Neural Network Based Model Predictive Controllers for Modular Multilevel Converters
Modular multilevel converter (MMC) has attracted much attention for years due to its good performance in harmonics reduction and efficiency improvement. Model predictive control (MPC) based controllers are widely adopted for MMC because the control design is straightforward and different control obj...
Saved in:
Published in | IEEE transactions on energy conversion Vol. 36; no. 2; pp. 1562 - 1571 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modular multilevel converter (MMC) has attracted much attention for years due to its good performance in harmonics reduction and efficiency improvement. Model predictive control (MPC) based controllers are widely adopted for MMC because the control design is straightforward and different control objectives can be simply implemented in a cost function. However, the computational burden of MPC imposes limitations in the control implementation of MMC because of many possible switching states. To solve this, we design machine learning (ML) based controllers for MMC based on the data collection from the MPC algorithm. The ML models are trained to emulate the MPC controllers which can effectively reduce the computation burden of real-time control since the trained models are built with simple math functions that are not correlated with the complexity of the MPC algorithm. The ML method applied in this study is a neural network (NN) and there are two types of establishing ML controllers: NN regression and NN pattern recognition. Both are trained using the sampled data and tested in a real-time MMC system. A comparison of experimental results shows that NN regression has a much better control performance and lower computation burden than the NN pattern recognition. |
---|---|
AbstractList | Modular multilevel converter (MMC) has attracted much attention for years due to its good performance in harmonics reduction and efficiency improvement. Model predictive control (MPC) based controllers are widely adopted for MMC because the control design is straightforward and different control objectives can be simply implemented in a cost function. However, the computational burden of MPC imposes limitations in the control implementation of MMC because of many possible switching states. To solve this, we design machine learning (ML) based controllers for MMC based on the data collection from the MPC algorithm. The ML models are trained to emulate the MPC controllers which can effectively reduce the computation burden of real-time control since the trained models are built with simple math functions that are not correlated with the complexity of the MPC algorithm. The ML method applied in this study is a neural network (NN) and there are two types of establishing ML controllers: NN regression and NN pattern recognition. Both are trained using the sampled data and tested in a real-time MMC system. A comparison of experimental results shows that NN regression has a much better control performance and lower computation burden than the NN pattern recognition. |
Author | Gao, Yuan Teodorescu, Remus Wang, Songda Dragicevic, Tomislav |
Author_xml | – sequence: 1 givenname: Songda orcidid: 0000-0002-2034-2812 surname: Wang fullname: Wang, Songda email: sow@et.aau.dk organization: Department of Energy Technology, Aalborg University, Aalborg, Denmark – sequence: 2 givenname: Tomislav surname: Dragicevic fullname: Dragicevic, Tomislav email: tomdr@elektro.dtu.dk organization: Department of Electrical Engineering, Technical University of Denmark, Copenhagen, Denmark – sequence: 3 givenname: Yuan orcidid: 0000-0002-3437-1294 surname: Gao fullname: Gao, Yuan email: yuan.gao@nottingham.ac.uk organization: Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, U.K – sequence: 4 givenname: Remus orcidid: 0000-0002-2617-7168 surname: Teodorescu fullname: Teodorescu, Remus email: ret@et.aau.dk organization: Department of Energy Technology, Aalborg University, Aalborg, Denmark |
BookMark | eNp9kE1Lw0AQQBepYFu9C14CnlNnv5LsUUP9gFoF6zlskgmkrtm62VT8926oePDgaS7vzTBvRiad7ZCQcwoLSkFdbZb5ggGDBQdGgbEjMqVSZjGAVBMyhSyTcaYSdUJmfb8FoEIyOiUvaxycNtEa_ad1b9GN7rGOHm2NJnp2WLeVb_cY5bbzzhqDro8a60ZgMDrMwfjW4D7QAdmj84E4JceNNj2e_cw5eb1dbvL7ePV095Bfr-KKc-7jWleKN1JgSUXNaVLSEkTJGBWMNrXkqgEpABKtZMowYSINfN1IELVqKsX4nFwe9u6c_Riw98XWDq4LJwsmOYQsGU8DlRyoytm-d9gUVeu1b8ePdGsKCsUYsAgBizFg8RMwiPBH3Ln2Xbuv_5SLg9Ii4i-uaMZVKvg3SB58eQ |
CODEN | ITCNE4 |
CitedBy_id | crossref_primary_10_1016_j_ijepes_2022_108812 crossref_primary_10_1049_pel2_70013 crossref_primary_10_1109_TIE_2021_3076721 crossref_primary_10_1177_01423312221098486 crossref_primary_10_1016_j_ijepes_2022_108710 crossref_primary_10_3390_en15041376 crossref_primary_10_1016_j_rineng_2024_103658 crossref_primary_10_1109_TPEL_2023_3294328 crossref_primary_10_1016_j_ijepes_2025_110583 crossref_primary_10_3390_en15051634 crossref_primary_10_1109_ACCESS_2022_3173752 crossref_primary_10_1109_JESTPE_2022_3192354 crossref_primary_10_1088_1742_6596_2479_1_012058 crossref_primary_10_1109_JESTPE_2022_3159621 crossref_primary_10_1109_TIE_2024_3383011 crossref_primary_10_1109_OJIA_2023_3338534 crossref_primary_10_1109_TCYB_2022_3166855 crossref_primary_10_1109_TEC_2021_3118664 crossref_primary_10_3390_su15118922 crossref_primary_10_1016_j_matpr_2024_02_018 crossref_primary_10_2139_ssrn_4127026 crossref_primary_10_1016_j_conengprac_2022_105367 crossref_primary_10_1109_TCSI_2024_3416462 crossref_primary_10_3390_en17112519 crossref_primary_10_1109_JESTPE_2021_3124315 crossref_primary_10_1109_TPEL_2022_3209093 crossref_primary_10_1109_ACCESS_2022_3230356 crossref_primary_10_1007_s00202_024_02275_1 crossref_primary_10_1109_TII_2023_3233973 crossref_primary_10_1109_TPEL_2025_3526246 crossref_primary_10_3390_en14113230 crossref_primary_10_1109_ACCESS_2023_3249151 crossref_primary_10_1109_JESTPE_2023_3328260 crossref_primary_10_1007_s43236_022_00535_6 crossref_primary_10_1109_TTE_2023_3333270 crossref_primary_10_1109_TPWRD_2023_3244853 crossref_primary_10_1088_1361_6501_ad4b50 |
Cites_doi | 10.1109/TPEL.2018.2878600 10.1109/TIE.2018.2875660 10.1162/neco.2006.18.7.1527 10.1109/ECCE.2012.6342494 10.1109/TPWRD.2012.2191577 10.1109/LCSYS.2018.2843682 10.1109/ACCESS.2019.2938220 10.1109/APEC.2014.6803546 10.1109/TPEL.2014.2329059 10.1002/9781118851555 10.1109/TPWRD.2014.2303172 10.1109/TPEL.2014.2316173 10.1109/TIE.2020.2969116 10.1109/TPEL.2018.2883947 10.1109/TPEL.2018.2850360 10.1109/TIE.2018.2844836 10.1109/TPEL.2016.2630921 10.1016/0893-6080(89)90020-8 10.1109/TIE.2011.2157284 10.1109/TPWRD.2014.2342229 10.1049/iet-epa.2016.0454 10.1109/TIE.2011.2159349 10.1109/PTC.2003.1304403 10.1109/TPEL.2013.2254129 10.1109/APEC.2018.8341143 10.1109/MED.2019.8798512 10.1109/TIE.2015.2497254 10.1109/TIE.2017.2774725 10.1109/JESTPE.2018.2880137 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TEC.2020.3021022 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0059 |
EndPage | 1571 |
ExternalDocumentID | 10_1109_TEC_2020_3021022 9183974 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c333t-dac93f54eb14d316b1b04b221421fd539f054006a9572e6247c93df504d9fc923 |
IEDL.DBID | RIE |
ISSN | 0885-8969 |
IngestDate | Mon Jun 30 02:28:15 EDT 2025 Tue Jul 01 02:53:22 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Wed Aug 27 02:51:10 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-dac93f54eb14d316b1b04b221421fd539f054006a9572e6247c93df504d9fc923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3437-1294 0000-0002-2617-7168 0000-0002-2034-2812 |
OpenAccessLink | https://nottingham-repository.worktribe.com/output/4925038 |
PQID | 2530110837 |
PQPubID | 85443 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1109_TEC_2020_3021022 ieee_primary_9183974 crossref_primary_10_1109_TEC_2020_3021022 proquest_journals_2530110837 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-June 2021-6-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-June |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on energy conversion |
PublicationTitleAbbrev | TEC |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref14 ref31 ref30 ref11 ref32 ref10 antonopoulos (ref3) 0 michael (ref25) 2019 ref2 ref1 ref17 ref16 ref19 ref18 qin (ref12) 2012; 27 yang (ref15) 2018; 65 ref24 ref23 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref6 ref5 christopher (ref26) 2006 |
References_xml | – ident: ref28 doi: 10.1109/TPEL.2018.2878600 – ident: ref23 doi: 10.1109/TIE.2018.2875660 – ident: ref32 doi: 10.1162/neco.2006.18.7.1527 – ident: ref11 doi: 10.1109/ECCE.2012.6342494 – volume: 27 start-page: 1538 year: 2012 ident: ref12 article-title: Predictive control of a modular multilevel converter for a back-to-back HVDC system publication-title: IEEE Trans Power Del doi: 10.1109/TPWRD.2012.2191577 – ident: ref19 doi: 10.1109/LCSYS.2018.2843682 – ident: ref21 doi: 10.1109/ACCESS.2019.2938220 – ident: ref16 doi: 10.1109/APEC.2014.6803546 – start-page: 1 year: 0 ident: ref3 article-title: On dynamics and voltage control of the modular multilevel converter publication-title: Proc Eur Conf Power Elect Appl – ident: ref6 doi: 10.1109/TPEL.2014.2329059 – ident: ref30 doi: 10.1002/9781118851555 – ident: ref10 doi: 10.1109/TPWRD.2014.2303172 – ident: ref18 doi: 10.1109/TPEL.2014.2316173 – ident: ref22 doi: 10.1109/TIE.2020.2969116 – ident: ref24 doi: 10.1109/TPEL.2018.2883947 – ident: ref2 doi: 10.1109/TPEL.2018.2850360 – ident: ref9 doi: 10.1109/TIE.2018.2844836 – ident: ref13 doi: 10.1109/TPEL.2016.2630921 – ident: ref27 doi: 10.1016/0893-6080(89)90020-8 – year: 2006 ident: ref26 publication-title: Pattern Recognition and Machine Learning – ident: ref31 doi: 10.1109/TIE.2011.2157284 – year: 2019 ident: ref25 publication-title: MATLAB Machine Learning Recipes A Problem-solution Approach – ident: ref5 doi: 10.1109/TPWRD.2014.2342229 – ident: ref14 doi: 10.1049/iet-epa.2016.0454 – ident: ref4 doi: 10.1109/TIE.2011.2159349 – ident: ref1 doi: 10.1109/PTC.2003.1304403 – ident: ref29 doi: 10.1109/TPEL.2013.2254129 – ident: ref7 doi: 10.1109/APEC.2018.8341143 – ident: ref20 doi: 10.1109/MED.2019.8798512 – ident: ref17 doi: 10.1109/TIE.2015.2497254 – volume: 65 start-page: 4819 year: 2018 ident: ref15 article-title: Priority sorting approach for modular multilevel converter based on simplified model publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2017.2774725 – ident: ref8 doi: 10.1109/JESTPE.2018.2880137 |
SSID | ssj0014521 |
Score | 2.5272443 |
Snippet | Modular multilevel converter (MMC) has attracted much attention for years due to its good performance in harmonics reduction and efficiency improvement. Model... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1562 |
SubjectTerms | Algorithms Artificial neural networks Computation Computational modeling control design Controllers Converters Cost function Data collection Machine learning Mathematical model model predictive control (MPC) Modular multilevel converter (MMC) neural network (NN) Neural networks Pattern recognition Predictive control Predictive models Real time |
Title | Neural Network Based Model Predictive Controllers for Modular Multilevel Converters |
URI | https://ieeexplore.ieee.org/document/9183974 https://www.proquest.com/docview/2530110837 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAayAGA_XABYlufSTtcoRp04S0CYlN2q1KmvRCtaGxXfj12OlDvIS49eCqUZzan2P7M8CN5iKVgwF3B0xjgJLpwFUIFNyASaUl5eEsqc90Fk0W7HHJlw24q3thjDG2-Mz06NHm8vU63dFVWV-QO49ZE5oYuBW9WnXGgHHbY-XZ74pIVClJT_TnoyEGggHGp0WA88UF2ZkqPwyx9S7jQ5hW6yqKSl56u63qpe_fKBv_u_AjOChhpnNfnItjaJjVCex_Ih9swzPxcqDMrCgEdx7Qn2mHZqPlztOG8jdkCZ1hUcueI0x0EOCSAFWuOrZzN6eSIxKhqc4ocQqL8Wg-nLjliAU3DcNw62qZijDjDC0206EfKV95TAXEw-ZnmociI0jnRVLwODBRwGKU1xn3mBZZiuDwDFqr9cqcg5OhViPl-TI2DFGJlCqSnIggshjDOuZ3oF_tepKW_OM0BiNPbBziiQT1lJCeklJPHbit33gtuDf-kG3Tttdy5Y53oFspNil_zrck4GTVEHvGF7-_dQl7AZWu2MuWLrS2m525QuyxVdf20H0AOcjTnA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHIADr4EYzx64INGtTZN2OcK0aTw2IbFJu1VJk16YNgTbhV-PnXYTLyFuPbhqFKf259j-DHBhhMxUsyn8JjcYoOSG-RqBgs-40kZRHs6R-vT6cXfI70ZiVIGrZS-MtdYVn9k6Pbpcvplmc7oqa0hy5wlfgTX0-4IV3VrLnAEXrssqcF-WsVwkJQPZGLRbGAoyjFCLEOeLE3JTVX6YYudfOtvQW6ysKCt5rs9nup69fyNt_O_Sd2CrBJredXEydqFiJ3uw-Yl-sApPxMyBMv2iFNy7QY9mPJqONvYeXymDQ7bQaxXV7GMEih5CXBKg2lXP9e6OqeiIRGiuM0rsw7DTHrS6fjlkwc-iKJr5RmUyygVHm81NFMY61AHXjJjYwtyISOYE6oJYSZEwGzOeoLzJRcCNzDOEhwewOplO7CF4Oeo11kGoEssRlyilYyWICiJPMLDjYQ0ai11Ps5KBnAZhjFMXiQQyRT2lpKe01FMNLpdvvBTsG3_IVmnbl3LljtfgZKHYtPw931ImyK4h-kyOfn_rHNa7g95D-nDbvz-GDUaFLO7q5QRWZ69ze4pIZKbP3AH8AHLk1uY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network+Based+Model+Predictive+Controllers+for+Modular+Multilevel+Converters&rft.jtitle=IEEE+transactions+on+energy+conversion&rft.au=Wang%2C+Songda&rft.au=Dragicevic%2C+Tomislav&rft.au=Gao%2C+Yuan&rft.au=Teodorescu%2C+Remus&rft.date=2021-06-01&rft.issn=0885-8969&rft.eissn=1558-0059&rft.volume=36&rft.issue=2&rft.spage=1562&rft.epage=1571&rft_id=info:doi/10.1109%2FTEC.2020.3021022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEC_2020_3021022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8969&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8969&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8969&client=summon |