Robust statistical inference for longitudinal data with nonignorable dropouts
In this paper, we propose robust statistical inference and variable selection method for generalized linear models that accommodate the outliers, nonignorable dropouts and within-subject correlations. The purpose of our study is threefold. First, we construct the robust and bias-corrected generalize...
Saved in:
Published in | Statistics (Berlin, DDR) Vol. 56; no. 5; pp. 1072 - 1094 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
03.09.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose robust statistical inference and variable selection method for generalized linear models that accommodate the outliers, nonignorable dropouts and within-subject correlations. The purpose of our study is threefold. First, we construct the robust and bias-corrected generalized estimating equations (GEEs) by combining the Mallows-type weights, Huber's score function and inverse probability weighting approaches to against the influence of outliers and account for nonignorable dropouts. Subsequently, the generalized method of moments is utilized to estimate the parameters in the nonignorable dropout propensity based on sufficient instrumental estimating equations. Second, in order to incorporate the within-subject correlations under an informative working correlation structure, we borrow the idea of quadratic inference function and hybrid-GEE to obtain the improved empirical likelihood procedures. The asymptotic properties of the proposed estimators and their confidence regions are derived. Third, the robust variable selection and algorithm are investigated. We evaluate the performance of proposed estimators through simulation and illustrate our method in an application to HIV-CD4 data. |
---|---|
AbstractList | In this paper, we propose robust statistical inference and variable selection method for generalized linear models that accommodate the outliers, nonignorable dropouts and within-subject correlations. The purpose of our study is threefold. First, we construct the robust and bias-corrected generalized estimating equations (GEEs) by combining the Mallows-type weights, Huber's score function and inverse probability weighting approaches to against the influence of outliers and account for nonignorable dropouts. Subsequently, the generalized method of moments is utilized to estimate the parameters in the nonignorable dropout propensity based on sufficient instrumental estimating equations. Second, in order to incorporate the within-subject correlations under an informative working correlation structure, we borrow the idea of quadratic inference function and hybrid-GEE to obtain the improved empirical likelihood procedures. The asymptotic properties of the proposed estimators and their confidence regions are derived. Third, the robust variable selection and algorithm are investigated. We evaluate the performance of proposed estimators through simulation and illustrate our method in an application to HIV-CD4 data. |
Author | Shao, Yujing Wang, Lei Ma, Wei |
Author_xml | – sequence: 1 givenname: Yujing surname: Shao fullname: Shao, Yujing organization: Nankai University – sequence: 2 givenname: Wei surname: Ma fullname: Ma, Wei organization: Nankai University – sequence: 3 givenname: Lei surname: Wang fullname: Wang, Lei email: leiwang.stat@gmail.com organization: Nankai University |
BookMark | eNp9kF9LwzAUxYMouE0_glDwuTM3abP0TRn-g4kg-hxu22RmdMlMUsa-vS2brz6dh3vO4dzflJw77zQhN0DnQCW9o4xzkFLOGWVszgAoK-kZmQxa5UUF9JxMRk8-mi7JNMYNpVRwvpiQtw9f9zFlMWGyMdkGu8w6o4N2jc6MD1nn3dqmvrVuOLWYMNvb9J0NG-za-YB1p7M2-J3vU7wiFwa7qK9POiNfT4-fy5d89f78unxY5Q3nPOUaKkReCBBQ4qKoFyAaWRgopNRCghG1hBZoSasakJcNNcMnYCppUGBZcD4jt8feXfA_vY5JbXwfhoFRsQUTQrJKjq7y6GqCjzFoo3bBbjEcFFA1klN_5NRITp3IDbn7Y24A4cMW9z50rUp46HwwAV1jo-L_V_wCiO52VA |
Cites_doi | 10.2307/1912775 10.1198/jasa.2011.tm10104 10.1002/cjs.5550340107 10.1093/biostatistics/kxp002 10.1111/j.1541-0420.2005.00331.x 10.1198/jasa.2009.tm08485 10.1080/00401706.2018.1470037 10.1111/j.1467-9868.2008.00693.x 10.1016/j.jmva.2012.03.007 10.1080/01621459.1994.10476818 10.1198/016214505000000277 10.1093/biomet/asq057 10.1093/biomet/87.4.823 10.1201/9781420036152 10.1002/9781119013563 10.2307/2986113 10.1214/aos/1176325370 10.1198/106186007X181452 10.1111/j.2517-6161.1995.tb02056.x 10.1198/106186007X180156 10.1093/biomet/asm066 10.1093/biomet/asr068 10.1007/s10463-012-0383-8 10.1198/016214501753382273 10.1214/aos/1176350366 10.1093/biomet/asv071 10.1080/02331888.2016.1268615 10.1016/j.jmva.2007.01.006 10.1093/biomet/73.1.13 10.1214/aos/1176344136 10.1080/01621459.1990.10474920 10.1016/j.jspi.2008.03.042 10.1002/9780470510445 10.1111/rssb.12065 10.4310/SII.2019.v12.n3.a11 10.1111/j.1541-0420.2009.01269.x 10.1016/j.csda.2017.02.015 10.1111/j.1541-0420.2005.00354.x 10.1016/j.csda.2012.02.005 10.1007/s11222-012-9358-0 10.1111/insr.12288 10.1093/biomet/asn034 10.1080/01621459.1981.10477633 10.1016/j.jspi.2010.05.007 10.1016/j.jmva.2012.07.014 10.1080/01621459.2012.682534 10.1214/15-EJS1036 10.1002/sim.7062 10.1016/j.csda.2014.08.006 |
ContentType | Journal Article |
Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION |
DOI | 10.1080/02331888.2022.2110250 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1029-4910 |
EndPage | 1094 |
ExternalDocumentID | 10_1080_02331888_2022_2110250 2110250 |
Genre | Research Article |
GroupedDBID | .7F .QJ 0BK 0R~ 123 29Q 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~9 H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION TASJS |
ID | FETCH-LOGICAL-c333t-e19aa3461615a74b716c84f1488e681f6b81d10509b1a35c0f0291f98fa6a5433 |
ISSN | 0233-1888 |
IngestDate | Wed Aug 13 09:20:16 EDT 2025 Tue Jul 01 04:13:43 EDT 2025 Wed Dec 25 09:05:38 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c333t-e19aa3461615a74b716c84f1488e681f6b81d10509b1a35c0f0291f98fa6a5433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://figshare.com/articles/journal_contribution/Robust_statistical_inference_for_longitudinal_data_with_nonignorable_dropouts/20479488 |
PQID | 2726682983 |
PQPubID | 216163 |
PageCount | 23 |
ParticipantIDs | crossref_primary_10_1080_02331888_2022_2110250 proquest_journals_2726682983 informaworld_taylorfrancis_310_1080_02331888_2022_2110250 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-03 |
PublicationDateYYYYMMDD | 2022-09-03 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Statistics (Berlin, DDR) |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0031 CIT0034 CIT0033 Bindele F (CIT0032) 2018; 28 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 Tang N (CIT0048) 2014; 24 CIT0053 CIT0012 CIT0011 CIT0014 CIT0013 CIT0016 Sinha SK. (CIT0040) 2006; 34 CIT0015 CIT0018 CIT0017 CIT0019 Fitzmaurice GM (CIT0027) 1995; 57 CIT0021 CIT0020 CIT0023 CIT0022 CIT0025 CIT0024 CIT0026 Huang J (CIT0054) 2017; 112 CIT0029 CIT0028 Wang S (CIT0030) 2014; 24 |
References_xml | – ident: CIT0034 doi: 10.2307/1912775 – volume: 112 start-page: 420 year: 2017 ident: CIT0054 publication-title: J Am Stat Assoc – ident: CIT0029 doi: 10.1198/jasa.2011.tm10104 – volume: 24 start-page: 723 year: 2014 ident: CIT0048 publication-title: Stat Sin – ident: CIT0003 doi: 10.1002/cjs.5550340107 – ident: CIT0009 doi: 10.1093/biostatistics/kxp002 – ident: CIT0033 doi: 10.1111/j.1541-0420.2005.00331.x – ident: CIT0010 doi: 10.1198/jasa.2009.tm08485 – ident: CIT0043 doi: 10.1080/00401706.2018.1470037 – ident: CIT0046 doi: 10.1111/j.1467-9868.2008.00693.x – ident: CIT0023 doi: 10.1016/j.jmva.2012.03.007 – ident: CIT0035 doi: 10.1080/01621459.1994.10476818 – ident: CIT0019 doi: 10.1198/016214505000000277 – ident: CIT0052 doi: 10.1093/biomet/asq057 – ident: CIT0036 doi: 10.1093/biomet/87.4.823 – ident: CIT0005 doi: 10.1201/9781420036152 – volume: 24 start-page: 1097 year: 2014 ident: CIT0030 publication-title: Stat Sin – ident: CIT0025 doi: 10.1002/9781119013563 – ident: CIT0042 doi: 10.2307/2986113 – ident: CIT0049 doi: 10.1214/aos/1176325370 – ident: CIT0006 doi: 10.1198/106186007X181452 – volume: 34 start-page: 261 year: 2006 ident: CIT0040 publication-title: J Statist – volume: 57 start-page: 691 year: 1995 ident: CIT0027 publication-title: J R Stat Soc doi: 10.1111/j.2517-6161.1995.tb02056.x – ident: CIT0053 doi: 10.1198/106186007X180156 – volume: 28 start-page: 1787 year: 2018 ident: CIT0032 publication-title: Stat Sin – ident: CIT0002 doi: 10.1093/biomet/asm066 – ident: CIT0011 doi: 10.1093/biomet/asr068 – ident: CIT0024 doi: 10.1007/s10463-012-0383-8 – ident: CIT0037 doi: 10.1198/016214501753382273 – ident: CIT0044 doi: 10.1214/aos/1176350366 – ident: CIT0031 doi: 10.1093/biomet/asv071 – ident: CIT0018 doi: 10.1080/02331888.2016.1268615 – ident: CIT0021 doi: 10.1016/j.jmva.2007.01.006 – ident: CIT0004 doi: 10.1093/biomet/73.1.13 – ident: CIT0045 doi: 10.1214/aos/1176344136 – ident: CIT0041 doi: 10.1080/01621459.1990.10474920 – ident: CIT0022 doi: 10.1016/j.jspi.2008.03.042 – ident: CIT0028 doi: 10.1002/9780470510445 – ident: CIT0012 doi: 10.1111/rssb.12065 – ident: CIT0016 doi: 10.4310/SII.2019.v12.n3.a11 – ident: CIT0001 doi: 10.1111/j.1541-0420.2009.01269.x – ident: CIT0013 doi: 10.1016/j.csda.2017.02.015 – ident: CIT0020 doi: 10.1111/j.1541-0420.2005.00354.x – ident: CIT0008 doi: 10.1016/j.csda.2012.02.005 – ident: CIT0015 doi: 10.1007/s11222-012-9358-0 – ident: CIT0026 doi: 10.1111/insr.12288 – ident: CIT0047 doi: 10.1093/biomet/asn034 – ident: CIT0050 doi: 10.1080/01621459.1981.10477633 – ident: CIT0007 doi: 10.1016/j.jspi.2010.05.007 – ident: CIT0014 doi: 10.1016/j.jmva.2012.07.014 – ident: CIT0051 doi: 10.1080/01621459.2012.682534 – ident: CIT0017 doi: 10.1214/15-EJS1036 – ident: CIT0039 doi: 10.1002/sim.7062 – ident: CIT0038 doi: 10.1016/j.csda.2014.08.006 |
SSID | ssj0006337 |
Score | 2.2486198 |
Snippet | In this paper, we propose robust statistical inference and variable selection method for generalized linear models that accommodate the outliers, nonignorable... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1072 |
SubjectTerms | Algorithms Asymptotic methods Asymptotic properties Dropout propensity Dropouts empirical likelihood Estimators Feature selection Generalized linear models Generalized method of moments Method of moments missing not at random nonresponse instrument Outliers (statistics) quadratic inference function Robustness Statistical analysis Statistical inference Statistical models variable selection |
Title | Robust statistical inference for longitudinal data with nonignorable dropouts |
URI | https://www.tandfonline.com/doi/abs/10.1080/02331888.2022.2110250 https://www.proquest.com/docview/2726682983 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgeymHihYQLaXygWuidew4ybGioBViObRbUbhEtteGItRW3eTCr2fGj2zKVuJ1iSKvYkeeL-OZ2ZlvCHmleWX5sqmyylqTCWFspkxZZtpV0ljn9NRgNfL8g5ydi3cX5cU6rdlXl3Q6Nz_urSv5F6nCGMgVq2T_QrLDpDAA9yBfuIKE4fpHMj691v2qw3BA5_mWPYFGIo7F_MHv19iOqF_61leYDBriruDyX365AuH7sinsk9AHQqdkpp6lGX1MNlBiee10cjoKHZx9VT7Q-qn_lg5AH9v2eXv2ch2rD_rkfRyKMQZwT_EfEz6gYrHR7mOkpQrOM1aH3ny5DVoUc2pEE_NVo5oN_OERTuVIZ4IDWozOXzYNXY83dHtMhoT1cLkc3zNH97UIzLW_0GbHXx6SrQIciGJCto5nJ58_Dqe05IFPNb1-qu5C3vX7lrhjt9xhtd04xb1psnhMdqJPQY8DQHbJA3u1Rx7NB0Le1R7ZXkv0CZkH3NARbuiAGwpL0jFuKOKGIm7oGDc04eYpOX_7ZvF6lsW2GpnhnHeZZY1SXEi09VUlNHjMphYO_OLaypo5qcGHYcgLpJnipZk6ECdzTe2UVKXg_BmZwHr2OaFlaXiBOrwSpVDM1NJO5dL5uIeslNknedq09iawp7QskdLGXW5xl9u4y_ukGW9t23nkuQC6lv_m2cMkhzZ-pKu2qMACrYum5gf_MfULsr3-LA7JpLvt7UswRjt9FHH1E93Xgos |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QODAOvBGDATlw7WibV3tECDQe2wExabcoyRKEmDZE2wu_nriPaYAQh11bOW1sx7Et-zNCF5oISyapCIS1JqDU2EAZxgLtBDfWOR0a6EYeDHl_RO_HbLzUCwNllRBDuwooorTVcLghGd2UxF36e8arYgKVWXHcgxAmhrB9naVcwBQDEg4X1piTCjfTkwRA03Tx_LXMt_vpG3rpL2tdXkG328g0P19Vnrz1ilz3zOcPXMfVdreDtmoPFV9VKrWL1uxsD20OFvCu2R5qg4taITzvo8HTXBdZjrPmmSd-bdoIsd8Yns5hKFIxgQFcGEpSMWR_8cybk5eZV0E9tXgC0xqKPDtAo9ub5-t-UA9pCAwhJA9slCpFKAfPUQmqffxlEup8lJVYnkSOa-8RR4AyoyNFmAldGKeRSxOnuGKUkEPU8t-zRwgzZkgMFkFQRlVkEm5DPnFlFM2FMh3Ua0Qj3yssDhk1EKc10yQwTdZM66B0WYAyL5MgrppYIsk_tN1G2rI-1pmMhfdnkjhNyPEKS5-jjf7z4FE-3g0fTlAbXpVVa6SLWvlHYU-9m5Prs1KPvwDBa-72 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yQeaDH1NxOjUPvra2TZu2j6KO-bEh4sC3kKSJiGMbtn3xrzfXNsMp4sNeWy5tLpfLXfjd7xA6FyRWJEtjJ1ZKOmEolcNlFDlCx1QqrYUnoRp5OKKDcXj3Elk0Yd7AKiGH1jVRROWrYXPPM20RcRfmmDGWmAAwKwhcyGACyNrXKZCHQxWHN1o4Y0pq2kwj4oCMLeL5a5il42mJvPSXs65OoP42Evbfa-DJu1sWwpWfP2gdV5rcDtpq4lN8WRvULlpT0w7aHC7IXfMOakOAWvM776Hh00yUeYFz-8wIv9kiQmzmhSczaIlUZtB-CwMgFcPdL54aZ_I6NQYoJgpn0KuhLPJ9NO7fPF8NnKZFgyMJIYWj_JRzYtRuAiMeh8JkXzIJtcmxEkUTX1Nh4mEfOGaEz0kkPe0Fqa_TRHPKo5CQA9Qy31OHCEeRJAH4gziMQu7LhCqPZrrKoWnMZRe5dmXYvGbiYL4lOG2UxkBprFFaF6Xf148V1RWIrvuVMPKPbM8uNms2dc6C2EQzSZAm5GiFoc_QxuN1nz3cju6PURveVJA10kOt4qNUJybGKcRpZcVf1Brtmg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+statistical+inference+for+longitudinal+data+with+nonignorable+dropouts&rft.jtitle=Statistics+%28Berlin%2C+DDR%29&rft.au=Shao%2C+Yujing&rft.au=Ma%2C+Wei&rft.au=Wang%2C+Lei&rft.date=2022-09-03&rft.pub=Taylor+%26+Francis&rft.issn=0233-1888&rft.eissn=1029-4910&rft.volume=56&rft.issue=5&rft.spage=1072&rft.epage=1094&rft_id=info:doi/10.1080%2F02331888.2022.2110250&rft.externalDocID=2110250 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1888&client=summon |