Machine learning of materials design and state prediction for lithium ion batteries
With the widespread use of lithium ion batteries in portable electronics and electric vehicles, further improvements in the performance of lithium ion battery materials and accurate prediction of battery state are of increasing interest to battery researchers. Machine learning, one of the core techn...
Saved in:
Published in | Chinese journal of chemical engineering Vol. 37; no. 9; pp. 1 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2021
State Key Laboratory of Chemical Engineering,Institute of Pharmaceutical Engineering,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China%State Key Laboratory of Fluid Power and Mechatronic Systems,School of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the widespread use of lithium ion batteries in portable electronics and electric vehicles, further improvements in the performance of lithium ion battery materials and accurate prediction of battery state are of increasing interest to battery researchers. Machine learning, one of the core technologies of artificial intelligence, is rapidly changing many fields with its ability to learn from historical data and solve complex tasks, and it has emerged as a new technique for solving current research problems in the field of lithium ion batteries. This review begins with the introduction of the conceptual framework of machine learning and the general process of its application, then reviews some of the progress made by machine learning in both improving battery materials design and accurate prediction of battery state, and finally points out the current application problems of machine learning and future research directions. It is believed that the use of machine learning will further promote the large-scale application and improvement of lithium-ion batteries. |
---|---|
AbstractList | With the widespread use of lithium ion batteries in portable electronics and electric vehicles,further improvements in the performance of lithium ion battery materials and accurate prediction of battery state are of increasing interest to battery researchers.Machine learning,one of the core technologies of artificial intelligence,is rapidly changing many fields with its ability to learn from historical data and solve complex tasks,and it has emerged as a new technique for solving current research problems in the field of lithium ion batteries.This review begins with the introduction of the conceptual framework of machine learning and the general process of its application,then reviews some of the progress made by machine learning in both improving battery materials design and accurate prediction of battery state,and finally points out the current application problems of machine learning and future research directions.It is believed that the use of machine learning will further promote the large-scale application and improve-ment of lithium-ion batteries. With the widespread use of lithium ion batteries in portable electronics and electric vehicles, further improvements in the performance of lithium ion battery materials and accurate prediction of battery state are of increasing interest to battery researchers. Machine learning, one of the core technologies of artificial intelligence, is rapidly changing many fields with its ability to learn from historical data and solve complex tasks, and it has emerged as a new technique for solving current research problems in the field of lithium ion batteries. This review begins with the introduction of the conceptual framework of machine learning and the general process of its application, then reviews some of the progress made by machine learning in both improving battery materials design and accurate prediction of battery state, and finally points out the current application problems of machine learning and future research directions. It is believed that the use of machine learning will further promote the large-scale application and improvement of lithium-ion batteries. |
Author | Mao, Jiale Miao, Jiazhi Tong, Zheming Lu, Yingying |
AuthorAffiliation | State Key Laboratory of Chemical Engineering,Institute of Pharmaceutical Engineering,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China%State Key Laboratory of Fluid Power and Mechatronic Systems,School of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China |
AuthorAffiliation_xml | – name: State Key Laboratory of Chemical Engineering,Institute of Pharmaceutical Engineering,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China%State Key Laboratory of Fluid Power and Mechatronic Systems,School of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China |
Author_xml | – sequence: 1 givenname: Jiale surname: Mao fullname: Mao, Jiale organization: State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China – sequence: 2 givenname: Jiazhi orcidid: 0000-0002-9739-9008 surname: Miao fullname: Miao, Jiazhi organization: State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China – sequence: 3 givenname: Yingying surname: Lu fullname: Lu, Yingying email: yingyinglu@zju.edu.cn organization: State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China – sequence: 4 givenname: Zheming surname: Tong fullname: Tong, Zheming email: tzm@zju.edu.cn organization: State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China |
BookMark | eNp9kD1PwzAQhi1UJNrCL2DxwpjgrybxwIAqvqQiBkBisxz70jpqncp2Qfx7HMrMdLrTPXd6nxma-MEDQpeUlJTQ6rovTW82UDLCaElESYg8QVPGKCk4ox8TNKWEiEIuBD1Dsxh7QhhpaDNFr8_abJwHvAUdvPNrPHR4pxMEp7cRW4hu7bH2FseUp3gfwDqT3OBxNwS8dWnjDjs89q1OIwbxHJ12GYaLvzpH7_d3b8vHYvXy8LS8XRWGc54KYxe1aW1dVZpbCVICt6JmQNtKCF5RSrmQsuUU6q41TIjKilZIzZrOtLJu-BxdHe9-ad9pv1b9cAg-f1TZBowuiMxB8x4_7pkwxBigU_vgdjp8K0rU6E_16tefGhlFhMr-MnVzpCBH-HQQVDQOvMn5A5ik7OD-5X8A6JV7wA |
CitedBy_id | crossref_primary_10_1016_j_ensm_2022_05_026 crossref_primary_10_1016_j_mineng_2022_107736 crossref_primary_10_1016_j_solmat_2024_112826 crossref_primary_10_1016_j_cjche_2023_11_022 crossref_primary_10_3390_coatings12070960 crossref_primary_10_1016_j_jclepro_2021_128265 crossref_primary_10_1016_j_mtcomm_2023_106578 crossref_primary_10_1016_j_est_2024_110452 crossref_primary_10_1149_1945_7111_acd148 crossref_primary_10_1039_D3YA00040K crossref_primary_10_1016_j_biortech_2023_129929 crossref_primary_10_1007_s40820_023_01192_5 crossref_primary_10_1149_1945_7111_ac95d2 crossref_primary_10_3390_batteries9010013 crossref_primary_10_1016_j_egyr_2022_10_027 crossref_primary_10_1016_j_gee_2022_10_002 crossref_primary_10_3390_en16196974 crossref_primary_10_3390_batteries9120585 crossref_primary_10_1016_j_mtsust_2024_100899 crossref_primary_10_3390_electronics11172695 crossref_primary_10_1016_j_solener_2023_111853 crossref_primary_10_1016_j_est_2023_109197 crossref_primary_10_1016_j_compchemeng_2024_108623 crossref_primary_10_1016_j_jpowsour_2022_232126 crossref_primary_10_1080_10962247_2022_2068878 crossref_primary_10_1016_j_egyr_2023_01_108 crossref_primary_10_1016_j_est_2023_109057 crossref_primary_10_1016_j_cej_2021_133536 crossref_primary_10_1016_j_ijhydene_2022_01_034 crossref_primary_10_1016_j_mtcomm_2023_105494 |
Cites_doi | 10.1038/s41467-019-13214-1 10.1016/j.est.2017.04.008 10.1016/j.jpowsour.2005.05.070 10.1016/j.commatsci.2020.110108 10.1016/j.neucom.2018.07.097 10.1016/j.ensm.2020.06.042 10.1109/TVT.2011.2132812 10.23919/ICPE2019-ECCEAsia42246.2019.8797021 10.1016/j.ecolmodel.2012.03.001 10.1002/adts.201900215 10.1016/j.jmat.2017.08.002 10.1016/S0167-2738(97)00429-3 10.1038/s41560-018-0312-z 10.3390/en12040660 10.1021/acs.macromol.0c01547 10.1002/aenm.201903242 10.1016/j.apenergy.2015.08.119 10.1002/aenm.201300060 10.1038/s42256-020-0156-7 10.1038/s42256-019-0139-8 10.1149/1.1606686 10.1038/s41560-020-0565-1 10.1002/er.6074 10.3390/electronics6040102 10.1016/j.jpowsour.2015.04.166 10.1016/j.ijepes.2014.04.059 10.1021/acsami.9b04933 10.1039/C9CP03679B 10.1021/acs.chemmater.9b04830 10.3390/en4111840 10.1109/TVT.2020.3014932 10.1016/j.ensm.2020.10.022 10.1038/s41560-017-0047-2 10.1021/jacs.9b11442 10.1016/j.jpowsour.2014.07.176 10.1002/adma.201800561 10.1021/acsenergylett.9b02660 10.1038/s41598-020-61464-7 10.1039/C4EE03029J 10.1109/TPEL.2013.2243918 10.1109/ACCESS.2019.2891063 10.1038/s41560-019-0356-8 10.1021/acscentsci.8b00229 10.1088/1674-1056/25/1/018212 10.1038/srep02810 10.1021/acs.jpcc.7b01009 10.1016/j.energy.2018.06.220 10.1038/s41467-020-18008-4 10.1021/cr5003003 10.1002/adts.202000109 10.1103/PhysRevB.89.094104 10.1016/j.cell.2020.03.022 10.1016/j.jallcom.2019.153048 10.1016/j.apenergy.2016.07.005 10.1016/j.microrel.2012.12.004 10.1149/2.0521916jes 10.1038/nmat4369 10.1109/TIM.2013.2292318 10.1002/smtd.201900025 10.1016/j.joule.2019.02.006 10.3390/batteries5030054 10.1103/PhysRevB.95.144110 10.1016/j.energy.2012.01.009 10.1021/acs.chemmater.8b03272 10.1038/s41598-018-27344-x 10.1039/C3TA13235H 10.1103/PhysRevB.89.054303 10.1016/j.est.2016.07.002 10.1016/j.ensm.2020.06.033 10.1109/ACCESS.2019.2926517 10.1016/j.est.2020.101489 10.1039/C9TA06748E 10.1109/TVT.2018.2805189 10.1038/nnano.2017.16 10.1016/j.commatsci.2016.02.021 10.1016/j.jpowsour.2016.04.109 10.1038/s41578-020-0216-y 10.1002/wcms.1421 10.1016/j.jpowsour.2008.08.103 10.1038/s41467-020-15235-7 10.1246/bcsj.20190041 10.1021/acs.chemmater.9b04663 |
ContentType | Journal Article |
Copyright | 2021 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2021 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/j.cjche.2021.04.009 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2210-321X |
EndPage | 11 |
ExternalDocumentID | cjce202109002 10_1016_j_cjche_2021_04_009 S1004954121001543 |
GrantInformation_xml | – fundername: (We acknowledge financial supports from the National Key Research and Development Program of China ); (and the Natural Science Foundation of China ) funderid: (We acknowledge financial supports from the National Key Research and Development Program of China ); (and the Natural Science Foundation of China ) |
GroupedDBID | --K --M .~1 0R~ 188 1B1 1~. 1~5 29B 2B. 2C0 4.4 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 8RM 92H 92I 92R 93N AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CCEZO CDRFL CHBEP CS3 CW9 DU5 EBS EFJIC EFLBG EJD ENUVR EO9 EP2 EP3 FA0 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL SDC SDF SDG SDH SES SPC SPCBC SSG SSZ T5K TCJ TGT UGNYK ~G- -SB -S~ AAXDM AAXKI AAYXX AFJKZ AKRWK CAJEB CITATION U1G U5L 4A8 PSX |
ID | FETCH-LOGICAL-c333t-cd57cbd766a3d9e99e3d472e1b644361113499b31e7fbc2446d4b49a28fcb9783 |
IEDL.DBID | .~1 |
ISSN | 1004-9541 |
IngestDate | Wed Nov 06 04:37:36 EST 2024 Thu Sep 26 19:12:29 EDT 2024 Fri Feb 23 02:39:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Lithium ion batteries Materials design State prediction Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-cd57cbd766a3d9e99e3d472e1b644361113499b31e7fbc2446d4b49a28fcb9783 |
ORCID | 0000-0002-9739-9008 |
PageCount | 11 |
ParticipantIDs | wanfang_journals_cjce202109002 crossref_primary_10_1016_j_cjche_2021_04_009 elsevier_sciencedirect_doi_10_1016_j_cjche_2021_04_009 |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese journal of chemical engineering |
PublicationTitle_FL | Chinese Journal of Chemical Engineering |
PublicationYear | 2021 |
Publisher | Elsevier B.V State Key Laboratory of Chemical Engineering,Institute of Pharmaceutical Engineering,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China%State Key Laboratory of Fluid Power and Mechatronic Systems,School of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China |
Publisher_xml | – name: Elsevier B.V – name: State Key Laboratory of Chemical Engineering,Institute of Pharmaceutical Engineering,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China%State Key Laboratory of Fluid Power and Mechatronic Systems,School of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China |
References | Gou, Xu, Feng (b0275) 2020; 69 Ran, Zhou, Chen, Nie, Qian, Li, Li, Sun, Kang, Zhang, Wei (b0075) 2020; 3 Wheatle, Fuentes, Lynd, Ganesan (b0240) 2020; 53 Meredig, Agrawal, Kirklin, Saal, Doak, Thompson, Zhang, Choudhary, Wolverton (b0115) 2014; 89 Wang, Xie, France-Lanord, Berkley, Johnson, Shao-Horn, Grossman (b0250) 2020; 32 Ishikawa, Sodeyama, Igarashi, Nakayama, Tateyama, Okada (b0205) 2019; 21 Shi, Gao, Liu, Zhao, Wu, Ju, Ouyang, Xiao (b0090) 2016; 25 Ahmad, Xie, Maheshwari, Grossman, Viswanathan (b0150) 2018; 4 Rivera-Barrera, Muñoz-Galeano, Sarmiento-Maldonado (b0280) 2017; 6 Sendek, Cubuk, Antoniuk, Cheon, Cui, Reed (b0130) 2019; 31 Liu, Guo, Zou, Li, Shi (b0035) 2020; 31 Seko, Hayashi, Nakayama, Takahashi, Tanaka (b0195) 2017; 95 Seko, Maekawa, Tsuda, Tanaka (b0200) 2014; 89 He, Zhang, Xiong, Xu, Guo (b0285) 2012; 39 Liu, Wu, Avdeev, Shi (b0095) 2020; 3 Xiao, Miara, Wang, Ceder (b0170) 2019; 3 Radivojević, Costello, Workman, Garcia Martin (b0060) 2020; 11 Joshi, Eickholt, Li, Fornari, Barone, Peralta (b0190) 2019; 11 Liu, Cheng, Huang, Yuan, Lu, Yan, Zhu, Xu, Zhao, Hou, He, Kaskel, Zhang (b0105) 2020; 5 Aykol, Herring, Anapolsky (b0405) 2020; 5 Littmann, Selig, Cohen-Lavi, Frank, Hönigschmid, Kataka, Mösch, Qian, Ron, Schmid, Sorbie, Szlak, Dagan-Wiener, Ben-Tal, Niv, Razansky, Schuller, Ankerst, Hertz, Rost (b0055) 2020; 2 Yan, Yang, Huang, Yang, Yuan (b0160) 2020; 819 Pan, Lü, Wang, Wei, Chen (b0340) 2018; 160 Hatakeyama-Sato, Tezuka, Umeki, Oyaizu (b0245) 2020; 142 Li, Lu, Chen, Amine (b0020) 2018; 30 Zhang, He, Chen, Bai, Nolan, Roberts, Banerjee, Matsunaga, Mo, Ling (b0125) 2019; 10 van Duongvan Tran, Garg, van Nguyen, Huynh (b0230) 2021; 45 Dave, Mitchell, Kandasamy, Wang, Burke, Paria, Póczos, Whitacre, Viswanathan (b0225) 2020; 1 Zhang, Xiong, He, Pecht (b0365) 2018; 67 Zhang, Tang, Zhang, Wang, Stimming, Lee (b0390) 2020; 11 Michel, Heiries (b0360) 2015 Whittingham (b0015) 2014; 114 Wang, Wang, Cai, Chen (b0085) 2019; 3 Fujimura, Seko, Koyama, Kuwabara, Kishida, Shitara, Fisher, Moriwake, Tanaka (b0180) 2013; 3 Z. Zheng, J. Peng, K. Deng, K. Gao, H. Li, B. Chen, Y. Yang, Z. Huang, A novel method for lithium-ion battery remaining useful life prediction using time window and gradient boosting decision trees, In: 2019 10th International Conference on Power Electronics and ECCE Asia, 2019. Severson, Attia, Jin, Perkins, Jiang, Yang, Chen, Aykol, Herring, Fraggedakis, Bazant, Harris, Chueh, Braatz (b0385) 2019; 4 Han, Westover, Yue, Fan, Wang, Chi, Leonard, Dudney, Wang, Wang (b0100) 2019; 4 Sumita, Tamura, Homma, Kaneta, Tsuda (b0215) 2019; 92 Albertus, Babinec, Litzelman, Newman (b0140) 2018; 3 He, Xiong, Zhang, Sun, Fan (b0300) 2011; 60 Elton, Boukouvalas, Butrico, Fuge, Chung (b0030) 2018; 8 Miao, Xie, Cui, Liang, Pecht (b0305) 2013; 53 Song, Yang, Wang, Tsui (b0325) 2019; 7 Tong, Lacap, Park (b0315) 2016; 7 Khumprom, Yodo (b0345) 2019; 12 Faradonbe, Safi-Esfahani (b0410) 2020; 396 Lyu, Liu, Qu, Zhao, Huo, Qu, Rao (b0005) 2020; 31 Chen, Zuo, Ye, Li, Deng, Ong (b0420) 2020; 10 Crisci, Ghattas, Perera (b0070) 2012; 240 Monroe, Newman (b0145) 2003; 150 Jalem, Nakayama, Kasuga (b0185) 2014; 2 Namor, Torregrossa, Cherkaoui, Paolone (b0045) 2017; 12 Pilania, Wang, Jiang, Rajasekaran, Ramprasad (b0175) 2013; 3 Wang, Ji, Li (b0080) 2020; 10 Goecks, Jalili, Heiser, Gray (b0065) 2020; 181 Sumita, Tanaka, Ohno (b0210) 2017; 121 Robertson, West, Ritchie (b0235) 1997; 104 Randau, Weber, Kötz, Koerver, Braun, Weber, Ivers-Tiffée, Adermann, Kulisch, Zeier, Richter, Janek (b0110) 2020; 5 Landi, Gross (b0335) 2014; 63 Xia, Zhao, de Callafon, Garnier, Nguyen, Mi (b0040) 2016; 179 Dong, Jin, Lou, Wang (b0355) 2014; 271 Ng, Zhao, Yan, Conduit, Seh (b0050) 2020; 2 Dunn, Gaines, Kelly, James, Gallagher (b0010) 2015; 8 Hu, Jain, Schmidt, Strief, Sullivan (b0370) 2015; 289 Attarian Shandiz, Gauvin (b0260) 2016; 117 Zhang, Tang, Na, Lee, Kim (b0415) 2020; 31 Wang, Zou, Wang, Liu, Li, Wu, Avdeev, Shi (b0265) 2021; 35 Santhanagopalan, Guo, Ramadass, White (b0295) 2006; 156 Patil, Tagade, Hariharan, Kolake, Song, Yeo, Doo (b0375) 2015; 159 Liu, Clement, Liu, Wang, Sparks (b0400) 2021; 187 Lin, Liu, Cui (b0135) 2017; 12 Liu, Yang, Yang, Ye, Mao, Wang, Shi, Yang, Zhang (b0155) 2019; 7 Berecibar, Devriendt, Dubarry, Villarreal, Omar, Verbeke, van Mierlo (b0395) 2016; 320 Hannan, Lipu, Hussain, Ker, Mahlia, Mansor, Ayob, Saad, Dong (b0330) 2020; 10 Li, Zhong, Zhong, Shi (b0350) 2019; 7 Takagishi, Yamanaka, Yamaue (b0255) 2019; 5 Whitacre, Mitchell, Dave, Wu, Viswanathan (b0220) 2019; 166 Xing, Ma, Tsui, Pecht (b0270) 2011; 4 Liu, Zhao, Ju, Shi (b0025) 2017; 3 J.C. Álvarez Antón, P.J. García Nieto, C. Blanco Viejo, J.A. Vilán Vilán, Support vector machines used to estimate the battery state of charge, IEEE Trans. Power Electron. 28 (12) (2013) 5919–5926. Wang, Richards, Ong, Miara, Kim, Mo, Ceder (b0120) 2015; 14 He, Williard, Chen, Pecht (b0320) 2014; 62 Wang, Aoyagi, Wisesa, Mueller (b0165) 2020; 32 Lee, Kim, Lee, Cho (b0290) 2008; 185 Khumprom (10.1016/j.cjche.2021.04.009_b0345) 2019; 12 van Duongvan Tran (10.1016/j.cjche.2021.04.009_b0230) 2021; 45 Seko (10.1016/j.cjche.2021.04.009_b0200) 2014; 89 Faradonbe (10.1016/j.cjche.2021.04.009_b0410) 2020; 396 Liu (10.1016/j.cjche.2021.04.009_b0035) 2020; 31 Elton (10.1016/j.cjche.2021.04.009_b0030) 2018; 8 Wang (10.1016/j.cjche.2021.04.009_b0250) 2020; 32 Hu (10.1016/j.cjche.2021.04.009_b0370) 2015; 289 10.1016/j.cjche.2021.04.009_b0380 Ng (10.1016/j.cjche.2021.04.009_b0050) 2020; 2 Yan (10.1016/j.cjche.2021.04.009_b0160) 2020; 819 Namor (10.1016/j.cjche.2021.04.009_b0045) 2017; 12 Chen (10.1016/j.cjche.2021.04.009_b0420) 2020; 10 Liu (10.1016/j.cjche.2021.04.009_b0095) 2020; 3 Sendek (10.1016/j.cjche.2021.04.009_b0130) 2019; 31 Lee (10.1016/j.cjche.2021.04.009_b0290) 2008; 185 Lyu (10.1016/j.cjche.2021.04.009_b0005) 2020; 31 He (10.1016/j.cjche.2021.04.009_b0300) 2011; 60 Santhanagopalan (10.1016/j.cjche.2021.04.009_b0295) 2006; 156 Dong (10.1016/j.cjche.2021.04.009_b0355) 2014; 271 Dave (10.1016/j.cjche.2021.04.009_b0225) 2020; 1 Rivera-Barrera (10.1016/j.cjche.2021.04.009_b0280) 2017; 6 Xiao (10.1016/j.cjche.2021.04.009_b0170) 2019; 3 10.1016/j.cjche.2021.04.009_b0310 Tong (10.1016/j.cjche.2021.04.009_b0315) 2016; 7 Monroe (10.1016/j.cjche.2021.04.009_b0145) 2003; 150 Miao (10.1016/j.cjche.2021.04.009_b0305) 2013; 53 Littmann (10.1016/j.cjche.2021.04.009_b0055) 2020; 2 Takagishi (10.1016/j.cjche.2021.04.009_b0255) 2019; 5 Zhang (10.1016/j.cjche.2021.04.009_b0365) 2018; 67 Ran (10.1016/j.cjche.2021.04.009_b0075) 2020; 3 Han (10.1016/j.cjche.2021.04.009_b0100) 2019; 4 Albertus (10.1016/j.cjche.2021.04.009_b0140) 2018; 3 Pan (10.1016/j.cjche.2021.04.009_b0340) 2018; 160 Crisci (10.1016/j.cjche.2021.04.009_b0070) 2012; 240 Meredig (10.1016/j.cjche.2021.04.009_b0115) 2014; 89 Wang (10.1016/j.cjche.2021.04.009_b0120) 2015; 14 Sumita (10.1016/j.cjche.2021.04.009_b0210) 2017; 121 Attarian Shandiz (10.1016/j.cjche.2021.04.009_b0260) 2016; 117 Whittingham (10.1016/j.cjche.2021.04.009_b0015) 2014; 114 Robertson (10.1016/j.cjche.2021.04.009_b0235) 1997; 104 Shi (10.1016/j.cjche.2021.04.009_b0090) 2016; 25 Liu (10.1016/j.cjche.2021.04.009_b0155) 2019; 7 Randau (10.1016/j.cjche.2021.04.009_b0110) 2020; 5 Landi (10.1016/j.cjche.2021.04.009_b0335) 2014; 63 Zhang (10.1016/j.cjche.2021.04.009_b0415) 2020; 31 Li (10.1016/j.cjche.2021.04.009_b0020) 2018; 30 Patil (10.1016/j.cjche.2021.04.009_b0375) 2015; 159 Wheatle (10.1016/j.cjche.2021.04.009_b0240) 2020; 53 Fujimura (10.1016/j.cjche.2021.04.009_b0180) 2013; 3 Ishikawa (10.1016/j.cjche.2021.04.009_b0205) 2019; 21 Liu (10.1016/j.cjche.2021.04.009_b0025) 2017; 3 Liu (10.1016/j.cjche.2021.04.009_b0400) 2021; 187 Hannan (10.1016/j.cjche.2021.04.009_b0330) 2020; 10 Song (10.1016/j.cjche.2021.04.009_b0325) 2019; 7 Pilania (10.1016/j.cjche.2021.04.009_b0175) 2013; 3 Zhang (10.1016/j.cjche.2021.04.009_b0125) 2019; 10 Gou (10.1016/j.cjche.2021.04.009_b0275) 2020; 69 Ahmad (10.1016/j.cjche.2021.04.009_b0150) 2018; 4 Radivojević (10.1016/j.cjche.2021.04.009_b0060) 2020; 11 Wang (10.1016/j.cjche.2021.04.009_b0080) 2020; 10 Joshi (10.1016/j.cjche.2021.04.009_b0190) 2019; 11 He (10.1016/j.cjche.2021.04.009_b0285) 2012; 39 Xia (10.1016/j.cjche.2021.04.009_b0040) 2016; 179 Lin (10.1016/j.cjche.2021.04.009_b0135) 2017; 12 Dunn (10.1016/j.cjche.2021.04.009_b0010) 2015; 8 Hatakeyama-Sato (10.1016/j.cjche.2021.04.009_b0245) 2020; 142 Zhang (10.1016/j.cjche.2021.04.009_b0390) 2020; 11 Goecks (10.1016/j.cjche.2021.04.009_b0065) 2020; 181 Aykol (10.1016/j.cjche.2021.04.009_b0405) 2020; 5 Sumita (10.1016/j.cjche.2021.04.009_b0215) 2019; 92 Li (10.1016/j.cjche.2021.04.009_b0350) 2019; 7 Jalem (10.1016/j.cjche.2021.04.009_b0185) 2014; 2 Wang (10.1016/j.cjche.2021.04.009_b0265) 2021; 35 Michel (10.1016/j.cjche.2021.04.009_b0360) 2015 Liu (10.1016/j.cjche.2021.04.009_b0105) 2020; 5 He (10.1016/j.cjche.2021.04.009_b0320) 2014; 62 Xing (10.1016/j.cjche.2021.04.009_b0270) 2011; 4 Wang (10.1016/j.cjche.2021.04.009_b0165) 2020; 32 Whitacre (10.1016/j.cjche.2021.04.009_b0220) 2019; 166 Seko (10.1016/j.cjche.2021.04.009_b0195) 2017; 95 Severson (10.1016/j.cjche.2021.04.009_b0385) 2019; 4 Wang (10.1016/j.cjche.2021.04.009_b0085) 2019; 3 Berecibar (10.1016/j.cjche.2021.04.009_b0395) 2016; 320 |
References_xml | – volume: 60 start-page: 1461 year: 2011 end-page: 1469 ident: b0300 article-title: State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved thevenin model publication-title: IEEE Trans. Veh. Technol. contributor: fullname: Fan – volume: 4 start-page: 996 year: 2018 end-page: 1006 ident: b0150 article-title: Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes publication-title: ACS Cent. Sci. contributor: fullname: Viswanathan – volume: 92 start-page: 1100 year: 2019 end-page: 1106 ident: b0215 article-title: Li-ion conductive Li publication-title: Bull Chem. Soc. Jpn. contributor: fullname: Tsuda – volume: 8 start-page: 158 year: 2015 end-page: 168 ident: b0010 article-title: The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction publication-title: Energy Environ. Sci. contributor: fullname: Gallagher – volume: 7 start-page: 236 year: 2016 end-page: 243 ident: b0315 article-title: Battery state of charge estimation using a load-classifying neural network publication-title: J. Energy Storage contributor: fullname: Park – volume: 7 start-page: 88894 year: 2019 end-page: 88902 ident: b0325 article-title: Combined CNN-LSTM network for state-of-charge estimation of lithium-ion batteries publication-title: IEEE Access contributor: fullname: Tsui – volume: 3 start-page: 1252 year: 2019 end-page: 1275 ident: b0170 article-title: Computational screening of cathode coatings for solid-state batteries publication-title: Joule contributor: fullname: Ceder – volume: 30 year: 2018 ident: b0020 article-title: 30 years of lithium-ion batteries publication-title: Adv. Mater. contributor: fullname: Amine – volume: 185 start-page: 1367 year: 2008 end-page: 1373 ident: b0290 article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge publication-title: J. Power Sources contributor: fullname: Cho – volume: 4 start-page: 383 year: 2019 end-page: 391 ident: b0385 article-title: Data-driven prediction of battery cycle life before capacity degradation publication-title: Nat. Energy contributor: fullname: Braatz – volume: 63 start-page: 1224 year: 2014 end-page: 1234 ident: b0335 article-title: Measurement techniques for online battery state of health estimation in vehicle-to-grid applications publication-title: IEEE Trans. Instrum. Meas. contributor: fullname: Gross – year: 2015 ident: b0360 publication-title: An adaptive sigma point kalman filter hybridized by support vector machine algorithm for battery-SoC and SoH estimation In: 2015 IEEE 81st Vehicular Technology Conference contributor: fullname: Heiries – volume: 160 start-page: 466 year: 2018 end-page: 477 ident: b0340 article-title: Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine publication-title: Energy contributor: fullname: Chen – volume: 5 start-page: 259 year: 2020 end-page: 270 ident: b0110 article-title: Benchmarking the performance of all-solid-state lithium batteries publication-title: Nat. Energy contributor: fullname: Janek – volume: 3 start-page: 2810 year: 2013 ident: b0175 article-title: Accelerating materials property predictions using machine learning publication-title: Sci. Rep. contributor: fullname: Ramprasad – volume: 4 start-page: 1840 year: 2011 end-page: 1857 ident: b0270 article-title: Battery management systems in electric and hybrid vehicles publication-title: Energies contributor: fullname: Pecht – volume: 3 start-page: 1900025 year: 2019 ident: b0085 article-title: Nanomaterials discovery and design through machine learning publication-title: Small Methods contributor: fullname: Chen – volume: 12 start-page: 660 year: 2019 ident: b0345 article-title: A data-driven predictive prognostic model for lithium-ion batteries based on a \r deep learning algorithm publication-title: Energies contributor: fullname: Yodo – volume: 3 start-page: 1900215 year: 2020 ident: b0095 article-title: Multi-layer feature selection incorporating weighted score-based expert knowledge toward modeling materials with targeted properties publication-title: Adv. Theory Simul. contributor: fullname: Shi – volume: 10 start-page: 1903242 year: 2020 ident: b0420 article-title: A critical review of machine learning of energy materials publication-title: Adv. Energy Mater. contributor: fullname: Ong – volume: 2 start-page: 720 year: 2014 end-page: 734 ident: b0185 article-title: An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks publication-title: J. Mater. Chem. A contributor: fullname: Kasuga – volume: 39 start-page: 310 year: 2012 end-page: 318 ident: b0285 article-title: Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles publication-title: Energy contributor: fullname: Guo – volume: 12 start-page: 138 year: 2017 end-page: 148 ident: b0045 article-title: Parameter identification of a lithium-ion cell single-particle model through non-invasive testing publication-title: J. Energy Storage contributor: fullname: Paolone – volume: 32 start-page: 4144 year: 2020 end-page: 4151 ident: b0250 article-title: Toward designing highly conductive polymer electrolytes by machine learning assisted coarse-grained molecular dynamics publication-title: Chem. Mater. contributor: fullname: Grossman – volume: 12 start-page: 194 year: 2017 end-page: 206 ident: b0135 article-title: Reviving the lithium metal anode for high-energy batteries publication-title: Nat. Nanotechnol. contributor: fullname: Cui – volume: 25 year: 2016 ident: b0090 article-title: Multi-scale computation methods: Their applications in lithium-ion battery research and development publication-title: Chinese Phys. B contributor: fullname: Xiao – volume: 114 start-page: 11414 year: 2014 end-page: 11443 ident: b0015 article-title: Ultimate limits to intercalation reactions for lithium batteries publication-title: Chem. Rev. contributor: fullname: Whittingham – volume: 31 start-page: 195 year: 2020 end-page: 220 ident: b0005 article-title: Recent advances of thermal safety of lithium ion battery for energy storage publication-title: Energy Storage Mater. contributor: fullname: Rao – volume: 271 start-page: 114 year: 2014 end-page: 123 ident: b0355 article-title: Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter publication-title: J. Power Sources contributor: fullname: Wang – volume: 45 start-page: 4133 year: 2021 end-page: 4144 ident: b0230 article-title: Phung le, Machine learning approach in exploring the electrolyte additives effect on cycling performance of LiNi publication-title: Int. J. Energy Res. contributor: fullname: Huynh – volume: 53 start-page: 805 year: 2013 end-page: 810 ident: b0305 article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique publication-title: Microelectron. Reliab. contributor: fullname: Pecht – volume: 150 start-page: A1377 year: 2003 end-page: A1384 ident: b0145 article-title: Dendrite growth in lithium/polymer systems: A propagation model for liquid electrolytes under galvanostatic conditions publication-title: J. Electrochem. Soc. contributor: fullname: Newman – volume: 6 start-page: 102 year: 2017 ident: b0280 article-title: SoC estimation for lithium-ion batteries: Review and future challenges publication-title: Electronics contributor: fullname: Sarmiento-Maldonado – volume: 35 start-page: 595 year: 2021 end-page: 601 ident: b0265 article-title: Identifying chemical factors affecting reaction kinetics in Li-air battery publication-title: Energy Storage Mater. contributor: fullname: Shi – volume: 159 start-page: 285 year: 2015 end-page: 297 ident: b0375 article-title: A novel multistage support vector machine based approach for Li ion battery remaining useful life estimation publication-title: Appl. Energy contributor: fullname: Doo – volume: 3 start-page: 980 year: 2013 end-page: 985 ident: b0180 article-title: Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms publication-title: Adv. Energy Mater. contributor: fullname: Tanaka – volume: 121 start-page: 9698 year: 2017 end-page: 9704 ident: b0210 article-title: Possible polymerization of PS4 at a Li publication-title: J. Phys. Chem. C contributor: fullname: Ohno – volume: 3 start-page: 159 year: 2017 end-page: 177 ident: b0025 article-title: Materials discovery and design using machine learning publication-title: J. Materiomics contributor: fullname: Shi – volume: 166 start-page: A4181 year: 2019 end-page: A4187 ident: b0220 article-title: An autonomous electrochemical test stand for machine learning informed electrolyte optimization publication-title: J. Electrochem. Soc. contributor: fullname: Viswanathan – volume: 179 start-page: 426 year: 2016 end-page: 436 ident: b0040 article-title: Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods publication-title: Appl. Energy contributor: fullname: Mi – volume: 53 start-page: 9449 year: 2020 end-page: 9459 ident: b0240 article-title: Design of polymer blend electrolytes through a machine learning approach publication-title: Macromolecules contributor: fullname: Ganesan – volume: 5 start-page: 725 year: 2020 end-page: 727 ident: b0405 article-title: Machine learning for continuous innovation in battery technologies publication-title: Nat. Rev. Mater. contributor: fullname: Anapolsky – volume: 396 start-page: 133 year: 2020 end-page: 152 ident: b0410 article-title: A classifier task based on Neural Turing Machine and particle swarm algorithm publication-title: Neurocomputing contributor: fullname: Safi-Esfahani – volume: 67 start-page: 5695 year: 2018 end-page: 5705 ident: b0365 article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries publication-title: IEEE Trans. Veh. Technol. contributor: fullname: Pecht – volume: 31 start-page: 342 year: 2019 end-page: 352 ident: b0130 article-title: Machine learning-assisted discovery of solid Li-ion conducting materials publication-title: Chem. Mater. contributor: fullname: Reed – volume: 32 start-page: 3741 year: 2020 end-page: 3752 ident: b0165 article-title: Lithium ion conduction in cathode coating materials from on-the-fly machine learning publication-title: Chem. Mater. contributor: fullname: Mueller – volume: 1 start-page: 1002641 year: 2020 ident: b0225 article-title: Autonomous discovery of battery electrolytes with robotic experimentation and machine learning publication-title: Cell Rep. Phys. Sci. contributor: fullname: Viswanathan – volume: 3 start-page: 16 year: 2018 end-page: 21 ident: b0140 article-title: Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries publication-title: Nat. Energy contributor: fullname: Newman – volume: 89 year: 2014 ident: b0115 article-title: Combinatorial screening for new materials in unconstrained composition space with machine learning publication-title: Phys. Rev. B contributor: fullname: Wolverton – volume: 10 start-page: 5260 year: 2019 ident: b0125 article-title: Unsupervised discovery of solid-state lithium ion conductors publication-title: Nat. Commun. contributor: fullname: Ling – volume: 7 start-page: 19961 year: 2019 end-page: 19969 ident: b0155 article-title: Rationalizing the interphase stability of Li|doped-Li publication-title: J. Mater. Chem. A contributor: fullname: Zhang – volume: 11 start-page: 1 year: 2020 end-page: 14 ident: b0060 article-title: A machine learning automated recommendation tool for synthetic biology publication-title: Nat. Commun. contributor: fullname: Garcia Martin – volume: 240 start-page: 113 year: 2012 end-page: 122 ident: b0070 article-title: A review of supervised machine learning algorithms and their applications to ecological data publication-title: Ecol. Model. contributor: fullname: Perera – volume: 11 start-page: 1706 year: 2020 ident: b0390 article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning publication-title: Nat Commun contributor: fullname: Lee – volume: 14 start-page: 1026 year: 2015 end-page: 1031 ident: b0120 article-title: Design principles for solid-state lithium superionic conductors publication-title: Nat. Mater. contributor: fullname: Ceder – volume: 156 start-page: 620 year: 2006 end-page: 628 ident: b0295 article-title: Review of models for predicting the cycling performance of lithium ion batteries publication-title: J. Power Sources contributor: fullname: White – volume: 7 start-page: 8754 year: 2019 end-page: 8762 ident: b0350 article-title: Lithium-ion battery state of health monitoring based on ensemble learning publication-title: IEEE Access contributor: fullname: Shi – volume: 10 year: 2020 ident: b0080 article-title: Simulation and design of energy materials accelerated by machine learning publication-title: Wires Comput. Mol. Sci. contributor: fullname: Li – volume: 89 year: 2014 ident: b0200 article-title: Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. contributor: fullname: Tanaka – volume: 62 start-page: 783 year: 2014 end-page: 791 ident: b0320 article-title: State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation publication-title: Int. J. Electr. Power Energy Syst. contributor: fullname: Pecht – volume: 117 start-page: 270 year: 2016 end-page: 278 ident: b0260 article-title: Application of machine learning methods for the prediction of crystal system of cathode materials in lithium-ion batteries publication-title: Comput. Mater. Sci. contributor: fullname: Gauvin – volume: 2 start-page: 18 year: 2020 end-page: 24 ident: b0055 article-title: Validity of machine learning in biology and medicine increased through collaborations across fields of expertise publication-title: Nat. Mach. Intell. contributor: fullname: Rost – volume: 31 year: 2020 ident: b0415 article-title: Implementation of generative adversarial network-CLS combined with bidirectional long short-term memory for lithium-ion battery state prediction publication-title: J. Energy Storage contributor: fullname: Kim – volume: 289 start-page: 105 year: 2015 end-page: 113 ident: b0370 article-title: Online estimation of lithium-ion battery capacity using sparse Bayesian learning publication-title: J. Power Sources contributor: fullname: Sullivan – volume: 3 start-page: 2000109 year: 2020 ident: b0075 article-title: Data-driven fast clustering of second-life lithium-ion battery: Mechanism and algorithm publication-title: Adv. Theory Simul. contributor: fullname: Wei – volume: 187 year: 2021 ident: b0400 article-title: A data science approach for advanced solid polymer electrolyte design publication-title: Comput. Mater. Sci. contributor: fullname: Sparks – volume: 5 start-page: 833 year: 2020 end-page: 843 ident: b0105 article-title: Controlling dendrite growth in solid-state electrolytes publication-title: ACS Energy Lett. contributor: fullname: Zhang – volume: 21 start-page: 26399 year: 2019 end-page: 26405 ident: b0205 article-title: Machine learning prediction of coordination energies for alkali group elements in battery electrolyte solvents publication-title: Phys. Chem. Chem. Phys. contributor: fullname: Okada – volume: 31 start-page: 434 year: 2020 end-page: 450 ident: b0035 article-title: Machine learning assisted materials design and discovery for rechargeable batteries publication-title: Energy Storage Mater. contributor: fullname: Shi – volume: 5 start-page: 54 year: 2019 ident: b0255 article-title: Machine learning approaches for designing mesoscale structure of Li-ion battery electrodes publication-title: Batteries contributor: fullname: Yamaue – volume: 8 start-page: 9059 year: 2018 ident: b0030 article-title: Applying machine learning techniques to predict the properties of energetic materials publication-title: Sci. Rep. contributor: fullname: Chung – volume: 95 year: 2017 ident: b0195 article-title: Representation of compounds for machine-learning prediction of physical properties publication-title: Phys. Rev. B contributor: fullname: Tanaka – volume: 142 start-page: 3301 year: 2020 end-page: 3305 ident: b0245 article-title: AI-assisted exploration of superionic glass-type Li publication-title: J. Am. Chem. Soc. contributor: fullname: Oyaizu – volume: 2 start-page: 161 year: 2020 end-page: 170 ident: b0050 article-title: Predicting the state of charge and health of batteries using data-driven machine learning publication-title: Nat. Mach. Intell. contributor: fullname: Seh – volume: 69 start-page: 10854 year: 2020 end-page: 10867 ident: b0275 article-title: State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method publication-title: IEEE Trans. Veh. Technol. contributor: fullname: Feng – volume: 10 start-page: 4687 year: 2020 ident: b0330 article-title: Toward enhanced state of charge estimation of lithium-ion batteries using optimized machine learning techniques publication-title: Sci. Rep. contributor: fullname: Dong – volume: 11 start-page: 18494 year: 2019 end-page: 18503 ident: b0190 article-title: Machine learning the voltage of electrode materials in metal-ion batteries publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Peralta – volume: 181 start-page: 92 year: 2020 end-page: 101 ident: b0065 article-title: How machine learning will transform biomedicine publication-title: Cell contributor: fullname: Gray – volume: 819 year: 2020 ident: b0160 article-title: A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries publication-title: J. Alloy. Compd. contributor: fullname: Yuan – volume: 320 start-page: 239 year: 2016 end-page: 250 ident: b0395 article-title: Online state of health estimation on NMC cells based on predictive analytics publication-title: J. Power Sources contributor: fullname: van Mierlo – volume: 104 start-page: 1 year: 1997 end-page: 11 ident: b0235 article-title: Review of crystalline lithium-ion conductors suitable for high temperature battery applications publication-title: Solid State Ionics contributor: fullname: Ritchie – volume: 4 start-page: 187 year: 2019 end-page: 196 ident: b0100 article-title: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes publication-title: Nat. Energy contributor: fullname: Wang – volume: 10 start-page: 5260 issue: 1 year: 2019 ident: 10.1016/j.cjche.2021.04.009_b0125 article-title: Unsupervised discovery of solid-state lithium ion conductors publication-title: Nat. Commun. doi: 10.1038/s41467-019-13214-1 contributor: fullname: Zhang – volume: 12 start-page: 138 year: 2017 ident: 10.1016/j.cjche.2021.04.009_b0045 article-title: Parameter identification of a lithium-ion cell single-particle model through non-invasive testing publication-title: J. Energy Storage doi: 10.1016/j.est.2017.04.008 contributor: fullname: Namor – volume: 156 start-page: 620 issue: 2 year: 2006 ident: 10.1016/j.cjche.2021.04.009_b0295 article-title: Review of models for predicting the cycling performance of lithium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.05.070 contributor: fullname: Santhanagopalan – volume: 187 year: 2021 ident: 10.1016/j.cjche.2021.04.009_b0400 article-title: A data science approach for advanced solid polymer electrolyte design publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2020.110108 contributor: fullname: Liu – volume: 396 start-page: 133 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0410 article-title: A classifier task based on Neural Turing Machine and particle swarm algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.07.097 contributor: fullname: Faradonbe – volume: 31 start-page: 195 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0005 article-title: Recent advances of thermal safety of lithium ion battery for energy storage publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.06.042 contributor: fullname: Lyu – volume: 60 start-page: 1461 issue: 4 year: 2011 ident: 10.1016/j.cjche.2021.04.009_b0300 article-title: State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved thevenin model publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2011.2132812 contributor: fullname: He – ident: 10.1016/j.cjche.2021.04.009_b0380 doi: 10.23919/ICPE2019-ECCEAsia42246.2019.8797021 – volume: 240 start-page: 113 year: 2012 ident: 10.1016/j.cjche.2021.04.009_b0070 article-title: A review of supervised machine learning algorithms and their applications to ecological data publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2012.03.001 contributor: fullname: Crisci – volume: 3 start-page: 1900215 issue: 2 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0095 article-title: Multi-layer feature selection incorporating weighted score-based expert knowledge toward modeling materials with targeted properties publication-title: Adv. Theory Simul. doi: 10.1002/adts.201900215 contributor: fullname: Liu – volume: 3 start-page: 159 issue: 3 year: 2017 ident: 10.1016/j.cjche.2021.04.009_b0025 article-title: Materials discovery and design using machine learning publication-title: J. Materiomics doi: 10.1016/j.jmat.2017.08.002 contributor: fullname: Liu – volume: 104 start-page: 1 issue: 1–2 year: 1997 ident: 10.1016/j.cjche.2021.04.009_b0235 article-title: Review of crystalline lithium-ion conductors suitable for high temperature battery applications publication-title: Solid State Ionics doi: 10.1016/S0167-2738(97)00429-3 contributor: fullname: Robertson – volume: 4 start-page: 187 issue: 3 year: 2019 ident: 10.1016/j.cjche.2021.04.009_b0100 article-title: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes publication-title: Nat. Energy doi: 10.1038/s41560-018-0312-z contributor: fullname: Han – volume: 12 start-page: 660 issue: 4 year: 2019 ident: 10.1016/j.cjche.2021.04.009_b0345 article-title: A data-driven predictive prognostic model for lithium-ion batteries based on a \r deep learning algorithm publication-title: Energies doi: 10.3390/en12040660 contributor: fullname: Khumprom – volume: 53 start-page: 9449 issue: 21 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0240 article-title: Design of polymer blend electrolytes through a machine learning approach publication-title: Macromolecules doi: 10.1021/acs.macromol.0c01547 contributor: fullname: Wheatle – volume: 10 start-page: 1903242 issue: 8 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0420 article-title: A critical review of machine learning of energy materials publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903242 contributor: fullname: Chen – volume: 159 start-page: 285 year: 2015 ident: 10.1016/j.cjche.2021.04.009_b0375 article-title: A novel multistage support vector machine based approach for Li ion battery remaining useful life estimation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.08.119 contributor: fullname: Patil – volume: 3 start-page: 980 issue: 8 year: 2013 ident: 10.1016/j.cjche.2021.04.009_b0180 article-title: Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300060 contributor: fullname: Fujimura – volume: 2 start-page: 161 issue: 3 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0050 article-title: Predicting the state of charge and health of batteries using data-driven machine learning publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-0156-7 contributor: fullname: Ng – volume: 2 start-page: 18 issue: 1 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0055 article-title: Validity of machine learning in biology and medicine increased through collaborations across fields of expertise publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0139-8 contributor: fullname: Littmann – volume: 150 start-page: A1377 issue: 10 year: 2003 ident: 10.1016/j.cjche.2021.04.009_b0145 article-title: Dendrite growth in lithium/polymer systems: A propagation model for liquid electrolytes under galvanostatic conditions publication-title: J. Electrochem. Soc. doi: 10.1149/1.1606686 contributor: fullname: Monroe – volume: 5 start-page: 259 issue: 3 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0110 article-title: Benchmarking the performance of all-solid-state lithium batteries publication-title: Nat. Energy doi: 10.1038/s41560-020-0565-1 contributor: fullname: Randau – volume: 45 start-page: 4133 issue: 3 year: 2021 ident: 10.1016/j.cjche.2021.04.009_b0230 article-title: Phung le, Machine learning approach in exploring the electrolyte additives effect on cycling performance of LiNi0.5Mn1.5O4 cathode and graphite anode-based lithium-ion cell publication-title: Int. J. Energy Res. doi: 10.1002/er.6074 contributor: fullname: van Duongvan Tran – volume: 6 start-page: 102 issue: 4 year: 2017 ident: 10.1016/j.cjche.2021.04.009_b0280 article-title: SoC estimation for lithium-ion batteries: Review and future challenges publication-title: Electronics doi: 10.3390/electronics6040102 contributor: fullname: Rivera-Barrera – volume: 289 start-page: 105 year: 2015 ident: 10.1016/j.cjche.2021.04.009_b0370 article-title: Online estimation of lithium-ion battery capacity using sparse Bayesian learning publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.04.166 contributor: fullname: Hu – volume: 62 start-page: 783 year: 2014 ident: 10.1016/j.cjche.2021.04.009_b0320 article-title: State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.04.059 contributor: fullname: He – volume: 11 start-page: 18494 issue: 20 year: 2019 ident: 10.1016/j.cjche.2021.04.009_b0190 article-title: Machine learning the voltage of electrode materials in metal-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04933 contributor: fullname: Joshi – volume: 21 start-page: 26399 issue: 48 year: 2019 ident: 10.1016/j.cjche.2021.04.009_b0205 article-title: Machine learning prediction of coordination energies for alkali group elements in battery electrolyte solvents publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP03679B contributor: fullname: Ishikawa – volume: 32 start-page: 4144 issue: 10 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0250 article-title: Toward designing highly conductive polymer electrolytes by machine learning assisted coarse-grained molecular dynamics publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04830 contributor: fullname: Wang – volume: 4 start-page: 1840 issue: 11 year: 2011 ident: 10.1016/j.cjche.2021.04.009_b0270 article-title: Battery management systems in electric and hybrid vehicles publication-title: Energies doi: 10.3390/en4111840 contributor: fullname: Xing – volume: 69 start-page: 10854 issue: 10 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0275 article-title: State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3014932 contributor: fullname: Gou – volume: 1 start-page: 1002641 issue: 12 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0225 article-title: Autonomous discovery of battery electrolytes with robotic experimentation and machine learning publication-title: Cell Rep. Phys. Sci. contributor: fullname: Dave – volume: 35 start-page: 595 year: 2021 ident: 10.1016/j.cjche.2021.04.009_b0265 article-title: Identifying chemical factors affecting reaction kinetics in Li-air battery via ab initio calculations and machine learning publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.10.022 contributor: fullname: Wang – volume: 3 start-page: 16 issue: 1 year: 2018 ident: 10.1016/j.cjche.2021.04.009_b0140 article-title: Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries publication-title: Nat. Energy doi: 10.1038/s41560-017-0047-2 contributor: fullname: Albertus – volume: 142 start-page: 3301 issue: 7 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0245 article-title: AI-assisted exploration of superionic glass-type Li+ conductors with aromatic structures publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11442 contributor: fullname: Hatakeyama-Sato – volume: 271 start-page: 114 year: 2014 ident: 10.1016/j.cjche.2021.04.009_b0355 article-title: Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.07.176 contributor: fullname: Dong – volume: 30 issue: 33 year: 2018 ident: 10.1016/j.cjche.2021.04.009_b0020 article-title: 30 years of lithium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201800561 contributor: fullname: Li – volume: 5 start-page: 833 issue: 3 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0105 article-title: Controlling dendrite growth in solid-state electrolytes publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02660 contributor: fullname: Liu – volume: 10 start-page: 4687 issue: 1 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0330 article-title: Toward enhanced state of charge estimation of lithium-ion batteries using optimized machine learning techniques publication-title: Sci. Rep. doi: 10.1038/s41598-020-61464-7 contributor: fullname: Hannan – volume: 8 start-page: 158 issue: 1 year: 2015 ident: 10.1016/j.cjche.2021.04.009_b0010 article-title: The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03029J contributor: fullname: Dunn – ident: 10.1016/j.cjche.2021.04.009_b0310 doi: 10.1109/TPEL.2013.2243918 – volume: 7 start-page: 8754 year: 2019 ident: 10.1016/j.cjche.2021.04.009_b0350 article-title: Lithium-ion battery state of health monitoring based on ensemble learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891063 contributor: fullname: Li – volume: 4 start-page: 383 issue: 5 year: 2019 ident: 10.1016/j.cjche.2021.04.009_b0385 article-title: Data-driven prediction of battery cycle life before capacity degradation publication-title: Nat. Energy doi: 10.1038/s41560-019-0356-8 contributor: fullname: Severson – volume: 4 start-page: 996 issue: 8 year: 2018 ident: 10.1016/j.cjche.2021.04.009_b0150 article-title: Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00229 contributor: fullname: Ahmad – volume: 25 issue: 1 year: 2016 ident: 10.1016/j.cjche.2021.04.009_b0090 article-title: Multi-scale computation methods: Their applications in lithium-ion battery research and development publication-title: Chinese Phys. B doi: 10.1088/1674-1056/25/1/018212 contributor: fullname: Shi – volume: 3 start-page: 2810 year: 2013 ident: 10.1016/j.cjche.2021.04.009_b0175 article-title: Accelerating materials property predictions using machine learning publication-title: Sci. Rep. doi: 10.1038/srep02810 contributor: fullname: Pilania – volume: 121 start-page: 9698 issue: 18 year: 2017 ident: 10.1016/j.cjche.2021.04.009_b0210 article-title: Possible polymerization of PS4 at a Li3PS4/FePO4 interface with reduction of the FePO4 phase publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b01009 contributor: fullname: Sumita – volume: 160 start-page: 466 year: 2018 ident: 10.1016/j.cjche.2021.04.009_b0340 article-title: Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine publication-title: Energy doi: 10.1016/j.energy.2018.06.220 contributor: fullname: Pan – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0060 article-title: A machine learning automated recommendation tool for synthetic biology publication-title: Nat. Commun. doi: 10.1038/s41467-020-18008-4 contributor: fullname: Radivojević – volume: 114 start-page: 11414 issue: 23 year: 2014 ident: 10.1016/j.cjche.2021.04.009_b0015 article-title: Ultimate limits to intercalation reactions for lithium batteries publication-title: Chem. Rev. doi: 10.1021/cr5003003 contributor: fullname: Whittingham – volume: 3 start-page: 2000109 issue: 8 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0075 article-title: Data-driven fast clustering of second-life lithium-ion battery: Mechanism and algorithm publication-title: Adv. Theory Simul. doi: 10.1002/adts.202000109 contributor: fullname: Ran – volume: 89 issue: 9 year: 2014 ident: 10.1016/j.cjche.2021.04.009_b0115 article-title: Combinatorial screening for new materials in unconstrained composition space with machine learning publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.094104 contributor: fullname: Meredig – volume: 181 start-page: 92 issue: 1 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0065 article-title: How machine learning will transform biomedicine publication-title: Cell doi: 10.1016/j.cell.2020.03.022 contributor: fullname: Goecks – volume: 819 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0160 article-title: A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.153048 contributor: fullname: Yan – volume: 179 start-page: 426 year: 2016 ident: 10.1016/j.cjche.2021.04.009_b0040 article-title: Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.07.005 contributor: fullname: Xia – volume: 53 start-page: 805 issue: 6 year: 2013 ident: 10.1016/j.cjche.2021.04.009_b0305 article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2012.12.004 contributor: fullname: Miao – volume: 166 start-page: A4181 issue: 16 year: 2019 ident: 10.1016/j.cjche.2021.04.009_b0220 article-title: An autonomous electrochemical test stand for machine learning informed electrolyte optimization publication-title: J. Electrochem. Soc. doi: 10.1149/2.0521916jes contributor: fullname: Whitacre – volume: 14 start-page: 1026 issue: 10 year: 2015 ident: 10.1016/j.cjche.2021.04.009_b0120 article-title: Design principles for solid-state lithium superionic conductors publication-title: Nat. Mater. doi: 10.1038/nmat4369 contributor: fullname: Wang – volume: 63 start-page: 1224 issue: 5 year: 2014 ident: 10.1016/j.cjche.2021.04.009_b0335 article-title: Measurement techniques for online battery state of health estimation in vehicle-to-grid applications publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2013.2292318 contributor: fullname: Landi – volume: 3 start-page: 1900025 issue: 5 year: 2019 ident: 10.1016/j.cjche.2021.04.009_b0085 article-title: Nanomaterials discovery and design through machine learning publication-title: Small Methods doi: 10.1002/smtd.201900025 contributor: fullname: Wang – volume: 3 start-page: 1252 issue: 5 year: 2019 ident: 10.1016/j.cjche.2021.04.009_b0170 article-title: Computational screening of cathode coatings for solid-state batteries publication-title: Joule doi: 10.1016/j.joule.2019.02.006 contributor: fullname: Xiao – volume: 5 start-page: 54 issue: 3 year: 2019 ident: 10.1016/j.cjche.2021.04.009_b0255 article-title: Machine learning approaches for designing mesoscale structure of Li-ion battery electrodes publication-title: Batteries doi: 10.3390/batteries5030054 contributor: fullname: Takagishi – volume: 95 issue: 14 year: 2017 ident: 10.1016/j.cjche.2021.04.009_b0195 article-title: Representation of compounds for machine-learning prediction of physical properties publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.144110 contributor: fullname: Seko – volume: 39 start-page: 310 issue: 1 year: 2012 ident: 10.1016/j.cjche.2021.04.009_b0285 article-title: Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles publication-title: Energy doi: 10.1016/j.energy.2012.01.009 contributor: fullname: He – volume: 31 start-page: 342 issue: 2 year: 2019 ident: 10.1016/j.cjche.2021.04.009_b0130 article-title: Machine learning-assisted discovery of solid Li-ion conducting materials publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03272 contributor: fullname: Sendek – volume: 8 start-page: 9059 issue: 1 year: 2018 ident: 10.1016/j.cjche.2021.04.009_b0030 article-title: Applying machine learning techniques to predict the properties of energetic materials publication-title: Sci. Rep. doi: 10.1038/s41598-018-27344-x contributor: fullname: Elton – volume: 2 start-page: 720 issue: 3 year: 2014 ident: 10.1016/j.cjche.2021.04.009_b0185 article-title: An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks publication-title: J. Mater. Chem. A doi: 10.1039/C3TA13235H contributor: fullname: Jalem – volume: 89 issue: 5 year: 2014 ident: 10.1016/j.cjche.2021.04.009_b0200 article-title: Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.89.054303 contributor: fullname: Seko – volume: 7 start-page: 236 year: 2016 ident: 10.1016/j.cjche.2021.04.009_b0315 article-title: Battery state of charge estimation using a load-classifying neural network publication-title: J. Energy Storage doi: 10.1016/j.est.2016.07.002 contributor: fullname: Tong – year: 2015 ident: 10.1016/j.cjche.2021.04.009_b0360 contributor: fullname: Michel – volume: 31 start-page: 434 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0035 article-title: Machine learning assisted materials design and discovery for rechargeable batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.06.033 contributor: fullname: Liu – volume: 7 start-page: 88894 year: 2019 ident: 10.1016/j.cjche.2021.04.009_b0325 article-title: Combined CNN-LSTM network for state-of-charge estimation of lithium-ion batteries publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2926517 contributor: fullname: Song – volume: 31 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0415 article-title: Implementation of generative adversarial network-CLS combined with bidirectional long short-term memory for lithium-ion battery state prediction publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101489 contributor: fullname: Zhang – volume: 7 start-page: 19961 issue: 34 year: 2019 ident: 10.1016/j.cjche.2021.04.009_b0155 article-title: Rationalizing the interphase stability of Li|doped-Li7La3Zr2O12 via automated reaction screening and machine learning publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06748E contributor: fullname: Liu – volume: 67 start-page: 5695 issue: 7 year: 2018 ident: 10.1016/j.cjche.2021.04.009_b0365 article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2805189 contributor: fullname: Zhang – volume: 12 start-page: 194 issue: 3 year: 2017 ident: 10.1016/j.cjche.2021.04.009_b0135 article-title: Reviving the lithium metal anode for high-energy batteries publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.16 contributor: fullname: Lin – volume: 117 start-page: 270 year: 2016 ident: 10.1016/j.cjche.2021.04.009_b0260 article-title: Application of machine learning methods for the prediction of crystal system of cathode materials in lithium-ion batteries publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2016.02.021 contributor: fullname: Attarian Shandiz – volume: 320 start-page: 239 year: 2016 ident: 10.1016/j.cjche.2021.04.009_b0395 article-title: Online state of health estimation on NMC cells based on predictive analytics publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.04.109 contributor: fullname: Berecibar – volume: 5 start-page: 725 issue: 10 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0405 article-title: Machine learning for continuous innovation in battery technologies publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0216-y contributor: fullname: Aykol – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0080 article-title: Simulation and design of energy materials accelerated by machine learning publication-title: Wires Comput. Mol. Sci. doi: 10.1002/wcms.1421 contributor: fullname: Wang – volume: 185 start-page: 1367 issue: 2 year: 2008 ident: 10.1016/j.cjche.2021.04.009_b0290 article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.08.103 contributor: fullname: Lee – volume: 11 start-page: 1706 issue: 1 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0390 article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning publication-title: Nat Commun doi: 10.1038/s41467-020-15235-7 contributor: fullname: Zhang – volume: 92 start-page: 1100 issue: 6 year: 2019 ident: 10.1016/j.cjche.2021.04.009_b0215 article-title: Li-ion conductive Li3PO4-Li3BO3-Li2SO4 mixture: Prevision through densityfunctional molecular dynamics and machine learning publication-title: Bull Chem. Soc. Jpn. doi: 10.1246/bcsj.20190041 contributor: fullname: Sumita – volume: 32 start-page: 3741 issue: 9 year: 2020 ident: 10.1016/j.cjche.2021.04.009_b0165 article-title: Lithium ion conduction in cathode coating materials from on-the-fly machine learning publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04663 contributor: fullname: Wang |
SSID | ssj0020818 |
Score | 2.4598262 |
SecondaryResourceType | review_article |
Snippet | With the widespread use of lithium ion batteries in portable electronics and electric vehicles, further improvements in the performance of lithium ion battery... With the widespread use of lithium ion batteries in portable electronics and electric vehicles,further improvements in the performance of lithium ion battery... |
SourceID | wanfang crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Lithium ion batteries Machine learning Materials design State prediction |
Title | Machine learning of materials design and state prediction for lithium ion batteries |
URI | https://dx.doi.org/10.1016/j.cjche.2021.04.009 https://d.wanfangdata.com.cn/periodical/cjce202109002 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DEfQgfuL8GDl4tK5r0nQ5juGYynaZg91C89G5gd2YG978230vbWWCePBSSHkt5ZfkvZfml98j5BaCBmOpMAFMQhfwNreBhLgXaMNikURpnPgynYOh6I_50ySe1Ei3OguDtMrS9xc-3Xvr8k6zRLO5nM2aI9Q6kzFHBSxMBFDxk0P4gzF9__lN84hQss3veIY8QOtKechzvMwckIFFYtTyeqfISvw9Ou19pHmW5tOt2NM7Iodl0kg7xXcdk5rLT8jBlpTgKRkNPCvS0bIMxJQuMgrZaDHAqPVEDZrmlvojRHS5wh0a7BUKaSuFZPx1tnmj2NZechNW0Gdk3Ht46faDsmBCYBhj68DYODHaJkKkzEonpWOWJ5Frach6mMCq8rDA0azlkkwbCOzCcs1lGrUzo_Ef0DnZyRe5uyBU2CxMMrhK0eZZmmiG4mph6OKWsZKxOrmrgFLLQhdDVYSxufK4KsRVhVwBrnUiKjDVj-5V4Ln_frBRQq_KyfWORg5NQgn9e_nfN1-RfWwVfLFrsrNebdwNJBhr3fAjqEF2O4_P_eEX6vHOAA |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_qEPUgfuL8zMGjZd2SpstRhlJ122UbeAvNR3UD69AN_33fS1NREA9eCm3TUn5J3vu95uX3CLkEp8FYLkwEk9BFvMttJMHvRdqwRKSdPEl9mc7BUGQTfv-YPK6QXr0XBtMqg-2vbLq31uFKK6DZmk-nrRFqncmEowIWEgG2ShrABiTMzsb13UM2_Iq7ULXNL3rGPMIHavEhn-ZlZgAOxImdtpc8xcTE3x3U-kdeFnn59M393O6Q7cAb6XX1abtkxZV7ZOubmuA-GQ18YqSjoRLEE30tKBDSaoxR63M1aF5a6ncR0fkbLtJgx1BgrhT4-PN0-ULxXHvVTQiiD8jk9mbcy6JQMyEyjLFFZGySGm1TIXJmpZPSMcvTjmtrID5MYGF5iHE0a7u00AZ8u7Bcc5l3uoXR-BvokKyVr6U7IlTYIk4LOErR5UWeaob6anHskraxkrEmuaqBUvNKGkPVOWMz5XFViKuKuQJcm0TUYKofPazAeP_94HmAXoX59Y6NHDaJJfTv8X_ffEE2svGgr_p3w4cTsol3qvSxU7K2eFu6M-AbC30extMnFHHQtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+of+materials+design+and+state+prediction+for+lithium+ion+batteries&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%8C%96%E5%AD%A6%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Jiale+Mao&rft.au=Jiazhi+Miao&rft.au=Yingying+Lu&rft.au=Zheming+Tong&rft.date=2021-09-01&rft.pub=State+Key+Laboratory+of+Chemical+Engineering%2CInstitute+of+Pharmaceutical+Engineering%2CCollege+of+Chemical+and+Biological+Engineering%2CZhejiang+University%2CHangzhou+310027%2CChina%25State+Key+Laboratory+of+Fluid+Power+and+Mechatronic+Systems%2CSchool+of+Mechanical+Engineering%2CZhejiang+University%2CHangzhou+310027%2CChina&rft.issn=1004-9541&rft.volume=37&rft.issue=9&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1016%2Fj.cjche.2021.04.009&rft.externalDocID=cjce202109002 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fcjce%2Fcjce.jpg |