Hyperspectral Classification Based on Texture Feature Enhancement and Deep Belief Networks
With success of Deep Belief Networks (DBNs) in computer vision, DBN has attracted great attention in hyperspectral classification. Many deep learning based algorithms have been focused on deep feature extraction for classification improvement. Multi-features, such as texture feature, are widely util...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 10; no. 3; p. 396 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With success of Deep Belief Networks (DBNs) in computer vision, DBN has attracted great attention in hyperspectral classification. Many deep learning based algorithms have been focused on deep feature extraction for classification improvement. Multi-features, such as texture feature, are widely utilized in classification process to enhance classification accuracy greatly. In this paper, a novel hyperspectral classification framework based on an optimal DBN and a novel texture feature enhancement (TFE) is proposed. Through band grouping, sample band selection and guided filtering, the texture features of hyperspectral data are improved. After TFE, the optimal DBN is employed on the hyperspectral reconstructed data for feature extraction and classification. Experimental results demonstrate that the proposed classification framework outperforms some state-of-the-art classification algorithms, and it can achieve outstanding hyperspectral classification performance. Furthermore, our proposed TFE method can play a significant role in improving classification accuracy. |
---|---|
AbstractList | With success of Deep Belief Networks (DBNs) in computer vision, DBN has attracted great attention in hyperspectral classification. Many deep learning based algorithms have been focused on deep feature extraction for classification improvement. Multi-features, such as texture feature, are widely utilized in classification process to enhance classification accuracy greatly. In this paper, a novel hyperspectral classification framework based on an optimal DBN and a novel texture feature enhancement (TFE) is proposed. Through band grouping, sample band selection and guided filtering, the texture features of hyperspectral data are improved. After TFE, the optimal DBN is employed on the hyperspectral reconstructed data for feature extraction and classification. Experimental results demonstrate that the proposed classification framework outperforms some state-of-the-art classification algorithms, and it can achieve outstanding hyperspectral classification performance. Furthermore, our proposed TFE method can play a significant role in improving classification accuracy. |
Author | Xi, Bobo Li, Jiaojiao Li, Yunsong Du, Qian Wang, Keyan |
Author_xml | – sequence: 1 givenname: Jiaojiao orcidid: 0000-0002-0470-9469 surname: Li fullname: Li, Jiaojiao – sequence: 2 givenname: Bobo surname: Xi fullname: Xi, Bobo – sequence: 3 givenname: Yunsong surname: Li fullname: Li, Yunsong – sequence: 4 givenname: Qian surname: Du fullname: Du, Qian – sequence: 5 givenname: Keyan surname: Wang fullname: Wang, Keyan |
BookMark | eNptkEFPAjEQhRujiYhc_AV7NkHbzi7Qo6AICdELXrw003aqxWWXtGuUf-8KGo1xLu9lMu9l8p2ww6quiLEzwS8AFL-MSXAOHNTggHUkH8p-LpU8_OWPWS-lFW8HQCied9jjbLuhmDZkm4hlNikxpeCDxSbUVTbGRC5rzZLem9dI2ZRwpzfVM1aW1lQ1GVYuuybaZGMqA_nsjpq3Or6kU3bksUzU-9Iue5jeLCez_uL-dj65WvQtADR9m3sohDAul6Ni4JTHIpekjAESSjrDQQywcMIjR2m8kAatt3LkwQ0RhgBdNt_3uhpXehPDGuNW1xj0blHHJ42xCbYkLRQVyufSQGHyUUHGydbZHJQ3YiBU28X3XTbWKUXy2oZmx6LFE0otuP5ErX9Qt5HzP5HvF_45_gB7m4FE |
CitedBy_id | crossref_primary_10_2174_2213275912666190429153952 crossref_primary_10_3390_rs10081271 crossref_primary_10_1109_TGRS_2019_2918387 crossref_primary_10_1109_TGRS_2022_3185640 crossref_primary_10_1109_TNNLS_2022_3158280 crossref_primary_10_1109_JSTARS_2021_3135548 crossref_primary_10_1049_ipr2_12330 crossref_primary_10_1117_1_JEI_28_1_013051 crossref_primary_10_3390_rs15235483 crossref_primary_10_29109_gujsc_1055942 crossref_primary_10_3390_rs14174235 crossref_primary_10_1016_j_chemer_2024_126155 crossref_primary_10_17341_gazimmfd_901291 crossref_primary_10_1007_s00521_022_07933_8 crossref_primary_10_1109_TGRS_2020_3047682 crossref_primary_10_1016_j_infrared_2020_103326 crossref_primary_10_17694_bajece_1039029 crossref_primary_10_3390_rs13163055 crossref_primary_10_1080_01431161_2018_1519277 crossref_primary_10_1109_ACCESS_2019_2925283 crossref_primary_10_3390_ijerph192215108 crossref_primary_10_1007_s11063_022_10929_z crossref_primary_10_1109_JSTARS_2020_3008825 crossref_primary_10_1186_s40537_020_00382_x crossref_primary_10_3390_rs10091425 crossref_primary_10_1109_JSTARS_2021_3123371 crossref_primary_10_3390_rs11232859 crossref_primary_10_1007_s11676_022_01593_z crossref_primary_10_1007_s10462_021_10018_y crossref_primary_10_3390_app9010069 crossref_primary_10_1080_01431161_2020_1736730 crossref_primary_10_1088_1742_6596_1544_1_012106 crossref_primary_10_1088_1742_6596_1950_1_012087 crossref_primary_10_1007_s11554_020_00966_z crossref_primary_10_1109_LGRS_2021_3111985 crossref_primary_10_3390_rs12040664 crossref_primary_10_3390_rs12182956 crossref_primary_10_1364_AO_400563 crossref_primary_10_3390_rs11172057 crossref_primary_10_1080_01431161_2021_1973688 crossref_primary_10_1155_2023_9150482 crossref_primary_10_3390_rs12121933 crossref_primary_10_3390_rs12233966 crossref_primary_10_1007_s11227_020_03377_w crossref_primary_10_3390_rs13081602 crossref_primary_10_1007_s12524_019_01088_1 crossref_primary_10_1109_JSTARS_2024_3353551 crossref_primary_10_3390_electronics10161892 crossref_primary_10_3390_electronics13050949 crossref_primary_10_1080_2150704X_2019_1569274 crossref_primary_10_1109_TGRS_2019_2962713 crossref_primary_10_1080_10095020_2024_2332638 crossref_primary_10_3390_rs11161938 crossref_primary_10_3390_s18041138 crossref_primary_10_1016_j_isprsjprs_2023_07_012 crossref_primary_10_1016_j_micpro_2020_103280 crossref_primary_10_1109_TIP_2022_3176537 crossref_primary_10_1016_j_infrared_2022_104470 crossref_primary_10_1080_01431161_2022_2132123 crossref_primary_10_3390_rs10122036 crossref_primary_10_1080_01431161_2021_1949069 crossref_primary_10_1109_JSTARS_2024_3493883 crossref_primary_10_1109_TGRS_2023_3242978 crossref_primary_10_1007_s11042_023_15529_0 crossref_primary_10_1016_j_asr_2023_04_025 crossref_primary_10_1109_ACCESS_2021_3095265 crossref_primary_10_3390_rs12182976 crossref_primary_10_1007_s10489_021_02320_7 crossref_primary_10_1109_TGRS_2020_3001948 crossref_primary_10_3390_rs11040455 crossref_primary_10_9787_PBB_2020_8_3_265 crossref_primary_10_1109_JSTARS_2020_3004973 crossref_primary_10_1109_JSTARS_2021_3133021 crossref_primary_10_1016_j_envpol_2020_115574 |
Cites_doi | 10.1109/TGRS.2011.2129595 10.3390/rs9111110 10.3390/rs5031355 10.1109/WHISPERS.2014.8077636 10.3390/rs4092661 10.1109/TGRS.2016.2584107 10.1109/TIP.2005.852206 10.1109/TGRS.2012.2201730 10.3390/rs9111174 10.3390/rs6065795 10.3390/rs8040355 10.1109/IECON.2015.7392251 10.1016/0893-6080(88)90014-7 10.1126/science.1127647 10.1109/TPAMI.2008.79 10.1109/EUSIPCO.2015.7362695 10.1109/WHISPERS.2014.8077532 10.1016/0031-3203(92)90036-I 10.1109/TSP.2011.2179539 10.1109/TGRS.2017.2702197 10.3390/rs9111193 10.1109/TSP.2008.917851 10.1109/TGRS.2013.2264508 10.1109/TGRS.2013.2241773 10.3390/rs71114806 10.1109/LGRS.2008.2005512 10.3390/rs8010024 10.3390/rs9090910 10.14358/PERS.70.5.627 10.1109/TIP.2017.2725580 10.3390/rs8030172 10.3390/molecules22091402 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/rs10030396 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_19e59f42b35b485ebd235bc439fb1619 10_3390_rs10030396 |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO IPNFZ KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS RIG TR2 TUS PQGLB PUEGO |
ID | FETCH-LOGICAL-c333t-c4f3511bd42856d9fa542e9bb3e192db0316a5d1fa0a2bf12bacfc28f3d7a3733 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:17:21 EDT 2025 Tue Jul 01 04:14:29 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-c4f3511bd42856d9fa542e9bb3e192db0316a5d1fa0a2bf12bacfc28f3d7a3733 |
ORCID | 0000-0002-0470-9469 |
OpenAccessLink | https://doaj.org/article/19e59f42b35b485ebd235bc439fb1619 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_19e59f42b35b485ebd235bc439fb1619 crossref_citationtrail_10_3390_rs10030396 crossref_primary_10_3390_rs10030396 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-01 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2018 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wright (ref_17) 2009; 31 Chen (ref_19) 2011; 49 ref_14 ref_13 Chen (ref_23) 2014; 6 ref_12 Starck (ref_16) 2005; 14 ref_11 Chen (ref_31) 2015; 8 ref_32 Zhang (ref_18) 2012; 60 Fukushima (ref_27) 1988; 1 Richards (ref_5) 2008; 5 Kang (ref_22) 2014; 52 ref_15 Li (ref_21) 2014; 52 Hinton (ref_33) 2006; 313 Xue (ref_35) 2017; 55 Dobigeon (ref_10) 2008; 56 Ohanian (ref_34) 1992; 25 ref_25 Peng (ref_26) 2015; 7 Foody (ref_36) 2004; 70 ref_24 Leonenko (ref_6) 2013; 5 ref_1 Immitzer (ref_9) 2012; 4 Lee (ref_29) 2017; 26 ref_2 ref_28 Chen (ref_30) 2016; 54 Merentitis (ref_3) 2014; 7 Chen (ref_20) 2013; 51 ref_8 ref_4 ref_7 |
References_xml | – ident: ref_7 – ident: ref_28 – volume: 49 start-page: 3973 year: 2011 ident: ref_19 article-title: Hyperspectral image classification using dictionary-based sparse representation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2129595 – ident: ref_1 doi: 10.3390/rs9111110 – volume: 5 start-page: 1355 year: 2013 ident: ref_6 article-title: Statistical Distances and Their Applications to Biophysical Parameter Estimation: Information Measures, M-Estimates, and Minimum Contrast Methods publication-title: Remote Sens. doi: 10.3390/rs5031355 – ident: ref_11 doi: 10.1109/WHISPERS.2014.8077636 – volume: 4 start-page: 2661 year: 2012 ident: ref_9 article-title: Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data publication-title: Remote Sens. doi: 10.3390/rs4092661 – volume: 54 start-page: 6232 year: 2016 ident: ref_30 article-title: Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2584107 – volume: 14 start-page: 1570 year: 2005 ident: ref_16 article-title: Image decomposition via the combination of sparse representation and a variational approach publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.852206 – volume: 51 start-page: 217 year: 2013 ident: ref_20 article-title: Hyperspectral image classification via kernel sparse representation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2201730 – ident: ref_13 doi: 10.3390/rs9111174 – volume: 6 start-page: 5795 year: 2014 ident: ref_23 article-title: Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine publication-title: Remote Sens. doi: 10.3390/rs6065795 – ident: ref_12 doi: 10.3390/rs8040355 – ident: ref_8 doi: 10.1109/IECON.2015.7392251 – volume: 1 start-page: 119 year: 1988 ident: ref_27 article-title: Neocognitron: A hierarchical neural network capable of visual pattern recognition publication-title: Neural Netw. doi: 10.1016/0893-6080(88)90014-7 – volume: 8 start-page: 2381 year: 2015 ident: ref_31 article-title: Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network publication-title: IEEE J. STARS – volume: 313 start-page: 504 year: 2006 ident: ref_33 article-title: Reducing the Dimensionality of Data with Neural Networks publication-title: Science doi: 10.1126/science.1127647 – volume: 31 start-page: 210 year: 2009 ident: ref_17 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.79 – volume: 7 start-page: 1089 year: 2014 ident: ref_3 article-title: Ensemble Learning in Hyperspectral Image Classification: Toward Selecting a Favorable Bias-Variance Tradeoff publication-title: IEEE J. STARS – ident: ref_14 doi: 10.1109/EUSIPCO.2015.7362695 – ident: ref_32 doi: 10.1109/WHISPERS.2014.8077532 – volume: 25 start-page: 819 year: 1992 ident: ref_34 article-title: Performance evaluation for four classes of textural features publication-title: Pattern Recognit. doi: 10.1016/0031-3203(92)90036-I – volume: 60 start-page: 1684 year: 2012 ident: ref_18 article-title: Kernel Sparse Representation-Based Classifier publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2011.2179539 – volume: 55 start-page: 5093 year: 2017 ident: ref_35 article-title: A subpixel target detection approach to hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2702197 – ident: ref_15 doi: 10.3390/rs9111193 – volume: 56 start-page: 2684 year: 2008 ident: ref_10 article-title: Semi-Supervised Linear Spectral Unmixing Using a Hierarchical Bayesian Model for Hyperspectral Imagery publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.917851 – volume: 52 start-page: 2666 year: 2014 ident: ref_22 article-title: Spectral–Spatial Hyperspectral Image Classification with Edge-Preserving Filtering publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2264508 – volume: 52 start-page: 477 year: 2014 ident: ref_21 article-title: Nearest regularized subspace for hyperspectral classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2241773 – volume: 7 start-page: 14806 year: 2015 ident: ref_26 article-title: Weighted-Fusion-Based Representation Classifiers for Hyperspectral Imagery publication-title: Remote Sens. doi: 10.3390/rs71114806 – volume: 5 start-page: 774 year: 2008 ident: ref_5 article-title: Using Suitable Neighbors to Augment the Training Set in Hyperspectral Maximum Likelihood Classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2008.2005512 – ident: ref_24 doi: 10.3390/rs8010024 – ident: ref_25 doi: 10.3390/rs9090910 – volume: 70 start-page: 627 year: 2004 ident: ref_36 article-title: Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.70.5.627 – volume: 26 start-page: 4843 year: 2017 ident: ref_29 article-title: Going Deeper with Contextual CNN for Hyperspectral Image Classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2725580 – ident: ref_2 doi: 10.3390/rs8030172 – ident: ref_4 doi: 10.3390/molecules22091402 |
SSID | ssj0000331904 |
Score | 2.4525142 |
Snippet | With success of Deep Belief Networks (DBNs) in computer vision, DBN has attracted great attention in hyperspectral classification. Many deep learning based... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 396 |
SubjectTerms | band grouping deep belief networks deep learning hyperspectral classification texture feature enhancement |
Title | Hyperspectral Classification Based on Texture Feature Enhancement and Deep Belief Networks |
URI | https://doaj.org/article/19e59f42b35b485ebd235bc439fb1619 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQGWBBPEV5VJZgYYjaxM5rbGmrCtEutFLFEvl16oBClbYD_56zHSADEgtTrOhkRXeO7_uS83eE3IeguZaKByKFFAlKakdMBTITScqVzMBpd05nyWTBn5bxstHqy9aEeXlg77humJs4Bx5JFkuexUbqCEcK8yhIRCvu6B7mvAaZcnsww6XV416PlCGv71ab0C5oZtX5GxmoIdTvMsr4mBzVUJD2_SOckD1TnpKDuiv56uOMvE6QJPqzkBUauv6VtrLHOZMOMP9oioM57q-7ylCL5ux1VK5sKO1nPypKTYfGrOnAINgEOvNV35tzshiP5o-ToO6FECjG2DZQHOwvP6mRLsSJzkHEPDK5lMwgRtMS381ExDoE0RORhDCSQoGKMmA6FSxl7IK0yvfSXBIKKgxxGqMTCZyDQAwAyINzadBrPEzb5OHLP4WqhcJtv4q3AgmD9WXx48s2ufu2XXt5jF-tBtbN3xZW0trdwEAXdaCLvwJ99R-TXJNDRDyZLyK7Ia1ttTO3iCq2skP2-8Pp80vHLaRPYQHM6g |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Classification+Based+on+Texture+Feature+Enhancement+and+Deep+Belief+Networks&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Jiaojiao&rft.au=Xi%2C+Bobo&rft.au=Li%2C+Yunsong&rft.au=Du%2C+Qian&rft.date=2018-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=10&rft.issue=3&rft.spage=396&rft_id=info:doi/10.3390%2Frs10030396&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs10030396 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |