Automatic Cardiac Arrhythmia Classification Using Residual Network Combined With Long Short-Term Memory
Diagnosis and classification of arrhythmia, which is associated with abnormal electrical activities in the heart, are critical for clinical treatments. Previous studies focused on the diagnosis of atrial fibrillation, which is the most common arrhythmia in adults. The classification performance achi...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 17 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diagnosis and classification of arrhythmia, which is associated with abnormal electrical activities in the heart, are critical for clinical treatments. Previous studies focused on the diagnosis of atrial fibrillation, which is the most common arrhythmia in adults. The classification performance achieved by studies on other arrhythmia types is not satisfactory for clinical use owing to the small number of classes (minority classes). In this study, we propose a novel framework for automatic classification that combines a residual network with a squeeze-and-excitation block and a bidirectional long short-term memory. Eight-, four-, and two-class performances were evaluated on the MIT-BIH arrhythmia database (MITDB), the MIT-BIH atrial fibrillation database (AFDB), and the PhysioNet/Computing in the cardiology challenge 2017 database (CinC DB), respectively, and they were superior to the performance achieved by conventional methods. In addition, the classwise F1-score in the minority classes was higher than those of the methods adopted in existing studies. To measure the generalization ability of the proposed framework, AFDB and CinC DB were tested using an MITDB-trained model, and superior performance was achieved compared with ShallowConvNet and DeepConvNet. We performed a cross-subject experiment using AFDB and obtained a statistically higher performance using the proposed method compared with typical machine learning methods. The proposed framework can enable the direct diagnosis of arrhythmia types in clinical trials based on the accurate detection of the minority class. |
---|---|
AbstractList | Diagnosis and classification of arrhythmia, which is associated with abnormal electrical activities in the heart, are critical for clinical treatments. Previous studies focused on the diagnosis of atrial fibrillation, which is the most common arrhythmia in adults. The classification performance achieved by studies on other arrhythmia types is not satisfactory for clinical use owing to the small number of classes (minority classes). In this study, we propose a novel framework for automatic classification that combines a residual network with a squeeze-and-excitation block and a bidirectional long short-term memory. Eight-, four-, and two-class performances were evaluated on the MIT-BIH arrhythmia database (MITDB), the MIT-BIH atrial fibrillation database (AFDB), and the PhysioNet/Computing in the cardiology challenge 2017 database (CinC DB), respectively, and they were superior to the performance achieved by conventional methods. In addition, the classwise F1-score in the minority classes was higher than those of the methods adopted in existing studies. To measure the generalization ability of the proposed framework, AFDB and CinC DB were tested using an MITDB-trained model, and superior performance was achieved compared with ShallowConvNet and DeepConvNet. We performed a cross-subject experiment using AFDB and obtained a statistically higher performance using the proposed method compared with typical machine learning methods. The proposed framework can enable the direct diagnosis of arrhythmia types in clinical trials based on the accurate detection of the minority class. |
Author | Kim, Yun Kwan Song, Hee Seok Lee, Minji Lee, Seong-Whan |
Author_xml | – sequence: 1 givenname: Yun Kwan orcidid: 0000-0002-6397-4043 surname: Kim fullname: Kim, Yun Kwan email: ykwin@korea.ac.kr organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea – sequence: 2 givenname: Minji orcidid: 0000-0003-4261-875X surname: Lee fullname: Lee, Minji email: minjilee@korea.ac.kr organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea – sequence: 3 givenname: Hee Seok orcidid: 0000-0003-3794-8033 surname: Song fullname: Song, Hee Seok email: sam.song@seerstech.com organization: Technology Development, Seers Technology Company Ltd., Seongnam-si, Republic of Korea – sequence: 4 givenname: Seong-Whan orcidid: 0000-0002-6249-4996 surname: Lee fullname: Lee, Seong-Whan email: sw.lee@korea.ac.kr organization: Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea |
BookMark | eNp9kDtPwzAUhS0EEuWxI7FYYk7xK4k9VhGPSgUkaMUYOc4NNTQx2K5Q_z0uRQwMTPcO56HzHaH9wQ2A0BklY0qJupxP78aMMDbmVFJWFntoRPO8zFRRsH00IoTKTIm8OERHIbwSQspClCP0MllH1-toDa60b602eOL9chOXvdW4WukQbGdNErgBL4IdXvAjBNuu9QrfQ_x0_g1Xrm_sAC1-tnGJZy5pnpbOx2wOvsd30Du_OUEHnV4FOP25x2hxfTWvbrPZw820mswywzmPmWGNUC2X2qimkyAaaKUClTcyZ2lXIbmQnSGayK6TPM2EsqUN8Da9JekEP0YXu9x37z7WEGL96tZ-SJU1KyRTKYVvVWSnMt6F4KGr373ttd_UlNRbnHXCWW9x1j84k6X4YzE2fmOJXtvVf8bzndECwG-PKpUQIudfmK2EqQ |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1109_TIM_2024_3376017 crossref_primary_10_1109_JBHI_2024_3419090 crossref_primary_10_1109_ACCESS_2023_3305473 crossref_primary_10_1109_TIM_2022_3227552 crossref_primary_10_1109_TIM_2023_3289563 crossref_primary_10_3390_s24092954 crossref_primary_10_1109_TIM_2022_3194906 crossref_primary_10_1109_TIM_2024_3406829 crossref_primary_10_3389_fphys_2023_1188678 crossref_primary_10_1007_s00034_024_02986_7 crossref_primary_10_1109_JBHI_2023_3325540 crossref_primary_10_1109_RBME_2024_3492381 crossref_primary_10_1002_aic_18785 crossref_primary_10_3390_app14219936 |
Cites_doi | 10.1088/1757-899x/1099/1/012077 10.22489/CinC.2017.360-239 10.1109/ICMLA.2007.76 10.1007/978-3-319-68385-0_18 10.1109/78.650093 10.1109/TSMCB.2012.2187280 10.1016/j.bspc.2019.101819 10.1109/WCICA.2002.1020004 10.1016/j.knosys.2019.105460 10.1088/1741-2552/ac1ed2 10.1145/1273496.1273614 10.3389/fphys.2020.569050 10.1109/TNNLS.2019.2957187 10.1161/01.CTR.101.23.e215 10.1016/j.compbiomed.2017.08.022 10.1109/TNSRE.2020.2981659 10.1016/j.dsp.2021.103094 10.1109/IJCNN52387.2021.9533998 10.1016/j.compbiomed.2018.07.001 10.1016/j.imu.2021.100721 10.1177/1460458218796636 