OL2cL7PUXCHzQohNFqZBuzyGWHoEBQdi5YIuV-WksJNSl0XkZR600jGXMfCJ86q0Ugd8qnIbxWsY1U0d3gBDwiWi187HSLXocYYXEolSEHRm6sQhTAeNGp8Kj1P_ixszRJhdG0LBEAqmR-EQPt3LtH3ZjQdnqwEo89fiMegXHpT7MKBqEC06KrF1aLZrw3ORa4nUjb995LvfwTMa9eFq72G0uduGI-QvG3cMTz7_mh6nVfob1qHvgg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWcAAOFeUhKC11JW5V2MWPODmutqwWCly6SNws22tLQZBE7O4BDvz2ziQOtEjl0EMOScZJ5G8088WeByFHYPIymwmZBGZMIphViRXWgS7LzIUBt8rjgv7lVTq5Fuc38qZHRl0uDIZVRtvf2vTGWscr_Tib_boo-r8wEYdxhamiyOzhF2hVSHgHKPXx82ucBzigrC3wLRMUj5kzbZDXrTFYtJIx7HcrOP-Xd3pjpxvnM94kHyJrpMP2wz6Sni-3yNqoa9a2RTb-qCu4TeohbVNSaFXS0fgHnRf3sU0XrQLFlHvgzLR-fKiaiiS0KGm4Wxaz4snPqIUDqGTTh4fiOi31ALlBORhfx9lJ5oCup00nnfkOmY5Pp6NJElsrJI5zvkj8iVc2DT7kDiCBEz6zXuWzfJCZQa7yLLA89UqqkIrg2cA6mRuhPNyVqQl8l6yUVen3CAW6xYNT1oWAlehBwnEBNMlz3DG1fJ-cdDOqXSw7jt0v7nQXX3arEQWNKOgWhX3y_WVM3RbdeFdadkDpv1RHg1d4d9y3DlUNaOFGiSl9tZxrlvJUCSBu7NN_PvsrWZtMLy_0xdnVzwOyjnfawLXPZGXxsPRfgMks7GGjqb8B3WDwTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+CFD+simulation+of+biomass+pyrolysis+in+fluidized+bed+reactors+with+emphasis+on+particle-scale+models&rft.jtitle=Journal+of+analytical+and+applied+pyrolysis&rft.au=Luo%2C+Hao&rft.au=Wang%2C+Xiaobao&rft.au=Liu%2C+Xinyan&rft.au=Wu%2C+Xiaoqin&rft.date=2022-03-01&rft.pub=Elsevier+B.V&rft.issn=0165-2370&rft.eissn=1873-250X&rft.volume=162&rft_id=info:doi/10.1016%2Fj.jaap.2022.105433&rft.externalDocID=S0165237022000031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-2370&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-2370&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-2370&client=summon |