Neural Network Based Model Predictive Controllers for Modular Multilevel Converters

Modular multilevel converter (MMC) has attracted much attention for years due to its good performance in harmonics reduction and efficiency improvement. Model predictive control (MPC) based controllers are widely adopted for MMC because the control design is straightforward and different control obj...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on energy conversion Vol. 36; no. 2; pp. 1562 - 1571
Main Authors Wang, Songda, Dragicevic, Tomislav, Gao, Yuan, Teodorescu, Remus
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modular multilevel converter (MMC) has attracted much attention for years due to its good performance in harmonics reduction and efficiency improvement. Model predictive control (MPC) based controllers are widely adopted for MMC because the control design is straightforward and different control objectives can be simply implemented in a cost function. However, the computational burden of MPC imposes limitations in the control implementation of MMC because of many possible switching states. To solve this, we design machine learning (ML) based controllers for MMC based on the data collection from the MPC algorithm. The ML models are trained to emulate the MPC controllers which can effectively reduce the computation burden of real-time control since the trained models are built with simple math functions that are not correlated with the complexity of the MPC algorithm. The ML method applied in this study is a neural network (NN) and there are two types of establishing ML controllers: NN regression and NN pattern recognition. Both are trained using the sampled data and tested in a real-time MMC system. A comparison of experimental results shows that NN regression has a much better control performance and lower computation burden than the NN pattern recognition.
AbstractList Modular multilevel converter (MMC) has attracted much attention for years due to its good performance in harmonics reduction and efficiency improvement. Model predictive control (MPC) based controllers are widely adopted for MMC because the control design is straightforward and different control objectives can be simply implemented in a cost function. However, the computational burden of MPC imposes limitations in the control implementation of MMC because of many possible switching states. To solve this, we design machine learning (ML) based controllers for MMC based on the data collection from the MPC algorithm. The ML models are trained to emulate the MPC controllers which can effectively reduce the computation burden of real-time control since the trained models are built with simple math functions that are not correlated with the complexity of the MPC algorithm. The ML method applied in this study is a neural network (NN) and there are two types of establishing ML controllers: NN regression and NN pattern recognition. Both are trained using the sampled data and tested in a real-time MMC system. A comparison of experimental results shows that NN regression has a much better control performance and lower computation burden than the NN pattern recognition.
Author Gao, Yuan
Teodorescu, Remus
Wang, Songda
Dragicevic, Tomislav
Author_xml – sequence: 1
  givenname: Songda
  orcidid: 0000-0002-2034-2812
  surname: Wang
  fullname: Wang, Songda
  email: sow@et.aau.dk
  organization: Department of Energy Technology, Aalborg University, Aalborg, Denmark
– sequence: 2
  givenname: Tomislav
  surname: Dragicevic
  fullname: Dragicevic, Tomislav
  email: tomdr@elektro.dtu.dk
  organization: Department of Electrical Engineering, Technical University of Denmark, Copenhagen, Denmark
– sequence: 3
  givenname: Yuan
  orcidid: 0000-0002-3437-1294
  surname: Gao
  fullname: Gao, Yuan
  email: yuan.gao@nottingham.ac.uk
  organization: Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, U.K
– sequence: 4
  givenname: Remus
  orcidid: 0000-0002-2617-7168
  surname: Teodorescu
  fullname: Teodorescu, Remus
  email: ret@et.aau.dk
  organization: Department of Energy Technology, Aalborg University, Aalborg, Denmark
BookMark eNp9kE1Lw0AQQBepYFu9C14CnlNnv5LsUUP9gFoF6zlskgmkrtm62VT8926oePDgaS7vzTBvRiad7ZCQcwoLSkFdbZb5ggGDBQdGgbEjMqVSZjGAVBMyhSyTcaYSdUJmfb8FoEIyOiUvaxycNtEa_ad1b9GN7rGOHm2NJnp2WLeVb_cY5bbzzhqDro8a60ZgMDrMwfjW4D7QAdmj84E4JceNNj2e_cw5eb1dbvL7ePV095Bfr-KKc-7jWleKN1JgSUXNaVLSEkTJGBWMNrXkqgEpABKtZMowYSINfN1IELVqKsX4nFwe9u6c_Riw98XWDq4LJwsmOYQsGU8DlRyoytm-d9gUVeu1b8ePdGsKCsUYsAgBizFg8RMwiPBH3Ln2Xbuv_5SLg9Ii4i-uaMZVKvg3SB58eQ
CODEN ITCNE4
CitedBy_id crossref_primary_10_1016_j_ijepes_2022_108812
crossref_primary_10_1049_pel2_70013
crossref_primary_10_1109_TIE_2021_3076721
crossref_primary_10_1177_01423312221098486
crossref_primary_10_1016_j_ijepes_2022_108710
crossref_primary_10_3390_en15041376
crossref_primary_10_1016_j_rineng_2024_103658
crossref_primary_10_1109_TPEL_2023_3294328
crossref_primary_10_1016_j_ijepes_2025_110583
crossref_primary_10_3390_en15051634
crossref_primary_10_1109_ACCESS_2022_3173752
crossref_primary_10_1109_JESTPE_2022_3192354
crossref_primary_10_1088_1742_6596_2479_1_012058
crossref_primary_10_1109_JESTPE_2022_3159621
crossref_primary_10_1109_TIE_2024_3383011
crossref_primary_10_1109_OJIA_2023_3338534
crossref_primary_10_1109_TCYB_2022_3166855
crossref_primary_10_1109_TEC_2021_3118664
crossref_primary_10_3390_su15118922
crossref_primary_10_1016_j_matpr_2024_02_018
crossref_primary_10_2139_ssrn_4127026
crossref_primary_10_1016_j_conengprac_2022_105367
crossref_primary_10_1109_TCSI_2024_3416462
crossref_primary_10_3390_en17112519
crossref_primary_10_1109_JESTPE_2021_3124315
crossref_primary_10_1109_TPEL_2022_3209093
crossref_primary_10_1109_ACCESS_2022_3230356
crossref_primary_10_1007_s00202_024_02275_1
crossref_primary_10_1109_TII_2023_3233973
crossref_primary_10_1109_TPEL_2025_3526246
crossref_primary_10_3390_en14113230
crossref_primary_10_1109_ACCESS_2023_3249151
crossref_primary_10_1109_JESTPE_2023_3328260
crossref_primary_10_1007_s43236_022_00535_6
crossref_primary_10_1109_TTE_2023_3333270
crossref_primary_10_1109_TPWRD_2023_3244853
crossref_primary_10_1088_1361_6501_ad4b50
Cites_doi 10.1109/TPEL.2018.2878600
10.1109/TIE.2018.2875660
10.1162/neco.2006.18.7.1527
10.1109/ECCE.2012.6342494
10.1109/TPWRD.2012.2191577
10.1109/LCSYS.2018.2843682
10.1109/ACCESS.2019.2938220
10.1109/APEC.2014.6803546
10.1109/TPEL.2014.2329059
10.1002/9781118851555
10.1109/TPWRD.2014.2303172
10.1109/TPEL.2014.2316173
10.1109/TIE.2020.2969116
10.1109/TPEL.2018.2883947
10.1109/TPEL.2018.2850360
10.1109/TIE.2018.2844836
10.1109/TPEL.2016.2630921
10.1016/0893-6080(89)90020-8
10.1109/TIE.2011.2157284
10.1109/TPWRD.2014.2342229
10.1049/iet-epa.2016.0454
10.1109/TIE.2011.2159349
10.1109/PTC.2003.1304403
10.1109/TPEL.2013.2254129
10.1109/APEC.2018.8341143
10.1109/MED.2019.8798512
10.1109/TIE.2015.2497254
10.1109/TIE.2017.2774725
10.1109/JESTPE.2018.2880137
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TEC.2020.3021022
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0059
EndPage 1571
ExternalDocumentID 10_1109_TEC_2020_3021022
9183974
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c333t-dac93f54eb14d316b1b04b221421fd539f054006a9572e6247c93df504d9fc923
IEDL.DBID RIE
ISSN 0885-8969
IngestDate Mon Jun 30 02:28:15 EDT 2025
Tue Jul 01 02:53:22 EDT 2025
Thu Apr 24 23:10:58 EDT 2025
Wed Aug 27 02:51:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-dac93f54eb14d316b1b04b221421fd539f054006a9572e6247c93df504d9fc923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3437-1294
0000-0002-2617-7168
0000-0002-2034-2812
OpenAccessLink https://nottingham-repository.worktribe.com/output/4925038
PQID 2530110837
PQPubID 85443
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TEC_2020_3021022
ieee_primary_9183974
crossref_primary_10_1109_TEC_2020_3021022
proquest_journals_2530110837
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-June
2021-6-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on energy conversion
PublicationTitleAbbrev TEC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref14
ref31
ref30
ref11
ref32
ref10
antonopoulos (ref3) 0
michael (ref25) 2019
ref2
ref1
ref17
ref16
ref19
ref18
qin (ref12) 2012; 27
yang (ref15) 2018; 65
ref24
ref23
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref6
ref5
christopher (ref26) 2006
References_xml – ident: ref28
  doi: 10.1109/TPEL.2018.2878600
– ident: ref23
  doi: 10.1109/TIE.2018.2875660
– ident: ref32
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref11
  doi: 10.1109/ECCE.2012.6342494
– volume: 27
  start-page: 1538
  year: 2012
  ident: ref12
  article-title: Predictive control of a modular multilevel converter for a back-to-back HVDC system
  publication-title: IEEE Trans Power Del
  doi: 10.1109/TPWRD.2012.2191577
– ident: ref19
  doi: 10.1109/LCSYS.2018.2843682
– ident: ref21
  doi: 10.1109/ACCESS.2019.2938220
– ident: ref16
  doi: 10.1109/APEC.2014.6803546
– start-page: 1
  year: 0
  ident: ref3
  article-title: On dynamics and voltage control of the modular multilevel converter
  publication-title: Proc Eur Conf Power Elect Appl
– ident: ref6
  doi: 10.1109/TPEL.2014.2329059
– ident: ref30
  doi: 10.1002/9781118851555
– ident: ref10
  doi: 10.1109/TPWRD.2014.2303172
– ident: ref18
  doi: 10.1109/TPEL.2014.2316173
– ident: ref22
  doi: 10.1109/TIE.2020.2969116
– ident: ref24
  doi: 10.1109/TPEL.2018.2883947
– ident: ref2
  doi: 10.1109/TPEL.2018.2850360
– ident: ref9
  doi: 10.1109/TIE.2018.2844836
– ident: ref13
  doi: 10.1109/TPEL.2016.2630921
– ident: ref27
  doi: 10.1016/0893-6080(89)90020-8
– year: 2006
  ident: ref26
  publication-title: Pattern Recognition and Machine Learning
– ident: ref31
  doi: 10.1109/TIE.2011.2157284
– year: 2019
  ident: ref25
  publication-title: MATLAB Machine Learning Recipes A Problem-solution Approach
– ident: ref5
  doi: 10.1109/TPWRD.2014.2342229
– ident: ref14
  doi: 10.1049/iet-epa.2016.0454
– ident: ref4
  doi: 10.1109/TIE.2011.2159349
– ident: ref1
  doi: 10.1109/PTC.2003.1304403
– ident: ref29
  doi: 10.1109/TPEL.2013.2254129
– ident: ref7
  doi: 10.1109/APEC.2018.8341143
– ident: ref20
  doi: 10.1109/MED.2019.8798512
– ident: ref17
  doi: 10.1109/TIE.2015.2497254
– volume: 65
  start-page: 4819
  year: 2018
  ident: ref15
  article-title: Priority sorting approach for modular multilevel converter based on simplified model
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2774725
– ident: ref8
  doi: 10.1109/JESTPE.2018.2880137
SSID ssj0014521
Score 2.5272443
Snippet Modular multilevel converter (MMC) has attracted much attention for years due to its good performance in harmonics reduction and efficiency improvement. Model...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1562
SubjectTerms Algorithms
Artificial neural networks
Computation
Computational modeling
control design
Controllers
Converters
Cost function
Data collection
Machine learning
Mathematical model
model predictive control (MPC)
Modular multilevel converter (MMC)
neural network (NN)
Neural networks
Pattern recognition
Predictive control
Predictive models
Real time
Title Neural Network Based Model Predictive Controllers for Modular Multilevel Converters
URI https://ieeexplore.ieee.org/document/9183974
https://www.proquest.com/docview/2530110837
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAayAGA_XABYlufSTtcoRp04S0CYlN2q1KmvRCtaGxXfj12OlDvIS49eCqUZzan2P7M8CN5iKVgwF3B0xjgJLpwFUIFNyASaUl5eEsqc90Fk0W7HHJlw24q3thjDG2-Mz06NHm8vU63dFVWV-QO49ZE5oYuBW9WnXGgHHbY-XZ74pIVClJT_TnoyEGggHGp0WA88UF2ZkqPwyx9S7jQ5hW6yqKSl56u63qpe_fKBv_u_AjOChhpnNfnItjaJjVCex_Ih9swzPxcqDMrCgEdx7Qn2mHZqPlztOG8jdkCZ1hUcueI0x0EOCSAFWuOrZzN6eSIxKhqc4ocQqL8Wg-nLjliAU3DcNw62qZijDjDC0206EfKV95TAXEw-ZnmociI0jnRVLwODBRwGKU1xn3mBZZiuDwDFqr9cqcg5OhViPl-TI2DFGJlCqSnIggshjDOuZ3oF_tepKW_OM0BiNPbBziiQT1lJCeklJPHbit33gtuDf-kG3Tttdy5Y53oFspNil_zrck4GTVEHvGF7-_dQl7AZWu2MuWLrS2m525QuyxVdf20H0AOcjTnA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHIADr4EYzx64INGtTZN2OcK0aTw2IbFJu1VJk16YNgTbhV-PnXYTLyFuPbhqFKf259j-DHBhhMxUsyn8JjcYoOSG-RqBgs-40kZRHs6R-vT6cXfI70ZiVIGrZS-MtdYVn9k6Pbpcvplmc7oqa0hy5wlfgTX0-4IV3VrLnAEXrssqcF-WsVwkJQPZGLRbGAoyjFCLEOeLE3JTVX6YYudfOtvQW6ysKCt5rs9nup69fyNt_O_Sd2CrBJredXEydqFiJ3uw-Yl-sApPxMyBMv2iFNy7QY9mPJqONvYeXymDQ7bQaxXV7GMEih5CXBKg2lXP9e6OqeiIRGiuM0rsw7DTHrS6fjlkwc-iKJr5RmUyygVHm81NFMY61AHXjJjYwtyISOYE6oJYSZEwGzOeoLzJRcCNzDOEhwewOplO7CF4Oeo11kGoEssRlyilYyWICiJPMLDjYQ0ai11Ps5KBnAZhjFMXiQQyRT2lpKe01FMNLpdvvBTsG3_IVmnbl3LljtfgZKHYtPw931ImyK4h-kyOfn_rHNa7g95D-nDbvz-GDUaFLO7q5QRWZ69ze4pIZKbP3AH8AHLk1uY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network+Based+Model+Predictive+Controllers+for+Modular+Multilevel+Converters&rft.jtitle=IEEE+transactions+on+energy+conversion&rft.au=Wang%2C+Songda&rft.au=Dragicevic%2C+Tomislav&rft.au=Gao%2C+Yuan&rft.au=Teodorescu%2C+Remus&rft.date=2021-06-01&rft.issn=0885-8969&rft.eissn=1558-0059&rft.volume=36&rft.issue=2&rft.spage=1562&rft.epage=1571&rft_id=info:doi/10.1109%2FTEC.2020.3021022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEC_2020_3021022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8969&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8969&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8969&client=summon