Uncertainty quantification using Bayesian neural networks in classification: Application to biomedical image segmentation

Most recent research of deep neural networks in the field of computer vision has focused on improving performances of point predictions by developing network architectures or learning algorithms. Reliable uncertainty quantification accompanied by point estimation can lead to a more informed decision...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 142; p. 106816
Main Authors Kwon, Yongchan, Won, Joong-Ho, Kim, Beom Joon, Paik, Myunghee Cho
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most recent research of deep neural networks in the field of computer vision has focused on improving performances of point predictions by developing network architectures or learning algorithms. Reliable uncertainty quantification accompanied by point estimation can lead to a more informed decision, and the quality of prediction can be improved. In this paper, we invoke a Bayesian neural network and propose a natural way of quantifying uncertainties in classification problems by decomposing the moment-based predictive uncertainty into two parts: aleatoric and epistemic uncertainty. The proposed method takes into account the discrete nature of the outcome, yielding the correct interpretation of each uncertainty. We demonstrate that the proposed uncertainty quantification method provides additional insights into the point prediction using two Ischemic Stroke Lesion Segmentation Challenge datasets and the Digital Retinal Images for Vessel Extraction dataset.
AbstractList Most recent research of deep neural networks in the field of computer vision has focused on improving performances of point predictions by developing network architectures or learning algorithms. Reliable uncertainty quantification accompanied by point estimation can lead to a more informed decision, and the quality of prediction can be improved. In this paper, we invoke a Bayesian neural network and propose a natural way of quantifying uncertainties in classification problems by decomposing the moment-based predictive uncertainty into two parts: aleatoric and epistemic uncertainty. The proposed method takes into account the discrete nature of the outcome, yielding the correct interpretation of each uncertainty. We demonstrate that the proposed uncertainty quantification method provides additional insights into the point prediction using two Ischemic Stroke Lesion Segmentation Challenge datasets and the Digital Retinal Images for Vessel Extraction dataset.
ArticleNumber 106816
Author Won, Joong-Ho
Paik, Myunghee Cho
Kim, Beom Joon
Kwon, Yongchan
Author_xml – sequence: 1
  givenname: Yongchan
  surname: Kwon
  fullname: Kwon, Yongchan
  email: ykwon0407@snu.ac.kr
  organization: Department of Statistics, Seoul National University, Seoul, 08826, South Korea
– sequence: 2
  givenname: Joong-Ho
  surname: Won
  fullname: Won, Joong-Ho
  email: wonj@stats.snu.ac.kr
  organization: Department of Statistics, Seoul National University, Seoul, 08826, South Korea
– sequence: 3
  givenname: Beom Joon
  surname: Kim
  fullname: Kim, Beom Joon
  email: kim.bj.stroke@gmail.com
  organization: Department of Neurology and Cerebrovascular Center, Seoul National University Bundang Hospital, Bundang, 13620, South Korea
– sequence: 4
  givenname: Myunghee Cho
  orcidid: 0000-0001-6239-4883
  surname: Paik
  fullname: Paik, Myunghee Cho
  email: myungheechopaik@snu.ac.kr
  organization: Department of Statistics, Seoul National University, Seoul, 08826, South Korea
BookMark eNp9kT1v2zAQhokgAeJ8_IFMHLvI4YclUkUXN8hHAQNd4pmgyJNBVyYdkmrhf186Sjp08HTA4X0Od89doXMfPCB0R8mcEtrcb-cmWT1nhLal0UjanKEZlYJVgtfsHM1KSFTtQvBLdJXSlhDCFkLO0GHtDcSsnc8H_DZqn13vjM4ueDwm5zf4uz5ActpjD2PUQyn5T4i_EnYem0Gn9A_4ipf7_fBJ54A7F3ZgS2PAbqc3gBNsduDze-AGXfR6SHD7Ua_R-unx9eGlWv18_vGwXFWGc56rztiubi2pOSedlYzIGmgvGiOl5KbtBKlb2lludS0tk7xvRM-hOFg0omFM82v0ZZq7j-FthJTVziUDw6A9hDEpxknNGOeNLFE5RU0MKUXolXHTsjlqNyhK1NG22qqjbXW0rSbbBWX_oftYbo6H09C3CYJy_28HUSXjoDzEuggmKxvcKfwvVWCdgA
CitedBy_id crossref_primary_10_1021_acs_jcim_0c00416
crossref_primary_10_1016_j_compositesa_2025_108822
crossref_primary_10_1002_eqe_3759
crossref_primary_10_1109_ACCESS_2024_3421330
crossref_primary_10_1016_j_neucom_2021_01_090
crossref_primary_10_1016_j_ejrh_2024_102141
crossref_primary_10_1088_1742_6596_2014_1_012007
crossref_primary_10_1016_j_ejrad_2023_110786
crossref_primary_10_1097_RLI_0000000000000755
crossref_primary_10_3390_jimaging11020064
crossref_primary_10_1103_PhysRevD_103_063034
crossref_primary_10_1109_TGRS_2023_3269139
crossref_primary_10_1190_geo2021_0318_1
crossref_primary_10_1016_j_heliyon_2025_e41802
crossref_primary_10_1109_TSG_2020_3019263
crossref_primary_10_1016_j_inffus_2021_05_008
crossref_primary_10_1007_JHEP04_2021_296
crossref_primary_10_1093_bib_bbac211
crossref_primary_10_1016_j_eswa_2021_116494
crossref_primary_10_1109_TMI_2022_3222730
crossref_primary_10_1007_s11548_023_03001_1
crossref_primary_10_1088_1361_6420_ad2f63
crossref_primary_10_1016_j_neunet_2022_02_019
crossref_primary_10_1016_j_media_2020_101790
crossref_primary_10_1002_asjc_2758
crossref_primary_10_1007_s00204_023_03666_2
crossref_primary_10_1080_00207543_2023_2271093
crossref_primary_10_1039_D3CC01988H
crossref_primary_10_1016_j_inffus_2022_11_008
crossref_primary_10_1038_s44172_023_00103_1
crossref_primary_10_1016_j_patcog_2021_108515
crossref_primary_10_1016_j_media_2024_103162
crossref_primary_10_1038_s41598_022_18874_6
crossref_primary_10_1080_01431161_2021_1966853
crossref_primary_10_1016_j_inffus_2022_12_013
crossref_primary_10_1016_j_jmatprotec_2021_117485
crossref_primary_10_3390_s22124324
crossref_primary_10_1089_big_2021_0343
crossref_primary_10_3390_pr9060922
crossref_primary_10_1016_j_radonc_2021_09_034
crossref_primary_10_1093_ehjdh_ztab045
crossref_primary_10_3390_s23010062
crossref_primary_10_1109_ACCESS_2024_3372423
crossref_primary_10_1016_j_media_2022_102426
crossref_primary_10_1016_j_compeleceng_2022_107986
crossref_primary_10_1007_s10278_024_01151_5
crossref_primary_10_1111_exsy_13320
crossref_primary_10_1016_j_ijmedinf_2025_105846
crossref_primary_10_1016_j_cirpj_2022_01_002
crossref_primary_10_1103_PhysRevD_102_103509
crossref_primary_10_1088_1361_6587_ad48b7
crossref_primary_10_1016_j_marpolbul_2023_115098
crossref_primary_10_1016_j_media_2024_103392
crossref_primary_10_1002_smo_20230012
crossref_primary_10_1038_s41467_021_25493_8
crossref_primary_10_1088_2632_2153_aba6f1
crossref_primary_10_1111_jon_12997
crossref_primary_10_1109_TAES_2024_3408141
crossref_primary_10_1016_j_cirpj_2021_03_004
crossref_primary_10_3390_electronics11233863
crossref_primary_10_1109_TEM_2023_3270301
crossref_primary_10_1186_s13321_023_00682_3
crossref_primary_10_1016_j_compeleceng_2024_109555
crossref_primary_10_1016_j_metrad_2023_100003
crossref_primary_10_1088_1361_6560_ac60b9
crossref_primary_10_1109_JBHI_2022_3207313
crossref_primary_10_3389_frsen_2022_1100012
crossref_primary_10_3390_rs13081472
crossref_primary_10_1111_coin_12411
crossref_primary_10_7554_eLife_81217
crossref_primary_10_1016_j_compind_2024_104146
crossref_primary_10_1016_j_ins_2022_08_094
crossref_primary_10_1016_j_compag_2023_108414
crossref_primary_10_1093_mnras_stae2500
crossref_primary_10_1109_ACCESS_2024_3513253
crossref_primary_10_1016_j_jclepro_2024_143457
crossref_primary_10_1016_j_compstruct_2024_118087
crossref_primary_10_1007_s10844_023_00828_7
crossref_primary_10_1016_j_neucom_2021_10_119
crossref_primary_10_1016_j_ejso_2023_106996
crossref_primary_10_1111_mice_12808
crossref_primary_10_1088_1742_6596_2909_1_012032
crossref_primary_10_1109_JOE_2023_3252624
crossref_primary_10_1145_3467978
crossref_primary_10_1016_j_tbs_2022_08_011
crossref_primary_10_1177_21582440231182060
crossref_primary_10_1007_s00540_022_03044_9
crossref_primary_10_1007_s11548_022_02578_3
crossref_primary_10_1137_22M1523765
crossref_primary_10_1016_j_jmsy_2022_07_002
crossref_primary_10_1109_TNSRE_2023_3286688
crossref_primary_10_1155_2020_1428968
crossref_primary_10_1016_j_eswa_2022_119121
crossref_primary_10_32604_cmc_2022_023581
crossref_primary_10_1007_s10115_023_01955_x
crossref_primary_10_1016_j_pacs_2024_100645
crossref_primary_10_1016_j_neucom_2024_127568
crossref_primary_10_1088_2632_2153_accace
crossref_primary_10_3390_rs14133072
crossref_primary_10_1109_TCSVT_2022_3144184
crossref_primary_10_1190_geo2020_0424_1
crossref_primary_10_1016_j_asoc_2020_106597
crossref_primary_10_1063_5_0201613
crossref_primary_10_1186_s12880_023_01121_3
crossref_primary_10_1007_s41060_023_00397_6
crossref_primary_10_1007_s11263_024_02032_8
crossref_primary_10_1016_j_bspc_2024_107383
crossref_primary_10_1103_PhysRevD_105_023531
crossref_primary_10_1002_mp_16795
crossref_primary_10_1007_s10207_023_00675_1
crossref_primary_10_1111_cgf_14333
crossref_primary_10_1109_TMI_2020_3029161
crossref_primary_10_1038_s41598_022_23431_2
crossref_primary_10_1016_j_asoc_2024_111641
crossref_primary_10_3390_biomedicines10061323
crossref_primary_10_3390_electronics10040520
crossref_primary_10_1016_j_inffus_2023_101813
crossref_primary_10_1109_TAFFC_2022_3189974
crossref_primary_10_1016_j_neucom_2020_12_063
crossref_primary_10_1109_TIM_2023_3284933
crossref_primary_10_1038_s41467_022_33699_7
crossref_primary_10_1109_TNNLS_2023_3342138
crossref_primary_10_1016_j_compbiomed_2023_107441
crossref_primary_10_1109_ACCESS_2022_3163384
crossref_primary_10_1016_j_media_2024_103223
crossref_primary_10_1109_TGRS_2022_3152516
crossref_primary_10_1016_j_ndteint_2022_102753
crossref_primary_10_1109_ACCESS_2024_3451373
crossref_primary_10_1016_j_eswa_2023_122093
crossref_primary_10_1109_TGRS_2021_3076012
crossref_primary_10_3389_frai_2024_1410841
crossref_primary_10_14232_actacyb_24_3_2020_3
crossref_primary_10_1016_j_oceaneng_2023_115193
crossref_primary_10_1109_TITS_2023_3304452
crossref_primary_10_1016_j_isci_2022_104814
crossref_primary_10_1016_j_isprsjprs_2024_03_004
crossref_primary_10_1051_0004_6361_202451348
crossref_primary_10_1109_TNNLS_2023_3319468
crossref_primary_10_1371_journal_pone_0253057
crossref_primary_10_1016_j_neucom_2024_128434
crossref_primary_10_1016_j_mri_2022_06_001
crossref_primary_10_1016_j_patrec_2023_08_018
crossref_primary_10_1016_j_cose_2024_103909
crossref_primary_10_1016_j_eswa_2023_120473
crossref_primary_10_1016_j_neunet_2021_09_007
crossref_primary_10_1148_ryai_2021210031
crossref_primary_10_1109_ACCESS_2022_3168734
crossref_primary_10_1002_mp_16695
crossref_primary_10_1145_3464423
crossref_primary_10_1093_bioinformatics_btab346
crossref_primary_10_1109_TMI_2021_3123547
crossref_primary_10_1109_TGRS_2022_3233871
crossref_primary_10_1002_mrm_29214
crossref_primary_10_1145_3716317
crossref_primary_10_1007_s11069_024_06641_x
crossref_primary_10_1007_s41976_024_00155_7
crossref_primary_10_1088_1402_4896_adbd94
crossref_primary_10_1016_j_jechem_2023_02_028
crossref_primary_10_1016_j_eswa_2022_118196
crossref_primary_10_1016_j_phro_2024_100578
crossref_primary_10_1016_j_ijar_2024_109301
crossref_primary_10_1007_s11063_024_11593_1
crossref_primary_10_1016_j_ejrad_2024_111884
crossref_primary_10_1190_geo2022_0632_1
crossref_primary_10_1016_j_mex_2024_102659
crossref_primary_10_1016_j_ress_2024_110513
crossref_primary_10_3389_fonc_2025_1474590
crossref_primary_10_1088_2632_2153_ad88d5
crossref_primary_10_1186_s13321_022_00619_2
crossref_primary_10_1016_j_artmed_2024_102830
crossref_primary_10_1016_j_csda_2024_108097
crossref_primary_10_1016_j_knosys_2022_108418
crossref_primary_10_1016_j_chaos_2023_114341
crossref_primary_10_34133_2022_9837076
crossref_primary_10_1016_j_jsv_2020_115908
crossref_primary_10_1016_j_radonc_2024_110545
crossref_primary_10_1016_j_ress_2025_110962
crossref_primary_10_1007_s00066_024_02262_2
crossref_primary_10_3847_1538_4365_ac14b7
crossref_primary_10_1109_ACCESS_2024_3479913
crossref_primary_10_1002_srin_202100566
crossref_primary_10_1016_j_compmedimag_2023_102321
crossref_primary_10_1007_s10462_024_10814_2
crossref_primary_10_1190_geo2020_0609_1
crossref_primary_10_1016_j_media_2023_102863
crossref_primary_10_1016_j_apgeochem_2022_105450
crossref_primary_10_1109_TGRS_2023_3314130
crossref_primary_10_1088_1361_6560_ac678a
crossref_primary_10_1007_s41060_024_00562_5
crossref_primary_10_1016_j_neucom_2022_05_055
crossref_primary_10_1109_TITS_2024_3361676
crossref_primary_10_1115_1_4067001
crossref_primary_10_3390_brainsci12060765
crossref_primary_10_1007_s42979_024_02842_0
crossref_primary_10_1016_j_compbiomed_2022_105246
crossref_primary_10_3390_s22062406
crossref_primary_10_5194_amt_14_1941_2021
crossref_primary_10_1016_j_tws_2024_112466
crossref_primary_10_1088_1361_6420_ad6a34
crossref_primary_10_1109_JSTARS_2022_3212680
crossref_primary_10_1016_j_ailsci_2021_100004
crossref_primary_10_1016_j_compbiomed_2023_107142
crossref_primary_10_1016_j_neunet_2024_106284
crossref_primary_10_1145_3688573
crossref_primary_10_1007_s00521_021_05789_y
crossref_primary_10_1038_s41467_023_36960_9
crossref_primary_10_1016_j_ifacol_2023_10_1671
crossref_primary_10_1038_s42256_020_0209_y
crossref_primary_10_1016_j_asoc_2020_107046
crossref_primary_10_2139_ssrn_4133438
crossref_primary_10_1002_VIW_20230050
crossref_primary_10_1002_qute_202300221
crossref_primary_10_1007_s12046_022_01980_6
Cites_doi 10.1109/TMI.2004.825627
10.1016/j.media.2017.07.005
10.1162/neco.1992.4.3.448
10.3389/fneur.2018.00679
10.1038/s41598-017-17876-z
10.1016/j.media.2016.07.009
10.1016/j.media.2016.10.004
10.1016/S0893-6080(00)00045-9
10.1038/nature21056
10.1080/01621459.2017.1303386
10.1016/j.strusafe.2008.06.020
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.csda.2019.106816
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-7352
ExternalDocumentID 10_1016_j_csda_2019_106816
S016794731930163X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c333t-bcdb59d05330bd82085e1f76c8883c9b70591bd3da58d283f67f3e106467622a3
IEDL.DBID .~1
ISSN 0167-9473
IngestDate Fri Jul 11 12:27:00 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
Tue Jul 01 02:24:33 EDT 2025
Fri Feb 23 02:23:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Uncertainty quantification
Retinal blood vessel segmentation
Ischemic stroke lesion segmentation
Bayesian neural network
Aleatoric and epistemic uncertainty
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-bcdb59d05330bd82085e1f76c8883c9b70591bd3da58d283f67f3e106467622a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6239-4883
PQID 2305223368
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2305223368
crossref_citationtrail_10_1016_j_csda_2019_106816
crossref_primary_10_1016_j_csda_2019_106816
elsevier_sciencedirect_doi_10_1016_j_csda_2019_106816
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Computational statistics & data analysis
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization, arXiv preprint
Neal (b30) 1993
Fleiss, Levin, Paik (b10) 2003
Choi, Kwon, Lee, Kim, Paik, Won (b4) 2016
Der Kiureghian, Ditlevsen (b7) 2009; 31
Leibig, Allken, Ayhan, Berens, Wahl (b23) 2017; 7
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, van der Laak, van Ginneken, Sánchez (b25) 2017; 42
Chen, Fox, Guestrin (b3) 2014
Li, Turner (b24) 2016
Miller, Foti, Adams (b29) 2017
Graves (b12) 2011
Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes, arXiv preprint
Wang, Blei (b38) 2018
Winzeck, Hakim, McKinley, Pinto, Alves, Silva, Pisov, Krivov, Belyaev, Monteiro (b40) 2018; 9
Gal (b11) 2016
MacKay (b27) 1992; 4
He, Zhang, Ren, Sun (b14) 2015
2015. Kaggle, Kaggle diabetic retinopathy detection competition.
Clevert, D.-A., Unterthiner, T., Hochreiter, S., 2015. Fast and accurate deep network learning by exponential linear units (elus), arXiv preprint
Niemeijer, Staal, van Ginneken, Loog, Abramoff (b31) 2004
Jungo, Meier, Ermis, Herrmann, Reyes (b16) 2018
Louizos, Welling (b26) 2017
Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (b9) 2017; 542
Guo, Pleiss, Sun, Weinberger (b13) 2017
Tanno, Worrall, Ghosh, Kaden, Sotiropoulos, Criminisi, Alexander (b36) 2017
[Online; accessed 31.07.18].
Dieng, Tran, Ranganath, Paisley, Blei (b8) 2017
Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., Hinton, G., 2017. Regularizing neural networks by penalizing confident output distributions, arXiv preprint
Blundell, Cornebise, Kavukcuoglu, Wierstra (b2) 2015
Chollet, F., 2015. keras
Welling, Teh (b39) 2011
.
Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (b18) 2017; 36
Ayhan, Berens (b1) 2018
Teye, M., Azizpour, H., Smith, K., 2018. Bayesian Uncertainty Estimation for Batch Normalized Deep Networks, arXiv preprint
Staal, Abràmoff, Niemeijer, Viergever, Van Ginneken (b35) 2004; 23
Lee (b22) 2000; 13
Ronneberger, Fischer, Brox (b33) 2015
Kendall, Gal (b19) 2017
Maier, Menze, von der Gablentz, Häni, Heinrich, Liebrand, Winzeck, Basit, Bentley, Chen (b28) 2017; 35
Siva Sundhara Raja, Vasuki (b34) 2015; 2015
Ioffe, Szegedy (b15) 2015
Litjens (10.1016/j.csda.2019.106816_b25) 2017; 42
Welling (10.1016/j.csda.2019.106816_b39) 2011
10.1016/j.csda.2019.106816_b6
Tanno (10.1016/j.csda.2019.106816_b36) 2017
10.1016/j.csda.2019.106816_b5
Der Kiureghian (10.1016/j.csda.2019.106816_b7) 2009; 31
Esteva (10.1016/j.csda.2019.106816_b9) 2017; 542
Guo (10.1016/j.csda.2019.106816_b13) 2017
Maier (10.1016/j.csda.2019.106816_b28) 2017; 35
Graves (10.1016/j.csda.2019.106816_b12) 2011
10.1016/j.csda.2019.106816_b21
Louizos (10.1016/j.csda.2019.106816_b26) 2017
MacKay (10.1016/j.csda.2019.106816_b27) 1992; 4
Dieng (10.1016/j.csda.2019.106816_b8) 2017
10.1016/j.csda.2019.106816_b20
Siva Sundhara Raja (10.1016/j.csda.2019.106816_b34) 2015; 2015
Staal (10.1016/j.csda.2019.106816_b35) 2004; 23
Kendall (10.1016/j.csda.2019.106816_b19) 2017
Miller (10.1016/j.csda.2019.106816_b29) 2017
Niemeijer (10.1016/j.csda.2019.106816_b31) 2004
Li (10.1016/j.csda.2019.106816_b24) 2016
He (10.1016/j.csda.2019.106816_b14) 2015
Ronneberger (10.1016/j.csda.2019.106816_b33) 2015
Ioffe (10.1016/j.csda.2019.106816_b15) 2015
Gal (10.1016/j.csda.2019.106816_b11) 2016
Fleiss (10.1016/j.csda.2019.106816_b10) 2003
Lee (10.1016/j.csda.2019.106816_b22) 2000; 13
10.1016/j.csda.2019.106816_b32
Wang (10.1016/j.csda.2019.106816_b38) 2018
Winzeck (10.1016/j.csda.2019.106816_b40) 2018; 9
10.1016/j.csda.2019.106816_b37
10.1016/j.csda.2019.106816_b17
Jungo (10.1016/j.csda.2019.106816_b16) 2018
Kamnitsas (10.1016/j.csda.2019.106816_b18) 2017; 36
Ayhan (10.1016/j.csda.2019.106816_b1) 2018
Blundell (10.1016/j.csda.2019.106816_b2) 2015
Choi (10.1016/j.csda.2019.106816_b4) 2016
Leibig (10.1016/j.csda.2019.106816_b23) 2017; 7
Chen (10.1016/j.csda.2019.106816_b3) 2014
Neal (10.1016/j.csda.2019.106816_b30) 1993
References_xml – start-page: 681
  year: 2011
  end-page: 688
  ident: b39
  article-title: Bayesian Learning via stochastic gradient langevin dynamics
  publication-title: International Conference on Machine Learning
– reference: Chollet, F., 2015. keras,
– year: 2003
  ident: b10
  publication-title: Statistical Methods for Rates and Proportions
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: b18
  article-title: Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
– volume: 7
  start-page: 17816
  year: 2017
  ident: b23
  article-title: Leveraging uncertainty information from deep neural networks for disease detection
  publication-title: Sci. Rep.
– volume: 35
  start-page: 250
  year: 2017
  end-page: 269
  ident: b28
  article-title: Isles 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
  publication-title: Med. Image Anal.
– start-page: 475
  year: 1993
  end-page: 482
  ident: b30
  article-title: Bayesian Learning via stochastic dynamics
  publication-title: Advances in Neural Information Processing Systems
– start-page: 448
  year: 2015
  end-page: 456
  ident: b15
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: International Conference on Machine Learning
– reference: Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., Hinton, G., 2017. Regularizing neural networks by penalizing confident output distributions, arXiv preprint
– reference: Clevert, D.-A., Unterthiner, T., Hochreiter, S., 2015. Fast and accurate deep network learning by exponential linear units (elus), arXiv preprint
– start-page: 1683
  year: 2014
  end-page: 1691
  ident: b3
  article-title: Stochastic gradient hamiltonian monte carlo
  publication-title: International Conference on Machine Learning
– start-page: 648
  year: 2004
  end-page: 656
  ident: b31
  article-title: Comparative study of retinal vessel segmentation methods on a new publicly available database
  publication-title: SPIE Medical Imaging, Vol. 5370
– start-page: 1613
  year: 2015
  end-page: 1622
  ident: b2
  article-title: Weight uncertainty in neural networks
  publication-title: International Conference on Machine Learning
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: b14
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– year: 2018
  ident: b1
  article-title: Test-time data augmentation for estimation of heteroscedastic aleatoric uncertainty in deep neural networks
  publication-title: International Conference on Medical Imaging with Deep Learning
– year: 2018
  ident: b16
  article-title: Uncertainty-driven sanity check: Application to postoperative brain tumor Cavity segmentation
  publication-title: International Conference on Medical Imaging with Deep Learning
– start-page: 231
  year: 2016
  end-page: 243
  ident: b4
  article-title: Ensemble of deep convolutional neural networks for prognosis of ischemic stroke
  publication-title: International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
– start-page: 2348
  year: 2011
  end-page: 2356
  ident: b12
  article-title: Practical variational inference for neural networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1321
  year: 2017
  end-page: 1330
  ident: b13
  article-title: On Calibration of modern neural networks
  publication-title: International Conference on Machine Learning
– volume: 23
  start-page: 501
  year: 2004
  end-page: 509
  ident: b35
  article-title: Ridge-based vessel segmentation in color images of the retina
  publication-title: IEEE Trans. Med. Imaging
– start-page: 2420
  year: 2017
  end-page: 2429
  ident: b29
  article-title: Variational boosting: Iteratively refining posterior approximations
  publication-title: International Conference on Machine Learning
– start-page: 234
  year: 2015
  end-page: 241
  ident: b33
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 31
  start-page: 105
  year: 2009
  end-page: 112
  ident: b7
  article-title: Aleatory or epistemic? does it matter?
  publication-title: Struct. Saf.
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: b25
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– reference: .
– start-page: 1
  year: 2018
  end-page: 85
  ident: b38
  article-title: Frequentist consistency of variational Bayes
  publication-title: J. Amer. Statist. Assoc.
– volume: 4
  start-page: 448
  year: 1992
  end-page: 472
  ident: b27
  article-title: A practical Bayesian framework for backpropagation networks
  publication-title: Neural Comput.
– reference: Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization, arXiv preprint
– start-page: 5580
  year: 2017
  end-page: 5590
  ident: b19
  article-title: What uncertainties do we need in bayesian deep learning for computer vision?
  publication-title: Advances in Neural Information Processing Systems
– year: 2016
  ident: b11
  article-title: Uncertainty in Deep Learning
– start-page: 611
  year: 2017
  end-page: 619
  ident: b36
  article-title: Bayesian image quality transfer with cnns: Exploring uncertainty in dmri super-resolution
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 1073
  year: 2016
  end-page: 1081
  ident: b24
  article-title: Rényi Divergence variational inference
  publication-title: Advances in Neural Information Processing Systems
– reference: Teye, M., Azizpour, H., Smith, K., 2018. Bayesian Uncertainty Estimation for Batch Normalized Deep Networks, arXiv preprint
– start-page: 2729
  year: 2017
  end-page: 2738
  ident: b8
  article-title: Variational inference via
  publication-title: Advances in Neural Information Processing Systems
– volume: 9
  year: 2018
  ident: b40
  article-title: ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI
  publication-title: Front. Neurol.
– reference: [Online; accessed 31.07.18].
– volume: 2015
  year: 2015
  ident: b34
  article-title: Automatic detection of blood vessels in retinal images for diabetic retinopathy diagnosis
  publication-title: Comput. Math. Methods Med.
– reference: 2015. Kaggle, Kaggle diabetic retinopathy detection competition.
– start-page: 2218
  year: 2017
  end-page: 2227
  ident: b26
  article-title: Multiplicative normalizing flows for variational Bayesian neural networks
  publication-title: International Conference on Machine Learning
– reference: Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes, arXiv preprint
– volume: 13
  start-page: 629
  year: 2000
  end-page: 642
  ident: b22
  article-title: Consistency of posterior distributions for neural networks
  publication-title: Neural Netw.
– volume: 542
  start-page: 115
  year: 2017
  ident: b9
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– year: 2018
  ident: 10.1016/j.csda.2019.106816_b1
  article-title: Test-time data augmentation for estimation of heteroscedastic aleatoric uncertainty in deep neural networks
– start-page: 611
  year: 2017
  ident: 10.1016/j.csda.2019.106816_b36
  article-title: Bayesian image quality transfer with cnns: Exploring uncertainty in dmri super-resolution
– year: 2016
  ident: 10.1016/j.csda.2019.106816_b11
– start-page: 2218
  year: 2017
  ident: 10.1016/j.csda.2019.106816_b26
  article-title: Multiplicative normalizing flows for variational Bayesian neural networks
– start-page: 2348
  year: 2011
  ident: 10.1016/j.csda.2019.106816_b12
  article-title: Practical variational inference for neural networks
– volume: 23
  start-page: 501
  issue: 4
  year: 2004
  ident: 10.1016/j.csda.2019.106816_b35
  article-title: Ridge-based vessel segmentation in color images of the retina
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.825627
– ident: 10.1016/j.csda.2019.106816_b6
– ident: 10.1016/j.csda.2019.106816_b21
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.csda.2019.106816_b25
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– ident: 10.1016/j.csda.2019.106816_b17
– volume: 4
  start-page: 448
  issue: 3
  year: 1992
  ident: 10.1016/j.csda.2019.106816_b27
  article-title: A practical Bayesian framework for backpropagation networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.3.448
– volume: 9
  year: 2018
  ident: 10.1016/j.csda.2019.106816_b40
  article-title: ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2018.00679
– start-page: 448
  year: 2015
  ident: 10.1016/j.csda.2019.106816_b15
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– start-page: 234
  year: 2015
  ident: 10.1016/j.csda.2019.106816_b33
  article-title: U-net: Convolutional networks for biomedical image segmentation
– start-page: 2420
  year: 2017
  ident: 10.1016/j.csda.2019.106816_b29
  article-title: Variational boosting: Iteratively refining posterior approximations
– start-page: 475
  year: 1993
  ident: 10.1016/j.csda.2019.106816_b30
  article-title: Bayesian Learning via stochastic dynamics
– start-page: 681
  year: 2011
  ident: 10.1016/j.csda.2019.106816_b39
  article-title: Bayesian Learning via stochastic gradient langevin dynamics
– start-page: 1683
  year: 2014
  ident: 10.1016/j.csda.2019.106816_b3
  article-title: Stochastic gradient hamiltonian monte carlo
– volume: 7
  start-page: 17816
  issue: 1
  year: 2017
  ident: 10.1016/j.csda.2019.106816_b23
  article-title: Leveraging uncertainty information from deep neural networks for disease detection
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17876-z
– volume: 35
  start-page: 250
  year: 2017
  ident: 10.1016/j.csda.2019.106816_b28
  article-title: Isles 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.07.009
– volume: 2015
  year: 2015
  ident: 10.1016/j.csda.2019.106816_b34
  article-title: Automatic detection of blood vessels in retinal images for diabetic retinopathy diagnosis
  publication-title: Comput. Math. Methods Med.
– volume: 36
  start-page: 61
  year: 2017
  ident: 10.1016/j.csda.2019.106816_b18
  article-title: Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– volume: 13
  start-page: 629
  issue: 6
  year: 2000
  ident: 10.1016/j.csda.2019.106816_b22
  article-title: Consistency of posterior distributions for neural networks
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00045-9
– ident: 10.1016/j.csda.2019.106816_b32
– start-page: 648
  year: 2004
  ident: 10.1016/j.csda.2019.106816_b31
  article-title: Comparative study of retinal vessel segmentation methods on a new publicly available database
– start-page: 231
  year: 2016
  ident: 10.1016/j.csda.2019.106816_b4
  article-title: Ensemble of deep convolutional neural networks for prognosis of ischemic stroke
– year: 2003
  ident: 10.1016/j.csda.2019.106816_b10
– start-page: 1321
  year: 2017
  ident: 10.1016/j.csda.2019.106816_b13
  article-title: On Calibration of modern neural networks
– start-page: 2729
  year: 2017
  ident: 10.1016/j.csda.2019.106816_b8
  article-title: Variational inference via χ upper bound minimization
– start-page: 1026
  year: 2015
  ident: 10.1016/j.csda.2019.106816_b14
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
– ident: 10.1016/j.csda.2019.106816_b20
– ident: 10.1016/j.csda.2019.106816_b5
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 10.1016/j.csda.2019.106816_b9
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– start-page: 5580
  year: 2017
  ident: 10.1016/j.csda.2019.106816_b19
  article-title: What uncertainties do we need in bayesian deep learning for computer vision?
– start-page: 1073
  year: 2016
  ident: 10.1016/j.csda.2019.106816_b24
  article-title: Rényi Divergence variational inference
– ident: 10.1016/j.csda.2019.106816_b37
– start-page: 1613
  year: 2015
  ident: 10.1016/j.csda.2019.106816_b2
  article-title: Weight uncertainty in neural networks
– year: 2018
  ident: 10.1016/j.csda.2019.106816_b16
  article-title: Uncertainty-driven sanity check: Application to postoperative brain tumor Cavity segmentation
– start-page: 1
  issue: just-accepted
  year: 2018
  ident: 10.1016/j.csda.2019.106816_b38
  article-title: Frequentist consistency of variational Bayes
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2017.1303386
– volume: 31
  start-page: 105
  issue: 2
  year: 2009
  ident: 10.1016/j.csda.2019.106816_b7
  article-title: Aleatory or epistemic? does it matter?
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2008.06.020
SSID ssj0002478
Score 2.6465883
Snippet Most recent research of deep neural networks in the field of computer vision has focused on improving performances of point predictions by developing network...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106816
SubjectTerms Aleatoric and epistemic uncertainty
algorithms
Bayesian neural network
Bayesian theory
computer vision
data collection
Ischemic stroke lesion segmentation
neural networks
prediction
Retinal blood vessel segmentation
stroke
uncertainty
Uncertainty quantification
Title Uncertainty quantification using Bayesian neural networks in classification: Application to biomedical image segmentation
URI https://dx.doi.org/10.1016/j.csda.2019.106816
https://www.proquest.com/docview/2305223368
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnuItI7Gh0CZOnIStIFChggGo6Gb5FVREUyDp0IXfzl2cFIEQA1MkK7asu8v5u_i7O0KOrPb9DP_aWD-TXphEmSeZASBnTcRlYADxY3LyzS3v9sPrQTSYI-dNLgzSKmvf73x65a3rkVYtzdbrcNi6RwJ9GsZgQ2CknA0wgz2M0cpPPr5oHkHovDHW98a368QZx_HShcHaQ34KAzzBnue_H04_3HR19lyukOUaNNKO29cqmbP5Glm6mVVcLdbJtA87r273yyl9m0jHAarETpHb_kTP5NRixiTFEpawWu4I4AUd5lQjhp5NOKWdr2ttWo6py9FHddLhCBwQLezTqE5ayjdI__Li4bzr1W0VPM0YKz2ljYpSg0m4bWUSbNIJioq5hmCY6VTFgLh8ZZiRUWIAfWQ8zpgFAYFP5UEg2SaZz8e53SLU-lIqztophJGhCVPFE6V1LFksE9vW4TbxG3kKXdccx9YXL6Ihlz0L1IFAHQing21yPJvz6ipu_Pl21KhJfLMbAUfCn_MOG50K-KDwlkTmdjwpBMRkgEkZ48nOP9feJYsBRuUVt3uPzJfvE7sP0KVUB5VtHpCFzlWve4vP3t1j7xPfTvGc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKfaUsBIcEJhN3HiJJU4lEe1pd1e6Ep7M36lWtRmC8mq2gt_ij_YmdjZCoR6QOrVsi1rZjwP-5sZgNfOxHFFrzYurlSUFlkVKW7RkXM2Eyqx6PFTcvL4SIwm6ZdpNl2D330uDMEqg-73Or3T1mFkEKg5OJ_NBl8JQF-mOcoQCqng04CsPHDLC4zbmvf7n5DJb5Jk7_Pxx1EUWgtEhnPeRtpYnZWWElGH2hbUqBIPmwuDASE3pc7R64i15VZlhUULXIm84g7DJ9QrIkkUx31vwe0U1QW1TXj36wpXkqRe_VNBcTpeyNTxoDLTWCp2FJc4IApqsv5va_iXXeiM3d4DuB-8VLbrCfEQ1lz9CO6NVyVem8ewnCCpOjhBu2Q_FsqDjjo-MwLTn7APaukoRZNRzUzcrfaI84bNambIaV8t2GG7V__orJ0zXxSA5IfNzlDjscadnIUsqfoJTG6E2E9hvZ7XbgOYi5XSgg9LjFtTm5ZaFNqYXPFcFW5o0k2Ie3pKE4qcU6-NU9mj2b5L4oEkHkjPg014u1pz7kt8XDs769kk_xBUiTbo2nWvep5KvMH0LaNqN180EoNAdII5F8XWf-79Eu6MjseH8nD_6OAZ3E3oSaADlm_Devtz4Z6j39TqF52cMvh20xfjEg4HKl4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+quantification+using+Bayesian+neural+networks+in+classification%3A+Application+to+biomedical+image+segmentation&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Kwon%2C+Yongchan&rft.au=Won%2C+Joong-Ho&rft.au=Kim%2C+Beom+Joon&rft.au=Paik%2C+Myunghee+Cho&rft.date=2020-02-01&rft.issn=0167-9473&rft.volume=142&rft.spage=106816&rft_id=info:doi/10.1016%2Fj.csda.2019.106816&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csda_2019_106816
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon