Functional clustering methods for binary longitudinal data with temporal heterogeneity

In the analysis of binary longitudinal data, it is of interest to model a dynamic relationship between a response and covariates as a function of time, while also investigating similar patterns of time-dependent interactions. We present a novel generalized varying-coefficient model that accounts for...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 185; p. 107766
Main Authors Sohn, Jinwon, Jeong, Seonghyun, Cho, Young Min, Park, Taeyoung
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the analysis of binary longitudinal data, it is of interest to model a dynamic relationship between a response and covariates as a function of time, while also investigating similar patterns of time-dependent interactions. We present a novel generalized varying-coefficient model that accounts for within-subject variability and simultaneously clusters varying-coefficient functions, without restricting the number of clusters nor overfitting the data. In the analysis of a heterogeneous series of binary data, the model extracts population-level fixed effects, cluster-level varying effects, and subject-level random effects. Various simulation studies show the validity and utility of the proposed method to correctly specify cluster-specific varying-coefficients when the number of clusters is unknown. The proposed method is applied to a heterogeneous series of binary data in the German Socioeconomic Panel (GSOEP) study, where we identify three major clusters demonstrating the different varying effects of socioeconomic predictors as a function of age on the working status.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2023.107766