Cross-Scale Transformer-Based Matching Network for Generalizable Person Re-Identification

While the person re-identification (Re-ID) task has made significant progress in closed-set setting in recent years, its generalizability to unknown domains continues to be limited. To tackle the issue, the domain generalization (DG) Re-ID task has been proposed. The current state-of-the-art approac...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 47406 - 47417
Main Authors Xiao, Junjie, Jiang, Jinhua, Huang, Jianyong, Hu, Wei, Zhang, Wenfeng
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While the person re-identification (Re-ID) task has made significant progress in closed-set setting in recent years, its generalizability to unknown domains continues to be limited. To tackle the issue, the domain generalization (DG) Re-ID task has been proposed. The current state-of-the-art approach involves deep feature matching, where key regions of image pairs are matched at the same scale. However, the method does not take into account the variability of angles in real image acquisition. To resolve the problem, we propose an innovative deep image matching framework called Cross-scale Transformer-based Matching Network (CTMN) for DG Re-ID task. CTMN model matches two images through cross-scale local respondence rather than using fixed representations. The Transformer is specifically adjusted to enable effective local interactions between query and gallery images across different scales. Additionally, deformable convolution is incorporated to better segment the local regions of the person before the procedure for matching image pairs. Lastly, the Style Normalization Module (SNM) is added to remove identity-irrelevant features, improving the matching results. Extensive experiments on multiple DG Re-ID tasks demonstrate the advantages of our proposed method over existing state-of-the-arts.
AbstractList While the person re-identification (Re-ID) task has made significant progress in closed-set setting in recent years, its generalizability to unknown domains continues to be limited. To tackle the issue, the domain generalization (DG) Re-ID task has been proposed. The current state-of-the-art approach involves deep feature matching, where key regions of image pairs are matched at the same scale. However, the method does not take into account the variability of angles in real image acquisition. To resolve the problem, we propose an innovative deep image matching framework called Cross-scale Transformer-based Matching Network (CTMN) for DG Re-ID task. CTMN model matches two images through cross-scale local respondence rather than using fixed representations. The Transformer is specifically adjusted to enable effective local interactions between query and gallery images across different scales. Additionally, deformable convolution is incorporated to better segment the local regions of the person before the procedure for matching image pairs. Lastly, the Style Normalization Module (SNM) is added to remove identity-irrelevant features, improving the matching results. Extensive experiments on multiple DG Re-ID tasks demonstrate the advantages of our proposed method over existing state-of-the-arts.
Author Hu, Wei
Xiao, Junjie
Zhang, Wenfeng
Jiang, Jinhua
Huang, Jianyong
Author_xml – sequence: 1
  givenname: Junjie
  orcidid: 0009-0004-6861-6343
  surname: Xiao
  fullname: Xiao, Junjie
  organization: School of Computer and Information Science, Chongqing Normal University, Chongqing, China
– sequence: 2
  givenname: Jinhua
  orcidid: 0009-0006-4215-5176
  surname: Jiang
  fullname: Jiang, Jinhua
  organization: School of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 3
  givenname: Jianyong
  surname: Huang
  fullname: Huang, Jianyong
  organization: Qingdao Education Equipment and Information Technology Center, Qingdao, China
– sequence: 4
  givenname: Wei
  orcidid: 0000-0002-4637-8995
  surname: Hu
  fullname: Hu, Wei
  email: wei.workstation@gmail.com
  organization: School of Computer and Information Science, Chongqing Normal University, Chongqing, China
– sequence: 5
  givenname: Wenfeng
  orcidid: 0000-0001-7459-2510
  surname: Zhang
  fullname: Zhang, Wenfeng
  email: itzhangwf@cqnu.edu.cn
  organization: School of Computer and Information Science, Chongqing Normal University, Chongqing, China
BookMark eNpNkNtKw0AQhhep4KlPoBd5gdQ95LB7WUOtBU_Y3ni1TGYnutpmZRMQfXpTK9K5mWGG7x_4TtioDS0xdi74RAhuLqdVNVsuJ5LLfKLyTCspDtixFIVJVa6K0d58xMZd98aH0sMqL4_ZcxVD16VLhDUlqwht14S4oZheQUcuuYMeX337ktxT_xniezJckzm1FGHtv6EeoEeKXWiTJ0oXjtreNx6h96E9Y4cNrDsa__VTtrqeraqb9PZhvqimtykqpfoUdK2bhnNlsHConTRCi5IkogGZoRBoZJlnuZGGG5G7PBMSFXLjdAmZU6dssYt1Ad7sR_QbiF82gLe_ixBfLMTe45qsq6EoClMg1S7TJWlysgHFh3co6waHLLXLwq2USM1_nuB269ruXNuta_vneqAudpQnoj3CCC5kqX4AUjB9bg
CODEN IAECCG
Cites_doi 10.1109/CVPR52688.2022.00485
10.1109/CVPR46437.2021.00343
10.1109/CVPR.2014.27
10.1007/978-3-319-58347-1_10
10.1016/j.patcog.2019.06.006
10.1109/LSP.2021.3115040
10.1109/ICCV.2019.00219
10.1109/ICCV48922.2021.00986
10.48550/ARXIV.1706.03762
10.1109/VCIP.2018.8698729
10.1109/CVPR46437.2021.01588
10.1007/978-3-030-58621-8_27
10.1109/ICDAR.2019.00177
10.1109/ICCV.2015.133
10.1007/978-3-031-20050-2_26
10.1145/3240508.3240552
10.1007/978-3-030-58610-2_9
10.1109/LSP.2023.3313088
10.1109/TPAMI.2019.2928294
10.1109/CVPR46437.2021.00682
10.1109/WACV45572.2020.9093521
10.1109/TPAMI.2021.3069237
10.1109/TCSVT.2021.3076097
10.1214/aoms/1177729586
10.1109/IROS.2017.8202133
10.1145/3534678.3539232
10.1109/CVPR42600.2020.00321
10.1109/CVPR.2018.00016
10.1609/aaai.v35i4.16468
10.1109/WACV56688.2023.00051
10.1109/WACVW58289.2023.00009
10.1007/978-3-319-48881-3_2
10.1109/ICCV48922.2021.00061
10.1109/TKDE.2022.3178128
10.1109/ICCV48922.2021.01474
10.1109/ACCESS.2024.3390406
10.1049/ipr2.12794
10.1609/aaai.v36i1.19963
10.1109/CVPR46437.2021.01411
10.1007/s11263-024-02169-6
10.1109/TPAMI.2022.3157441
10.1007/978-3-030-01225-0_29
10.1109/CVPR52688.2022.00721
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/ACCESS.2025.3548321
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 47417
ExternalDocumentID oai_doaj_org_article_dba66696cebd487e8ed2fa3017ec2bfc
10_1109_ACCESS_2025_3548321
10910127
Genre orig-research
GrantInformation_xml – fundername: Brain-Gain Plan of New Chongqing Foundation
  grantid: CSTB2024YCJH-KYXM0108
– fundername: Chongqing Normal University Foundation
  grantid: 24XLB018; 21XLB026
  funderid: 10.13039/100010338
– fundername: Science and Technology Research Program of Chongqing Municipal Education Commission
  grantid: KJQN202200551
– fundername: Natural Science Foundation of Chongqing
  grantid: CSTB2023NSCQ-MSX0407
  funderid: 10.13039/501100005230
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c333t-a8b8ff0039c6dc8d291817e2cc9a24c11c9275459290915d5412c3c09d87a4d3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:26:25 EDT 2025
Sun Jul 06 05:06:50 EDT 2025
Wed Aug 27 01:39:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-a8b8ff0039c6dc8d291817e2cc9a24c11c9275459290915d5412c3c09d87a4d3
ORCID 0000-0001-7459-2510
0009-0004-6861-6343
0009-0006-4215-5176
0000-0002-4637-8995
OpenAccessLink https://doaj.org/article/dba66696cebd487e8ed2fa3017ec2bfc
PageCount 12
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3548321
doaj_primary_oai_doaj_org_article_dba66696cebd487e8ed2fa3017ec2bfc
ieee_primary_10910127
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References Dou (ref27)
ref57
ref12
ref56
ref15
ref14
Shankar (ref22) 2018
ref53
ref52
ref11
ref55
He (ref17) 2021
ref54
ref16
Xiang (ref37) 2022
ref19
Ulyanov (ref43) 2016
ref51
ref50
Tatsunami (ref10)
ref46
ref45
ref48
ref47
ref41
ref44
Arjovsky (ref25) 2019
Zheng (ref13) 2021
ref49
Ganin (ref23)
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref36
ref31
Ge (ref29) 2020
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Dosovitskiy (ref34) 2020
ref24
ref26
ref20
ref21
ref28
Muandet (ref42)
Liao (ref18)
Mehra (ref8) 2022
References_xml – ident: ref48
  doi: 10.1109/CVPR52688.2022.00485
– year: 2022
  ident: ref37
  article-title: Deep multimodal fusion for generalizable person re-identification
  publication-title: arXiv:2211.00933
– ident: ref6
  doi: 10.1109/CVPR46437.2021.00343
– ident: ref47
  doi: 10.1109/CVPR.2014.27
– ident: ref24
  doi: 10.1007/978-3-319-58347-1_10
– ident: ref56
  doi: 10.1016/j.patcog.2019.06.006
– ident: ref4
  doi: 10.1109/LSP.2021.3115040
– ident: ref55
  doi: 10.1109/ICCV.2019.00219
– ident: ref32
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref35
  doi: 10.48550/ARXIV.1706.03762
– ident: ref57
  doi: 10.1109/VCIP.2018.8698729
– ident: ref15
  doi: 10.1109/CVPR46437.2021.01588
– ident: ref19
  doi: 10.1007/978-3-030-58621-8_27
– year: 2020
  ident: ref29
  article-title: Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification
  publication-title: arXiv:2001.01526
– year: 2016
  ident: ref43
  article-title: Instance normalization: The missing ingredient for fast stylization
  publication-title: arXiv:1607.08022
– year: 2021
  ident: ref17
  article-title: Semi-supervised domain generalizable person re-identification
  publication-title: arXiv:2108.05045
– ident: ref41
  doi: 10.1109/ICDAR.2019.00177
– ident: ref45
  doi: 10.1109/ICCV.2015.133
– year: 2019
  ident: ref25
  article-title: Invariant risk minimization
  publication-title: arXiv:1907.02893
– ident: ref9
  doi: 10.1007/978-3-031-20050-2_26
– ident: ref51
  doi: 10.1145/3240508.3240552
– ident: ref54
  doi: 10.1007/978-3-030-58610-2_9
– year: 2018
  ident: ref22
  article-title: Generalizing across domains via cross-gradient training
  publication-title: arXiv:1804.10745
– ident: ref39
  doi: 10.1109/LSP.2023.3313088
– start-page: 38204
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref10
  article-title: Sequencer: Deep LSTM for image classification
– ident: ref52
  doi: 10.1109/TPAMI.2019.2928294
– year: 2020
  ident: ref34
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
  publication-title: arXiv:2010.11929
– ident: ref20
  doi: 10.1109/CVPR46437.2021.00682
– ident: ref53
  doi: 10.1109/WACV45572.2020.9093521
– ident: ref50
  doi: 10.1109/TPAMI.2021.3069237
– ident: ref1
  doi: 10.1109/TCSVT.2021.3076097
– ident: ref49
  doi: 10.1214/aoms/1177729586
– start-page: 10
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref42
  article-title: Domain generalization via invariant feature representation
– ident: ref21
  doi: 10.1109/IROS.2017.8202133
– ident: ref12
  doi: 10.1145/3534678.3539232
– ident: ref38
  doi: 10.1109/CVPR42600.2020.00321
– ident: ref44
  doi: 10.1109/CVPR.2018.00016
– start-page: 1992
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref18
  article-title: TransMatcher: Deep image matching through transformers for generalizable person re-identification
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref27
  article-title: Domain generalization via model-agnostic learning of semantic features
– ident: ref30
  doi: 10.1609/aaai.v35i4.16468
– ident: ref11
  doi: 10.1109/WACV56688.2023.00051
– year: 2021
  ident: ref13
  article-title: Calibrated feature decomposition for generalizable person re-identification
  publication-title: arXiv:2111.13945
– year: 2022
  ident: ref8
  article-title: On certifying and improving generalization to unseen domains
  publication-title: arXiv:2206.12364
– ident: ref36
  doi: 10.1109/WACVW58289.2023.00009
– ident: ref46
  doi: 10.1007/978-3-319-48881-3_2
– ident: ref31
  doi: 10.1109/ICCV48922.2021.00061
– ident: ref7
  doi: 10.1109/TKDE.2022.3178128
– ident: ref33
  doi: 10.1109/ICCV48922.2021.01474
– ident: ref2
  doi: 10.1109/ACCESS.2024.3390406
– ident: ref3
  doi: 10.1049/ipr2.12794
– ident: ref16
  doi: 10.1609/aaai.v36i1.19963
– ident: ref26
  doi: 10.1109/CVPR46437.2021.01411
– ident: ref14
  doi: 10.1007/s11263-024-02169-6
– ident: ref28
  doi: 10.1109/TPAMI.2022.3157441
– start-page: 1180
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref23
  article-title: Unsupervised domain adaptation by backpropagation
– ident: ref40
  doi: 10.1007/978-3-030-01225-0_29
– ident: ref5
  doi: 10.1109/CVPR52688.2022.00721
SSID ssj0000816957
Score 2.3341165
Snippet While the person re-identification (Re-ID) task has made significant progress in closed-set setting in recent years, its generalizability to unknown domains...
SourceID doaj
crossref
ieee
SourceType Open Website
Index Database
Publisher
StartPage 47406
SubjectTerms Accuracy
Adaptation models
Convolution
cross-scale local respondence
deep image matching
deformable convolution
Domain generalization
Feature extraction
Identification of persons
Image matching
Image segmentation
Pedestrians
person re-identification
Transformers
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlFeysBI-nCcOBnbiqpCokJQpDJFfpwXpBZV6cKv585OUYuExBY5TmL7HN9357vPjN1xoXpaOYglMRAKCiDUGdHjgciVUNL1nA-QnWaTN_E4T-d1srrPhQEAH3wGHbr0e_l2adbkKusSiSVtlTZYAy23kKz141ChEySKVNbMQli1OxiNsBNoA_K0kyAyT3h_R_t4kv6dU1W8UhkfsemmOSGW5KOzrnTHfP1iavx3e4_ZYQ0vo0GYDydsDxan7GCLdPCMvY-oafErCgei2Qa3wioeokKz0ROuzeSViqYhQDzCu1FNTk0RYPjQs0fp0QvEIc3X1X6_FpuNH2ajSVwfsBCbJEmqWOU6d47Sc01mTW55gfpeAjemUFyYft8UXCLEQgiFPUltKvrcJKZX2FwqYZNz1lwsF3DBIm6NUBb1baak0JZrhbADLL7auJRL3mb3m3EvPwONRunNj15RBjGVJKayFlObDUk2P1WJA9sX4PCW9S9VWq3Q9ioyA9qi2QU5WO4ULlgSDNfOtFmLRLL1vSCNyz_Kr9g-tSH4V65Zs1qt4QYRR6Vv_Uz7BtmA1Ao
  priority: 102
  providerName: IEEE
Title Cross-Scale Transformer-Based Matching Network for Generalizable Person Re-Identification
URI https://ieeexplore.ieee.org/document/10910127
https://doaj.org/article/dba66696cebd487e8ed2fa3017ec2bfc
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQjyLKo_LASGjiOHE8thFVhUSFIEhlivwcC6rK_-fOTlE6sbDmcXG-s-4-n86fCbljXKVaeZcIVCDk2ECoS5THc7xSXAmf-tAguywX7_xpVax6R31hT1iUB47ATaxWwLBlaZy2QK5d5SzzCqalcIZpbzD6Qs7rLaZCDK6yUhaikxnKUjmZ1jX8ESwIWfGQA03PWbaXioJi_94RKyHDzE_IcUcN6TQO6ZQcuPUZOeoJBp6TjxotJW8ArKPNjnO6TTKDZGTpM8RVrCjRZWzupnCXdsLS2L0FL70Ehk1fXRK36PquZjckzfyxqRdJdzhCYvI83yaq0pX3uLXWlNZUlknI1cIxY6Ri3GSZkUwAPQL6A_AUtuAZM7lJpa2E4ja_IIP159pdEsqs4cpCriyV4NoyrYAyOAumjS-YYCNyv4Op_YoSGG1YOqSyjai2iGrboToiM4Ty91HUrw4XwKtt59X2L6-OyBAd0fueRCEycfUfxq_JIQ44FlJuyGC7-Xa3QC22ehxm0TjsAvwB9j7NHg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-swEB6xHIAD2wNRtpcDR1Iax4mTI1SgwoMKQZHgFHkZX5AKQu2FX8-MnSJAehK3yHGS8YzjWTzzGeBISN0z2mOqGIFQcgKhKRkeD2WlpVa-50OC7LAcPMirx-KxLVYPtTCIGJLPsMuXYS_fvdgph8pOGMSSt0rnYZEUf5HFcq3PkAqfIVEXqsUWos4np_0-DYO8QFF0c7LNc5F90z8Bpv_buSpBrVyswXBGUMwmee5OJ6Zr339gNf6a4nVYbQ3M5DTOiA2Yw_EmrHyBHfwDT30mLb0n8WAymlmu-JaekUpzyQ2tzhyXSoYxRTyhu0kLT805YPTQbbDTkztMY6GvbyN_WzC6OB_1B2l7xEJq8zyfpLoylfdcoGtLZysnatL4CoW1tRbSZpmthSJekxFFIylcITNhc9urXaW0dPk2LIxfxrgDiXBWakcat9RKGieMJsMDHb3a-kIo0YHjGd-b1wik0QQHpFc3UUwNi6lpxdSBM5bNZ1dGwQ4NxN6m_akaZzR5X3Vp0ThyvLBCJ7ymJUuhFcbbDmyxSL58L0pj9z_tf2FpMLq5bq4vh__2YJnpidGWfViYvE3xgOyPiTkMs-4DEUjXUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Scale+Transformer-Based+Matching+Network+for+Generalizable+Person+Re-Identification&rft.jtitle=IEEE+access&rft.au=Xiao%2C+Junjie&rft.au=Jiang%2C+Jinhua&rft.au=Huang%2C+Jianyong&rft.au=Hu%2C+Wei&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=47406&rft.epage=47417&rft_id=info:doi/10.1109%2FACCESS.2025.3548321&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3548321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon