Automatic Cardiac Arrhythmia Classification Using Residual Network Combined With Long Short-Term Memory

Diagnosis and classification of arrhythmia, which is associated with abnormal electrical activities in the heart, are critical for clinical treatments. Previous studies focused on the diagnosis of atrial fibrillation, which is the most common arrhythmia in adults. The classification performance achi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 17
Main Authors Kim, Yun Kwan, Lee, Minji, Song, Hee Seok, Lee, Seong-Whan
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diagnosis and classification of arrhythmia, which is associated with abnormal electrical activities in the heart, are critical for clinical treatments. Previous studies focused on the diagnosis of atrial fibrillation, which is the most common arrhythmia in adults. The classification performance achieved by studies on other arrhythmia types is not satisfactory for clinical use owing to the small number of classes (minority classes). In this study, we propose a novel framework for automatic classification that combines a residual network with a squeeze-and-excitation block and a bidirectional long short-term memory. Eight-, four-, and two-class performances were evaluated on the MIT-BIH arrhythmia database (MITDB), the MIT-BIH atrial fibrillation database (AFDB), and the PhysioNet/Computing in the cardiology challenge 2017 database (CinC DB), respectively, and they were superior to the performance achieved by conventional methods. In addition, the classwise F1-score in the minority classes was higher than those of the methods adopted in existing studies. To measure the generalization ability of the proposed framework, AFDB and CinC DB were tested using an MITDB-trained model, and superior performance was achieved compared with ShallowConvNet and DeepConvNet. We performed a cross-subject experiment using AFDB and obtained a statistically higher performance using the proposed method compared with typical machine learning methods. The proposed framework can enable the direct diagnosis of arrhythmia types in clinical trials based on the accurate detection of the minority class.
AbstractList Diagnosis and classification of arrhythmia, which is associated with abnormal electrical activities in the heart, are critical for clinical treatments. Previous studies focused on the diagnosis of atrial fibrillation, which is the most common arrhythmia in adults. The classification performance achieved by studies on other arrhythmia types is not satisfactory for clinical use owing to the small number of classes (minority classes). In this study, we propose a novel framework for automatic classification that combines a residual network with a squeeze-and-excitation block and a bidirectional long short-term memory. Eight-, four-, and two-class performances were evaluated on the MIT-BIH arrhythmia database (MITDB), the MIT-BIH atrial fibrillation database (AFDB), and the PhysioNet/Computing in the cardiology challenge 2017 database (CinC DB), respectively, and they were superior to the performance achieved by conventional methods. In addition, the classwise F1-score in the minority classes was higher than those of the methods adopted in existing studies. To measure the generalization ability of the proposed framework, AFDB and CinC DB were tested using an MITDB-trained model, and superior performance was achieved compared with ShallowConvNet and DeepConvNet. We performed a cross-subject experiment using AFDB and obtained a statistically higher performance using the proposed method compared with typical machine learning methods. The proposed framework can enable the direct diagnosis of arrhythmia types in clinical trials based on the accurate detection of the minority class.
Author Kim, Yun Kwan
Song, Hee Seok
Lee, Minji
Lee, Seong-Whan
Author_xml – sequence: 1
  givenname: Yun Kwan
  orcidid: 0000-0002-6397-4043
  surname: Kim
  fullname: Kim, Yun Kwan
  email: ykwin@korea.ac.kr
  organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
– sequence: 2
  givenname: Minji
  orcidid: 0000-0003-4261-875X
  surname: Lee
  fullname: Lee, Minji
  email: minjilee@korea.ac.kr
  organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
– sequence: 3
  givenname: Hee Seok
  orcidid: 0000-0003-3794-8033
  surname: Song
  fullname: Song, Hee Seok
  email: sam.song@seerstech.com
  organization: Technology Development, Seers Technology Company Ltd., Seongnam-si, Republic of Korea
– sequence: 4
  givenname: Seong-Whan
  orcidid: 0000-0002-6249-4996
  surname: Lee
  fullname: Lee, Seong-Whan
  email: sw.lee@korea.ac.kr
  organization: Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea
BookMark eNp9kDtPwzAUhS0EEuWxI7FYYk7xK4k9VhGPSgUkaMUYOc4NNTQx2K5Q_z0uRQwMTPcO56HzHaH9wQ2A0BklY0qJupxP78aMMDbmVFJWFntoRPO8zFRRsH00IoTKTIm8OERHIbwSQspClCP0MllH1-toDa60b602eOL9chOXvdW4WukQbGdNErgBL4IdXvAjBNuu9QrfQ_x0_g1Xrm_sAC1-tnGJZy5pnpbOx2wOvsd30Du_OUEHnV4FOP25x2hxfTWvbrPZw820mswywzmPmWGNUC2X2qimkyAaaKUClTcyZ2lXIbmQnSGayK6TPM2EsqUN8Da9JekEP0YXu9x37z7WEGL96tZ-SJU1KyRTKYVvVWSnMt6F4KGr373ttd_UlNRbnHXCWW9x1j84k6X4YzE2fmOJXtvVf8bzndECwG-PKpUQIudfmK2EqQ
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2024_3376017
crossref_primary_10_1109_JBHI_2024_3419090
crossref_primary_10_1109_ACCESS_2023_3305473
crossref_primary_10_1109_TIM_2022_3227552
crossref_primary_10_1109_TIM_2023_3289563
crossref_primary_10_3390_s24092954
crossref_primary_10_1109_TIM_2022_3194906
crossref_primary_10_1109_TIM_2024_3406829
crossref_primary_10_3389_fphys_2023_1188678
crossref_primary_10_1007_s00034_024_02986_7
crossref_primary_10_1109_JBHI_2023_3325540
crossref_primary_10_1109_RBME_2024_3492381
crossref_primary_10_1002_aic_18785
crossref_primary_10_3390_app14219936
Cites_doi 10.1088/1757-899x/1099/1/012077
10.22489/CinC.2017.360-239
10.1109/ICMLA.2007.76
10.1007/978-3-319-68385-0_18
10.1109/78.650093
10.1109/TSMCB.2012.2187280
10.1016/j.bspc.2019.101819
10.1109/WCICA.2002.1020004
10.1016/j.knosys.2019.105460
10.1088/1741-2552/ac1ed2
10.1145/1273496.1273614
10.3389/fphys.2020.569050
10.1109/TNNLS.2019.2957187
10.1161/01.CTR.101.23.e215
10.1016/j.compbiomed.2017.08.022
10.1109/TNSRE.2020.2981659
10.1016/j.dsp.2021.103094
10.1109/IJCNN52387.2021.9533998
10.1016/j.compbiomed.2018.07.001
10.1016/j.imu.2021.100721
10.1177/1460458218796636
10.18502/fbt.v7i3.4616
10.1088/1742-6596/1524/1/012048
10.32604/cmc.2021.014682
10.1016/j.neunet.2021.02.007
10.1109/IJCNN.2008.4633969
10.1109/ACCESS.2020.2974712
10.3389/fnhum.2020.00103
10.1613/jair.953
10.1002/hbm.23730
10.1016/j.csl.2019.05.003
10.7555/JBR.28.20130191
10.1161/CIRCEP.118.006273
10.1038/s41597-020-0386-x
10.1109/TIM.2013.2279001
10.1109/JAS.2017.7510583
10.1007/s13246-019-00815-9
10.1016/j.knosys.2021.107473
10.1016/j.swevo.2017.10.002
10.1016/j.jelectrocard.2019.08.004
10.1109/JBHI.2018.2871510
10.1109/51.932724
10.3390/rs13193816
10.1023/A:1007452223027
10.1016/j.compbiomed.2018.09.009
10.1038/s41598-019-41274-2
10.1109/ICASSP.2019.8683140
10.1016/j.cmpb.2020.105740
10.1016/j.asoc.2018.12.024
10.18653/v1/2021.emnlp-main.572
10.1007/978-1-4614-6849-3
10.1109/TCYB.2021.3122969
10.1109/CVPR.2018.00745
10.1016/j.ins.2017.04.012
10.1109/ACCESS.2019.2933814
10.1109/ACCESS.2019.2931500
10.3233/IDA-2002-6504
10.1007/11538059_91
10.22489/CinC.2017.065-469
10.1016/j.cmpb.2015.12.008
10.1038/s41467-022-28451-0
10.1016/c2009-0-63389-4
10.1109/EMBC.2018.8512789
10.1109/IWW-BCI.2018.8311491
10.1007/s13748-016-0094-0
10.1371/journal.pone.0219238
10.1161/CIRCULATIONAHA.105.595140
10.1109/TNSRE.2021.3087506
10.1109/TNSRE.2020.3040289
10.15420/aer.2016.17.2
10.1038/s41598-019-42516-z
10.1109/CVPR.2016.90
10.1016/j.bspc.2020.102194
10.1371/journal.pone.0216456
10.1016/j.future.2018.03.057
10.1186/s40537-018-0151-6
10.1016/j.jneumeth.2015.01.010
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3181276
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 17
ExternalDocumentID 10_1109_TIM_2022_3181276
9794445
Genre orig-research
GrantInformation_xml – fundername: Korean Government
  grantid: KMDF-PR-20200901-0173
– fundername: Korean Medical Device Development (KMDF)
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c333t-c2b49d38ac9bf8e4bed89e95b85218168348fc0a08ff83276e7d1be3d27670f43
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:14:36 EDT 2025
Thu Apr 24 22:59:40 EDT 2025
Tue Jul 01 03:07:14 EDT 2025
Wed Aug 27 02:23:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-c2b49d38ac9bf8e4bed89e95b85218168348fc0a08ff83276e7d1be3d27670f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4261-875X
0000-0002-6249-4996
0000-0003-3794-8033
0000-0002-6397-4043
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9794445
PQID 2682921834
PQPubID 85462
PageCount 17
ParticipantIDs ieee_primary_9794445
crossref_primary_10_1109_TIM_2022_3181276
crossref_citationtrail_10_1109_TIM_2022_3181276
proquest_journals_2682921834
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref56
ref15
Liu (ref48)
ref59
ref14
ref58
ref53
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Skryjomski (ref61)
Atlee (ref4) 2006
Branco (ref46) 2015
Ciresan (ref67)
ref93
ref92
ref51
ref95
ref50
ref94
ref91
Kubat (ref79) 1998; 30
ref90
ref45
ref89
ref42
ref86
Xu (ref66) 2015
ref85
ref44
Kingma (ref64) 2014
ref88
ref43
ref87
ref8
ref7
ref9
ref3
Thornton (ref6) 2004; 31
Munger (ref1) 2014; 28
ref5
ref82
ref81
ref40
ref84
Saifudin (ref57) 2015; 1
ref35
Neil (ref83) 2016
ref34
Tian (ref41) 2020
Mirza (ref63) 2014
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref39
ref38
Goodfellow (ref49); 27
Ioffe (ref65)
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref26
ref25
ref69
ref20
ref22
ref21
Ganganwar (ref47) 2012; 2
ref28
ref27
Brandt (ref52) 2021
van der Maaten (ref80) 2013
ref29
Rajpurkar (ref13) 2017
ref60
ref62
References_xml – ident: ref55
  doi: 10.1088/1757-899x/1099/1/012077
– ident: ref14
  doi: 10.22489/CinC.2017.360-239
– ident: ref27
  doi: 10.1109/ICMLA.2007.76
– ident: ref15
  doi: 10.1007/978-3-319-68385-0_18
– ident: ref32
  doi: 10.1109/78.650093
– ident: ref60
  doi: 10.1109/TSMCB.2012.2187280
– ident: ref19
  doi: 10.1016/j.bspc.2019.101819
– ident: ref74
  doi: 10.1109/WCICA.2002.1020004
– ident: ref85
  doi: 10.1016/j.knosys.2019.105460
– ident: ref42
  doi: 10.1088/1741-2552/ac1ed2
– ident: ref81
  doi: 10.1145/1273496.1273614
– start-page: 66
  volume-title: Proc. Int. Conf. Data Mining
  ident: ref48
  article-title: Generative oversampling for mining imbalanced datasets
– ident: ref20
  doi: 10.3389/fphys.2020.569050
– ident: ref72
  doi: 10.1109/TNNLS.2019.2957187
– year: 2020
  ident: ref41
  article-title: Generalized few-shot semantic segmentation
  publication-title: arXiv:2010.05210
– ident: ref68
  doi: 10.1161/01.CTR.101.23.e215
– ident: ref87
  doi: 10.1016/j.compbiomed.2017.08.022
– volume-title: arXiv:1411.1784
  year: 2014
  ident: ref63
  article-title: Conditional generative adversarial nets
– ident: ref39
  doi: 10.1109/TNSRE.2020.2981659
– ident: ref40
  doi: 10.1016/j.dsp.2021.103094
– ident: ref62
  doi: 10.1109/IJCNN52387.2021.9533998
– ident: ref18
  doi: 10.1016/j.compbiomed.2018.07.001
– ident: ref75
  doi: 10.1016/j.imu.2021.100721
– ident: ref29
  doi: 10.1177/1460458218796636
– start-page: 448
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref65
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– ident: ref93
  doi: 10.18502/fbt.v7i3.4616
– ident: ref59
  doi: 10.1088/1742-6596/1524/1/012048
– ident: ref77
  doi: 10.32604/cmc.2021.014682
– start-page: 1
  volume-title: Proc. Int. Conf. Artif. Intell.
  ident: ref67
  article-title: Flexible, high performance convolutional neural networks for image classification
– ident: ref71
  doi: 10.1016/j.neunet.2021.02.007
– volume-title: arXiv:1505.00853
  year: 2015
  ident: ref66
  article-title: Empirical evaluation of rectified activations in convolutional network
– ident: ref51
  doi: 10.1109/IJCNN.2008.4633969
– ident: ref23
  doi: 10.1109/ACCESS.2020.2974712
– ident: ref36
  doi: 10.3389/fnhum.2020.00103
– ident: ref33
  doi: 10.1613/jair.953
– ident: ref73
  doi: 10.1002/hbm.23730
– volume: 31
  start-page: 81
  issue: 1
  year: 2004
  ident: ref6
  article-title: Oxygen and the diving seal
  publication-title: Undersea Hyperbaric Med.
– ident: ref53
  doi: 10.1016/j.csl.2019.05.003
– volume: 2
  start-page: 42
  issue: 4
  year: 2012
  ident: ref47
  article-title: An overview of classification algorithms for imbalanced datasets
  publication-title: Int. J. Emerg. Technol. Adv. Eng.
– volume: 28
  start-page: 1
  issue: 1
  year: 2014
  ident: ref1
  article-title: Atrial fibrillation
  publication-title: J. Biomed. Res.
  doi: 10.7555/JBR.28.20130191
– year: 2015
  ident: ref46
  article-title: A survey of predictive modelling under imbalanced distributions
  publication-title: arXiv:1505.01658
– ident: ref3
  doi: 10.1161/CIRCEP.118.006273
– ident: ref54
  doi: 10.1038/s41597-020-0386-x
– ident: ref26
  doi: 10.1109/TIM.2013.2279001
– ident: ref50
  doi: 10.1109/JAS.2017.7510583
– volume-title: arXiv:1412.6980
  year: 2014
  ident: ref64
  article-title: Adam: A method for stochastic optimization
– volume-title: Complications in Anesthesia E-Book
  year: 2006
  ident: ref4
– ident: ref94
  doi: 10.1007/s13246-019-00815-9
– ident: ref24
  doi: 10.1016/j.knosys.2021.107473
– ident: ref16
  doi: 10.1016/j.swevo.2017.10.002
– ident: ref11
  doi: 10.1016/j.jelectrocard.2019.08.004
– ident: ref2
  doi: 10.1109/JBHI.2018.2871510
– ident: ref34
  doi: 10.1109/51.932724
– ident: ref70
  doi: 10.3390/rs13193816
– volume: 30
  start-page: 195
  issue: 2
  year: 1998
  ident: ref79
  article-title: Machine learning for the detection of oil spills in satellite radar images
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007452223027
– ident: ref17
  doi: 10.1016/j.compbiomed.2018.09.009
– ident: ref90
  doi: 10.1038/s41598-019-41274-2
– ident: ref95
  doi: 10.1109/ICASSP.2019.8683140
– ident: ref22
  doi: 10.1016/j.cmpb.2020.105740
– ident: ref58
  doi: 10.1016/j.asoc.2018.12.024
– ident: ref38
  doi: 10.18653/v1/2021.emnlp-main.572
– ident: ref69
  doi: 10.1007/978-1-4614-6849-3
– ident: ref78
  doi: 10.1109/TCYB.2021.3122969
– ident: ref31
  doi: 10.1109/CVPR.2018.00745
– ident: ref9
  doi: 10.1016/j.ins.2017.04.012
– volume: 1
  start-page: 76
  issue: 2
  year: 2015
  ident: ref57
  article-title: Pendekatan level data untuk menangani ketidakseimbangan kelas pada prediksi cacat software
  publication-title: J. Softw. Eng.
– ident: ref91
  doi: 10.1109/ACCESS.2019.2933814
– ident: ref21
  doi: 10.1109/ACCESS.2019.2931500
– ident: ref45
  doi: 10.3233/IDA-2002-6504
– volume: 27
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref49
  article-title: Generative adversarial nets
– year: 2013
  ident: ref80
  article-title: Barnes-hut-SNE
  publication-title: arXiv:1301.3342
– ident: ref82
  doi: 10.1007/11538059_91
– ident: ref35
  doi: 10.22489/CinC.2017.065-469
– ident: ref76
  doi: 10.1016/j.cmpb.2015.12.008
– ident: ref44
  doi: 10.1038/s41467-022-28451-0
– start-page: 7
  volume-title: Proc. Int. Workshop Learn. Imbalanced Domains, Theory Appl.
  ident: ref61
  article-title: Influence of minority class instance types on SMOTE imbalanced data oversampling
– ident: ref5
  doi: 10.1016/c2009-0-63389-4
– ident: ref25
  doi: 10.1109/EMBC.2018.8512789
– ident: ref43
  doi: 10.1109/IWW-BCI.2018.8311491
– ident: ref56
  doi: 10.1007/s13748-016-0094-0
– ident: ref10
  doi: 10.1371/journal.pone.0219238
– ident: ref12
  doi: 10.1161/CIRCULATIONAHA.105.595140
– ident: ref37
  doi: 10.1109/TNSRE.2021.3087506
– ident: ref89
  doi: 10.1109/TNSRE.2020.3040289
– ident: ref7
  doi: 10.15420/aer.2016.17.2
– year: 2021
  ident: ref52
  article-title: A comparative review of SMOTE and ADASYN in imbalanced data classification
– ident: ref84
  doi: 10.1038/s41598-019-42516-z
– year: 2017
  ident: ref13
  article-title: Cardiologist-level arrhythmia detection with convolutional neural networks
  publication-title: arXiv:1707.01836
– ident: ref30
  doi: 10.1109/CVPR.2016.90
– year: 2016
  ident: ref83
  article-title: Phased LSTM: Accelerating recurrent network training for long or event-based sequences
  publication-title: arXiv:1610.09513
– ident: ref86
  doi: 10.1016/j.bspc.2020.102194
– ident: ref92
  doi: 10.1371/journal.pone.0216456
– ident: ref8
  doi: 10.1016/j.future.2018.03.057
– ident: ref28
  doi: 10.1186/s40537-018-0151-6
– ident: ref88
  doi: 10.1016/j.jneumeth.2015.01.010
SSID ssj0007647
Score 2.5400865
Snippet Diagnosis and classification of arrhythmia, which is associated with abnormal electrical activities in the heart, are critical for clinical treatments....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Arrhythmia
Arrhythmia classification
Atrial fibrillation
augmentation
Cardiac arrhythmia
Cardiology
Classification
Deep learning
Diagnosis
Electrocardiography
electrocardiography (ECG)
Feature extraction
few shot
Fibrillation
long short-term memory
Machine learning
Picture archiving and communication systems
residual network (ResNet)
Rhythm
squeeze-and-excitation (SE) block
Title Automatic Cardiac Arrhythmia Classification Using Residual Network Combined With Long Short-Term Memory
URI https://ieeexplore.ieee.org/document/9794445
https://www.proquest.com/docview/2682921834
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0BElJ7oHy0Ii1FPnCp1E2ctddrHxEqAkQ40KByW9necYNaEkQ2B_rrO_ZuItSiqjcf7JWlNx7PeN-8ATgSdIqsRZ-p4ClBUZJn2vk8ExikcsgVt7FQeHSlzm7kxW1xuwafV7UwiJjIZ9iPw_Qvv575RXwqGxgyHimLdVinxK2t1Vp53VLJVh9zSAeYooLlL0luBuPzESWCeU75KV1nUV3k2RWUeqr85YjT7XL6BkbLfbWkkh_9ReP6_tcfko3_u_Ft2OrCTHbc2sUOrOF0F14_Ex_chc1E_vTzPfh-vGhmSbqVnSSD8bTwcfLUTO7vLEttMyOhKGHIEseAXeM8VXGxq5ZGzsivUI6NNft210zY5YzmfJ1QaJ-NyfWzUeTzPr2Fm9Mv45OzrGvAkHkhRJP53ElTC229cUGjdFhrg6ZwuoiRgdJC6uC55ToE8gylwrIeOhQ1DUsepHgHG9PZFPeBhTK3UT7NkcOQiNwEq6wvLA6VCk7KHgyWmFS-UyePTTJ-VilL4aYiFKuIYtWh2INPqxUPrTLHP-buRVBW8zo8enCwhL3qju68ypXOTQwc5fuXV32AV_Hb7TvMAWw0jwv8SJFJ4w6TSf4G3QDgBA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VIkQ58GiLCBTwgQsSmzi7Xq99rKpWKWRzgFT0trK946YqTVCzOZRfz9i7iaqCEDcfbNnSN56HPfMNwIeMbpEx6BLpHQUoUvBEWZcmGXohLXLJTSgULidydCY-n-fnW_BpUwuDiDH5DPthGP_y64VbhaeygSbhESJ_AA_J7udpW6210buFFC1D5pCuMPkF609JrgfT05JCwTSlCJUMWuAXuWOEYleVP1RxtC8nz6Bcn6xNK7nqrxrbd7_ukTb-79Gfw9PO0WSHrWS8gC2c78KTO_SDu_Aopn-65R5cHK6aRSRvZUdRZBwtvJndNrPrS8Ni48yQUhRRZDHLgH3FZazjYpM2kZyRZqEoG2v2_bKZsfGC5nybkXOfTEn5szJk9N7uw9nJ8fRolHQtGBKXZVmTuNQKXWfKOG29QmGxVhp1blUefAOpMqG844Yr70k3FBKLemgxq2lYcC-yl7A9X8zxFTBfpCYQqFlSGQKRa2-kcbnBoZTeCtGDwRqTynX85KFNxo8qxilcV4RiFVCsOhR78HGz4mfLzfGPuXsBlM28Do8eHKxhr7rLu6xSqVIdXEfx-u-r3sPj0bQcV-PTyZc3sBP2aV9lDmC7uVnhW_JTGvsuiudvt2fjTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Cardiac+Arrhythmia+Classification+Using+Residual+Network+Combined+With+Long+Short-Term+Memory&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Kim%2C+Yun+Kwan&rft.au=Lee%2C+Minji&rft.au=Song%2C+Hee+Seok&rft.au=Lee%2C+Seong-Whan&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1109%2FTIM.2022.3181276&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3181276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon