Intelligent acceptance check for towers of overhead transmission line based on point clouds

The acceptance check is a key step to decide whether an overhead transmission line can be put into use. However, for the acceptance check of towers, the manual means is still adopted mostly nowadays, which is dangerous and inefficient. The main challenges for intelligent check technique are the auto...

Full description

Saved in:
Bibliographic Details
Published inIET generation, transmission & distribution Vol. 17; no. 22; pp. 5074 - 5089
Main Authors Ma, Miao, Wang, Chenxing, Li, Yuhong, Chen, Yuxin, Xia, Siyu, Du, Songlin, Li, Junyang, Zhang, Kanjian, Liu, Huan, Jiang, Xuancheng, Wei, Haikun
Format Journal Article
LanguageEnglish
Published Wiley 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The acceptance check is a key step to decide whether an overhead transmission line can be put into use. However, for the acceptance check of towers, the manual means is still adopted mostly nowadays, which is dangerous and inefficient. The main challenges for intelligent check technique are the automatic tower segmentation and intelligent requirements of some detection items. Here, based on point clouds from lidars, some intelligent methods are proposed for tower related acceptance check items. The geometric structural changing rules for towers are found and analyzed to identify and segment towers from the scene point cloud automatically. A model‐constrained method is proposed for fine filtering of towers. With point cloud registration strategies, the tilt angle of a tower is calculated intelligently and the defect detection of a tower is conducted successfully. Experiments show that the results of the proposed methods are accurate, efficient and automatic, which have potential for real applications.
AbstractList Abstract The acceptance check is a key step to decide whether an overhead transmission line can be put into use. However, for the acceptance check of towers, the manual means is still adopted mostly nowadays, which is dangerous and inefficient. The main challenges for intelligent check technique are the automatic tower segmentation and intelligent requirements of some detection items. Here, based on point clouds from lidars, some intelligent methods are proposed for tower related acceptance check items. The geometric structural changing rules for towers are found and analyzed to identify and segment towers from the scene point cloud automatically. A model‐constrained method is proposed for fine filtering of towers. With point cloud registration strategies, the tilt angle of a tower is calculated intelligently and the defect detection of a tower is conducted successfully. Experiments show that the results of the proposed methods are accurate, efficient and automatic, which have potential for real applications.
The acceptance check is a key step to decide whether an overhead transmission line can be put into use. However, for the acceptance check of towers, the manual means is still adopted mostly nowadays, which is dangerous and inefficient. The main challenges for intelligent check technique are the automatic tower segmentation and intelligent requirements of some detection items. Here, based on point clouds from lidars, some intelligent methods are proposed for tower related acceptance check items. The geometric structural changing rules for towers are found and analyzed to identify and segment towers from the scene point cloud automatically. A model‐constrained method is proposed for fine filtering of towers. With point cloud registration strategies, the tilt angle of a tower is calculated intelligently and the defect detection of a tower is conducted successfully. Experiments show that the results of the proposed methods are accurate, efficient and automatic, which have potential for real applications.
Author Ma, Miao
Du, Songlin
Zhang, Kanjian
Chen, Yuxin
Li, Junyang
Li, Yuhong
Liu, Huan
Wei, Haikun
Jiang, Xuancheng
Xia, Siyu
Wang, Chenxing
Author_xml – sequence: 1
  givenname: Miao
  orcidid: 0000-0002-1562-6458
  surname: Ma
  fullname: Ma, Miao
  organization: School of Automation Southeast University Nanjing China
– sequence: 2
  givenname: Chenxing
  surname: Wang
  fullname: Wang, Chenxing
  organization: School of Automation Southeast University Nanjing China
– sequence: 3
  givenname: Yuhong
  surname: Li
  fullname: Li, Yuhong
  organization: School of Information, Product and System Waseda University Kitakyushu Japan
– sequence: 4
  givenname: Yuxin
  surname: Chen
  fullname: Chen, Yuxin
  organization: School of Automation Southeast University Nanjing China
– sequence: 5
  givenname: Siyu
  orcidid: 0000-0002-0953-6501
  surname: Xia
  fullname: Xia, Siyu
  organization: School of Automation Southeast University Nanjing China
– sequence: 6
  givenname: Songlin
  surname: Du
  fullname: Du, Songlin
  organization: School of Automation Southeast University Nanjing China
– sequence: 7
  givenname: Junyang
  surname: Li
  fullname: Li, Junyang
  organization: School of Automation Southeast University Nanjing China
– sequence: 8
  givenname: Kanjian
  surname: Zhang
  fullname: Zhang, Kanjian
  organization: School of Automation Southeast University Nanjing China
– sequence: 9
  givenname: Huan
  surname: Liu
  fullname: Liu, Huan
  organization: Jiangsu Xingli Engineering and Management Co., Ltd Nanjing China
– sequence: 10
  givenname: Xuancheng
  surname: Jiang
  fullname: Jiang, Xuancheng
  organization: Jiangsu Xingli Engineering and Management Co., Ltd Nanjing China
– sequence: 11
  givenname: Haikun
  orcidid: 0000-0002-6667-3166
  surname: Wei
  fullname: Wei, Haikun
  organization: School of Automation Southeast University Nanjing China
BookMark eNptkEtLAzEUhYNU0Kobf0HWQmseM5OZpYiPQsGNrlyEO8lNTR2TkkTFf-_UqgtxdR_c83HPmZJJiAEJOeVszlnVna-KFXMumeB75JCrms_apqsnv32rDsg05zVjdd1U6pA8LkLBYfArDIWCMbgpEAxS84TmmbqYaInvmDKNjsY3TE8IlpYEIb_4nH0MdPABaQ8ZLR2nTfQjyAzx1eZjsu9gyHjyXY_Iw_XV_eXtbHl3s7i8WM6MlLLMeimcZAaQA0NX28a1KG3PUXImRCVFVxkmrOwdgOgaCVWnhGkqbI1qUYE8Iosd10ZY603yL5A-dASvvxYxrTSk4s2AWhkYrStnbNdUooZedtC7jkHNlGqtHVlsxzIp5pzQaeMLlNHoaNoPmjO9DVpvg9ZfQY-Ssz-Snxf-Of4EImiCdw
CitedBy_id crossref_primary_10_32604_cmc_2024_059094
crossref_primary_10_1049_gtd2_13330
crossref_primary_10_1093_ijlct_ctaf042
Cites_doi 10.3390/rs15092371
10.1016/j.isprsjprs.2020.03.018
10.1109/ICUAS.2014.6842267
10.1007/s42835-019-00230-w
10.1109/PandaFPE57779.2023.10140294
10.1109/TIM.2023.3293543
10.1109/JSTARS.2021.3133602
10.3390/app13031688
10.3390/rs11222600
10.1088/1742-6596/2030/1/012076
10.3390/rs10040613
10.1109/MRA.2012.2206675
10.1109/TGRS.2020.2989470
10.3390/rs11151798
10.3390/app13010407
10.1109/ICARSC52212.2021.9429772
10.5194/isprs-annals-IV-4-W4-81-2017
10.5194/isprs-annals-IV-2-W4-165-2017
10.1016/j.ijepes.2021.106987
10.3390/rs14020408
10.23919/ChiCC.2019.8866322
10.1109/EI252483.2021.9713663
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1049/gtd2.13021
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8695
EndPage 5089
ExternalDocumentID oai_doaj_org_article_7ca0057fcd96425ab39abf90a50778dd
10_1049_gtd2_13021
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
4IJ
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
AAYXX
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CITATION
EBS
EJD
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IDLOA
IGS
IPLJI
ITC
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OK1
P62
PHGZM
PHGZT
PTHSS
QWB
RNS
ROL
RUI
S0W
U5U
UNMZH
ZL0
WIN
ID FETCH-LOGICAL-c333t-b32f30cae1a0ef5d6f8e3db1e3102243294c02d3bfaa2963a4972c64e8c78e7a3
IEDL.DBID DOA
ISSN 1751-8687
IngestDate Wed Aug 27 01:22:30 EDT 2025
Tue Jul 01 05:18:03 EDT 2025
Thu Apr 24 23:09:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-b32f30cae1a0ef5d6f8e3db1e3102243294c02d3bfaa2963a4972c64e8c78e7a3
ORCID 0000-0002-6667-3166
0000-0002-1562-6458
0000-0002-0953-6501
OpenAccessLink https://doaj.org/article/7ca0057fcd96425ab39abf90a50778dd
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_7ca0057fcd96425ab39abf90a50778dd
crossref_citationtrail_10_1049_gtd2_13021
crossref_primary_10_1049_gtd2_13021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-00
2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-00
PublicationDecade 2020
PublicationTitle IET generation, transmission & distribution
PublicationYear 2023
Publisher Wiley
Publisher_xml – name: Wiley
References Yang W. (e_1_2_9_13_1) 2018; 27
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_32_1
Shen Y. (e_1_2_9_7_1) 2023; 118
Wang W. (e_1_2_9_3_1) 2018; 8
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
Guo T. (e_1_2_9_5_1) 2018; 33
Zhao X. (e_1_2_9_12_1) 2018; 18
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
Shen X. (e_1_2_9_33_1) 2017; 31
e_1_2_9_2_1
Che K. (e_1_2_9_23_1) 2019; 51
Sohn G. (e_1_2_9_28_1) 2012; 13
e_1_2_9_26_1
Rodrigues O. (e_1_2_9_37_1) 1840; 5
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_29_1
Peng X. (e_1_2_9_9_1) 2017; 41
References_xml – ident: e_1_2_9_31_1
  doi: 10.3390/rs15092371
– volume: 13
  start-page: 28
  year: 2012
  ident: e_1_2_9_28_1
  article-title: Automatic powerline scene classification and reconstruction using airborne lidar data
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
– ident: e_1_2_9_22_1
  doi: 10.1016/j.isprsjprs.2020.03.018
– ident: e_1_2_9_25_1
  doi: 10.1109/ICUAS.2014.6842267
– ident: e_1_2_9_27_1
  doi: 10.1007/s42835-019-00230-w
– volume: 41
  start-page: 3670
  year: 2017
  ident: e_1_2_9_9_1
  article-title: Research on automatic positioning algorithm of power transmission towers based on UAV LiDAR
  publication-title: Power Syst. Technol.
– ident: e_1_2_9_16_1
  doi: 10.1109/PandaFPE57779.2023.10140294
– volume: 27
  start-page: 30
  year: 2018
  ident: e_1_2_9_13_1
  article-title: Research on high‐voltage line tower slope and curvature deformation based on TLS
  publication-title: Eng. Surv. Mapp.
– ident: e_1_2_9_8_1
  doi: 10.1109/TIM.2023.3293543
– ident: e_1_2_9_36_1
– ident: e_1_2_9_39_1
– ident: e_1_2_9_30_1
  doi: 10.1109/JSTARS.2021.3133602
– volume: 18
  start-page: 257
  year: 2018
  ident: e_1_2_9_12_1
  article-title: A detection method for transmission line tower deformations based on binding bars
  publication-title: Sci. Tech. Energy
– ident: e_1_2_9_18_1
  doi: 10.3390/app13031688
– ident: e_1_2_9_10_1
  doi: 10.3390/rs11222600
– ident: e_1_2_9_15_1
  doi: 10.1088/1742-6596/2030/1/012076
– ident: e_1_2_9_20_1
  doi: 10.3390/rs10040613
– ident: e_1_2_9_2_1
– ident: e_1_2_9_24_1
– volume: 31
  start-page: 516
  year: 2017
  ident: e_1_2_9_33_1
  article-title: Inclination measurement of transmission line tower based on terrestrial 3D lidar
  publication-title: J. Electron. Measur. Instrum.
– ident: e_1_2_9_35_1
  doi: 10.1109/MRA.2012.2206675
– ident: e_1_2_9_38_1
– volume: 33
  start-page: 530
  year: 2018
  ident: e_1_2_9_5_1
  article-title: Study on power tower extraction and fast positioning from airborne LiDAR data
  publication-title: Remote Sens. Technol. Appl.
– ident: e_1_2_9_21_1
  doi: 10.1109/TGRS.2020.2989470
– volume: 51
  start-page: 121
  year: 2019
  ident: e_1_2_9_23_1
  article-title: Inspection of electric transmission line fault based on UAV lidar
  publication-title: Nonlinear Opt. Quantum Opt.
– ident: e_1_2_9_11_1
  doi: 10.3390/rs11151798
– ident: e_1_2_9_19_1
  doi: 10.3390/app13010407
– ident: e_1_2_9_6_1
  doi: 10.1109/ICARSC52212.2021.9429772
– ident: e_1_2_9_4_1
  doi: 10.5194/isprs-annals-IV-4-W4-81-2017
– volume: 5
  start-page: 380
  year: 1840
  ident: e_1_2_9_37_1
  article-title: Des lois géométriques qui régissent les déplacements d'un système solide dans l'espace, et de la variation des coordonnées provenant de ses déplacements consideérés indépendamment des causes qui peuvent les produire
  publication-title: J. Math. Pures Appl.
– volume: 118
  year: 2023
  ident: e_1_2_9_7_1
  article-title: An automatic framework for pylon detection by a hierarchical coarse‐to‐fine segmentation of powerline corridors from UAV LiDAR point clouds
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: e_1_2_9_29_1
  doi: 10.5194/isprs-annals-IV-2-W4-165-2017
– ident: e_1_2_9_32_1
  doi: 10.1016/j.ijepes.2021.106987
– ident: e_1_2_9_34_1
– ident: e_1_2_9_17_1
  doi: 10.3390/rs14020408
– ident: e_1_2_9_26_1
  doi: 10.23919/ChiCC.2019.8866322
– volume: 8
  start-page: 10
  year: 2018
  ident: e_1_2_9_3_1
  article-title: Comparison of inclination measurement methods of power tower
  publication-title: Electron. Power Surv. Design
– ident: e_1_2_9_14_1
  doi: 10.1109/EI252483.2021.9713663
SSID ssj0055647
Score 2.4015753
Snippet The acceptance check is a key step to decide whether an overhead transmission line can be put into use. However, for the acceptance check of towers, the manual...
Abstract The acceptance check is a key step to decide whether an overhead transmission line can be put into use. However, for the acceptance check of towers,...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 5074
SubjectTerms computer vision
power system security
power transmission lines
Title Intelligent acceptance check for towers of overhead transmission line based on point clouds
URI https://doaj.org/article/7ca0057fcd96425ab39abf90a50778dd
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ9YXC3rxELrZR3b3qGKpgp4sFDyEzT5ELE3R9P87k7SlguDFY8JkCd8kO98mO99HyFWCmhUqyzJlRcik4DZzRZIZ0zE3ToXALTY4Pz0Xw5F8HKvxmtUX7gnr5IE74PraO2yYTD5YoMrKVcK6KlnmgMhoEwLOvlDzloupbg5WqmitxaA25pkpjF4Kk0rbf2sCRw9knv8oRWuK_W1pGeySnQUnpDfdveyRjTjdJ9trSoEH5PVhJZ3ZUOdxLwqmiwLk_oMC8aSd3RmtE8VNmTDFBtpgHYI84gcxinSSYs0KFI5m9TsM5Cf1PHwdktHg_uVumC18ETIvhGiySvAkmHcxdywmFYpkoghVHkWrDwd4S894EFVyjsML5qTV3BcyGq9N1E4ckc1pPY3HhCahXQKGCBdYqSCCyeRw0WiYMlXQPXK9hKj0C9Fw9K6YlO3Pa2lLhLNs4eyRy1XsrJPK-DXqFpFeRaC8dXsCkl4ukl7-lfST_xjklGyhd3zXWHhGNpvPeTwHhtFUF-3D9A1MEM7A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+acceptance+check+for+towers+of+overhead+transmission+line+based+on+point+clouds&rft.jtitle=IET+generation%2C+transmission+%26+distribution&rft.au=Ma%2C+Miao&rft.au=Wang%2C+Chenxing&rft.au=Li%2C+Yuhong&rft.au=Chen%2C+Yuxin&rft.date=2023-11-01&rft.issn=1751-8687&rft.eissn=1751-8695&rft.volume=17&rft.issue=22&rft.spage=5074&rft.epage=5089&rft_id=info:doi/10.1049%2Fgtd2.13021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_gtd2_13021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8687&client=summon