Robust statistical inference for longitudinal data with nonignorable dropouts

In this paper, we propose robust statistical inference and variable selection method for generalized linear models that accommodate the outliers, nonignorable dropouts and within-subject correlations. The purpose of our study is threefold. First, we construct the robust and bias-corrected generalize...

Full description

Saved in:
Bibliographic Details
Published inStatistics (Berlin, DDR) Vol. 56; no. 5; pp. 1072 - 1094
Main Authors Shao, Yujing, Ma, Wei, Wang, Lei
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 03.09.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose robust statistical inference and variable selection method for generalized linear models that accommodate the outliers, nonignorable dropouts and within-subject correlations. The purpose of our study is threefold. First, we construct the robust and bias-corrected generalized estimating equations (GEEs) by combining the Mallows-type weights, Huber's score function and inverse probability weighting approaches to against the influence of outliers and account for nonignorable dropouts. Subsequently, the generalized method of moments is utilized to estimate the parameters in the nonignorable dropout propensity based on sufficient instrumental estimating equations. Second, in order to incorporate the within-subject correlations under an informative working correlation structure, we borrow the idea of quadratic inference function and hybrid-GEE to obtain the improved empirical likelihood procedures. The asymptotic properties of the proposed estimators and their confidence regions are derived. Third, the robust variable selection and algorithm are investigated. We evaluate the performance of proposed estimators through simulation and illustrate our method in an application to HIV-CD4 data.
AbstractList In this paper, we propose robust statistical inference and variable selection method for generalized linear models that accommodate the outliers, nonignorable dropouts and within-subject correlations. The purpose of our study is threefold. First, we construct the robust and bias-corrected generalized estimating equations (GEEs) by combining the Mallows-type weights, Huber's score function and inverse probability weighting approaches to against the influence of outliers and account for nonignorable dropouts. Subsequently, the generalized method of moments is utilized to estimate the parameters in the nonignorable dropout propensity based on sufficient instrumental estimating equations. Second, in order to incorporate the within-subject correlations under an informative working correlation structure, we borrow the idea of quadratic inference function and hybrid-GEE to obtain the improved empirical likelihood procedures. The asymptotic properties of the proposed estimators and their confidence regions are derived. Third, the robust variable selection and algorithm are investigated. We evaluate the performance of proposed estimators through simulation and illustrate our method in an application to HIV-CD4 data.
Author Shao, Yujing
Wang, Lei
Ma, Wei
Author_xml – sequence: 1
  givenname: Yujing
  surname: Shao
  fullname: Shao, Yujing
  organization: Nankai University
– sequence: 2
  givenname: Wei
  surname: Ma
  fullname: Ma, Wei
  organization: Nankai University
– sequence: 3
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  email: leiwang.stat@gmail.com
  organization: Nankai University
BookMark eNp9kF9LwzAUxYMouE0_glDwuTM3abP0TRn-g4kg-hxu22RmdMlMUsa-vS2brz6dh3vO4dzflJw77zQhN0DnQCW9o4xzkFLOGWVszgAoK-kZmQxa5UUF9JxMRk8-mi7JNMYNpVRwvpiQtw9f9zFlMWGyMdkGu8w6o4N2jc6MD1nn3dqmvrVuOLWYMNvb9J0NG-za-YB1p7M2-J3vU7wiFwa7qK9POiNfT4-fy5d89f78unxY5Q3nPOUaKkReCBBQ4qKoFyAaWRgopNRCghG1hBZoSasakJcNNcMnYCppUGBZcD4jt8feXfA_vY5JbXwfhoFRsQUTQrJKjq7y6GqCjzFoo3bBbjEcFFA1klN_5NRITp3IDbn7Y24A4cMW9z50rUp46HwwAV1jo-L_V_wCiO52VA
Cites_doi 10.2307/1912775
10.1198/jasa.2011.tm10104
10.1002/cjs.5550340107
10.1093/biostatistics/kxp002
10.1111/j.1541-0420.2005.00331.x
10.1198/jasa.2009.tm08485
10.1080/00401706.2018.1470037
10.1111/j.1467-9868.2008.00693.x
10.1016/j.jmva.2012.03.007
10.1080/01621459.1994.10476818
10.1198/016214505000000277
10.1093/biomet/asq057
10.1093/biomet/87.4.823
10.1201/9781420036152
10.1002/9781119013563
10.2307/2986113
10.1214/aos/1176325370
10.1198/106186007X181452
10.1111/j.2517-6161.1995.tb02056.x
10.1198/106186007X180156
10.1093/biomet/asm066
10.1093/biomet/asr068
10.1007/s10463-012-0383-8
10.1198/016214501753382273
10.1214/aos/1176350366
10.1093/biomet/asv071
10.1080/02331888.2016.1268615
10.1016/j.jmva.2007.01.006
10.1093/biomet/73.1.13
10.1214/aos/1176344136
10.1080/01621459.1990.10474920
10.1016/j.jspi.2008.03.042
10.1002/9780470510445
10.1111/rssb.12065
10.4310/SII.2019.v12.n3.a11
10.1111/j.1541-0420.2009.01269.x
10.1016/j.csda.2017.02.015
10.1111/j.1541-0420.2005.00354.x
10.1016/j.csda.2012.02.005
10.1007/s11222-012-9358-0
10.1111/insr.12288
10.1093/biomet/asn034
10.1080/01621459.1981.10477633
10.1016/j.jspi.2010.05.007
10.1016/j.jmva.2012.07.014
10.1080/01621459.2012.682534
10.1214/15-EJS1036
10.1002/sim.7062
10.1016/j.csda.2014.08.006
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
DOI 10.1080/02331888.2022.2110250
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1029-4910
EndPage 1094
ExternalDocumentID 10_1080_02331888_2022_2110250
2110250
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
123
29Q
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
TASJS
ID FETCH-LOGICAL-c333t-e19aa3461615a74b716c84f1488e681f6b81d10509b1a35c0f0291f98fa6a5433
ISSN 0233-1888
IngestDate Wed Aug 13 09:20:16 EDT 2025
Tue Jul 01 04:13:43 EDT 2025
Wed Dec 25 09:05:38 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-e19aa3461615a74b716c84f1488e681f6b81d10509b1a35c0f0291f98fa6a5433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://figshare.com/articles/journal_contribution/Robust_statistical_inference_for_longitudinal_data_with_nonignorable_dropouts/20479488
PQID 2726682983
PQPubID 216163
PageCount 23
ParticipantIDs crossref_primary_10_1080_02331888_2022_2110250
proquest_journals_2726682983
informaworld_taylorfrancis_310_1080_02331888_2022_2110250
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-03
PublicationDateYYYYMMDD 2022-09-03
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-03
  day: 03
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Statistics (Berlin, DDR)
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0031
CIT0034
CIT0033
Bindele F (CIT0032) 2018; 28
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0041
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
Tang N (CIT0048) 2014; 24
CIT0053