10.18502/fbt.v7i3.4616 10.1088/1742-6596/1524/1/012048 10.32604/cmc.2021.014682 10.1016/j.neunet.2021.02.007 10.1109/IJCNN.2008.4633969 10.1109/ACCESS.2020.2974712 10.3389/fnhum.2020.00103 10.1613/jair.953 10.1002/hbm.23730 10.1016/j.csl.2019.05.003 10.7555/JBR.28.20130191 10.1161/CIRCEP.118.006273 10.1038/s41597-020-0386-x 10.1109/TIM.2013.2279001 10.1109/JAS.2017.7510583 10.1007/s13246-019-00815-9 10.1016/j.knosys.2021.107473 10.1016/j.swevo.2017.10.002 10.1016/j.jelectrocard.2019.08.004 10.1109/JBHI.2018.2871510 10.1109/51.932724 10.3390/rs13193816 10.1023/A:1007452223027 10.1016/j.compbiomed.2018.09.009 10.1038/s41598-019-41274-2 10.1109/ICASSP.2019.8683140 10.1016/j.cmpb.2020.105740 10.1016/j.asoc.2018.12.024 10.18653/v1/2021.emnlp-main.572 10.1007/978-1-4614-6849-3 10.1109/TCYB.2021.3122969 10.1109/CVPR.2018.00745 10.1016/j.ins.2017.04.012 10.1109/ACCESS.2019.2933814 10.1109/ACCESS.2019.2931500 10.3233/IDA-2002-6504 10.1007/11538059_91 10.22489/CinC.2017.065-469 10.1016/j.cmpb.2015.12.008 10.1038/s41467-022-28451-0 10.1016/c2009-0-63389-4 10.1109/EMBC.2018.8512789 10.1109/IWW-BCI.2018.8311491 10.1007/s13748-016-0094-0 10.1371/journal.pone.0219238 10.1161/CIRCULATIONAHA.105.595140 10.1109/TNSRE.2021.3087506 10.1109/TNSRE.2020.3040289 10.15420/aer.2016.17.2 10.1038/s41598-019-42516-z 10.1109/CVPR.2016.90 10.1016/j.bspc.2020.102194 10.1371/journal.pone.0216456 10.1016/j.future.2018.03.057 10.1186/s40537-018-0151-6 10.1016/j.jneumeth.2015.01.010 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2022.3181276 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 17 |
ExternalDocumentID | 10_1109_TIM_2022_3181276 9794445 |
Genre | orig-research |
GrantInformation_xml | – fundername: Korean Government grantid: KMDF-PR-20200901-0173 – fundername: Korean Medical Device Development (KMDF) |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c333t-c2b49d38ac9bf8e4bed89e95b85218168348fc0a08ff83276e7d1be3d27670f43 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:14:36 EDT 2025 Thu Apr 24 22:59:40 EDT 2025 Tue Jul 01 03:07:14 EDT 2025 Wed Aug 27 02:23:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-c2b49d38ac9bf8e4bed89e95b85218168348fc0a08ff83276e7d1be3d27670f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4261-875X 0000-0002-6249-4996 0000-0003-3794-8033 0000-0002-6397-4043 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9794445 |
PQID | 2682921834 |
PQPubID | 85462 |
PageCount | 17 |
ParticipantIDs | ieee_primary_9794445 crossref_primary_10_1109_TIM_2022_3181276 crossref_citationtrail_10_1109_TIM_2022_3181276 proquest_journals_2682921834 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref56 ref15 Liu (ref48) ref59 ref14 ref58 ref53 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Skryjomski (ref61) Atlee (ref4) 2006 Branco (ref46) 2015 Ciresan (ref67) ref93 ref92 ref51 ref95 ref50 ref94 ref91 Kubat (ref79) 1998; 30 ref90 ref45 ref89 ref42 ref86 Xu (ref66) 2015 ref85 ref44 Kingma (ref64) 2014 ref88 ref43 ref87 ref8 ref7 ref9 ref3 Thornton (ref6) 2004; 31 Munger (ref1) 2014; 28 ref5 ref82 ref81 ref40 ref84 Saifudin (ref57) 2015; 1 ref35 Neil (ref83) 2016 ref34 Tian (ref41) 2020 Mirza (ref63) 2014 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref39 ref38 Goodfellow (ref49); 27 Ioffe (ref65) ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref26 ref25 ref69 ref20 ref22 ref21 Ganganwar (ref47) 2012; 2 ref28 ref27 Brandt (ref52) 2021 van der Maaten (ref80) 2013 ref29 Rajpurkar (ref13) 2017 ref60 ref62 |
References_xml | – ident: ref55 doi: 10.1088/1757-899x/1099/1/012077 – ident: ref14 doi: 10.22489/CinC.2017.360-239 – ident: ref27 doi: 10.1109/ICMLA.2007.76 – ident: ref15 doi: 10.1007/978-3-319-68385-0_18 – ident: ref32 doi: 10.1109/78.650093 – ident: ref60 doi: 10.1109/TSMCB.2012.2187280 – ident: ref19 doi: 10.1016/j.bspc.2019.101819 – ident: ref74 doi: 10.1109/WCICA.2002.1020004 – ident: ref85 doi: 10.1016/j.knosys.2019.105460 – ident: ref42 doi: 10.1088/1741-2552/ac1ed2 – ident: ref81 doi: 10.1145/1273496.1273614 – start-page: 66 volume-title: Proc. Int. Conf. Data Mining ident: ref48 article-title: Generative oversampling for mining imbalanced datasets – ident: ref20 doi: 10.3389/fphys.2020.569050 – ident: ref72 doi: 10.1109/TNNLS.2019.2957187 – year: 2020 ident: ref41 article-title: Generalized few-shot semantic segmentation publication-title: arXiv:2010.05210 – ident: ref68 doi: 10.1161/01.CTR.101.23.e215 – ident: ref87 doi: 10.1016/j.compbiomed.2017.08.022 – volume-title: arXiv:1411.1784 year: 2014 ident: ref63 article-title: Conditional generative adversarial nets – ident: ref39 doi: 10.1109/TNSRE.2020.2981659 – ident: ref40 doi: 10.1016/j.dsp.2021.103094 – ident: ref62 doi: 10.1109/IJCNN52387.2021.9533998 – ident: ref18 doi: 10.1016/j.compbiomed.2018.07.001 – ident: ref75 doi: 10.1016/j.imu.2021.100721 – ident: ref29 doi: 10.1177/1460458218796636 – start-page: 448 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref65 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – ident: ref93 doi: 10.18502/fbt.v7i3.4616 – ident: ref59 doi: 10.1088/1742-6596/1524/1/012048 – ident: ref77 doi: 10.32604/cmc.2021.014682 – start-page: 1 volume-title: Proc. Int. Conf. Artif. Intell. ident: ref67 article-title: Flexible, high performance convolutional neural networks for image classification – ident: ref71 doi: 10.1016/j.neunet.2021.02.007 – volume-title: arXiv:1505.00853 year: 2015 ident: ref66 article-title: Empirical evaluation of rectified activations in convolutional network – ident: ref51 doi: 10.1109/IJCNN.2008.4633969 – ident: ref23 doi: 10.1109/ACCESS.2020.2974712 – ident: ref36 doi: 10.3389/fnhum.2020.00103 – ident: ref33 doi: 10.1613/jair.953 – ident: ref73 doi: 10.1002/hbm.23730 – volume: 31 start-page: 81 issue: 1 year: 2004 ident: ref6 article-title: Oxygen and the diving seal publication-title: Undersea Hyperbaric Med. – ident: ref53 doi: 10.1016/j.csl.2019.05.003 – volume: 2 start-page: 42 issue: 4 year: 2012 ident: ref47 article-title: An overview of classification algorithms for imbalanced datasets publication-title: Int. J. Emerg. Technol. Adv. Eng. – volume: 28 start-page: 1 issue: 1 year: 2014 ident: ref1 article-title: Atrial fibrillation publication-title: J. Biomed. Res. doi: 10.7555/JBR.28.20130191 – year: 2015 ident: ref46 article-title: A survey of predictive modelling under imbalanced distributions publication-title: arXiv:1505.01658 – ident: ref3 doi: 10.1161/CIRCEP.118.006273 – ident: ref54 doi: 10.1038/s41597-020-0386-x – ident: ref26 doi: 10.1109/TIM.2013.2279001 – ident: ref50 doi: 10.1109/JAS.2017.7510583 – volume-title: arXiv:1412.6980 year: 2014 ident: ref64 article-title: Adam: A method for stochastic optimization – volume-title: Complications in Anesthesia E-Book year: 2006 ident: ref4 – ident: ref94 doi: 10.1007/s13246-019-00815-9 – ident: ref24 doi: 10.1016/j.knosys.2021.107473 – ident: ref16 doi: 10.1016/j.swevo.2017.10.002 – ident: ref11 doi: 10.1016/j.jelectrocard.2019.08.004 – ident: ref2 doi: 10.1109/JBHI.2018.2871510 – ident: ref34 doi: 10.1109/51.932724 – ident: ref70 doi: 10.3390/rs13193816 – volume: 30 start-page: 195 issue: 2 year: 1998 ident: ref79 article-title: Machine learning for the detection of oil spills in satellite radar images publication-title: Mach. Learn. doi: 10.1023/A:1007452223027 – ident: ref17 doi: 10.1016/j.compbiomed.2018.09.009 – ident: ref90 doi: 10.1038/s41598-019-41274-2 – ident: ref95 doi: 10.1109/ICASSP.2019.8683140 – ident: ref22 doi: 10.1016/j.cmpb.2020.105740 – ident: ref58 doi: 10.1016/j.asoc.2018.12.024 – ident: ref38 doi: 10.18653/v1/2021.emnlp-main.572 – ident: ref69 doi: 10.1007/978-1-4614-6849-3 – ident: ref78 doi: 10.1109/TCYB.2021.3122969 – ident: ref31 doi: 10.1109/CVPR.2018.00745 – ident: ref9 doi: 10.1016/j.ins.2017.04.012 – volume: 1 start-page: 76 issue: 2 year: 2015 ident: ref57 article-title: Pendekatan level data untuk menangani ketidakseimbangan kelas pada prediksi cacat software publication-title: J. Softw. Eng. – ident: ref91 doi: 10.1109/ACCESS.2019.2933814 – ident: ref21 doi: 10.1109/ACCESS.2019.2931500 – ident: ref45 doi: 10.3233/IDA-2002-6504 – volume: 27 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref49 article-title: Generative adversarial nets – year: 2013 ident: ref80 article-title: Barnes-hut-SNE publication-title: arXiv:1301.3342 – ident: ref82 doi: 10.1007/11538059_91 – ident: ref35 doi: 10.22489/CinC.2017.065-469 – ident: ref76 doi: 10.1016/j.cmpb.2015.12.008 – ident: ref44 doi: 10.1038/s41467-022-28451-0 – start-page: 7 volume-title: Proc. Int. Workshop Learn. Imbalanced Domains, Theory Appl. ident: ref61 article-title: Influence of minority class instance types on SMOTE imbalanced data oversampling – ident: ref5 doi: 10.1016/c2009-0-63389-4 – ident: ref25 doi: 10.1109/EMBC.2018.8512789 – ident: ref43 doi: 10.1109/IWW-BCI.2018.8311491 – ident: ref56 doi: 10.1007/s13748-016-0094-0 – ident: ref10 doi: 10.1371/journal.pone.0219238 – ident: ref12 doi: 10.1161/CIRCULATIONAHA.105.595140 – ident: ref37 doi: 10.1109/TNSRE.2021.3087506 – ident: ref89 doi: 10.1109/TNSRE.2020.3040289 – ident: ref7 doi: 10.15420/aer.2016.17.2 – year: 2021 ident: ref52 article-title: A comparative review of SMOTE and ADASYN in imbalanced data classification – ident: ref84 doi: 10.1038/s41598-019-42516-z – year: 2017 ident: ref13 article-title: Cardiologist-level arrhythmia detection with convolutional neural networks publication-title: arXiv:1707.01836 – ident: ref30 doi: 10.1109/CVPR.2016.90 – year: 2016 ident: ref83 article-title: Phased LSTM: Accelerating recurrent network training for long or event-based sequences publication-title: arXiv:1610.09513 – ident: ref86 doi: 10.1016/j.bspc.2020.102194 – ident: ref92 doi: 10.1371/journal.pone.0216456 – ident: ref8 doi: 10.1016/j.future.2018.03.057 – ident: ref28 doi: 10.1186/s40537-018-0151-6 – ident: ref88 doi: 10.1016/j.jneumeth.2015.01.010 |
SSID | ssj0007647 |
Score | 2.5400865 |
Snippet | Diagnosis and classification of arrhythmia, which is associated with abnormal electrical activities in the heart, are critical for clinical treatments.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Arrhythmia Arrhythmia classification Atrial fibrillation augmentation Cardiac arrhythmia Cardiology Classification Deep learning Diagnosis Electrocardiography electrocardiography (ECG) Feature extraction few shot Fibrillation long short-term memory Machine learning Picture archiving and communication systems residual network (ResNet) Rhythm squeeze-and-excitation (SE) block |
Title | Automatic Cardiac Arrhythmia Classification Using Residual Network Combined With Long Short-Term Memory |
URI | https://ieeexplore.ieee.org/document/9794445 https://www.proquest.com/docview/2682921834 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0BElJ7oHy0Ii1FPnCp1E2ctddrHxEqAkQ40KByW9necYNaEkQ2B_rrO_ZuItSiqjcf7JWlNx7PeN-8ATgSdIqsRZ-p4ClBUZJn2vk8ExikcsgVt7FQeHSlzm7kxW1xuwafV7UwiJjIZ9iPw_Qvv575RXwqGxgyHimLdVinxK2t1Vp53VLJVh9zSAeYooLlL0luBuPzESWCeU75KV1nUV3k2RWUeqr85YjT7XL6BkbLfbWkkh_9ReP6_tcfko3_u_Ft2OrCTHbc2sUOrOF0F14_Ex_chc1E_vTzPfh-vGhmSbqVnSSD8bTwcfLUTO7vLEttMyOhKGHIEseAXeM8VXGxq5ZGzsivUI6NNft210zY5YzmfJ1QaJ-NyfWzUeTzPr2Fm9Mv45OzrGvAkHkhRJP53ElTC229cUGjdFhrg6ZwuoiRgdJC6uC55ToE8gylwrIeOhQ1DUsepHgHG9PZFPeBhTK3UT7NkcOQiNwEq6wvLA6VCk7KHgyWmFS-UyePTTJ-VilL4aYiFKuIYtWh2INPqxUPrTLHP-buRVBW8zo8enCwhL3qju68ypXOTQwc5fuXV32AV_Hb7TvMAWw0jwv8SJFJ4w6TSf4G3QDgBA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VIkQ58GiLCBTwgQsSmzi7Xq99rKpWKWRzgFT0trK946YqTVCzOZRfz9i7iaqCEDcfbNnSN56HPfMNwIeMbpEx6BLpHQUoUvBEWZcmGXohLXLJTSgULidydCY-n-fnW_BpUwuDiDH5DPthGP_y64VbhaeygSbhESJ_AA_J7udpW6210buFFC1D5pCuMPkF609JrgfT05JCwTSlCJUMWuAXuWOEYleVP1RxtC8nz6Bcn6xNK7nqrxrbd7_ukTb-79Gfw9PO0WSHrWS8gC2c78KTO_SDu_Aopn-65R5cHK6aRSRvZUdRZBwtvJndNrPrS8Ni48yQUhRRZDHLgH3FZazjYpM2kZyRZqEoG2v2_bKZsfGC5nybkXOfTEn5szJk9N7uw9nJ8fRolHQtGBKXZVmTuNQKXWfKOG29QmGxVhp1blUefAOpMqG844Yr70k3FBKLemgxq2lYcC-yl7A9X8zxFTBfpCYQqFlSGQKRa2-kcbnBoZTeCtGDwRqTynX85KFNxo8qxilcV4RiFVCsOhR78HGz4mfLzfGPuXsBlM28Do8eHKxhr7rLu6xSqVIdXEfx-u-r3sPj0bQcV-PTyZc3sBP2aV9lDmC7uVnhW_JTGvsuiudvt2fjTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Cardiac+Arrhythmia+Classification+Using+Residual+Network+Combined+With+Long+Short-Term+Memory&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Kim%2C+Yun+Kwan&rft.au=Lee%2C+Minji&rft.au=Song%2C+Hee+Seok&rft.au=Lee%2C+Seong-Whan&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1109%2FTIM.2022.3181276&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3181276 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |