Hyperspectral Classification Based on Texture Feature Enhancement and Deep Belief Networks

With success of Deep Belief Networks (DBNs) in computer vision, DBN has attracted great attention in hyperspectral classification. Many deep learning based algorithms have been focused on deep feature extraction for classification improvement. Multi-features, such as texture feature, are widely util...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 10; no. 3; p. 396
Main Authors Li, Jiaojiao, Xi, Bobo, Li, Yunsong, Du, Qian, Wang, Keyan
Format Journal Article
LanguageEnglish
Published MDPI AG 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With success of Deep Belief Networks (DBNs) in computer vision, DBN has attracted great attention in hyperspectral classification. Many deep learning based algorithms have been focused on deep feature extraction for classification improvement. Multi-features, such as texture feature, are widely utilized in classification process to enhance classification accuracy greatly. In this paper, a novel hyperspectral classification framework based on an optimal DBN and a novel texture feature enhancement (TFE) is proposed. Through band grouping, sample band selection and guided filtering, the texture features of hyperspectral data are improved. After TFE, the optimal DBN is employed on the hyperspectral reconstructed data for feature extraction and classification. Experimental results demonstrate that the proposed classification framework outperforms some state-of-the-art classification algorithms, and it can achieve outstanding hyperspectral classification performance. Furthermore, our proposed TFE method can play a significant role in improving classification accuracy.
AbstractList With success of Deep Belief Networks (DBNs) in computer vision, DBN has attracted great attention in hyperspectral classification. Many deep learning based algorithms have been focused on deep feature extraction for classification improvement. Multi-features, such as texture feature, are widely utilized in classification process to enhance classification accuracy greatly. In this paper, a novel hyperspectral classification framework based on an optimal DBN and a novel texture feature enhancement (TFE) is proposed. Through band grouping, sample band selection and guided filtering, the texture features of hyperspectral data are improved. After TFE, the optimal DBN is employed on the hyperspectral reconstructed data for feature extraction and classification. Experimental results demonstrate that the proposed classification framework outperforms some state-of-the-art classification algorithms, and it can achieve outstanding hyperspectral classification performance. Furthermore, our proposed TFE method can play a significant role in improving classification accuracy.
Author Xi, Bobo
Li, Jiaojiao
Li, Yunsong
Du, Qian
Wang, Keyan
Author_xml – sequence: 1
  givenname: Jiaojiao
  orcidid: 0000-0002-0470-9469
  surname: Li
  fullname: Li, Jiaojiao
– sequence: 2
  givenname: Bobo
  surname: Xi
  fullname: Xi, Bobo
– sequence: 3
  givenname: Yunsong
  surname: Li
  fullname: Li, Yunsong
– sequence: 4
  givenname: Qian
  surname: Du
  fullname: Du, Qian
– sequence: 5
  givenname: Keyan
  surname: Wang
  fullname: Wang, Keyan
BookMark eNptkEFPAjEQhRujiYhc_AV7NkHbzi7Qo6AICdELXrw003aqxWWXtGuUf-8KGo1xLu9lMu9l8p2ww6quiLEzwS8AFL-MSXAOHNTggHUkH8p-LpU8_OWPWS-lFW8HQCied9jjbLuhmDZkm4hlNikxpeCDxSbUVTbGRC5rzZLem9dI2ZRwpzfVM1aW1lQ1GVYuuybaZGMqA_nsjpq3Or6kU3bksUzU-9Iue5jeLCez_uL-dj65WvQtADR9m3sohDAul6Ni4JTHIpekjAESSjrDQQywcMIjR2m8kAatt3LkwQ0RhgBdNt_3uhpXehPDGuNW1xj0blHHJ42xCbYkLRQVyufSQGHyUUHGydbZHJQ3YiBU28X3XTbWKUXy2oZmx6LFE0otuP5ErX9Qt5HzP5HvF_45_gB7m4FE
CitedBy_id crossref_primary_10_2174_2213275912666190429153952
crossref_primary_10_3390_rs10081271
crossref_primary_10_1109_TGRS_2019_2918387
crossref_primary_10_1109_TGRS_2022_3185640
crossref_primary_10_1109_TNNLS_2022_3158280
crossref_primary_10_1109_JSTARS_2021_3135548
crossref_primary_10_1049_ipr2_12330
crossref_primary_10_1117_1_JEI_28_1_013051
crossref_primary_10_3390_rs15235483
crossref_primary_10_29109_gujsc_1055942
crossref_primary_10_3390_rs14174235
crossref_primary_10_1016_j_chemer_2024_126155
crossref_primary_10_17341_gazimmfd_901291
crossref_primary_10_1007_s00521_022_07933_8
crossref_primary_10_1109_TGRS_2020_3047682
crossref_primary_10_1016_j_infrared_2020_103326
crossref_primary_10_17694_bajece_1039029
crossref_primary_10_3390_rs13163055
crossref_primary_10_1080_01431161_2018_1519277
crossref_primary_10_1109_ACCESS_2019_2925283
crossref_primary_10_3390_ijerph192215108
crossref_primary_10_1007_s11063_022_10929_z
crossref_primary_10_1109_JSTARS_2020_3008825
crossref_primary_10_1186_s40537_020_00382_x
crossref_primary_10_3390_rs10091425
crossref_primary_10_1109_JSTARS_2021_3123371
crossref_primary_10_3390_rs11232859
crossref_primary_10_1007_s11676_022_01593_z
crossref_primary_10_1007_s10462_021_10018_y
crossref_primary_10_3390_app9010069
crossref_primary_10_1080_01431161_2020_1736730
crossref_primary_10_1088_1742_6596_1544_1_012106
crossref_primary_10_1088_1742_6596_1950_1_012087
crossref_primary_10_1007_s11554_020_00966_z
crossref_primary_10_1109_LGRS_2021_3111985
crossref_primary_10_3390_rs12040664
crossref_primary_10_3390_rs12182956
crossref_primary_10_1364_AO_400563
crossref_primary_10_3390_rs11172057
crossref_primary_10_1080_01431161_2021_1973688
crossref_primary_10_1155_2023_9150482
crossref_primary_10_3390_rs12121933
crossref_primary_10_3390_rs12233966
crossref_primary_10_1007_s11227_020_03377_w
crossref_primary_10_3390_rs13081602
crossref_primary_10_1007_s12524_019_01088_1
crossref_primary_10_1109_JSTARS_2024_3353551
crossref_primary_10_3390_electronics10161892
crossref_primary_10_3390_electronics13050949
crossref_primary_10_1080_2150704X_2019_1569274
crossref_primary_10_1109_TGRS_2019_2962713
crossref_primary_10_1080_10095020_2024_2332638
crossref_primary_10_3390_rs11161938
crossref_primary_10_3390_s18041138
crossref_primary_10_1016_j_isprsjprs_2023_07_012
crossref_primary_10_1016_j_micpro_2020_103280
crossref_primary_10_1109_TIP_2022_3176537
crossref_primary_10_1016_j_infrared_2022_104470
crossref_primary_10_1080_01431161_2022_2132123
crossref_primary_10_3390_rs10122036
crossref_primary_10_1080_01431161_2021_1949069
crossref_primary_10_1109_JSTARS_2024_3493883
crossref_primary_10_1109_TGRS_2023_3242978
crossref_primary_10_1007_s11042_023_15529_0
crossref_primary_10_1016_j_asr_2023_04_025
crossref_primary_10_1109_ACCESS_2021_3095265
crossref_primary_10_3390_rs12182976
crossref_primary_10_1007_s10489_021_02320_7
crossref_primary_10_1109_TGRS_2020_3001948
crossref_primary_10_3390_rs11040455
crossref_primary_10_9787_PBB_2020_8_3_265
crossref_primary_10_1109_JSTARS_2020_3004973
crossref_primary_10_1109_JSTARS_2021_3133021
crossref_primary_10_1016_j_envpol_2020_115574
Cites_doi 10.1109/TGRS.2011.2129595
10.3390/rs9111110
10.3390/rs5031355
10.1109/WHISPERS.2014.8077636
10.3390/rs4092661
10.1109/TGRS.2016.2584107
10.1109/TIP.2005.852206
10.1109/TGRS.2012.2201730
10.3390/rs9111174
10.3390/rs6065795
10.3390/rs8040355
10.1109/IECON.2015.7392251
10.1016/0893-6080(88)90014-7
10.1126/science.1127647
10.1109/TPAMI.2008.79
10.1109/EUSIPCO.2015.7362695
10.1109/WHISPERS.2014.8077532
10.1016/0031-3203(92)90036-I
10.1109/TSP.2011.2179539
10.1109/TGRS.2017.2702197
10.3390/rs9111193
10.1109/TSP.2008.917851
10.1109/TGRS.2013.2264508
10.1109/TGRS.2013.2241773
10.3390/rs71114806
10.1109/LGRS.2008.2005512
10.3390/rs8010024
10.3390/rs9090910
10.14358/PERS.70.5.627
10.1109/TIP.2017.2725580
10.3390/rs8030172
10.3390/molecules22091402
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/rs10030396
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_19e59f42b35b485ebd235bc439fb1619
10_3390_rs10030396
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
IPNFZ
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
PQGLB
PUEGO
ID FETCH-LOGICAL-c333t-c4f3511bd42856d9fa542e9bb3e192db0316a5d1fa0a2bf12bacfc28f3d7a3733
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:17:21 EDT 2025
Tue Jul 01 04:14:29 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-c4f3511bd42856d9fa542e9bb3e192db0316a5d1fa0a2bf12bacfc28f3d7a3733
ORCID 0000-0002-0470-9469
OpenAccessLink https://doaj.org/article/19e59f42b35b485ebd235bc439fb1619
ParticipantIDs doaj_primary_oai_doaj_org_article_19e59f42b35b485ebd235bc439fb1619
crossref_citationtrail_10_3390_rs10030396
crossref_primary_10_3390_rs10030396
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wright (ref_17) 2009; 31
Chen (ref_19) 2011; 49
ref_14
ref_13
Chen (ref_23) 2014; 6
ref_12
Starck (ref_16) 2005; 14
ref_11
Chen (ref_31) 2015; 8
ref_32
Zhang (ref_18) 2012; 60
Fukushima (ref_27) 1988; 1
Richards (ref_5) 2008; 5
Kang (ref_22) 2014; 52
ref_15
Li (ref_21) 2014; 52
Hinton (ref_33) 2006; 313
Xue (ref_35) 2017; 55
Dobigeon (ref_10) 2008; 56
Ohanian (ref_34) 1992; 25
ref_25
Peng (ref_26) 2015; 7
Foody (ref_36) 2004; 70
ref_24
Leonenko (ref_6) 2013; 5
ref_1
Immitzer (ref_9) 2012; 4
Lee (ref_29) 2017; 26
ref_2
ref_28
Chen (ref_30) 2016; 54
Merentitis (ref_3) 2014; 7
Chen (ref_20) 2013; 51
ref_8
ref_4
ref_7
References_xml – ident: ref_7
– ident: ref_28
– volume: 49
  start-page: 3973
  year: 2011
  ident: ref_19
  article-title: Hyperspectral image classification using dictionary-based sparse representation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2129595
– ident: ref_1
  doi: 10.3390/rs9111110
– volume: 5
  start-page: 1355
  year: 2013
  ident: ref_6
  article-title: Statistical Distances and Their Applications to Biophysical Parameter Estimation: Information Measures, M-Estimates, and Minimum Contrast Methods
  publication-title: Remote Sens.
  doi: 10.3390/rs5031355
– ident: ref_11
  doi: 10.1109/WHISPERS.2014.8077636
– volume: 4
  start-page: 2661
  year: 2012
  ident: ref_9
  article-title: Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data
  publication-title: Remote Sens.
  doi: 10.3390/rs4092661
– volume: 54
  start-page: 6232
  year: 2016
  ident: ref_30
  article-title: Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2584107
– volume: 14
  start-page: 1570
  year: 2005
  ident: ref_16
  article-title: Image decomposition via the combination of sparse representation and a variational approach
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.852206
– volume: 51
  start-page: 217
  year: 2013
  ident: ref_20
  article-title: Hyperspectral image classification via kernel sparse representation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2201730
– ident: ref_13
  doi: 10.3390/rs9111174
– volume: 6
  start-page: 5795
  year: 2014
  ident: ref_23
  article-title: Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine
  publication-title: Remote Sens.
  doi: 10.3390/rs6065795
– ident: ref_12
  doi: 10.3390/rs8040355
– ident: ref_8
  doi: 10.1109/IECON.2015.7392251
– volume: 1
  start-page: 119
  year: 1988
  ident: ref_27
  article-title: Neocognitron: A hierarchical neural network capable of visual pattern recognition
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(88)90014-7
– volume: 8
  start-page: 2381
  year: 2015
  ident: ref_31
  article-title: Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network
  publication-title: IEEE J. STARS
– volume: 313
  start-page: 504
  year: 2006
  ident: ref_33
  article-title: Reducing the Dimensionality of Data with Neural Networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 31
  start-page: 210
  year: 2009
  ident: ref_17
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.79
– volume: 7
  start-page: 1089
  year: 2014
  ident: ref_3
  article-title: Ensemble Learning in Hyperspectral Image Classification: Toward Selecting a Favorable Bias-Variance Tradeoff
  publication-title: IEEE J. STARS
– ident: ref_14
  doi: 10.1109/EUSIPCO.2015.7362695
– ident: ref_32
  doi: 10.1109/WHISPERS.2014.8077532
– volume: 25
  start-page: 819
  year: 1992
  ident: ref_34
  article-title: Performance evaluation for four classes of textural features
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(92)90036-I
– volume: 60
  start-page: 1684
  year: 2012
  ident: ref_18
  article-title: Kernel Sparse Representation-Based Classifier
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2179539
– volume: 55
  start-page: 5093
  year: 2017
  ident: ref_35
  article-title: A subpixel target detection approach to hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2702197
– ident: ref_15
  doi: 10.3390/rs9111193
– volume: 56
  start-page: 2684
  year: 2008
  ident: ref_10
  article-title: Semi-Supervised Linear Spectral Unmixing Using a Hierarchical Bayesian Model for Hyperspectral Imagery
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.917851
– volume: 52
  start-page: 2666
  year: 2014
  ident: ref_22
  article-title: Spectral–Spatial Hyperspectral Image Classification with Edge-Preserving Filtering
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2264508
– volume: 52
  start-page: 477
  year: 2014
  ident: ref_21
  article-title: Nearest regularized subspace for hyperspectral classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2241773
– volume: 7
  start-page: 14806
  year: 2015
  ident: ref_26
  article-title: Weighted-Fusion-Based Representation Classifiers for Hyperspectral Imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs71114806
– volume: 5
  start-page: 774
  year: 2008
  ident: ref_5
  article-title: Using Suitable Neighbors to Augment the Training Set in Hyperspectral Maximum Likelihood Classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2008.2005512
– ident: ref_24
  doi: 10.3390/rs8010024
– ident: ref_25
  doi: 10.3390/rs9090910
– volume: 70
  start-page: 627
  year: 2004
  ident: ref_36
  article-title: Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.70.5.627
– volume: 26
  start-page: 4843
  year: 2017
  ident: ref_29
  article-title: Going Deeper with Contextual CNN for Hyperspectral Image Classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2725580
– ident: ref_2
  doi: 10.3390/rs8030172
– ident: ref_4
  doi: 10.3390/molecules22091402
SSID ssj0000331904
Score 2.4525142
Snippet With success of Deep Belief Networks (DBNs) in computer vision, DBN has attracted great attention in hyperspectral classification. Many deep learning based...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 396
SubjectTerms band grouping
deep belief networks
deep learning
hyperspectral classification
texture feature enhancement
Title Hyperspectral Classification Based on Texture Feature Enhancement and Deep Belief Networks
URI https://doaj.org/article/19e59f42b35b485ebd235bc439fb1619
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQGWBBPEV5VJZgYYjaxM5rbGmrCtEutFLFEvl16oBClbYD_56zHSADEgtTrOhkRXeO7_uS83eE3IeguZaKByKFFAlKakdMBTITScqVzMBpd05nyWTBn5bxstHqy9aEeXlg77humJs4Bx5JFkuexUbqCEcK8yhIRCvu6B7mvAaZcnsww6XV416PlCGv71ab0C5oZtX5GxmoIdTvMsr4mBzVUJD2_SOckD1TnpKDuiv56uOMvE6QJPqzkBUauv6VtrLHOZMOMP9oioM57q-7ylCL5ux1VK5sKO1nPypKTYfGrOnAINgEOvNV35tzshiP5o-ToO6FECjG2DZQHOwvP6mRLsSJzkHEPDK5lMwgRtMS381ExDoE0RORhDCSQoGKMmA6FSxl7IK0yvfSXBIKKgxxGqMTCZyDQAwAyINzadBrPEzb5OHLP4WqhcJtv4q3AgmD9WXx48s2ufu2XXt5jF-tBtbN3xZW0trdwEAXdaCLvwJ99R-TXJNDRDyZLyK7Ia1ttTO3iCq2skP2-8Pp80vHLaRPYQHM6g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Classification+Based+on+Texture+Feature+Enhancement+and+Deep+Belief+Networks&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Jiaojiao&rft.au=Xi%2C+Bobo&rft.au=Li%2C+Yunsong&rft.au=Du%2C+Qian&rft.date=2018-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=10&rft.issue=3&rft.spage=396&rft_id=info:doi/10.3390%2Frs10030396&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs10030396
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon