Modified matrix splitting method for the support vector machine and its application to the credit classification of companies in Korea

► We propose a solving approach for the ν-support vector machine (SVM) for classification problems. We use the modified matrix splitting method and incomplete Cholesky decomposition. The matrix splitting method combined with the projection gradient method. The incomplete Cholesky decomposition is us...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 39; no. 10; pp. 8824 - 8834
Main Authors Kim, Gitae, Wu, Chih-Hang, Lim, Sungmook, Kim, Jumi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► We propose a solving approach for the ν-support vector machine (SVM) for classification problems. We use the modified matrix splitting method and incomplete Cholesky decomposition. The matrix splitting method combined with the projection gradient method. The incomplete Cholesky decomposition is used for the large scale Hessian. The proposed method applies for the credit prediction for small-sized Korean companies. This research proposes a solving approach for the ν-support vector machine (SVM) for classification problems using the modified matrix splitting method and incomplete Cholesky decomposition. With a minor modification, the dual formulation of the ν-SVM classification becomes a singly linearly constrained convex quadratic program with box constraints. The Kernel Hessian matrix of the SVM problem is dense and large. The matrix splitting method combined with the projection gradient method solves the subproblem with a diagonal Hessian matrix iteratively until the solution reaches the optimum. The method can use one of several line search and updating alpha methods in the projection gradient method. The incomplete Cholesky decomposition is used for the calculation of the large scale Hessian and vectors. The newly proposed method applies for a real world classification problem of the credit prediction for small-sized Korean companies.
AbstractList This research proposes a solving approach for the nu -support vector machine (SVM) for classification problems using the modified matrix splitting method and incomplete Cholesky decomposition. With a minor modification, the dual formulation of the nu -SVM classification becomes a singly linearly constrained convex quadratic program with box constraints. The Kernel Hessian matrix of the SVM problem is dense and large. The matrix splitting method combined with the projection gradient method solves the subproblem with a diagonal Hessian matrix iteratively until the solution reaches the optimum. The method can use one of several line search and updating alpha methods in the projection gradient method. The incomplete Cholesky decomposition is used for the calculation of the large scale Hessian and vectors. The newly proposed method applies for a real world classification problem of the credit prediction for small-sized Korean companies.
► We propose a solving approach for the ν-support vector machine (SVM) for classification problems. We use the modified matrix splitting method and incomplete Cholesky decomposition. The matrix splitting method combined with the projection gradient method. The incomplete Cholesky decomposition is used for the large scale Hessian. The proposed method applies for the credit prediction for small-sized Korean companies. This research proposes a solving approach for the ν-support vector machine (SVM) for classification problems using the modified matrix splitting method and incomplete Cholesky decomposition. With a minor modification, the dual formulation of the ν-SVM classification becomes a singly linearly constrained convex quadratic program with box constraints. The Kernel Hessian matrix of the SVM problem is dense and large. The matrix splitting method combined with the projection gradient method solves the subproblem with a diagonal Hessian matrix iteratively until the solution reaches the optimum. The method can use one of several line search and updating alpha methods in the projection gradient method. The incomplete Cholesky decomposition is used for the calculation of the large scale Hessian and vectors. The newly proposed method applies for a real world classification problem of the credit prediction for small-sized Korean companies.
Author Kim, Jumi
Wu, Chih-Hang
Lim, Sungmook
Kim, Gitae
Author_xml – sequence: 1
  givenname: Gitae
  surname: Kim
  fullname: Kim, Gitae
  email: gitaekimemail@gmail.com
  organization: Department of Industrial and Manufacturing Systems Engineering, Kansas State University, 2033 Durland Hall, Manhattan, KS 66506, USA
– sequence: 2
  givenname: Chih-Hang
  surname: Wu
  fullname: Wu, Chih-Hang
  email: chw@ksu.edu
  organization: Department of Industrial and Manufacturing Systems Engineering, Kansas State University, 2018 Durland Hall, Manhattan, KS 66506, USA
– sequence: 3
  givenname: Sungmook
  surname: Lim
  fullname: Lim, Sungmook
  email: sungmook@korea.ac.kr
  organization: Division of Business Administration, Korea University, Jochiwon-Eup, Yeongi-Gun, Chungnam 339-700, Republic of Korea
– sequence: 4
  givenname: Jumi
  surname: Kim
  fullname: Kim, Jumi
  email: jmkim@kosbi.re.kr
  organization: Korea Small Business Institute (KOSBI), 16-2 Yoido-dong, Yeongdeungpo-ku, Seoul 150-742, Republic of Korea
BookMark eNp9kM9u1DAQhy1UJLaFF-DkI5csdpysHYkLqvgnWnGBszWxJ-ysEjvY3lJegOfG2-2JQ6WRRvL8Po_mu2QXIQZk7LUUWynk7u1hi_k3bFsh262oJfQztpFGq2anB3XBNmLoddNJ3b1glzkfhJC6hjbs7230NBF6vkBJdM_zOlMpFH7yBcs-ej7FxMseeT6ua0yF36Er9WkBt6eAHILnVDKHtYIOCsXAS3wgXEJPhbsZcq47Hodx4i4uKwTCzCnwrzEhvGTPJ5gzvnrsV-zHxw_frz83N98-fbl-f9M4pVRp3NQbg2ZS2iglRxz8KIwevIZ2hF6NvVaDVmBG2alu6ryHvjW9U6PUDvuuVVfszfnfNcVfR8zFLpQdzjMEjMds5U7LTgyyPUXbc9SlmHPCya6JFkh_rBT2JN0e7Em6PUm3opbQFTL_QY7Kw90lAc1Po-_OKNb77wiTzY4wuOowVeXWR3oK_weLC6JM
CitedBy_id crossref_primary_10_1016_j_econmod_2013_05_007
crossref_primary_10_1051_matecconf_20165405004
crossref_primary_10_1016_j_eswa_2022_118003
crossref_primary_10_1155_2014_297563
Cites_doi 10.1137/0725029
10.1137/0330025
10.1023/A:1022323931043
10.1023/A:1018628609742
10.1137/S1052623400374379
10.1137/0325023
10.1016/j.patcog.2006.12.015
10.1007/BF01585748
10.1287/ijoc.9.3.311
10.1080/10556780512331318182
10.1016/S0362-546X(01)00664-2
10.1016/S0031-3203(01)00210-2
10.1137/0802004
10.1109/LGRS.2008.2009077
10.1016/j.patcog.2004.06.001
10.1016/j.neunet.2007.12.047
10.1162/089976601750399335
10.1137/1.9781611972719.13
10.1093/imanum/drn058
10.1007/s10107-005-0595-2
10.1109/ODYSSEY.2006.248129
10.1023/A:1013844413130
10.1109/TNN.2006.873281
10.1016/j.eswa.2005.09.070
10.1007/BF00934765
10.1137/S1052623494266365
10.1587/transinf.E92.D.1338
10.1007/s10957-008-9489-9
10.1109/NNSP.1997.622408
10.1137/S003614299427315X
10.1137/S1052623497330963
10.1142/S0217595910002594
10.1162/089976600300015565
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright_xml – notice: 2012 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2012.02.007
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 8834
ExternalDocumentID 10_1016_j_eswa_2012_02_007
S0957417412002497
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-cf588e8f378331be9db0879d7a2ba53b573973a8b1434f4dda5285c3b17ce5423
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Wed Jul 30 11:17:01 EDT 2025
Tue Jul 01 03:12:16 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Fri Feb 23 02:26:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Matrix splitting method
Support vector machine
Company credit prediction
Convex programming
Incomplete Cholesky decomposition
Projection gradient method
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-cf588e8f378331be9db0879d7a2ba53b573973a8b1434f4dda5285c3b17ce5423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671409122
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1671409122
crossref_primary_10_1016_j_eswa_2012_02_007
crossref_citationtrail_10_1016_j_eswa_2012_02_007
elsevier_sciencedirect_doi_10_1016_j_eswa_2012_02_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2012
2012-08-00
20120801
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: August 2012
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References (pp. 3556–3563). Hong Kong: IEEE.
Friedlander, Martinez, Molina, Raydan (b0090) 1998; 36
An, Liu, Venkatesh (b0015) 2007; 40
Vapnik (b0235) 1979
Kashima, Ide, Kato, Sugiyama (b0120) 2009; E92d
Goldfarb, Scheinberg (b0100) 2008; 28
Ferris, Munson (b0080) 2003; 13
Fu, Dai (b0095) 2010; 27
Joachims (b0115) 1999
Lin, Pang (b0145) 1987; 25
Crisp, D. J., & Burges, C. J. C. (2000). A geometric interpretation of v-SVM classifiers. In
Vapnik (b0240) 1995
Luo, Tseng (b0160) 1992; 2
Keller (b0125) 1965; 2
Luo, Tseng (b0165) 1992; 30
Kianmehr, Alhajj (b0130) 2006
(pp. 244–250).
(pp. 276–285). New York.
Conn, Gould, Toint (b0050) 1988; 25
Kansas State University.
Lin, Saigal (b0150) 2000; 40
Vapnik, Chervonenkis (b0245) 1974
.
Nehate, G. (2006).
Birgin, Martinez, Raydan (b0035) 2000; 10
Lin, Lucidi, Palagi, Risi, Sciandrone (b0140) 2009; 141
Min, Lee, Han (b0175) 2006; 31
Golub, Van Loan (b0105) 1996
Dai, Zhang (b0065) 2001; 27
Alzate, Suykens (b0010) 2008; 21
Mavroforakis, Theodoridis (b0170) 2006; 17
Raydan (b0210) 1997; 7
Debnath, R., & Takahashi, H. (2006). SVM training: Second-order cone programming versus quadratic programming. In
Fine, Scheinberg (b0085) 2001; 2
Osuna, E., Freud, R., & Girosi, F. (1997). An improved training algorithm for support vector machines. In
Ortega (b0185) 1972
Bennett, Bredensteiner (b0030) 2000
Bach, Jordan (b0020) 2005
To, Lim, Teo, Liebelt (b0230) 2001; 47
Zhou, Zhang, Jiao (b0255) 2002; 35
Dai, Fletcher (b0060) 2006; 106
Suykens, Vandewalle (b0225) 1999; 9
Alzate, C., & Suykens, J. (2008). Sparse kernel models for spectral clustering using the incomplete Cholesky decomposition. In
(pp. 1–5). IEEE.
Chang, Lin (b0045) 2001; 13
Camps-Valls, Munoz-Mari, Gomez-Chova, Richter, Calpe-Maravilla (b0040) 2009; 6
(pp. 1162-1168): IEEE.
Evtushenko, Zhadan (b0075) 1994; 34
Louradour, J., Daoudi, K., & Bach, F. (2006). SVM speaker verification using an incomplete cholesky decomposition sequence kernel. In
Platt (b0205) 1999
Bennett, Bredensteiner (b0025) 1997; 9
Zhan, Shen (b0250) 2005; 38
Higham (b0110) 1990
Serafini, T., Zanghirati, G., & Zanni, L. (2005). Gradient projection methods for quadratic programs and applications in training support vector machines. Optimization Methods and Software, 20, 353-378.
Pardalos, Kovoor (b0200) 1990; 46
Pang (b0195) 1982; 37
Lee, Y. J., & Mangasarian, O. L. (2001). RSVM: Reduced support vector machines. In
Schölkopf, Smola, Williamson, Bartlett (b0215) 2000; 12
To (10.1016/j.eswa.2012.02.007_b0230) 2001; 47
Joachims (10.1016/j.eswa.2012.02.007_b0115) 1999
Chang (10.1016/j.eswa.2012.02.007_b0045) 2001; 13
Fine (10.1016/j.eswa.2012.02.007_b0085) 2001; 2
Bennett (10.1016/j.eswa.2012.02.007_b0030) 2000
Kianmehr (10.1016/j.eswa.2012.02.007_b0130) 2006
Keller (10.1016/j.eswa.2012.02.007_b0125) 1965; 2
Higham (10.1016/j.eswa.2012.02.007_b0110) 1990
Vapnik (10.1016/j.eswa.2012.02.007_b0235) 1979
Kashima (10.1016/j.eswa.2012.02.007_b0120) 2009; E92d
Golub (10.1016/j.eswa.2012.02.007_b0105) 1996
Vapnik (10.1016/j.eswa.2012.02.007_b0245) 1974
Ferris (10.1016/j.eswa.2012.02.007_b0080) 2003; 13
Schölkopf (10.1016/j.eswa.2012.02.007_b0215) 2000; 12
Vapnik (10.1016/j.eswa.2012.02.007_b0240) 1995
10.1016/j.eswa.2012.02.007_b0005
Birgin (10.1016/j.eswa.2012.02.007_b0035) 2000; 10
Camps-Valls (10.1016/j.eswa.2012.02.007_b0040) 2009; 6
Pang (10.1016/j.eswa.2012.02.007_b0195) 1982; 37
Luo (10.1016/j.eswa.2012.02.007_b0160) 1992; 2
10.1016/j.eswa.2012.02.007_b0055
Lin (10.1016/j.eswa.2012.02.007_b0145) 1987; 25
Ortega (10.1016/j.eswa.2012.02.007_b0185) 1972
Zhan (10.1016/j.eswa.2012.02.007_b0250) 2005; 38
10.1016/j.eswa.2012.02.007_b0135
Bennett (10.1016/j.eswa.2012.02.007_b0025) 1997; 9
Raydan (10.1016/j.eswa.2012.02.007_b0210) 1997; 7
Lin (10.1016/j.eswa.2012.02.007_b0140) 2009; 141
Min (10.1016/j.eswa.2012.02.007_b0175) 2006; 31
Mavroforakis (10.1016/j.eswa.2012.02.007_b0170) 2006; 17
10.1016/j.eswa.2012.02.007_b0190
Bach (10.1016/j.eswa.2012.02.007_b0020) 2005
Platt (10.1016/j.eswa.2012.02.007_b0205) 1999
Luo (10.1016/j.eswa.2012.02.007_b0165) 1992; 30
10.1016/j.eswa.2012.02.007_b0180
10.1016/j.eswa.2012.02.007_b0220
An (10.1016/j.eswa.2012.02.007_b0015) 2007; 40
Lin (10.1016/j.eswa.2012.02.007_b0150) 2000; 40
Dai (10.1016/j.eswa.2012.02.007_b0060) 2006; 106
Friedlander (10.1016/j.eswa.2012.02.007_b0090) 1998; 36
Suykens (10.1016/j.eswa.2012.02.007_b0225) 1999; 9
Goldfarb (10.1016/j.eswa.2012.02.007_b0100) 2008; 28
Zhou (10.1016/j.eswa.2012.02.007_b0255) 2002; 35
10.1016/j.eswa.2012.02.007_b0070
Alzate (10.1016/j.eswa.2012.02.007_b0010) 2008; 21
Dai (10.1016/j.eswa.2012.02.007_b0065) 2001; 27
Evtushenko (10.1016/j.eswa.2012.02.007_b0075) 1994; 34
Pardalos (10.1016/j.eswa.2012.02.007_b0200) 1990; 46
10.1016/j.eswa.2012.02.007_b0155
Conn (10.1016/j.eswa.2012.02.007_b0050) 1988; 25
Fu (10.1016/j.eswa.2012.02.007_b0095) 2010; 27
References_xml – volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: b0225
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Processing Letters
– reference: Crisp, D. J., & Burges, C. J. C. (2000). A geometric interpretation of v-SVM classifiers. In
– volume: 30
  start-page: 408
  year: 1992
  end-page: 425
  ident: b0165
  article-title: On the linear convergence of descent methods for convex essentially smooth minimization
  publication-title: Siam Journal on Control and Optimization
– year: 1979
  ident: b0235
  article-title: Estimation of dependences based on empirical data
– volume: 2
  start-page: 243
  year: 2001
  end-page: 264
  ident: b0085
  article-title: Efficient SVM training using lower rank kernal representations
  publication-title: Journal of Machine Learning Research
– year: 1974
  ident: b0245
  article-title: Theory of pattern recognition
– year: 2000
  ident: b0030
  article-title: Duality and geometry in SVM classifiers
  publication-title: Seventeenth international conference on machine learning
– volume: 31
  start-page: 652
  year: 2006
  end-page: 660
  ident: b0175
  article-title: Hybrid genetic algorithms and support vector machines for bankruptcy prediction
  publication-title: Expert Systems with Applications
– volume: 46
  start-page: 321
  year: 1990
  end-page: 328
  ident: b0200
  article-title: An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds
  publication-title: Mathematical Programming
– reference: (pp. 1–5). IEEE.
– volume: E92d
  start-page: 1338
  year: 2009
  end-page: 1353
  ident: b0120
  article-title: Recent advances and trends in large-scale kernel methods
  publication-title: Ieice Transactions on Information and Systems
– reference: (pp. 3556–3563). Hong Kong: IEEE.
– start-page: 169
  year: 1999
  end-page: 184
  ident: b0115
  article-title: Making large-scale support vector machine learning practical
  publication-title: Advances in kernel methods: support vector learning
– reference: (pp. 1162-1168): IEEE.
– volume: 27
  start-page: 377
  year: 2001
  end-page: 385
  ident: b0065
  article-title: Adaptive two-point stepsize gradient algorithm
  publication-title: Numerical Algorithms
– volume: 13
  start-page: 783
  year: 2003
  end-page: 804
  ident: b0080
  article-title: Interior-point methods or massive support vector machines
  publication-title: Siam Journal on Optimization
– reference: . Kansas State University.
– reference: . (pp. 276–285). New York.
– reference: Alzate, C., & Suykens, J. (2008). Sparse kernel models for spectral clustering using the incomplete Cholesky decomposition. In
– volume: 25
  start-page: 383
  year: 1987
  end-page: 411
  ident: b0145
  article-title: Iterative methods for large convex quadratic programs – A survey
  publication-title: Siam Journal on Control and Optimization
– volume: 12
  start-page: 1207
  year: 2000
  end-page: 1245
  ident: b0215
  article-title: New support vector algorithms
  publication-title: Neural Computation
– volume: 34
  start-page: 579
  year: 1994
  end-page: 590
  ident: b0075
  article-title: Barrier-projective methods for nonlinear programming
  publication-title: Computational Mathematics and Mathematical Physics
– volume: 21
  start-page: 170
  year: 2008
  end-page: 181
  ident: b0010
  article-title: A regularized kernel CCA contrast function for ICA
  publication-title: Neural Networks
– reference: Serafini, T., Zanghirati, G., & Zanni, L. (2005). Gradient projection methods for quadratic programs and applications in training support vector machines. Optimization Methods and Software, 20, 353-378.
– volume: 25
  start-page: 433
  year: 1988
  end-page: 460
  ident: b0050
  article-title: Global convergence of a class of trust region algorithms for optimization with simple bounds
  publication-title: Siam Journal on Numerical Analysis
– reference: Debnath, R., & Takahashi, H. (2006). SVM training: Second-order cone programming versus quadratic programming. In
– volume: 28
  start-page: 806
  year: 2008
  end-page: 826
  ident: b0100
  article-title: Numerically stable LDLT factorizations in interior point methods for convex quadratic programming
  publication-title: Ima Journal of Numerical Analysis
– start-page: 33
  year: 2005
  end-page: 40
  ident: b0020
  article-title: Predictive low-rank decomposition for kernel methods
  publication-title: 22nd international conference on machine learning
– volume: 40
  start-page: 536
  year: 2000
  end-page: 558
  ident: b0150
  article-title: An incomplete Cholesky factorization for dense symmetric positive definite matrices
  publication-title: Bit
– volume: 106
  start-page: 403
  year: 2006
  end-page: 421
  ident: b0060
  article-title: New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds
  publication-title: Mathematical Programming
– volume: 27
  start-page: 71
  year: 2010
  end-page: 84
  ident: b0095
  article-title: Improved projected gradient algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds
  publication-title: Asia-Pacific Journal of Operational Research
– volume: 35
  start-page: 2927
  year: 2002
  end-page: 2936
  ident: b0255
  article-title: Linear programming support vector machines
  publication-title: Pattern Recognition
– reference: Nehate, G. (2006).
– start-page: 185
  year: 1999
  end-page: 208
  ident: b0205
  article-title: Fast training of support vector machines using sequential minimal optimization
  publication-title: Advances in kernel methods: support vector learning
– volume: 36
  start-page: 275
  year: 1998
  end-page: 289
  ident: b0090
  article-title: Gradient method with retards and generalizations
  publication-title: Siam Journal on Numerical Analysis
– volume: 47
  start-page: 5623
  year: 2001
  end-page: 5633
  ident: b0230
  article-title: Support vector learning with quadratic programming and adaptive step size barrier-projection
  publication-title: Nonlinear Analysis – Theory Methods and Applications
– volume: 2
  start-page: 281
  year: 1965
  end-page: 290
  ident: b0125
  article-title: On the solution of singular and semidefinite linear systems by iteration
  publication-title: SIAM Journal of Numerical Analysis
– reference: (pp. 244–250).
– volume: 13
  start-page: 2119
  year: 2001
  end-page: 2147
  ident: b0045
  article-title: Training nu-support vector classifiers: Theory and algorithms
  publication-title: Neural Computation
– year: 2006
  ident: b0130
  article-title: Support vector machine approach for fast classification
  publication-title: International conference on data warehouse and knowledge discovery
– reference: Osuna, E., Freud, R., & Girosi, F. (1997). An improved training algorithm for support vector machines. In
– reference: Louradour, J., Daoudi, K., & Bach, F. (2006). SVM speaker verification using an incomplete cholesky decomposition sequence kernel. In
– volume: 10
  start-page: 1196
  year: 2000
  end-page: 1211
  ident: b0035
  article-title: Nonmonotone spectral projected gradient methods on convex sets
  publication-title: Siam Journal on Optimization
– year: 1972
  ident: b0185
  article-title: Numerical analysis; a second course
– volume: 6
  start-page: 248
  year: 2009
  end-page: 252
  ident: b0040
  article-title: Biophysical parameter estimation with a semisupervised support vector machine
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 9
  start-page: 311
  year: 1997
  end-page: 318
  ident: b0025
  article-title: A parametric optimization method for machine learning
  publication-title: INFOMS Journal on Computing
– year: 1996
  ident: b0105
  article-title: Matrix computations
– volume: 40
  start-page: 2154
  year: 2007
  end-page: 2162
  ident: b0015
  article-title: Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression
  publication-title: Pattern Recognition
– volume: 38
  start-page: 157
  year: 2005
  end-page: 161
  ident: b0250
  article-title: Design efficient support vector machine for fast classification
  publication-title: Pattern Recognition
– reference: .
– volume: 2
  start-page: 43
  year: 1992
  end-page: 54
  ident: b0160
  article-title: Error bound and convergence analysis of matrix splitting algorithms for the affine variational inequality problem
  publication-title: SIAM Journal of Optimization
– volume: 7
  start-page: 26
  year: 1997
  end-page: 33
  ident: b0210
  article-title: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem
  publication-title: Siam Journal on Optimization
– start-page: 161
  year: 1990
  end-page: 185
  ident: b0110
  article-title: Analysis of the Cholesky decomposition of a semi-definite matrix
  publication-title: Reliable Numerical Computation
– reference: Lee, Y. J., & Mangasarian, O. L. (2001). RSVM: Reduced support vector machines. In
– year: 1995
  ident: b0240
  article-title: The nature of statistical learning theory
– volume: 141
  start-page: 107
  year: 2009
  end-page: 126
  ident: b0140
  article-title: Decomposition algorithm model for singly linearly-constrained problems subject to lower and upper bounds
  publication-title: Journal of Optimization Theory and Applications
– volume: 17
  start-page: 671
  year: 2006
  end-page: 682
  ident: b0170
  article-title: A geometric approach to support vector machine (SVM) classification
  publication-title: IEEE Transactions on Neural Networks
– volume: 37
  start-page: 149
  year: 1982
  end-page: 162
  ident: b0195
  article-title: On the convergence of a basic iterative method for the implicit complementarity-problem
  publication-title: Journal of Optimization Theory and Applications
– volume: 25
  start-page: 433
  year: 1988
  ident: 10.1016/j.eswa.2012.02.007_b0050
  article-title: Global convergence of a class of trust region algorithms for optimization with simple bounds
  publication-title: Siam Journal on Numerical Analysis
  doi: 10.1137/0725029
– volume: 30
  start-page: 408
  year: 1992
  ident: 10.1016/j.eswa.2012.02.007_b0165
  article-title: On the linear convergence of descent methods for convex essentially smooth minimization
  publication-title: Siam Journal on Control and Optimization
  doi: 10.1137/0330025
– volume: 34
  start-page: 579
  year: 1994
  ident: 10.1016/j.eswa.2012.02.007_b0075
  article-title: Barrier-projective methods for nonlinear programming
  publication-title: Computational Mathematics and Mathematical Physics
– volume: 40
  start-page: 536
  year: 2000
  ident: 10.1016/j.eswa.2012.02.007_b0150
  article-title: An incomplete Cholesky factorization for dense symmetric positive definite matrices
  publication-title: Bit
  doi: 10.1023/A:1022323931043
– year: 1979
  ident: 10.1016/j.eswa.2012.02.007_b0235
– volume: 9
  start-page: 293
  year: 1999
  ident: 10.1016/j.eswa.2012.02.007_b0225
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Processing Letters
  doi: 10.1023/A:1018628609742
– volume: 13
  start-page: 783
  year: 2003
  ident: 10.1016/j.eswa.2012.02.007_b0080
  article-title: Interior-point methods or massive support vector machines
  publication-title: Siam Journal on Optimization
  doi: 10.1137/S1052623400374379
– volume: 25
  start-page: 383
  year: 1987
  ident: 10.1016/j.eswa.2012.02.007_b0145
  article-title: Iterative methods for large convex quadratic programs – A survey
  publication-title: Siam Journal on Control and Optimization
  doi: 10.1137/0325023
– ident: 10.1016/j.eswa.2012.02.007_b0070
– volume: 40
  start-page: 2154
  year: 2007
  ident: 10.1016/j.eswa.2012.02.007_b0015
  article-title: Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2006.12.015
– ident: 10.1016/j.eswa.2012.02.007_b0055
– volume: 46
  start-page: 321
  year: 1990
  ident: 10.1016/j.eswa.2012.02.007_b0200
  article-title: An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds
  publication-title: Mathematical Programming
  doi: 10.1007/BF01585748
– volume: 9
  start-page: 311
  year: 1997
  ident: 10.1016/j.eswa.2012.02.007_b0025
  article-title: A parametric optimization method for machine learning
  publication-title: INFOMS Journal on Computing
  doi: 10.1287/ijoc.9.3.311
– ident: 10.1016/j.eswa.2012.02.007_b0220
  doi: 10.1080/10556780512331318182
– start-page: 169
  year: 1999
  ident: 10.1016/j.eswa.2012.02.007_b0115
  article-title: Making large-scale support vector machine learning practical
– volume: 47
  start-page: 5623
  year: 2001
  ident: 10.1016/j.eswa.2012.02.007_b0230
  article-title: Support vector learning with quadratic programming and adaptive step size barrier-projection
  publication-title: Nonlinear Analysis – Theory Methods and Applications
  doi: 10.1016/S0362-546X(01)00664-2
– start-page: 161
  year: 1990
  ident: 10.1016/j.eswa.2012.02.007_b0110
  article-title: Analysis of the Cholesky decomposition of a semi-definite matrix
– start-page: 33
  year: 2005
  ident: 10.1016/j.eswa.2012.02.007_b0020
  article-title: Predictive low-rank decomposition for kernel methods
– volume: 35
  start-page: 2927
  year: 2002
  ident: 10.1016/j.eswa.2012.02.007_b0255
  article-title: Linear programming support vector machines
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(01)00210-2
– volume: 2
  start-page: 43
  year: 1992
  ident: 10.1016/j.eswa.2012.02.007_b0160
  article-title: Error bound and convergence analysis of matrix splitting algorithms for the affine variational inequality problem
  publication-title: SIAM Journal of Optimization
  doi: 10.1137/0802004
– volume: 6
  start-page: 248
  year: 2009
  ident: 10.1016/j.eswa.2012.02.007_b0040
  article-title: Biophysical parameter estimation with a semisupervised support vector machine
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2008.2009077
– volume: 38
  start-page: 157
  year: 2005
  ident: 10.1016/j.eswa.2012.02.007_b0250
  article-title: Design efficient support vector machine for fast classification
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2004.06.001
– volume: 21
  start-page: 170
  year: 2008
  ident: 10.1016/j.eswa.2012.02.007_b0010
  article-title: A regularized kernel CCA contrast function for ICA
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2007.12.047
– volume: 13
  start-page: 2119
  year: 2001
  ident: 10.1016/j.eswa.2012.02.007_b0045
  article-title: Training nu-support vector classifiers: Theory and algorithms
  publication-title: Neural Computation
  doi: 10.1162/089976601750399335
– ident: 10.1016/j.eswa.2012.02.007_b0135
  doi: 10.1137/1.9781611972719.13
– volume: 2
  start-page: 243
  year: 2001
  ident: 10.1016/j.eswa.2012.02.007_b0085
  article-title: Efficient SVM training using lower rank kernal representations
  publication-title: Journal of Machine Learning Research
– year: 2000
  ident: 10.1016/j.eswa.2012.02.007_b0030
  article-title: Duality and geometry in SVM classifiers
– volume: 28
  start-page: 806
  year: 2008
  ident: 10.1016/j.eswa.2012.02.007_b0100
  article-title: Numerically stable LDLT factorizations in interior point methods for convex quadratic programming
  publication-title: Ima Journal of Numerical Analysis
  doi: 10.1093/imanum/drn058
– volume: 106
  start-page: 403
  year: 2006
  ident: 10.1016/j.eswa.2012.02.007_b0060
  article-title: New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-005-0595-2
– ident: 10.1016/j.eswa.2012.02.007_b0155
  doi: 10.1109/ODYSSEY.2006.248129
– volume: 27
  start-page: 377
  year: 2001
  ident: 10.1016/j.eswa.2012.02.007_b0065
  article-title: Adaptive two-point stepsize gradient algorithm
  publication-title: Numerical Algorithms
  doi: 10.1023/A:1013844413130
– volume: 17
  start-page: 671
  year: 2006
  ident: 10.1016/j.eswa.2012.02.007_b0170
  article-title: A geometric approach to support vector machine (SVM) classification
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2006.873281
– volume: 31
  start-page: 652
  year: 2006
  ident: 10.1016/j.eswa.2012.02.007_b0175
  article-title: Hybrid genetic algorithms and support vector machines for bankruptcy prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.09.070
– volume: 37
  start-page: 149
  year: 1982
  ident: 10.1016/j.eswa.2012.02.007_b0195
  article-title: On the convergence of a basic iterative method for the implicit complementarity-problem
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/BF00934765
– volume: 7
  start-page: 26
  year: 1997
  ident: 10.1016/j.eswa.2012.02.007_b0210
  article-title: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem
  publication-title: Siam Journal on Optimization
  doi: 10.1137/S1052623494266365
– year: 1995
  ident: 10.1016/j.eswa.2012.02.007_b0240
– volume: 2
  start-page: 281
  year: 1965
  ident: 10.1016/j.eswa.2012.02.007_b0125
  article-title: On the solution of singular and semidefinite linear systems by iteration
  publication-title: SIAM Journal of Numerical Analysis
– volume: E92d
  start-page: 1338
  year: 2009
  ident: 10.1016/j.eswa.2012.02.007_b0120
  article-title: Recent advances and trends in large-scale kernel methods
  publication-title: Ieice Transactions on Information and Systems
  doi: 10.1587/transinf.E92.D.1338
– ident: 10.1016/j.eswa.2012.02.007_b0005
– year: 1974
  ident: 10.1016/j.eswa.2012.02.007_b0245
– year: 1996
  ident: 10.1016/j.eswa.2012.02.007_b0105
– volume: 141
  start-page: 107
  year: 2009
  ident: 10.1016/j.eswa.2012.02.007_b0140
  article-title: Decomposition algorithm model for singly linearly-constrained problems subject to lower and upper bounds
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-008-9489-9
– year: 2006
  ident: 10.1016/j.eswa.2012.02.007_b0130
  article-title: Support vector machine approach for fast classification
– ident: 10.1016/j.eswa.2012.02.007_b0190
  doi: 10.1109/NNSP.1997.622408
– volume: 36
  start-page: 275
  year: 1998
  ident: 10.1016/j.eswa.2012.02.007_b0090
  article-title: Gradient method with retards and generalizations
  publication-title: Siam Journal on Numerical Analysis
  doi: 10.1137/S003614299427315X
– volume: 10
  start-page: 1196
  year: 2000
  ident: 10.1016/j.eswa.2012.02.007_b0035
  article-title: Nonmonotone spectral projected gradient methods on convex sets
  publication-title: Siam Journal on Optimization
  doi: 10.1137/S1052623497330963
– volume: 27
  start-page: 71
  year: 2010
  ident: 10.1016/j.eswa.2012.02.007_b0095
  article-title: Improved projected gradient algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds
  publication-title: Asia-Pacific Journal of Operational Research
  doi: 10.1142/S0217595910002594
– start-page: 185
  year: 1999
  ident: 10.1016/j.eswa.2012.02.007_b0205
  article-title: Fast training of support vector machines using sequential minimal optimization
– volume: 12
  start-page: 1207
  year: 2000
  ident: 10.1016/j.eswa.2012.02.007_b0215
  article-title: New support vector algorithms
  publication-title: Neural Computation
  doi: 10.1162/089976600300015565
– year: 1972
  ident: 10.1016/j.eswa.2012.02.007_b0185
– ident: 10.1016/j.eswa.2012.02.007_b0180
SSID ssj0017007
Score 2.0516794
Snippet ► We propose a solving approach for the ν-support vector machine (SVM) for classification problems. We use the modified matrix splitting method and incomplete...
This research proposes a solving approach for the nu -support vector machine (SVM) for classification problems using the modified matrix splitting method and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8824
SubjectTerms Classification
Company credit prediction
Convex programming
Decomposition
Expert systems
Incomplete Cholesky decomposition
Mathematical analysis
Matrix splitting method
Projection
Projection gradient method
Splitting
Support vector machine
Support vector machines
Vectors (mathematics)
Title Modified matrix splitting method for the support vector machine and its application to the credit classification of companies in Korea
URI https://dx.doi.org/10.1016/j.eswa.2012.02.007
https://www.proquest.com/docview/1671409122
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvfRSaEsFfaCp1BsKm8T22j6uUNG2CC4tEjfLjh0pCJIVybacOPK7O5MHKpXKAcmXJHZk-THz2f7mM2Nf0EOqNBie-OhUIriQiXFOJsKEXOpgtPEUnHx6Nl-ei-8X8mKDHU2xMESrHG3_YNN7az2-mY2tOVtV1ewHggN0h5jyXveOIsqFUDTKD-8eaB4kP6cGvT2sCuYeA2cGjldsf5P2EO0Hkm6n-p9z-sdM977neJu9GkEjLIZ6vWYbsX7DtqYLGWCcn2_Z_WkTqhJBJVyT8v4ttAgxe2IzDDdFA0JUQMgH7XpFwBt-9Zv2mJ0olRFcHaDqWvjrWBu6pi9ByqJVBwWhbaIXDR-bEnoWe40LbqhqOGkQhO6w8-OvP4-WyXjRQlJwzrukKKXWUZdcac4zH03wqVYmKJd7J7mXClELd9ojuBKlCMHJXMuC-0wVUSIge8c266aOuwxwBem19KkooxI4SrUPORfOaRXnZWmyPZZNLWyLUYWcLsO4shPd7NJSr1jqFZtiStUeO3gosxo0OJ7MLaeOs49GkkUn8WS5z1MvW5xidG7i6tisW5vNSdXQZHn-_pn__sBe0tNAHPzINrubdfyEYKbz-_1o3WcvFt9Olmd_AFdq9iQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXK9gAXyqcoFBgkbijaJLbXzrGqWm3Z7l5opd4sO3akIEhWJAv8An43M4lTQSV6QPIp8USRx555tmfeMPYePaRKfcETF6xKBBcyKayViSh8LrUvdOEoOXm9WSyvxMdreb3HTqZcGAqrjLZ_tOmDtY5P5nE059u6nn9CcIDuEFs-8N6pe2yf2KnkjO0fn6-Wm5vLBJWOWdPYPyGBmDszhnmF7gfRD9GRIFF3qn_5p1uWenA_Z4_Yw4gb4Xj8tcdsLzRP2MFUkwHiEn3Kfq1bX1eIK-Erke__hA5R5hDbDGOxaECUCoj6oNttCXvD9-HcHrtTVGUA23io-w7-uNmGvh0kiFy07qEkwE0RRuPLtoIhkL3BPTfUDaxaxKHP2NXZ6eXJMom1FpKSc94nZSW1DrriSnOeuVB4l2pVeGVzZyV3UiFw4VY7xFeiEt5bmWtZcpepMkjEZM_ZrGmb8IIBbiKdli4VVVACJ6p2PufCWq3CoqqK7JBl0wibMhKRUz2ML2aKOPtsSCuGtGJSbKk6ZB9uZLYjDcedveWkOPPXZDLoJ-6Uezdp2eAqo6sT24R215lsQcSGRZbnL__z22_Z_eXl-sJcnG9Wr9gDejPGER6xWf9tF14jtundmzh3fwO_7fjV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+matrix+splitting+method+for+the+support+vector+machine+and+its+application+to+the+credit+classification+of+companies+in+Korea&rft.jtitle=Expert+systems+with+applications&rft.au=Kim%2C+Gitae&rft.au=Wu%2C+Chih-Hang&rft.au=Lim%2C+Sungmook&rft.au=Kim%2C+Jumi&rft.date=2012-08-01&rft.issn=0957-4174&rft.volume=39&rft.issue=10&rft.spage=8824&rft.epage=8834&rft_id=info:doi/10.1016%2Fj.eswa.2012.02.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2012_02_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon