Machine learning of materials design and state prediction for lithium ion batteries

With the widespread use of lithium ion batteries in portable electronics and electric vehicles, further improvements in the performance of lithium ion battery materials and accurate prediction of battery state are of increasing interest to battery researchers. Machine learning, one of the core techn...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemical engineering Vol. 37; no. 9; pp. 1 - 11
Main Authors Mao, Jiale, Miao, Jiazhi, Lu, Yingying, Tong, Zheming
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2021
State Key Laboratory of Chemical Engineering,Institute of Pharmaceutical Engineering,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China%State Key Laboratory of Fluid Power and Mechatronic Systems,School of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the widespread use of lithium ion batteries in portable electronics and electric vehicles, further improvements in the performance of lithium ion battery materials and accurate prediction of battery state are of increasing interest to battery researchers. Machine learning, one of the core technologies of artificial intelligence, is rapidly changing many fields with its ability to learn from historical data and solve complex tasks, and it has emerged as a new technique for solving current research problems in the field of lithium ion batteries. This review begins with the introduction of the conceptual framework of machine learning and the general process of its application, then reviews some of the progress made by machine learning in both improving battery materials design and accurate prediction of battery state, and finally points out the current application problems of machine learning and future research directions. It is believed that the use of machine learning will further promote the large-scale application and improvement of lithium-ion batteries.
AbstractList With the widespread use of lithium ion batteries in portable electronics and electric vehicles,further improvements in the performance of lithium ion battery materials and accurate prediction of battery state are of increasing interest to battery researchers.Machine learning,one of the core technologies of artificial intelligence,is rapidly changing many fields with its ability to learn from historical data and solve complex tasks,and it has emerged as a new technique for solving current research problems in the field of lithium ion batteries.This review begins with the introduction of the conceptual framework of machine learning and the general process of its application,then reviews some of the progress made by machine learning in both improving battery materials design and accurate prediction of battery state,and finally points out the current application problems of machine learning and future research directions.It is believed that the use of machine learning will further promote the large-scale application and improve-ment of lithium-ion batteries.
With the widespread use of lithium ion batteries in portable electronics and electric vehicles, further improvements in the performance of lithium ion battery materials and accurate prediction of battery state are of increasing interest to battery researchers. Machine learning, one of the core technologies of artificial intelligence, is rapidly changing many fields with its ability to learn from historical data and solve complex tasks, and it has emerged as a new technique for solving current research problems in the field of lithium ion batteries. This review begins with the introduction of the conceptual framework of machine learning and the general process of its application, then reviews some of the progress made by machine learning in both improving battery materials design and accurate prediction of battery state, and finally points out the current application problems of machine learning and future research directions. It is believed that the use of machine learning will further promote the large-scale application and improvement of lithium-ion batteries.
Author Mao, Jiale
Miao, Jiazhi
Tong, Zheming
Lu, Yingying
AuthorAffiliation State Key Laboratory of Chemical Engineering,Institute of Pharmaceutical Engineering,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China%State Key Laboratory of Fluid Power and Mechatronic Systems,School of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China
AuthorAffiliation_xml – name: State Key Laboratory of Chemical Engineering,Institute of Pharmaceutical Engineering,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China%State Key Laboratory of Fluid Power and Mechatronic Systems,School of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China
Author_xml – sequence: 1
  givenname: Jiale
  surname: Mao
  fullname: Mao, Jiale
  organization: State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
– sequence: 2
  givenname: Jiazhi
  orcidid: 0000-0002-9739-9008
  surname: Miao
  fullname: Miao, Jiazhi
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
– sequence: 3
  givenname: Yingying
  surname: Lu
  fullname: Lu, Yingying
  email: yingyinglu@zju.edu.cn
  organization: State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
– sequence: 4
  givenname: Zheming
  surname: Tong
  fullname: Tong, Zheming
  email: tzm@zju.edu.cn
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
BookMark eNp9kD1PwzAQhi1UJNrCL2DxwpjgrybxwIAqvqQiBkBisxz70jpqncp2Qfx7HMrMdLrTPXd6nxma-MEDQpeUlJTQ6rovTW82UDLCaElESYg8QVPGKCk4ox8TNKWEiEIuBD1Dsxh7QhhpaDNFr8_abJwHvAUdvPNrPHR4pxMEp7cRW4hu7bH2FseUp3gfwDqT3OBxNwS8dWnjDjs89q1OIwbxHJ12GYaLvzpH7_d3b8vHYvXy8LS8XRWGc54KYxe1aW1dVZpbCVICt6JmQNtKCF5RSrmQsuUU6q41TIjKilZIzZrOtLJu-BxdHe9-ad9pv1b9cAg-f1TZBowuiMxB8x4_7pkwxBigU_vgdjp8K0rU6E_16tefGhlFhMr-MnVzpCBH-HQQVDQOvMn5A5ik7OD-5X8A6JV7wA
CitedBy_id crossref_primary_10_1016_j_ensm_2022_05_026
crossref_primary_10_1016_j_mineng_2022_107736
crossref_primary_10_1016_j_solmat_2024_112826
crossref_primary_10_1016_j_cjche_2023_11_022
crossref_primary_10_3390_coatings12070960
crossref_primary_10_1016_j_jclepro_2021_128265
crossref_primary_10_1016_j_mtcomm_2023_106578
crossref_primary_10_1016_j_est_2024_110452
crossref_primary_10_1149_1945_7111_acd148
crossref_primary_10_1039_D3YA00040K
crossref_primary_10_1016_j_biortech_2023_129929
crossref_primary_10_1007_s40820_023_01192_5
crossref_primary_10_1149_1945_7111_ac95d2
crossref_primary_10_3390_batteries9010013
crossref_primary_10_1016_j_egyr_2022_10_027
crossref_primary_10_1016_j_gee_2022_10_002
crossref_primary_10_3390_en16196974
crossref_primary_10_3390_batteries9120585
crossref_primary_10_1016_j_mtsust_2024_100899
crossref_primary_10_3390_electronics11172695
crossref_primary_10_1016_j_solener_2023_111853
crossref_primary_10_1016_j_est_2023_109197
crossref_primary_10_1016_j_compchemeng_2024_108623
crossref_primary_10_1016_j_jpowsour_2022_232126
crossref_primary_10_1080_10962247_2022_2068878
crossref_primary_10_1016_j_egyr_2023_01_108
crossref_primary_10_1016_j_est_2023_109057
crossref_primary_10_1016_j_cej_2021_133536
crossref_primary_10_1016_j_ijhydene_2022_01_034
crossref_primary_10_1016_j_mtcomm_2023_105494
Cites_doi 10.1038/s41467-019-13214-1
10.1016/j.est.2017.04.008
10.1016/j.jpowsour.2005.05.070
10.1016/j.commatsci.2020.110108
10.1016/j.neucom.2018.07.097
10.1016/j.ensm.2020.06.042
10.1109/TVT.2011.2132812
10.23919/ICPE2019-ECCEAsia42246.2019.8797021
10.1016/j.ecolmodel.2012.03.001
10.1002/adts.201900215
10.1016/j.jmat.2017.08.002
10.1016/S0167-2738(97)00429-3
10.1038/s41560-018-0312-z
10.3390/en12040660
10.1021/acs.macromol.0c01547
10.1002/aenm.201903242
10.1016/j.apenergy.2015.08.119
10.1002/aenm.201300060
10.1038/s42256-020-0156-7
10.1038/s42256-019-0139-8
10.1149/1.1606686
10.1038/s41560-020-0565-1
10.1002/er.6074
10.3390/electronics6040102
10.1016/j.jpowsour.2015.04.166
10.1016/j.ijepes.2014.04.059
10.1021/acsami.9b04933
10.1039/C9CP03679B
10.1021/acs.chemmater.9b04830
10.3390/en4111840
10.1109/TVT.2020.3014932
10.1016/j.ensm.2020.10.022
10.1038/s41560-017-0047-2
10.1021/jacs.9b11442
10.1016/j.jpowsour.2014.07.176
10.1002/adma.201800561
10.1021/acsenergylett.9b02660
10.1038/s41598-020-61464-7
10.1039/C4EE03029J
10.1109/TPEL.2013.2243918
10.1109/ACCESS.2019.2891063
10.1038/s41560-019-0356-8
10.1021/acscentsci.8b00229
10.1088/1674-1056/25/1/018212
10.1038/srep02810
10.1021/acs.jpcc.7b01009
10.1016/j.energy.2018.06.220
10.1038/s41467-020-18008-4
10.1021/cr5003003
10.1002/adts.202000109
10.1103/PhysRevB.89.094104
10.1016/j.cell.2020.03.022
10.1016/j.jallcom.2019.153048
10.1016/j.apenergy.2016.07.005
10.1016/j.microrel.2012.12.004
10.1149/2.0521916jes
10.1038/nmat4369
10.1109/TIM.2013.2292318
10.1002/smtd.201900025
10.1016/j.joule.2019.02.006
10.3390/batteries5030054
10.1103/PhysRevB.95.144110
10.1016/j.energy.2012.01.009
10.1021/acs.chemmater.8b03272
10.1038/s41598-018-27344-x
10.1039/C3TA13235H
10.1103/PhysRevB.89.054303
10.1016/j.est.2016.07.002
10.1016/j.ensm.2020.06.033
10.1109/ACCESS.2019.2926517
10.1016/j.est.2020.101489
10.1039/C9TA06748E
10.1109/TVT.2018.2805189
10.1038/nnano.2017.16
10.1016/j.commatsci.2016.02.021
10.1016/j.jpowsour.2016.04.109
10.1038/s41578-020-0216-y
10.1002/wcms.1421
10.1016/j.jpowsour.2008.08.103
10.1038/s41467-020-15235-7
10.1246/bcsj.20190041
10.1021/acs.chemmater.9b04663
ContentType Journal Article
Copyright 2021 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2021 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/j.cjche.2021.04.009
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2210-321X
EndPage 11
ExternalDocumentID cjce202109002
10_1016_j_cjche_2021_04_009
S1004954121001543
GrantInformation_xml – fundername: (We acknowledge financial supports from the National Key Research and Development Program of China ); (and the Natural Science Foundation of China )
  funderid: (We acknowledge financial supports from the National Key Research and Development Program of China ); (and the Natural Science Foundation of China )
GroupedDBID --K
--M
.~1
0R~
188
1B1
1~.
1~5
29B
2B.
2C0
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
8RM
92H
92I
92R
93N
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CCEZO
CDRFL
CHBEP
CS3
CW9
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
SDC
SDF
SDG
SDH
SES
SPC
SPCBC
SSG
SSZ
T5K
TCJ
TGT
UGNYK
~G-
-SB
-S~
AAXDM
AAXKI
AAYXX
AFJKZ
AKRWK
CAJEB
CITATION
U1G
U5L
4A8
PSX
ID FETCH-LOGICAL-c333t-cd57cbd766a3d9e99e3d472e1b644361113499b31e7fbc2446d4b49a28fcb9783
IEDL.DBID .~1
ISSN 1004-9541
IngestDate Wed Nov 06 04:37:36 EST 2024
Thu Sep 26 19:12:29 EDT 2024
Fri Feb 23 02:39:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Lithium ion batteries
Materials design
State prediction
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-cd57cbd766a3d9e99e3d472e1b644361113499b31e7fbc2446d4b49a28fcb9783
ORCID 0000-0002-9739-9008
PageCount 11
ParticipantIDs wanfang_journals_cjce202109002
crossref_primary_10_1016_j_cjche_2021_04_009
elsevier_sciencedirect_doi_10_1016_j_cjche_2021_04_009
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese journal of chemical engineering
PublicationTitle_FL Chinese Journal of Chemical Engineering
PublicationYear 2021
Publisher Elsevier B.V
State Key Laboratory of Chemical Engineering,Institute of Pharmaceutical Engineering,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China%State Key Laboratory of Fluid Power and Mechatronic Systems,School of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China
Publisher_xml – name: Elsevier B.V
– name: State Key Laboratory of Chemical Engineering,Institute of Pharmaceutical Engineering,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China%State Key Laboratory of Fluid Power and Mechatronic Systems,School of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China
References Gou, Xu, Feng (b0275) 2020; 69
Ran, Zhou, Chen, Nie, Qian, Li, Li, Sun, Kang, Zhang, Wei (b0075) 2020; 3
Wheatle, Fuentes, Lynd, Ganesan (b0240) 2020; 53
Meredig, Agrawal, Kirklin, Saal, Doak, Thompson, Zhang, Choudhary, Wolverton (b0115) 2014; 89
Wang, Xie, France-Lanord, Berkley, Johnson, Shao-Horn, Grossman (b0250) 2020; 32
Ishikawa, Sodeyama, Igarashi, Nakayama, Tateyama, Okada (b0205) 2019; 21
Shi, Gao, Liu, Zhao, Wu, Ju, Ouyang, Xiao (b0090) 2016; 25
Ahmad, Xie, Maheshwari, Grossman, Viswanathan (b0150) 2018; 4
Rivera-Barrera, Muñoz-Galeano, Sarmiento-Maldonado (b0280) 2017; 6
Sendek, Cubuk, Antoniuk, Cheon, Cui, Reed (b0130) 2019; 31
Liu, Guo, Zou, Li, Shi (b0035) 2020; 31
Seko, Hayashi, Nakayama, Takahashi, Tanaka (b0195) 2017; 95
Seko, Maekawa, Tsuda, Tanaka (b0200) 2014; 89
He, Zhang, Xiong, Xu, Guo (b0285) 2012; 39
Liu, Wu, Avdeev, Shi (b0095) 2020; 3
Xiao, Miara, Wang, Ceder (b0170) 2019; 3
Radivojević, Costello, Workman, Garcia Martin (b0060) 2020; 11
Joshi, Eickholt, Li, Fornari, Barone, Peralta (b0190) 2019; 11
Liu, Cheng, Huang, Yuan, Lu, Yan, Zhu, Xu, Zhao, Hou, He, Kaskel, Zhang (b0105) 2020; 5
Aykol, Herring, Anapolsky (b0405) 2020; 5
Littmann, Selig, Cohen-Lavi, Frank, Hönigschmid, Kataka, Mösch, Qian, Ron, Schmid, Sorbie, Szlak, Dagan-Wiener, Ben-Tal, Niv, Razansky, Schuller, Ankerst, Hertz, Rost (b0055) 2020; 2
Yan, Yang, Huang, Yang, Yuan (b0160) 2020; 819
Pan, Lü, Wang, Wei, Chen (b0340) 2018; 160
Hatakeyama-Sato, Tezuka, Umeki, Oyaizu (b0245) 2020; 142
Li, Lu, Chen, Amine (b0020) 2018; 30
Zhang, He, Chen, Bai, Nolan, Roberts, Banerjee, Matsunaga, Mo, Ling (b0125) 2019; 10
van Duongvan Tran, Garg, van Nguyen, Huynh (b0230) 2021; 45
Dave, Mitchell, Kandasamy, Wang, Burke, Paria, Póczos, Whitacre, Viswanathan (b0225) 2020; 1
Zhang, Xiong, He, Pecht (b0365) 2018; 67
Zhang, Tang, Zhang, Wang, Stimming, Lee (b0390) 2020; 11
Michel, Heiries (b0360) 2015
Whittingham (b0015) 2014; 114
Wang, Wang, Cai, Chen (b0085) 2019; 3
Fujimura, Seko, Koyama, Kuwabara, Kishida, Shitara, Fisher, Moriwake, Tanaka (b0180) 2013; 3
Z. Zheng, J. Peng, K. Deng, K. Gao, H. Li, B. Chen, Y. Yang, Z. Huang, A novel method for lithium-ion battery remaining useful life prediction using time window and gradient boosting decision trees, In: 2019 10th International Conference on Power Electronics and ECCE Asia, 2019.
Severson, Attia, Jin, Perkins, Jiang, Yang, Chen, Aykol, Herring, Fraggedakis, Bazant, Harris, Chueh, Braatz (b0385) 2019; 4
Han, Westover, Yue, Fan, Wang, Chi, Leonard, Dudney, Wang, Wang (b0100) 2019; 4
Sumita, Tamura, Homma, Kaneta, Tsuda (b0215) 2019; 92
Albertus, Babinec, Litzelman, Newman (b0140) 2018; 3
He, Xiong, Zhang, Sun, Fan (b0300) 2011; 60
Elton, Boukouvalas, Butrico, Fuge, Chung (b0030) 2018; 8
Miao, Xie, Cui, Liang, Pecht (b0305) 2013; 53
Song, Yang, Wang, Tsui (b0325) 2019; 7
Tong, Lacap, Park (b0315) 2016; 7
Khumprom, Yodo (b0345) 2019; 12
Faradonbe, Safi-Esfahani (b0410) 2020; 396
Lyu, Liu, Qu, Zhao, Huo, Qu, Rao (b0005) 2020; 31
Chen, Zuo, Ye, Li, Deng, Ong (b0420) 2020; 10
Crisci, Ghattas, Perera (b0070) 2012; 240
Monroe, Newman (b0145) 2003; 150
Jalem, Nakayama, Kasuga (b0185) 2014; 2
Namor, Torregrossa, Cherkaoui, Paolone (b0045) 2017; 12
Pilania, Wang, Jiang, Rajasekaran, Ramprasad (b0175) 2013; 3
Wang, Ji, Li (b0080) 2020; 10
Goecks, Jalili, Heiser, Gray (b0065) 2020; 181
Sumita, Tanaka, Ohno (b0210) 2017; 121
Robertson, West, Ritchie (b0235) 1997; 104
Randau, Weber, Kötz, Koerver, Braun, Weber, Ivers-Tiffée, Adermann, Kulisch, Zeier, Richter, Janek (b0110) 2020; 5
Landi, Gross (b0335) 2014; 63
Xia, Zhao, de Callafon, Garnier, Nguyen, Mi (b0040) 2016; 179
Dong, Jin, Lou, Wang (b0355) 2014; 271
Ng, Zhao, Yan, Conduit, Seh (b0050) 2020; 2
Dunn, Gaines, Kelly, James, Gallagher (b0010) 2015; 8
Hu, Jain, Schmidt, Strief, Sullivan (b0370) 2015; 289
Attarian Shandiz, Gauvin (b0260) 2016; 117
Zhang, Tang, Na, Lee, Kim (b0415) 2020; 31
Wang, Zou, Wang, Liu, Li, Wu, Avdeev, Shi (b0265) 2021; 35
Santhanagopalan, Guo, Ramadass, White (b0295) 2006; 156
Patil, Tagade, Hariharan, Kolake, Song, Yeo, Doo (b0375) 2015; 159
Liu, Clement, Liu, Wang, Sparks (b0400) 2021; 187
Lin, Liu, Cui (b0135) 2017; 12
Liu, Yang, Yang, Ye, Mao, Wang, Shi, Yang, Zhang (b0155) 2019; 7
Berecibar, Devriendt, Dubarry, Villarreal, Omar, Verbeke, van Mierlo (b0395) 2016; 320
Hannan, Lipu, Hussain, Ker, Mahlia, Mansor, Ayob, Saad, Dong (b0330) 2020; 10
Li, Zhong, Zhong, Shi (b0350) 2019; 7
Takagishi, Yamanaka, Yamaue (b0255) 2019; 5
Whitacre, Mitchell, Dave, Wu, Viswanathan (b0220) 2019; 166
Xing, Ma, Tsui, Pecht (b0270) 2011; 4
Liu, Zhao, Ju, Shi (b0025) 2017; 3
J.C. Álvarez Antón, P.J. García Nieto, C. Blanco Viejo, J.A. Vilán Vilán, Support vector machines used to estimate the battery state of charge, IEEE Trans. Power Electron. 28 (12) (2013) 5919–5926.
Wang, Richards, Ong, Miara, Kim, Mo, Ceder (b0120) 2015; 14
He, Williard, Chen, Pecht (b0320) 2014; 62
Wang, Aoyagi, Wisesa, Mueller (b0165) 2020; 32
Lee, Kim, Lee, Cho (b0290) 2008; 185
Khumprom (10.1016/j.cjche.2021.04.009_b0345) 2019; 12
van Duongvan Tran (10.1016/j.cjche.2021.04.009_b0230) 2021; 45
Seko (10.1016/j.cjche.2021.04.009_b0200) 2014; 89
Faradonbe (10.1016/j.cjche.2021.04.009_b0410) 2020; 396
Liu (10.1016/j.cjche.2021.04.009_b0035) 2020; 31
Elton (10.1016/j.cjche.2021.04.009_b0030) 2018; 8
Wang (10.1016/j.cjche.2021.04.009_b0250) 2020; 32
Hu (10.1016/j.cjche.2021.04.009_b0370) 2015; 289
10.1016/j.cjche.2021.04.009_b0380
Ng (10.1016/j.cjche.2021.04.009_b0050) 2020; 2
Yan (10.1016/j.cjche.2021.04.009_b0160) 2020; 819
Namor (10.1016/j.cjche.2021.04.009_b0045) 2017; 12
Chen (10.1016/j.cjche.2021.04.009_b0420) 2020; 10
Liu (10.1016/j.cjche.2021.04.009_b0095) 2020; 3
Sendek (10.1016/j.cjche.2021.04.009_b0130) 2019; 31
Lee (10.1016/j.cjche.2021.04.009_b0290) 2008; 185
Lyu (10.1016/j.cjche.2021.04.009_b0005) 2020; 31
He (10.1016/j.cjche.2021.04.009_b0300) 2011; 60
Santhanagopalan (10.1016/j.cjche.2021.04.009_b0295) 2006; 156
Dong (10.1016/j.cjche.2021.04.009_b0355) 2014; 271
Dave (10.1016/j.cjche.2021.04.009_b0225) 2020; 1
Rivera-Barrera (10.1016/j.cjche.2021.04.009_b0280) 2017; 6
Xiao (10.1016/j.cjche.2021.04.009_b0170) 2019; 3
10.1016/j.cjche.2021.04.009_b0310
Tong (10.1016/j.cjche.2021.04.009_b0315) 2016; 7
Monroe (10.1016/j.cjche.2021.04.009_b0145) 2003; 150
Miao (10.1016/j.cjche.2021.04.009_b0305) 2013; 53
Littmann (10.1016/j.cjche.2021.04.009_b0055) 2020; 2
Takagishi (10.1016/j.cjche.2021.04.009_b0255) 2019; 5
Zhang (10.1016/j.cjche.2021.04.009_b0365) 2018; 67
Ran (10.1016/j.cjche.2021.04.009_b0075) 2020; 3
Han (10.1016/j.cjche.2021.04.009_b0100) 2019; 4
Albertus (10.1016/j.cjche.2021.04.009_b0140) 2018; 3
Pan (10.1016/j.cjche.2021.04.009_b0340) 2018; 160
Crisci (10.1016/j.cjche.2021.04.009_b0070) 2012; 240
Meredig (10.1016/j.cjche.2021.04.009_b0115) 2014; 89
Wang (10.1016/j.cjche.2021.04.009_b0120) 2015; 14
Sumita (10.1016/j.cjche.2021.04.009_b0210) 2017; 121
Attarian Shandiz (10.1016/j.cjche.2021.04.009_b0260) 2016; 117
Whittingham (10.1016/j.cjche.2021.04.009_b0015) 2014; 114
Robertson (10.1016/j.cjche.2021.04.009_b0235) 1997; 104
Shi (10.1016/j.cjche.2021.04.009_b0090) 2016; 25
Liu (10.1016/j.cjche.2021.04.009_b0155) 2019; 7
Randau (10.1016/j.cjche.2021.04.009_b0110) 2020; 5
Landi (10.1016/j.cjche.2021.04.009_b0335) 2014; 63
Zhang (10.1016/j.cjche.2021.04.009_b0415) 2020; 31
Li (10.1016/j.cjche.2021.04.009_b0020) 2018; 30
Patil (10.1016/j.cjche.2021.04.009_b0375) 2015; 159
Wheatle (10.1016/j.cjche.2021.04.009_b0240) 2020; 53
Fujimura (10.1016/j.cjche.2021.04.009_b0180) 2013; 3
Ishikawa (10.1016/j.cjche.2021.04.009_b0205) 2019; 21
Liu (10.1016/j.cjche.2021.04.009_b0025) 2017; 3
Liu (10.1016/j.cjche.2021.04.009_b0400) 2021; 187
Hannan (10.1016/j.cjche.2021.04.009_b0330) 2020; 10
Song (10.1016/j.cjche.2021.04.009_b0325) 2019; 7
Pilania (10.1016/j.cjche.2021.04.009_b0175) 2013; 3
Zhang (10.1016/j.cjche.2021.04.009_b0125) 2019; 10
Gou (10.1016/j.cjche.2021.04.009_b0275) 2020; 69
Ahmad (10.1016/j.cjche.2021.04.009_b0150) 2018; 4
Radivojević (10.1016/j.cjche.2021.04.009_b0060) 2020; 11
Wang (10.1016/j.cjche.2021.04.009_b0080) 2020; 10
Joshi (10.1016/j.cjche.2021.04.009_b0190) 2019; 11
He (10.1016/j.cjche.2021.04.009_b0285) 2012; 39
Xia (10.1016/j.cjche.2021.04.009_b0040) 2016; 179
Lin (10.1016/j.cjche.2021.04.009_b0135) 2017; 12
Dunn (10.1016/j.cjche.2021.04.009_b0010) 2015; 8
Hatakeyama-Sato (10.1016/j.cjche.2021.04.009_b0245) 2020; 142
Zhang (10.1016/j.cjche.2021.04.009_b0390) 2020; 11
Goecks (10.1016/j.cjche.2021.04.009_b0065) 2020; 181
Aykol (10.1016/j.cjche.2021.04.009_b0405) 2020; 5
Sumita (10.1016/j.cjche.2021.04.009_b0215) 2019; 92
Li (10.1016/j.cjche.2021.04.009_b0350) 2019; 7
Jalem (10.1016/j.cjche.2021.04.009_b0185) 2014; 2
Wang (10.1016/j.cjche.2021.04.009_b0265) 2021; 35
Michel (10.1016/j.cjche.2021.04.009_b0360) 2015
Liu (10.1016/j.cjche.2021.04.009_b0105) 2020; 5
He (10.1016/j.cjche.2021.04.009_b0320) 2014; 62
Xing (10.1016/j.cjche.2021.04.009_b0270) 2011; 4
Wang (10.1016/j.cjche.2021.04.009_b0165) 2020; 32
Whitacre (10.1016/j.cjche.2021.04.009_b0220) 2019; 166
Seko (10.1016/j.cjche.2021.04.009_b0195) 2017; 95
Severson (10.1016/j.cjche.2021.04.009_b0385) 2019; 4
Wang (10.1016/j.cjche.2021.04.009_b0085) 2019; 3
Berecibar (10.1016/j.cjche.2021.04.009_b0395) 2016; 320
References_xml – volume: 60
  start-page: 1461
  year: 2011
  end-page: 1469
  ident: b0300
  article-title: State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved thevenin model
  publication-title: IEEE Trans. Veh. Technol.
  contributor:
    fullname: Fan
– volume: 4
  start-page: 996
  year: 2018
  end-page: 1006
  ident: b0150
  article-title: Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes
  publication-title: ACS Cent. Sci.
  contributor:
    fullname: Viswanathan
– volume: 92
  start-page: 1100
  year: 2019
  end-page: 1106
  ident: b0215
  article-title: Li-ion conductive Li
  publication-title: Bull Chem. Soc. Jpn.
  contributor:
    fullname: Tsuda
– volume: 8
  start-page: 158
  year: 2015
  end-page: 168
  ident: b0010
  article-title: The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Gallagher
– volume: 7
  start-page: 236
  year: 2016
  end-page: 243
  ident: b0315
  article-title: Battery state of charge estimation using a load-classifying neural network
  publication-title: J. Energy Storage
  contributor:
    fullname: Park
– volume: 7
  start-page: 88894
  year: 2019
  end-page: 88902
  ident: b0325
  article-title: Combined CNN-LSTM network for state-of-charge estimation of lithium-ion batteries
  publication-title: IEEE Access
  contributor:
    fullname: Tsui
– volume: 3
  start-page: 1252
  year: 2019
  end-page: 1275
  ident: b0170
  article-title: Computational screening of cathode coatings for solid-state batteries
  publication-title: Joule
  contributor:
    fullname: Ceder
– volume: 30
  year: 2018
  ident: b0020
  article-title: 30 years of lithium-ion batteries
  publication-title: Adv. Mater.
  contributor:
    fullname: Amine
– volume: 185
  start-page: 1367
  year: 2008
  end-page: 1373
  ident: b0290
  article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge
  publication-title: J. Power Sources
  contributor:
    fullname: Cho
– volume: 4
  start-page: 383
  year: 2019
  end-page: 391
  ident: b0385
  article-title: Data-driven prediction of battery cycle life before capacity degradation
  publication-title: Nat. Energy
  contributor:
    fullname: Braatz
– volume: 63
  start-page: 1224
  year: 2014
  end-page: 1234
  ident: b0335
  article-title: Measurement techniques for online battery state of health estimation in vehicle-to-grid applications
  publication-title: IEEE Trans. Instrum. Meas.
  contributor:
    fullname: Gross
– year: 2015
  ident: b0360
  publication-title: An adaptive sigma point kalman filter hybridized by support vector machine algorithm for battery-SoC and SoH estimation In: 2015 IEEE 81st Vehicular Technology Conference
  contributor:
    fullname: Heiries
– volume: 160
  start-page: 466
  year: 2018
  end-page: 477
  ident: b0340
  article-title: Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine
  publication-title: Energy
  contributor:
    fullname: Chen
– volume: 5
  start-page: 259
  year: 2020
  end-page: 270
  ident: b0110
  article-title: Benchmarking the performance of all-solid-state lithium batteries
  publication-title: Nat. Energy
  contributor:
    fullname: Janek
– volume: 3
  start-page: 2810
  year: 2013
  ident: b0175
  article-title: Accelerating materials property predictions using machine learning
  publication-title: Sci. Rep.
  contributor:
    fullname: Ramprasad
– volume: 4
  start-page: 1840
  year: 2011
  end-page: 1857
  ident: b0270
  article-title: Battery management systems in electric and hybrid vehicles
  publication-title: Energies
  contributor:
    fullname: Pecht
– volume: 3
  start-page: 1900025
  year: 2019
  ident: b0085
  article-title: Nanomaterials discovery and design through machine learning
  publication-title: Small Methods
  contributor:
    fullname: Chen
– volume: 12
  start-page: 660
  year: 2019
  ident: b0345
  article-title: A data-driven predictive prognostic model for lithium-ion batteries based on a \r deep learning algorithm
  publication-title: Energies
  contributor:
    fullname: Yodo
– volume: 3
  start-page: 1900215
  year: 2020
  ident: b0095
  article-title: Multi-layer feature selection incorporating weighted score-based expert knowledge toward modeling materials with targeted properties
  publication-title: Adv. Theory Simul.
  contributor:
    fullname: Shi
– volume: 10
  start-page: 1903242
  year: 2020
  ident: b0420
  article-title: A critical review of machine learning of energy materials
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Ong
– volume: 2
  start-page: 720
  year: 2014
  end-page: 734
  ident: b0185
  article-title: An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Kasuga
– volume: 39
  start-page: 310
  year: 2012
  end-page: 318
  ident: b0285
  article-title: Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles
  publication-title: Energy
  contributor:
    fullname: Guo
– volume: 12
  start-page: 138
  year: 2017
  end-page: 148
  ident: b0045
  article-title: Parameter identification of a lithium-ion cell single-particle model through non-invasive testing
  publication-title: J. Energy Storage
  contributor:
    fullname: Paolone
– volume: 32
  start-page: 4144
  year: 2020
  end-page: 4151
  ident: b0250
  article-title: Toward designing highly conductive polymer electrolytes by machine learning assisted coarse-grained molecular dynamics
  publication-title: Chem. Mater.
  contributor:
    fullname: Grossman
– volume: 12
  start-page: 194
  year: 2017
  end-page: 206
  ident: b0135
  article-title: Reviving the lithium metal anode for high-energy batteries
  publication-title: Nat. Nanotechnol.
  contributor:
    fullname: Cui
– volume: 25
  year: 2016
  ident: b0090
  article-title: Multi-scale computation methods: Their applications in lithium-ion battery research and development
  publication-title: Chinese Phys. B
  contributor:
    fullname: Xiao
– volume: 114
  start-page: 11414
  year: 2014
  end-page: 11443
  ident: b0015
  article-title: Ultimate limits to intercalation reactions for lithium batteries
  publication-title: Chem. Rev.
  contributor:
    fullname: Whittingham
– volume: 31
  start-page: 195
  year: 2020
  end-page: 220
  ident: b0005
  article-title: Recent advances of thermal safety of lithium ion battery for energy storage
  publication-title: Energy Storage Mater.
  contributor:
    fullname: Rao
– volume: 271
  start-page: 114
  year: 2014
  end-page: 123
  ident: b0355
  article-title: Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter
  publication-title: J. Power Sources
  contributor:
    fullname: Wang
– volume: 45
  start-page: 4133
  year: 2021
  end-page: 4144
  ident: b0230
  article-title: Phung le, Machine learning approach in exploring the electrolyte additives effect on cycling performance of LiNi
  publication-title: Int. J. Energy Res.
  contributor:
    fullname: Huynh
– volume: 53
  start-page: 805
  year: 2013
  end-page: 810
  ident: b0305
  article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
  publication-title: Microelectron. Reliab.
  contributor:
    fullname: Pecht
– volume: 150
  start-page: A1377
  year: 2003
  end-page: A1384
  ident: b0145
  article-title: Dendrite growth in lithium/polymer systems: A propagation model for liquid electrolytes under galvanostatic conditions
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Newman
– volume: 6
  start-page: 102
  year: 2017
  ident: b0280
  article-title: SoC estimation for lithium-ion batteries: Review and future challenges
  publication-title: Electronics
  contributor:
    fullname: Sarmiento-Maldonado
– volume: 35
  start-page: 595
  year: 2021
  end-page: 601
  ident: b0265
  article-title: Identifying chemical factors affecting reaction kinetics in Li-air battery
  publication-title: Energy Storage Mater.
  contributor:
    fullname: Shi
– volume: 159
  start-page: 285
  year: 2015
  end-page: 297
  ident: b0375
  article-title: A novel multistage support vector machine based approach for Li ion battery remaining useful life estimation
  publication-title: Appl. Energy
  contributor:
    fullname: Doo
– volume: 3
  start-page: 980
  year: 2013
  end-page: 985
  ident: b0180
  article-title: Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Tanaka
– volume: 121
  start-page: 9698
  year: 2017
  end-page: 9704
  ident: b0210
  article-title: Possible polymerization of PS4 at a Li
  publication-title: J. Phys. Chem. C
  contributor:
    fullname: Ohno
– volume: 3
  start-page: 159
  year: 2017
  end-page: 177
  ident: b0025
  article-title: Materials discovery and design using machine learning
  publication-title: J. Materiomics
  contributor:
    fullname: Shi
– volume: 166
  start-page: A4181
  year: 2019
  end-page: A4187
  ident: b0220
  article-title: An autonomous electrochemical test stand for machine learning informed electrolyte optimization
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Viswanathan
– volume: 179
  start-page: 426
  year: 2016
  end-page: 436
  ident: b0040
  article-title: Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods
  publication-title: Appl. Energy
  contributor:
    fullname: Mi
– volume: 53
  start-page: 9449
  year: 2020
  end-page: 9459
  ident: b0240
  article-title: Design of polymer blend electrolytes through a machine learning approach
  publication-title: Macromolecules
  contributor:
    fullname: Ganesan
– volume: 5
  start-page: 725
  year: 2020
  end-page: 727
  ident: b0405
  article-title: Machine learning for continuous innovation in battery technologies
  publication-title: Nat. Rev. Mater.
  contributor:
    fullname: Anapolsky
– volume: 396
  start-page: 133
  year: 2020
  end-page: 152
  ident: b0410
  article-title: A classifier task based on Neural Turing Machine and particle swarm algorithm
  publication-title: Neurocomputing
  contributor:
    fullname: Safi-Esfahani
– volume: 67
  start-page: 5695
  year: 2018
  end-page: 5705
  ident: b0365
  article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
  contributor:
    fullname: Pecht
– volume: 31
  start-page: 342
  year: 2019
  end-page: 352
  ident: b0130
  article-title: Machine learning-assisted discovery of solid Li-ion conducting materials
  publication-title: Chem. Mater.
  contributor:
    fullname: Reed
– volume: 32
  start-page: 3741
  year: 2020
  end-page: 3752
  ident: b0165
  article-title: Lithium ion conduction in cathode coating materials from on-the-fly machine learning
  publication-title: Chem. Mater.
  contributor:
    fullname: Mueller
– volume: 1
  start-page: 1002641
  year: 2020
  ident: b0225
  article-title: Autonomous discovery of battery electrolytes with robotic experimentation and machine learning
  publication-title: Cell Rep. Phys. Sci.
  contributor:
    fullname: Viswanathan
– volume: 3
  start-page: 16
  year: 2018
  end-page: 21
  ident: b0140
  article-title: Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
  publication-title: Nat. Energy
  contributor:
    fullname: Newman
– volume: 89
  year: 2014
  ident: b0115
  article-title: Combinatorial screening for new materials in unconstrained composition space with machine learning
  publication-title: Phys. Rev. B
  contributor:
    fullname: Wolverton
– volume: 10
  start-page: 5260
  year: 2019
  ident: b0125
  article-title: Unsupervised discovery of solid-state lithium ion conductors
  publication-title: Nat. Commun.
  contributor:
    fullname: Ling
– volume: 7
  start-page: 19961
  year: 2019
  end-page: 19969
  ident: b0155
  article-title: Rationalizing the interphase stability of Li|doped-Li
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Zhang
– volume: 11
  start-page: 1
  year: 2020
  end-page: 14
  ident: b0060
  article-title: A machine learning automated recommendation tool for synthetic biology
  publication-title: Nat. Commun.
  contributor:
    fullname: Garcia Martin
– volume: 240
  start-page: 113
  year: 2012
  end-page: 122
  ident: b0070
  article-title: A review of supervised machine learning algorithms and their applications to ecological data
  publication-title: Ecol. Model.
  contributor:
    fullname: Perera
– volume: 11
  start-page: 1706
  year: 2020
  ident: b0390
  article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
  publication-title: Nat Commun
  contributor:
    fullname: Lee
– volume: 14
  start-page: 1026
  year: 2015
  end-page: 1031
  ident: b0120
  article-title: Design principles for solid-state lithium superionic conductors
  publication-title: Nat. Mater.
  contributor:
    fullname: Ceder
– volume: 156
  start-page: 620
  year: 2006
  end-page: 628
  ident: b0295
  article-title: Review of models for predicting the cycling performance of lithium ion batteries
  publication-title: J. Power Sources
  contributor:
    fullname: White
– volume: 7
  start-page: 8754
  year: 2019
  end-page: 8762
  ident: b0350
  article-title: Lithium-ion battery state of health monitoring based on ensemble learning
  publication-title: IEEE Access
  contributor:
    fullname: Shi
– volume: 10
  year: 2020
  ident: b0080
  article-title: Simulation and design of energy materials accelerated by machine learning
  publication-title: Wires Comput. Mol. Sci.
  contributor:
    fullname: Li
– volume: 89
  year: 2014
  ident: b0200
  article-title: Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
  contributor:
    fullname: Tanaka
– volume: 62
  start-page: 783
  year: 2014
  end-page: 791
  ident: b0320
  article-title: State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation
  publication-title: Int. J. Electr. Power Energy Syst.
  contributor:
    fullname: Pecht
– volume: 117
  start-page: 270
  year: 2016
  end-page: 278
  ident: b0260
  article-title: Application of machine learning methods for the prediction of crystal system of cathode materials in lithium-ion batteries
  publication-title: Comput. Mater. Sci.
  contributor:
    fullname: Gauvin
– volume: 2
  start-page: 18
  year: 2020
  end-page: 24
  ident: b0055
  article-title: Validity of machine learning in biology and medicine increased through collaborations across fields of expertise
  publication-title: Nat. Mach. Intell.
  contributor:
    fullname: Rost
– volume: 31
  year: 2020
  ident: b0415
  article-title: Implementation of generative adversarial network-CLS combined with bidirectional long short-term memory for lithium-ion battery state prediction
  publication-title: J. Energy Storage
  contributor:
    fullname: Kim
– volume: 289
  start-page: 105
  year: 2015
  end-page: 113
  ident: b0370
  article-title: Online estimation of lithium-ion battery capacity using sparse Bayesian learning
  publication-title: J. Power Sources
  contributor:
    fullname: Sullivan
– volume: 3
  start-page: 2000109
  year: 2020
  ident: b0075
  article-title: Data-driven fast clustering of second-life lithium-ion battery: Mechanism and algorithm
  publication-title: Adv. Theory Simul.
  contributor:
    fullname: Wei
– volume: 187
  year: 2021
  ident: b0400
  article-title: A data science approach for advanced solid polymer electrolyte design
  publication-title: Comput. Mater. Sci.
  contributor:
    fullname: Sparks
– volume: 5
  start-page: 833
  year: 2020
  end-page: 843
  ident: b0105
  article-title: Controlling dendrite growth in solid-state electrolytes
  publication-title: ACS Energy Lett.
  contributor:
    fullname: Zhang
– volume: 21
  start-page: 26399
  year: 2019
  end-page: 26405
  ident: b0205
  article-title: Machine learning prediction of coordination energies for alkali group elements in battery electrolyte solvents
  publication-title: Phys. Chem. Chem. Phys.
  contributor:
    fullname: Okada
– volume: 31
  start-page: 434
  year: 2020
  end-page: 450
  ident: b0035
  article-title: Machine learning assisted materials design and discovery for rechargeable batteries
  publication-title: Energy Storage Mater.
  contributor:
    fullname: Shi
– volume: 5
  start-page: 54
  year: 2019
  ident: b0255
  article-title: Machine learning approaches for designing mesoscale structure of Li-ion battery electrodes
  publication-title: Batteries
  contributor:
    fullname: Yamaue
– volume: 8
  start-page: 9059
  year: 2018
  ident: b0030
  article-title: Applying machine learning techniques to predict the properties of energetic materials
  publication-title: Sci. Rep.
  contributor:
    fullname: Chung
– volume: 95
  year: 2017
  ident: b0195
  article-title: Representation of compounds for machine-learning prediction of physical properties
  publication-title: Phys. Rev. B
  contributor:
    fullname: Tanaka
– volume: 142
  start-page: 3301
  year: 2020
  end-page: 3305
  ident: b0245
  article-title: AI-assisted exploration of superionic glass-type Li
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Oyaizu
– volume: 2
  start-page: 161
  year: 2020
  end-page: 170
  ident: b0050
  article-title: Predicting the state of charge and health of batteries using data-driven machine learning
  publication-title: Nat. Mach. Intell.
  contributor:
    fullname: Seh
– volume: 69
  start-page: 10854
  year: 2020
  end-page: 10867
  ident: b0275
  article-title: State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method
  publication-title: IEEE Trans. Veh. Technol.
  contributor:
    fullname: Feng
– volume: 10
  start-page: 4687
  year: 2020
  ident: b0330
  article-title: Toward enhanced state of charge estimation of lithium-ion batteries using optimized machine learning techniques
  publication-title: Sci. Rep.
  contributor:
    fullname: Dong
– volume: 11
  start-page: 18494
  year: 2019
  end-page: 18503
  ident: b0190
  article-title: Machine learning the voltage of electrode materials in metal-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Peralta
– volume: 181
  start-page: 92
  year: 2020
  end-page: 101
  ident: b0065
  article-title: How machine learning will transform biomedicine
  publication-title: Cell
  contributor:
    fullname: Gray
– volume: 819
  year: 2020
  ident: b0160
  article-title: A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Yuan
– volume: 320
  start-page: 239
  year: 2016
  end-page: 250
  ident: b0395
  article-title: Online state of health estimation on NMC cells based on predictive analytics
  publication-title: J. Power Sources
  contributor:
    fullname: van Mierlo
– volume: 104
  start-page: 1
  year: 1997
  end-page: 11
  ident: b0235
  article-title: Review of crystalline lithium-ion conductors suitable for high temperature battery applications
  publication-title: Solid State Ionics
  contributor:
    fullname: Ritchie
– volume: 4
  start-page: 187
  year: 2019
  end-page: 196
  ident: b0100
  article-title: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes
  publication-title: Nat. Energy
  contributor:
    fullname: Wang
– volume: 10
  start-page: 5260
  issue: 1
  year: 2019
  ident: 10.1016/j.cjche.2021.04.009_b0125
  article-title: Unsupervised discovery of solid-state lithium ion conductors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13214-1
  contributor:
    fullname: Zhang
– volume: 12
  start-page: 138
  year: 2017
  ident: 10.1016/j.cjche.2021.04.009_b0045
  article-title: Parameter identification of a lithium-ion cell single-particle model through non-invasive testing
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2017.04.008
  contributor:
    fullname: Namor
– volume: 156
  start-page: 620
  issue: 2
  year: 2006
  ident: 10.1016/j.cjche.2021.04.009_b0295
  article-title: Review of models for predicting the cycling performance of lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.05.070
  contributor:
    fullname: Santhanagopalan
– volume: 187
  year: 2021
  ident: 10.1016/j.cjche.2021.04.009_b0400
  article-title: A data science approach for advanced solid polymer electrolyte design
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2020.110108
  contributor:
    fullname: Liu
– volume: 396
  start-page: 133
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0410
  article-title: A classifier task based on Neural Turing Machine and particle swarm algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.097
  contributor:
    fullname: Faradonbe
– volume: 31
  start-page: 195
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0005
  article-title: Recent advances of thermal safety of lithium ion battery for energy storage
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.06.042
  contributor:
    fullname: Lyu
– volume: 60
  start-page: 1461
  issue: 4
  year: 2011
  ident: 10.1016/j.cjche.2021.04.009_b0300
  article-title: State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved thevenin model
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2011.2132812
  contributor:
    fullname: He
– ident: 10.1016/j.cjche.2021.04.009_b0380
  doi: 10.23919/ICPE2019-ECCEAsia42246.2019.8797021
– volume: 240
  start-page: 113
  year: 2012
  ident: 10.1016/j.cjche.2021.04.009_b0070
  article-title: A review of supervised machine learning algorithms and their applications to ecological data
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2012.03.001
  contributor:
    fullname: Crisci
– volume: 3
  start-page: 1900215
  issue: 2
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0095
  article-title: Multi-layer feature selection incorporating weighted score-based expert knowledge toward modeling materials with targeted properties
  publication-title: Adv. Theory Simul.
  doi: 10.1002/adts.201900215
  contributor:
    fullname: Liu
– volume: 3
  start-page: 159
  issue: 3
  year: 2017
  ident: 10.1016/j.cjche.2021.04.009_b0025
  article-title: Materials discovery and design using machine learning
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2017.08.002
  contributor:
    fullname: Liu
– volume: 104
  start-page: 1
  issue: 1–2
  year: 1997
  ident: 10.1016/j.cjche.2021.04.009_b0235
  article-title: Review of crystalline lithium-ion conductors suitable for high temperature battery applications
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(97)00429-3
  contributor:
    fullname: Robertson
– volume: 4
  start-page: 187
  issue: 3
  year: 2019
  ident: 10.1016/j.cjche.2021.04.009_b0100
  article-title: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0312-z
  contributor:
    fullname: Han
– volume: 12
  start-page: 660
  issue: 4
  year: 2019
  ident: 10.1016/j.cjche.2021.04.009_b0345
  article-title: A data-driven predictive prognostic model for lithium-ion batteries based on a \r deep learning algorithm
  publication-title: Energies
  doi: 10.3390/en12040660
  contributor:
    fullname: Khumprom
– volume: 53
  start-page: 9449
  issue: 21
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0240
  article-title: Design of polymer blend electrolytes through a machine learning approach
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c01547
  contributor:
    fullname: Wheatle
– volume: 10
  start-page: 1903242
  issue: 8
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0420
  article-title: A critical review of machine learning of energy materials
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903242
  contributor:
    fullname: Chen
– volume: 159
  start-page: 285
  year: 2015
  ident: 10.1016/j.cjche.2021.04.009_b0375
  article-title: A novel multistage support vector machine based approach for Li ion battery remaining useful life estimation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.08.119
  contributor:
    fullname: Patil
– volume: 3
  start-page: 980
  issue: 8
  year: 2013
  ident: 10.1016/j.cjche.2021.04.009_b0180
  article-title: Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300060
  contributor:
    fullname: Fujimura
– volume: 2
  start-page: 161
  issue: 3
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0050
  article-title: Predicting the state of charge and health of batteries using data-driven machine learning
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0156-7
  contributor:
    fullname: Ng
– volume: 2
  start-page: 18
  issue: 1
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0055
  article-title: Validity of machine learning in biology and medicine increased through collaborations across fields of expertise
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0139-8
  contributor:
    fullname: Littmann
– volume: 150
  start-page: A1377
  issue: 10
  year: 2003
  ident: 10.1016/j.cjche.2021.04.009_b0145
  article-title: Dendrite growth in lithium/polymer systems: A propagation model for liquid electrolytes under galvanostatic conditions
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1606686
  contributor:
    fullname: Monroe
– volume: 5
  start-page: 259
  issue: 3
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0110
  article-title: Benchmarking the performance of all-solid-state lithium batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0565-1
  contributor:
    fullname: Randau
– volume: 45
  start-page: 4133
  issue: 3
  year: 2021
  ident: 10.1016/j.cjche.2021.04.009_b0230
  article-title: Phung le, Machine learning approach in exploring the electrolyte additives effect on cycling performance of LiNi0.5Mn1.5O4 cathode and graphite anode-based lithium-ion cell
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6074
  contributor:
    fullname: van Duongvan Tran
– volume: 6
  start-page: 102
  issue: 4
  year: 2017
  ident: 10.1016/j.cjche.2021.04.009_b0280
  article-title: SoC estimation for lithium-ion batteries: Review and future challenges
  publication-title: Electronics
  doi: 10.3390/electronics6040102
  contributor:
    fullname: Rivera-Barrera
– volume: 289
  start-page: 105
  year: 2015
  ident: 10.1016/j.cjche.2021.04.009_b0370
  article-title: Online estimation of lithium-ion battery capacity using sparse Bayesian learning
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.04.166
  contributor:
    fullname: Hu
– volume: 62
  start-page: 783
  year: 2014
  ident: 10.1016/j.cjche.2021.04.009_b0320
  article-title: State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.04.059
  contributor:
    fullname: He
– volume: 11
  start-page: 18494
  issue: 20
  year: 2019
  ident: 10.1016/j.cjche.2021.04.009_b0190
  article-title: Machine learning the voltage of electrode materials in metal-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04933
  contributor:
    fullname: Joshi
– volume: 21
  start-page: 26399
  issue: 48
  year: 2019
  ident: 10.1016/j.cjche.2021.04.009_b0205
  article-title: Machine learning prediction of coordination energies for alkali group elements in battery electrolyte solvents
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP03679B
  contributor:
    fullname: Ishikawa
– volume: 32
  start-page: 4144
  issue: 10
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0250
  article-title: Toward designing highly conductive polymer electrolytes by machine learning assisted coarse-grained molecular dynamics
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04830
  contributor:
    fullname: Wang
– volume: 4
  start-page: 1840
  issue: 11
  year: 2011
  ident: 10.1016/j.cjche.2021.04.009_b0270
  article-title: Battery management systems in electric and hybrid vehicles
  publication-title: Energies
  doi: 10.3390/en4111840
  contributor:
    fullname: Xing
– volume: 69
  start-page: 10854
  issue: 10
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0275
  article-title: State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3014932
  contributor:
    fullname: Gou
– volume: 1
  start-page: 1002641
  issue: 12
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0225
  article-title: Autonomous discovery of battery electrolytes with robotic experimentation and machine learning
  publication-title: Cell Rep. Phys. Sci.
  contributor:
    fullname: Dave
– volume: 35
  start-page: 595
  year: 2021
  ident: 10.1016/j.cjche.2021.04.009_b0265
  article-title: Identifying chemical factors affecting reaction kinetics in Li-air battery via ab initio calculations and machine learning
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.10.022
  contributor:
    fullname: Wang
– volume: 3
  start-page: 16
  issue: 1
  year: 2018
  ident: 10.1016/j.cjche.2021.04.009_b0140
  article-title: Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0047-2
  contributor:
    fullname: Albertus
– volume: 142
  start-page: 3301
  issue: 7
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0245
  article-title: AI-assisted exploration of superionic glass-type Li+ conductors with aromatic structures
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11442
  contributor:
    fullname: Hatakeyama-Sato
– volume: 271
  start-page: 114
  year: 2014
  ident: 10.1016/j.cjche.2021.04.009_b0355
  article-title: Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.07.176
  contributor:
    fullname: Dong
– volume: 30
  issue: 33
  year: 2018
  ident: 10.1016/j.cjche.2021.04.009_b0020
  article-title: 30 years of lithium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800561
  contributor:
    fullname: Li
– volume: 5
  start-page: 833
  issue: 3
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0105
  article-title: Controlling dendrite growth in solid-state electrolytes
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02660
  contributor:
    fullname: Liu
– volume: 10
  start-page: 4687
  issue: 1
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0330
  article-title: Toward enhanced state of charge estimation of lithium-ion batteries using optimized machine learning techniques
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61464-7
  contributor:
    fullname: Hannan
– volume: 8
  start-page: 158
  issue: 1
  year: 2015
  ident: 10.1016/j.cjche.2021.04.009_b0010
  article-title: The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03029J
  contributor:
    fullname: Dunn
– ident: 10.1016/j.cjche.2021.04.009_b0310
  doi: 10.1109/TPEL.2013.2243918
– volume: 7
  start-page: 8754
  year: 2019
  ident: 10.1016/j.cjche.2021.04.009_b0350
  article-title: Lithium-ion battery state of health monitoring based on ensemble learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891063
  contributor:
    fullname: Li
– volume: 4
  start-page: 383
  issue: 5
  year: 2019
  ident: 10.1016/j.cjche.2021.04.009_b0385
  article-title: Data-driven prediction of battery cycle life before capacity degradation
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0356-8
  contributor:
    fullname: Severson
– volume: 4
  start-page: 996
  issue: 8
  year: 2018
  ident: 10.1016/j.cjche.2021.04.009_b0150
  article-title: Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00229
  contributor:
    fullname: Ahmad
– volume: 25
  issue: 1
  year: 2016
  ident: 10.1016/j.cjche.2021.04.009_b0090
  article-title: Multi-scale computation methods: Their applications in lithium-ion battery research and development
  publication-title: Chinese Phys. B
  doi: 10.1088/1674-1056/25/1/018212
  contributor:
    fullname: Shi
– volume: 3
  start-page: 2810
  year: 2013
  ident: 10.1016/j.cjche.2021.04.009_b0175
  article-title: Accelerating materials property predictions using machine learning
  publication-title: Sci. Rep.
  doi: 10.1038/srep02810
  contributor:
    fullname: Pilania
– volume: 121
  start-page: 9698
  issue: 18
  year: 2017
  ident: 10.1016/j.cjche.2021.04.009_b0210
  article-title: Possible polymerization of PS4 at a Li3PS4/FePO4 interface with reduction of the FePO4 phase
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b01009
  contributor:
    fullname: Sumita
– volume: 160
  start-page: 466
  year: 2018
  ident: 10.1016/j.cjche.2021.04.009_b0340
  article-title: Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.220
  contributor:
    fullname: Pan
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0060
  article-title: A machine learning automated recommendation tool for synthetic biology
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18008-4
  contributor:
    fullname: Radivojević
– volume: 114
  start-page: 11414
  issue: 23
  year: 2014
  ident: 10.1016/j.cjche.2021.04.009_b0015
  article-title: Ultimate limits to intercalation reactions for lithium batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr5003003
  contributor:
    fullname: Whittingham
– volume: 3
  start-page: 2000109
  issue: 8
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0075
  article-title: Data-driven fast clustering of second-life lithium-ion battery: Mechanism and algorithm
  publication-title: Adv. Theory Simul.
  doi: 10.1002/adts.202000109
  contributor:
    fullname: Ran
– volume: 89
  issue: 9
  year: 2014
  ident: 10.1016/j.cjche.2021.04.009_b0115
  article-title: Combinatorial screening for new materials in unconstrained composition space with machine learning
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.094104
  contributor:
    fullname: Meredig
– volume: 181
  start-page: 92
  issue: 1
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0065
  article-title: How machine learning will transform biomedicine
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.022
  contributor:
    fullname: Goecks
– volume: 819
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0160
  article-title: A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.153048
  contributor:
    fullname: Yan
– volume: 179
  start-page: 426
  year: 2016
  ident: 10.1016/j.cjche.2021.04.009_b0040
  article-title: Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.07.005
  contributor:
    fullname: Xia
– volume: 53
  start-page: 805
  issue: 6
  year: 2013
  ident: 10.1016/j.cjche.2021.04.009_b0305
  article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2012.12.004
  contributor:
    fullname: Miao
– volume: 166
  start-page: A4181
  issue: 16
  year: 2019
  ident: 10.1016/j.cjche.2021.04.009_b0220
  article-title: An autonomous electrochemical test stand for machine learning informed electrolyte optimization
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0521916jes
  contributor:
    fullname: Whitacre
– volume: 14
  start-page: 1026
  issue: 10
  year: 2015
  ident: 10.1016/j.cjche.2021.04.009_b0120
  article-title: Design principles for solid-state lithium superionic conductors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4369
  contributor:
    fullname: Wang
– volume: 63
  start-page: 1224
  issue: 5
  year: 2014
  ident: 10.1016/j.cjche.2021.04.009_b0335
  article-title: Measurement techniques for online battery state of health estimation in vehicle-to-grid applications
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2013.2292318
  contributor:
    fullname: Landi
– volume: 3
  start-page: 1900025
  issue: 5
  year: 2019
  ident: 10.1016/j.cjche.2021.04.009_b0085
  article-title: Nanomaterials discovery and design through machine learning
  publication-title: Small Methods
  doi: 10.1002/smtd.201900025
  contributor:
    fullname: Wang
– volume: 3
  start-page: 1252
  issue: 5
  year: 2019
  ident: 10.1016/j.cjche.2021.04.009_b0170
  article-title: Computational screening of cathode coatings for solid-state batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2019.02.006
  contributor:
    fullname: Xiao
– volume: 5
  start-page: 54
  issue: 3
  year: 2019
  ident: 10.1016/j.cjche.2021.04.009_b0255
  article-title: Machine learning approaches for designing mesoscale structure of Li-ion battery electrodes
  publication-title: Batteries
  doi: 10.3390/batteries5030054
  contributor:
    fullname: Takagishi
– volume: 95
  issue: 14
  year: 2017
  ident: 10.1016/j.cjche.2021.04.009_b0195
  article-title: Representation of compounds for machine-learning prediction of physical properties
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.144110
  contributor:
    fullname: Seko
– volume: 39
  start-page: 310
  issue: 1
  year: 2012
  ident: 10.1016/j.cjche.2021.04.009_b0285
  article-title: Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2012.01.009
  contributor:
    fullname: He
– volume: 31
  start-page: 342
  issue: 2
  year: 2019
  ident: 10.1016/j.cjche.2021.04.009_b0130
  article-title: Machine learning-assisted discovery of solid Li-ion conducting materials
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03272
  contributor:
    fullname: Sendek
– volume: 8
  start-page: 9059
  issue: 1
  year: 2018
  ident: 10.1016/j.cjche.2021.04.009_b0030
  article-title: Applying machine learning techniques to predict the properties of energetic materials
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27344-x
  contributor:
    fullname: Elton
– volume: 2
  start-page: 720
  issue: 3
  year: 2014
  ident: 10.1016/j.cjche.2021.04.009_b0185
  article-title: An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA13235H
  contributor:
    fullname: Jalem
– volume: 89
  issue: 5
  year: 2014
  ident: 10.1016/j.cjche.2021.04.009_b0200
  article-title: Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.89.054303
  contributor:
    fullname: Seko
– volume: 7
  start-page: 236
  year: 2016
  ident: 10.1016/j.cjche.2021.04.009_b0315
  article-title: Battery state of charge estimation using a load-classifying neural network
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2016.07.002
  contributor:
    fullname: Tong
– year: 2015
  ident: 10.1016/j.cjche.2021.04.009_b0360
  contributor:
    fullname: Michel
– volume: 31
  start-page: 434
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0035
  article-title: Machine learning assisted materials design and discovery for rechargeable batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.06.033
  contributor:
    fullname: Liu
– volume: 7
  start-page: 88894
  year: 2019
  ident: 10.1016/j.cjche.2021.04.009_b0325
  article-title: Combined CNN-LSTM network for state-of-charge estimation of lithium-ion batteries
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2926517
  contributor:
    fullname: Song
– volume: 31
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0415
  article-title: Implementation of generative adversarial network-CLS combined with bidirectional long short-term memory for lithium-ion battery state prediction
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101489
  contributor:
    fullname: Zhang
– volume: 7
  start-page: 19961
  issue: 34
  year: 2019
  ident: 10.1016/j.cjche.2021.04.009_b0155
  article-title: Rationalizing the interphase stability of Li|doped-Li7La3Zr2O12 via automated reaction screening and machine learning
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06748E
  contributor:
    fullname: Liu
– volume: 67
  start-page: 5695
  issue: 7
  year: 2018
  ident: 10.1016/j.cjche.2021.04.009_b0365
  article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2805189
  contributor:
    fullname: Zhang
– volume: 12
  start-page: 194
  issue: 3
  year: 2017
  ident: 10.1016/j.cjche.2021.04.009_b0135
  article-title: Reviving the lithium metal anode for high-energy batteries
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.16
  contributor:
    fullname: Lin
– volume: 117
  start-page: 270
  year: 2016
  ident: 10.1016/j.cjche.2021.04.009_b0260
  article-title: Application of machine learning methods for the prediction of crystal system of cathode materials in lithium-ion batteries
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2016.02.021
  contributor:
    fullname: Attarian Shandiz
– volume: 320
  start-page: 239
  year: 2016
  ident: 10.1016/j.cjche.2021.04.009_b0395
  article-title: Online state of health estimation on NMC cells based on predictive analytics
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.04.109
  contributor:
    fullname: Berecibar
– volume: 5
  start-page: 725
  issue: 10
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0405
  article-title: Machine learning for continuous innovation in battery technologies
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0216-y
  contributor:
    fullname: Aykol
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0080
  article-title: Simulation and design of energy materials accelerated by machine learning
  publication-title: Wires Comput. Mol. Sci.
  doi: 10.1002/wcms.1421
  contributor:
    fullname: Wang
– volume: 185
  start-page: 1367
  issue: 2
  year: 2008
  ident: 10.1016/j.cjche.2021.04.009_b0290
  article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.08.103
  contributor:
    fullname: Lee
– volume: 11
  start-page: 1706
  issue: 1
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0390
  article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15235-7
  contributor:
    fullname: Zhang
– volume: 92
  start-page: 1100
  issue: 6
  year: 2019
  ident: 10.1016/j.cjche.2021.04.009_b0215
  article-title: Li-ion conductive Li3PO4-Li3BO3-Li2SO4 mixture: Prevision through densityfunctional molecular dynamics and machine learning
  publication-title: Bull Chem. Soc. Jpn.
  doi: 10.1246/bcsj.20190041
  contributor:
    fullname: Sumita
– volume: 32
  start-page: 3741
  issue: 9
  year: 2020
  ident: 10.1016/j.cjche.2021.04.009_b0165
  article-title: Lithium ion conduction in cathode coating materials from on-the-fly machine learning
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04663
  contributor:
    fullname: Wang
SSID ssj0020818
Score 2.4598262
SecondaryResourceType review_article
Snippet With the widespread use of lithium ion batteries in portable electronics and electric vehicles, further improvements in the performance of lithium ion battery...
With the widespread use of lithium ion batteries in portable electronics and electric vehicles,further improvements in the performance of lithium ion battery...
SourceID wanfang
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Lithium ion batteries
Machine learning
Materials design
State prediction
Title Machine learning of materials design and state prediction for lithium ion batteries
URI https://dx.doi.org/10.1016/j.cjche.2021.04.009
https://d.wanfangdata.com.cn/periodical/cjce202109002
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DEfQgfuL8GDl4tK5r0nQ5juGYynaZg91C89G5gd2YG978230vbWWCePBSSHkt5ZfkvZfml98j5BaCBmOpMAFMQhfwNreBhLgXaMNikURpnPgynYOh6I_50ySe1Ei3OguDtMrS9xc-3Xvr8k6zRLO5nM2aI9Q6kzFHBSxMBFDxk0P4gzF9__lN84hQss3veIY8QOtKechzvMwckIFFYtTyeqfISvw9Ou19pHmW5tOt2NM7Iodl0kg7xXcdk5rLT8jBlpTgKRkNPCvS0bIMxJQuMgrZaDHAqPVEDZrmlvojRHS5wh0a7BUKaSuFZPx1tnmj2NZechNW0Gdk3Ht46faDsmBCYBhj68DYODHaJkKkzEonpWOWJ5Frach6mMCq8rDA0azlkkwbCOzCcs1lGrUzo_Ef0DnZyRe5uyBU2CxMMrhK0eZZmmiG4mph6OKWsZKxOrmrgFLLQhdDVYSxufK4KsRVhVwBrnUiKjDVj-5V4Ln_frBRQq_KyfWORg5NQgn9e_nfN1-RfWwVfLFrsrNebdwNJBhr3fAjqEF2O4_P_eEX6vHOAA
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_qEPUgfuL8zMGjZd2SpstRhlJ122UbeAvNR3UD69AN_33fS1NREA9eCm3TUn5J3vu95uX3CLkEp8FYLkwEk9BFvMttJMHvRdqwRKSdPEl9mc7BUGQTfv-YPK6QXr0XBtMqg-2vbLq31uFKK6DZmk-nrRFqncmEowIWEgG2ShrABiTMzsb13UM2_Iq7ULXNL3rGPMIHavEhn-ZlZgAOxImdtpc8xcTE3x3U-kdeFnn59M393O6Q7cAb6XX1abtkxZV7ZOubmuA-GQ18YqSjoRLEE30tKBDSaoxR63M1aF5a6ncR0fkbLtJgx1BgrhT4-PN0-ULxXHvVTQiiD8jk9mbcy6JQMyEyjLFFZGySGm1TIXJmpZPSMcvTjmtrID5MYGF5iHE0a7u00AZ8u7Bcc5l3uoXR-BvokKyVr6U7IlTYIk4LOErR5UWeaob6anHskraxkrEmuaqBUvNKGkPVOWMz5XFViKuKuQJcm0TUYKofPazAeP_94HmAXoX59Y6NHDaJJfTv8X_ffEE2svGgr_p3w4cTsol3qvSxU7K2eFu6M-AbC30extMnFHHQtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+of+materials+design+and+state+prediction+for+lithium+ion+batteries&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%8C%96%E5%AD%A6%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Jiale+Mao&rft.au=Jiazhi+Miao&rft.au=Yingying+Lu&rft.au=Zheming+Tong&rft.date=2021-09-01&rft.pub=State+Key+Laboratory+of+Chemical+Engineering%2CInstitute+of+Pharmaceutical+Engineering%2CCollege+of+Chemical+and+Biological+Engineering%2CZhejiang+University%2CHangzhou+310027%2CChina%25State+Key+Laboratory+of+Fluid+Power+and+Mechatronic+Systems%2CSchool+of+Mechanical+Engineering%2CZhejiang+University%2CHangzhou+310027%2CChina&rft.issn=1004-9541&rft.volume=37&rft.issue=9&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1016%2Fj.cjche.2021.04.009&rft.externalDocID=cjce202109002
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fcjce%2Fcjce.jpg