CIT0012
CIT0011
CIT0014
CIT0013
CIT0016
Sinha SK. (CIT0040) 2006; 34
CIT0015
CIT0018
CIT0017
CIT0019
Fitzmaurice GM (CIT0027) 1995; 57
CIT0021
CIT0020
CIT0023
CIT0022
CIT0025
CIT0024
CIT0026
Huang J (CIT0054) 2017; 112
CIT0029
CIT0028
Wang S (CIT0030) 2014; 24
References_xml – ident: CIT0034
  doi: 10.2307/1912775
– volume: 112
  start-page: 420
  year: 2017
  ident: CIT0054
  publication-title: J Am Stat Assoc
– ident: CIT0029
  doi: 10.1198/jasa.2011.tm10104
– volume: 24
  start-page: 723
  year: 2014
  ident: CIT0048
  publication-title: Stat Sin
– ident: CIT0003
  doi: 10.1002/cjs.5550340107
– ident: CIT0009
  doi: 10.1093/biostatistics/kxp002
– ident: CIT0033
  doi: 10.1111/j.1541-0420.2005.00331.x
– ident: CIT0010
  doi: 10.1198/jasa.2009.tm08485
– ident: CIT0043
  doi: 10.1080/00401706.2018.1470037
– ident: CIT0046
  doi: 10.1111/j.1467-9868.2008.00693.x
– ident: CIT0023
  doi: 10.1016/j.jmva.2012.03.007
– ident: CIT0035
  doi: 10.1080/01621459.1994.10476818
– ident: CIT0019
  doi: 10.1198/016214505000000277
– ident: CIT0052
  doi: 10.1093/biomet/asq057
– ident: CIT0036
  doi: 10.1093/biomet/87.4.823
– ident: CIT0005
  doi: 10.1201/9781420036152
– volume: 24
  start-page: 1097
  year: 2014
  ident: CIT0030
  publication-title: Stat Sin
– ident: CIT0025
  doi: 10.1002/9781119013563
– ident: CIT0042
  doi: 10.2307/2986113
– ident: CIT0049
  doi: 10.1214/aos/1176325370
– ident: CIT0006
  doi: 10.1198/106186007X181452
– volume: 34
  start-page: 261
  year: 2006
  ident: CIT0040
  publication-title: J Statist
– volume: 57
  start-page: 691
  year: 1995
  ident: CIT0027
  publication-title: J R Stat Soc
  doi: 10.1111/j.2517-6161.1995.tb02056.x
– ident: CIT0053
  doi: 10.1198/106186007X180156
– volume: 28
  start-page: 1787
  year: 2018
  ident: CIT0032
  publication-title: Stat Sin
– ident: CIT0002
  doi: 10.1093/biomet/asm066
– ident: CIT0011
  doi: 10.1093/biomet/asr068
– ident: CIT0024
  doi: 10.1007/s10463-012-0383-8
– ident: CIT0037
  doi: 10.1198/016214501753382273
– ident: CIT0044
  doi: 10.1214/aos/1176350366
– ident: CIT0031
  doi: 10.1093/biomet/asv071
– ident: CIT0018
  doi: 10.1080/02331888.2016.1268615
– ident: CIT0021
  doi: 10.1016/j.jmva.2007.01.006
– ident: CIT0004
  doi: 10.1093/biomet/73.1.13
– ident: CIT0045
  doi: 10.1214/aos/1176344136
– ident: CIT0041
  doi: 10.1080/01621459.1990.10474920
– ident: CIT0022
  doi: 10.1016/j.jspi.2008.03.042
– ident: CIT0028
  doi: 10.1002/9780470510445
– ident: CIT0012
  doi: 10.1111/rssb.12065
– ident: CIT0016
  doi: 10.4310/SII.2019.v12.n3.a11
– ident: CIT0001
  doi: 10.1111/j.1541-0420.2009.01269.x
– ident: CIT0013
  doi: 10.1016/j.csda.2017.02.015
– ident: CIT0020
  doi: 10.1111/j.1541-0420.2005.00354.x
– ident: CIT0008
  doi: 10.1016/j.csda.2012.02.005
– ident: CIT0015
  doi: 10.1007/s11222-012-9358-0
– ident: CIT0026
  doi: 10.1111/insr.12288
– ident: CIT0047
  doi: 10.1093/biomet/asn034
– ident: CIT0050
  doi: 10.1080/01621459.1981.10477633
– ident: CIT0007
  doi: 10.1016/j.jspi.2010.05.007
– ident: CIT0014
  doi: 10.1016/j.jmva.2012.07.014
– ident: CIT0051
  doi: 10.1080/01621459.2012.682534
– ident: CIT0017
  doi: 10.1214/15-EJS1036
– ident: CIT0039
  doi: 10.1002/sim.7062
– ident: CIT0038
  doi: 10.1016/j.csda.2014.08.006
SSID ssj0006337
Score 2.2486198
Snippet In this paper, we propose robust statistical inference and variable selection method for generalized linear models that accommodate the outliers, nonignorable...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 1072
SubjectTerms Algorithms
Asymptotic methods
Asymptotic properties
Dropout propensity
Dropouts
empirical likelihood
Estimators
Feature selection
Generalized linear models
Generalized method of moments
Method of moments
missing not at random
nonresponse instrument
Outliers (statistics)
quadratic inference function
Robustness
Statistical analysis
Statistical inference
Statistical models
variable selection
Title Robust statistical inference for longitudinal data with nonignorable dropouts
URI https://www.tandfonline.com/doi/abs/10.1080/02331888.2022.2110250
https://www.proquest.com/docview/2726682983
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgeymHihYQLaXygWuidew4ybGioBViObRbUbhEtteGItRW3eTCr2fGj2zKVuJ1iSKvYkeeL-OZ2ZlvCHmleWX5sqmyylqTCWFspkxZZtpV0ljn9NRgNfL8g5ydi3cX5cU6rdlXl3Q6Nz_urSv5F6nCGMgVq2T_QrLDpDAA9yBfuIKE4fpHMj691v2qw3BA5_mWPYFGIo7F_MHv19iOqF_61leYDBriruDyX365AuH7sinsk9AHQqdkpp6lGX1MNlBiee10cjoKHZx9VT7Q-qn_lg5AH9v2eXv2ch2rD_rkfRyKMQZwT_EfEz6gYrHR7mOkpQrOM1aH3ny5DVoUc2pEE_NVo5oN_OERTuVIZ4IDWozOXzYNXY83dHtMhoT1cLkc3zNH97UIzLW_0GbHXx6SrQIciGJCto5nJ58_Dqe05IFPNb1-qu5C3vX7lrhjt9xhtd04xb1psnhMdqJPQY8DQHbJA3u1Rx7NB0Le1R7ZXkv0CZkH3NARbuiAGwpL0jFuKOKGIm7oGDc04eYpOX_7ZvF6lsW2GpnhnHeZZY1SXEi09VUlNHjMphYO_OLaypo5qcGHYcgLpJnipZk6ECdzTe2UVKXg_BmZwHr2OaFlaXiBOrwSpVDM1NJO5dL5uIeslNknedq09iawp7QskdLGXW5xl9u4y_ukGW9t23nkuQC6lv_m2cMkhzZ-pKu2qMACrYum5gf_MfULsr3-LA7JpLvt7UswRjt9FHH1E93Xgos
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QODAOvBGDATlw7WibV3tECDQe2wExabcoyRKEmDZE2wu_nriPaYAQh11bOW1sx7Et-zNCF5oISyapCIS1JqDU2EAZxgLtBDfWOR0a6EYeDHl_RO_HbLzUCwNllRBDuwooorTVcLghGd2UxF36e8arYgKVWXHcgxAmhrB9naVcwBQDEg4X1piTCjfTkwRA03Tx_LXMt_vpG3rpL2tdXkG328g0P19Vnrz1ilz3zOcPXMfVdreDtmoPFV9VKrWL1uxsD20OFvCu2R5qg4taITzvo8HTXBdZjrPmmSd-bdoIsd8Yns5hKFIxgQFcGEpSMWR_8cybk5eZV0E9tXgC0xqKPDtAo9ub5-t-UA9pCAwhJA9slCpFKAfPUQmqffxlEup8lJVYnkSOa-8RR4AyoyNFmAldGKeRSxOnuGKUkEPU8t-zRwgzZkgMFkFQRlVkEm5DPnFlFM2FMh3Ua0Qj3yssDhk1EKc10yQwTdZM66B0WYAyL5MgrppYIsk_tN1G2rI-1pmMhfdnkjhNyPEKS5-jjf7z4FE-3g0fTlAbXpVVa6SLWvlHYU-9m5Prs1KPvwDBa-72
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yQeaDH1NxOjUPvra2TZu2j6KO-bEh4sC3kKSJiGMbtn3xrzfXNsMp4sNeWy5tLpfLXfjd7xA6FyRWJEtjJ1ZKOmEolcNlFDlCx1QqrYUnoRp5OKKDcXj3Elk0Yd7AKiGH1jVRROWrYXPPM20RcRfmmDGWmAAwKwhcyGACyNrXKZCHQxWHN1o4Y0pq2kwj4oCMLeL5a5il42mJvPSXs65OoP42Evbfa-DJu1sWwpWfP2gdV5rcDtpq4lN8WRvULlpT0w7aHC7IXfMOakOAWvM776Hh00yUeYFz-8wIv9kiQmzmhSczaIlUZtB-CwMgFcPdL54aZ_I6NQYoJgpn0KuhLPJ9NO7fPF8NnKZFgyMJIYWj_JRzYtRuAiMeh8JkXzIJtcmxEkUTX1Nh4mEfOGaEz0kkPe0Fqa_TRHPKo5CQA9Qy31OHCEeRJAH4gziMQu7LhCqPZrrKoWnMZRe5dmXYvGbiYL4lOG2UxkBprFFaF6Xf148V1RWIrvuVMPKPbM8uNms2dc6C2EQzSZAm5GiFoc_QxuN1nz3cju6PURveVJA10kOt4qNUJybGKcRpZcVf1Brtmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+statistical+inference+for+longitudinal+data+with+nonignorable+dropouts&rft.jtitle=Statistics+%28Berlin%2C+DDR%29&rft.au=Shao%2C+Yujing&rft.au=Ma%2C+Wei&rft.au=Wang%2C+Lei&rft.date=2022-09-03&rft.pub=Taylor+%26+Francis&rft.issn=0233-1888&rft.eissn=1029-4910&rft.volume=56&rft.issue=5&rft.spage=1072&rft.epage=1094&rft_id=info:doi/10.1080%2F02331888.2022.2110250&rft.externalDocID=2110250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1888&client=summon