Intelligent acceptance check for towers of overhead transmission line based on point clouds
The acceptance check is a key step to decide whether an overhead transmission line can be put into use. However, for the acceptance check of towers, the manual means is still adopted mostly nowadays, which is dangerous and inefficient. The main challenges for intelligent check technique are the auto...
Saved in:
Published in | IET generation, transmission & distribution Vol. 17; no. 22; pp. 5074 - 5089 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The acceptance check is a key step to decide whether an overhead transmission line can be put into use. However, for the acceptance check of towers, the manual means is still adopted mostly nowadays, which is dangerous and inefficient. The main challenges for intelligent check technique are the automatic tower segmentation and intelligent requirements of some detection items. Here, based on point clouds from lidars, some intelligent methods are proposed for tower related acceptance check items. The geometric structural changing rules for towers are found and analyzed to identify and segment towers from the scene point cloud automatically. A model‐constrained method is proposed for fine filtering of towers. With point cloud registration strategies, the tilt angle of a tower is calculated intelligently and the defect detection of a tower is conducted successfully. Experiments show that the results of the proposed methods are accurate, efficient and automatic, which have potential for real applications. |
---|---|
AbstractList | Abstract The acceptance check is a key step to decide whether an overhead transmission line can be put into use. However, for the acceptance check of towers, the manual means is still adopted mostly nowadays, which is dangerous and inefficient. The main challenges for intelligent check technique are the automatic tower segmentation and intelligent requirements of some detection items. Here, based on point clouds from lidars, some intelligent methods are proposed for tower related acceptance check items. The geometric structural changing rules for towers are found and analyzed to identify and segment towers from the scene point cloud automatically. A model‐constrained method is proposed for fine filtering of towers. With point cloud registration strategies, the tilt angle of a tower is calculated intelligently and the defect detection of a tower is conducted successfully. Experiments show that the results of the proposed methods are accurate, efficient and automatic, which have potential for real applications. The acceptance check is a key step to decide whether an overhead transmission line can be put into use. However, for the acceptance check of towers, the manual means is still adopted mostly nowadays, which is dangerous and inefficient. The main challenges for intelligent check technique are the automatic tower segmentation and intelligent requirements of some detection items. Here, based on point clouds from lidars, some intelligent methods are proposed for tower related acceptance check items. The geometric structural changing rules for towers are found and analyzed to identify and segment towers from the scene point cloud automatically. A model‐constrained method is proposed for fine filtering of towers. With point cloud registration strategies, the tilt angle of a tower is calculated intelligently and the defect detection of a tower is conducted successfully. Experiments show that the results of the proposed methods are accurate, efficient and automatic, which have potential for real applications. |
Author | Ma, Miao Du, Songlin Zhang, Kanjian Chen, Yuxin Li, Junyang Li, Yuhong Liu, Huan Wei, Haikun Jiang, Xuancheng Xia, Siyu Wang, Chenxing |
Author_xml | – sequence: 1 givenname: Miao orcidid: 0000-0002-1562-6458 surname: Ma fullname: Ma, Miao organization: School of Automation Southeast University Nanjing China – sequence: 2 givenname: Chenxing surname: Wang fullname: Wang, Chenxing organization: School of Automation Southeast University Nanjing China – sequence: 3 givenname: Yuhong surname: Li fullname: Li, Yuhong organization: School of Information, Product and System Waseda University Kitakyushu Japan – sequence: 4 givenname: Yuxin surname: Chen fullname: Chen, Yuxin organization: School of Automation Southeast University Nanjing China – sequence: 5 givenname: Siyu orcidid: 0000-0002-0953-6501 surname: Xia fullname: Xia, Siyu organization: School of Automation Southeast University Nanjing China – sequence: 6 givenname: Songlin surname: Du fullname: Du, Songlin organization: School of Automation Southeast University Nanjing China – sequence: 7 givenname: Junyang surname: Li fullname: Li, Junyang organization: School of Automation Southeast University Nanjing China – sequence: 8 givenname: Kanjian surname: Zhang fullname: Zhang, Kanjian organization: School of Automation Southeast University Nanjing China – sequence: 9 givenname: Huan surname: Liu fullname: Liu, Huan organization: Jiangsu Xingli Engineering and Management Co., Ltd Nanjing China – sequence: 10 givenname: Xuancheng surname: Jiang fullname: Jiang, Xuancheng organization: Jiangsu Xingli Engineering and Management Co., Ltd Nanjing China – sequence: 11 givenname: Haikun orcidid: 0000-0002-6667-3166 surname: Wei fullname: Wei, Haikun organization: School of Automation Southeast University Nanjing China |
BookMark | eNptkEtLAzEUhYNU0Kobf0HWQmseM5OZpYiPQsGNrlyEO8lNTR2TkkTFf-_UqgtxdR_c83HPmZJJiAEJOeVszlnVna-KFXMumeB75JCrms_apqsnv32rDsg05zVjdd1U6pA8LkLBYfArDIWCMbgpEAxS84TmmbqYaInvmDKNjsY3TE8IlpYEIb_4nH0MdPABaQ8ZLR2nTfQjyAzx1eZjsu9gyHjyXY_Iw_XV_eXtbHl3s7i8WM6MlLLMeimcZAaQA0NX28a1KG3PUXImRCVFVxkmrOwdgOgaCVWnhGkqbI1qUYE8Iosd10ZY603yL5A-dASvvxYxrTSk4s2AWhkYrStnbNdUooZedtC7jkHNlGqtHVlsxzIp5pzQaeMLlNHoaNoPmjO9DVpvg9ZfQY-Ssz-Snxf-Of4EImiCdw |
CitedBy_id | crossref_primary_10_32604_cmc_2024_059094 crossref_primary_10_1049_gtd2_13330 crossref_primary_10_1093_ijlct_ctaf042 |
Cites_doi | 10.3390/rs15092371 10.1016/j.isprsjprs.2020.03.018 10.1109/ICUAS.2014.6842267 10.1007/s42835-019-00230-w 10.1109/PandaFPE57779.2023.10140294 10.1109/TIM.2023.3293543 10.1109/JSTARS.2021.3133602 10.3390/app13031688 10.3390/rs11222600 10.1088/1742-6596/2030/1/012076 10.3390/rs10040613 10.1109/MRA.2012.2206675 10.1109/TGRS.2020.2989470 10.3390/rs11151798 10.3390/app13010407 10.1109/ICARSC52212.2021.9429772 10.5194/isprs-annals-IV-4-W4-81-2017 10.5194/isprs-annals-IV-2-W4-165-2017 10.1016/j.ijepes.2021.106987 10.3390/rs14020408 10.23919/ChiCC.2019.8866322 10.1109/EI252483.2021.9713663 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1049/gtd2.13021 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-8695 |
EndPage | 5089 |
ExternalDocumentID | oai_doaj_org_article_7ca0057fcd96425ab39abf90a50778dd 10_1049_gtd2_13021 |
GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 4.4 4IJ 6IK 8FE 8FG 8VB 96U AAHHS AAHJG AAJGR AAYXX ABJCF ABQXS ACCFJ ACCMX ACESK ACIWK ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CITATION EBS EJD F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IDLOA IGS IPLJI ITC K1G L6V LAI M43 M7S MCNEO MS~ O9- OK1 P62 PHGZM PHGZT PTHSS QWB RNS ROL RUI S0W U5U UNMZH ZL0 WIN |
ID | FETCH-LOGICAL-c333t-b32f30cae1a0ef5d6f8e3db1e3102243294c02d3bfaa2963a4972c64e8c78e7a3 |
IEDL.DBID | DOA |
ISSN | 1751-8687 |
IngestDate | Wed Aug 27 01:22:30 EDT 2025 Tue Jul 01 05:18:03 EDT 2025 Thu Apr 24 23:09:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-b32f30cae1a0ef5d6f8e3db1e3102243294c02d3bfaa2963a4972c64e8c78e7a3 |
ORCID | 0000-0002-6667-3166 0000-0002-1562-6458 0000-0002-0953-6501 |
OpenAccessLink | https://doaj.org/article/7ca0057fcd96425ab39abf90a50778dd |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7ca0057fcd96425ab39abf90a50778dd crossref_citationtrail_10_1049_gtd2_13021 crossref_primary_10_1049_gtd2_13021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-00 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-00 |
PublicationDecade | 2020 |
PublicationTitle | IET generation, transmission & distribution |
PublicationYear | 2023 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | Yang W. (e_1_2_9_13_1) 2018; 27 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_32_1 Shen Y. (e_1_2_9_7_1) 2023; 118 Wang W. (e_1_2_9_3_1) 2018; 8 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 Guo T. (e_1_2_9_5_1) 2018; 33 Zhao X. (e_1_2_9_12_1) 2018; 18 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 Shen X. (e_1_2_9_33_1) 2017; 31 e_1_2_9_2_1 Che K. (e_1_2_9_23_1) 2019; 51 Sohn G. (e_1_2_9_28_1) 2012; 13 e_1_2_9_26_1 Rodrigues O. (e_1_2_9_37_1) 1840; 5 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_29_1 Peng X. (e_1_2_9_9_1) 2017; 41 |
References_xml | – ident: e_1_2_9_31_1 doi: 10.3390/rs15092371 – volume: 13 start-page: 28 year: 2012 ident: e_1_2_9_28_1 article-title: Automatic powerline scene classification and reconstruction using airborne lidar data publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. – ident: e_1_2_9_22_1 doi: 10.1016/j.isprsjprs.2020.03.018 – ident: e_1_2_9_25_1 doi: 10.1109/ICUAS.2014.6842267 – ident: e_1_2_9_27_1 doi: 10.1007/s42835-019-00230-w – volume: 41 start-page: 3670 year: 2017 ident: e_1_2_9_9_1 article-title: Research on automatic positioning algorithm of power transmission towers based on UAV LiDAR publication-title: Power Syst. Technol. – ident: e_1_2_9_16_1 doi: 10.1109/PandaFPE57779.2023.10140294 – volume: 27 start-page: 30 year: 2018 ident: e_1_2_9_13_1 article-title: Research on high‐voltage line tower slope and curvature deformation based on TLS publication-title: Eng. Surv. Mapp. – ident: e_1_2_9_8_1 doi: 10.1109/TIM.2023.3293543 – ident: e_1_2_9_36_1 – ident: e_1_2_9_39_1 – ident: e_1_2_9_30_1 doi: 10.1109/JSTARS.2021.3133602 – volume: 18 start-page: 257 year: 2018 ident: e_1_2_9_12_1 article-title: A detection method for transmission line tower deformations based on binding bars publication-title: Sci. Tech. Energy – ident: e_1_2_9_18_1 doi: 10.3390/app13031688 – ident: e_1_2_9_10_1 doi: 10.3390/rs11222600 – ident: e_1_2_9_15_1 doi: 10.1088/1742-6596/2030/1/012076 – ident: e_1_2_9_20_1 doi: 10.3390/rs10040613 – ident: e_1_2_9_2_1 – ident: e_1_2_9_24_1 – volume: 31 start-page: 516 year: 2017 ident: e_1_2_9_33_1 article-title: Inclination measurement of transmission line tower based on terrestrial 3D lidar publication-title: J. Electron. Measur. Instrum. – ident: e_1_2_9_35_1 doi: 10.1109/MRA.2012.2206675 – ident: e_1_2_9_38_1 – volume: 33 start-page: 530 year: 2018 ident: e_1_2_9_5_1 article-title: Study on power tower extraction and fast positioning from airborne LiDAR data publication-title: Remote Sens. Technol. Appl. – ident: e_1_2_9_21_1 doi: 10.1109/TGRS.2020.2989470 – volume: 51 start-page: 121 year: 2019 ident: e_1_2_9_23_1 article-title: Inspection of electric transmission line fault based on UAV lidar publication-title: Nonlinear Opt. Quantum Opt. – ident: e_1_2_9_11_1 doi: 10.3390/rs11151798 – ident: e_1_2_9_19_1 doi: 10.3390/app13010407 – ident: e_1_2_9_6_1 doi: 10.1109/ICARSC52212.2021.9429772 – ident: e_1_2_9_4_1 doi: 10.5194/isprs-annals-IV-4-W4-81-2017 – volume: 5 start-page: 380 year: 1840 ident: e_1_2_9_37_1 article-title: Des lois géométriques qui régissent les déplacements d'un système solide dans l'espace, et de la variation des coordonnées provenant de ses déplacements consideérés indépendamment des causes qui peuvent les produire publication-title: J. Math. Pures Appl. – volume: 118 year: 2023 ident: e_1_2_9_7_1 article-title: An automatic framework for pylon detection by a hierarchical coarse‐to‐fine segmentation of powerline corridors from UAV LiDAR point clouds publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: e_1_2_9_29_1 doi: 10.5194/isprs-annals-IV-2-W4-165-2017 – ident: e_1_2_9_32_1 doi: 10.1016/j.ijepes.2021.106987 – ident: e_1_2_9_34_1 – ident: e_1_2_9_17_1 doi: 10.3390/rs14020408 – ident: e_1_2_9_26_1 doi: 10.23919/ChiCC.2019.8866322 – volume: 8 start-page: 10 year: 2018 ident: e_1_2_9_3_1 article-title: Comparison of inclination measurement methods of power tower publication-title: Electron. Power Surv. Design – ident: e_1_2_9_14_1 doi: 10.1109/EI252483.2021.9713663 |
SSID | ssj0055647 |
Score | 2.4015753 |
Snippet | The acceptance check is a key step to decide whether an overhead transmission line can be put into use. However, for the acceptance check of towers, the manual... Abstract The acceptance check is a key step to decide whether an overhead transmission line can be put into use. However, for the acceptance check of towers,... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 5074 |
SubjectTerms | computer vision power system security power transmission lines |
Title | Intelligent acceptance check for towers of overhead transmission line based on point clouds |
URI | https://doaj.org/article/7ca0057fcd96425ab39abf90a50778dd |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ9YXC3rxELrZR3b3qGKpgp4sFDyEzT5ELE3R9P87k7SlguDFY8JkCd8kO98mO99HyFWCmhUqyzJlRcik4DZzRZIZ0zE3ToXALTY4Pz0Xw5F8HKvxmtUX7gnr5IE74PraO2yYTD5YoMrKVcK6KlnmgMhoEwLOvlDzloupbg5WqmitxaA25pkpjF4Kk0rbf2sCRw9knv8oRWuK_W1pGeySnQUnpDfdveyRjTjdJ9trSoEH5PVhJZ3ZUOdxLwqmiwLk_oMC8aSd3RmtE8VNmTDFBtpgHYI84gcxinSSYs0KFI5m9TsM5Cf1PHwdktHg_uVumC18ETIvhGiySvAkmHcxdywmFYpkoghVHkWrDwd4S894EFVyjsML5qTV3BcyGq9N1E4ckc1pPY3HhCahXQKGCBdYqSCCyeRw0WiYMlXQPXK9hKj0C9Fw9K6YlO3Pa2lLhLNs4eyRy1XsrJPK-DXqFpFeRaC8dXsCkl4ukl7-lfST_xjklGyhd3zXWHhGNpvPeTwHhtFUF-3D9A1MEM7A |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+acceptance+check+for+towers+of+overhead+transmission+line+based+on+point+clouds&rft.jtitle=IET+generation%2C+transmission+%26+distribution&rft.au=Ma%2C+Miao&rft.au=Wang%2C+Chenxing&rft.au=Li%2C+Yuhong&rft.au=Chen%2C+Yuxin&rft.date=2023-11-01&rft.issn=1751-8687&rft.eissn=1751-8695&rft.volume=17&rft.issue=22&rft.spage=5074&rft.epage=5089&rft_id=info:doi/10.1049%2Fgtd2.13021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_gtd2_13021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8687&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8687&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8687&client=summon |