Cross-Scale Transformer-Based Matching Network for Generalizable Person Re-Identification
While the person re-identification (Re-ID) task has made significant progress in closed-set setting in recent years, its generalizability to unknown domains continues to be limited. To tackle the issue, the domain generalization (DG) Re-ID task has been proposed. The current state-of-the-art approac...
Saved in:
Published in | IEEE access Vol. 13; pp. 47406 - 47417 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While the person re-identification (Re-ID) task has made significant progress in closed-set setting in recent years, its generalizability to unknown domains continues to be limited. To tackle the issue, the domain generalization (DG) Re-ID task has been proposed. The current state-of-the-art approach involves deep feature matching, where key regions of image pairs are matched at the same scale. However, the method does not take into account the variability of angles in real image acquisition. To resolve the problem, we propose an innovative deep image matching framework called Cross-scale Transformer-based Matching Network (CTMN) for DG Re-ID task. CTMN model matches two images through cross-scale local respondence rather than using fixed representations. The Transformer is specifically adjusted to enable effective local interactions between query and gallery images across different scales. Additionally, deformable convolution is incorporated to better segment the local regions of the person before the procedure for matching image pairs. Lastly, the Style Normalization Module (SNM) is added to remove identity-irrelevant features, improving the matching results. Extensive experiments on multiple DG Re-ID tasks demonstrate the advantages of our proposed method over existing state-of-the-arts. |
---|---|
AbstractList | While the person re-identification (Re-ID) task has made significant progress in closed-set setting in recent years, its generalizability to unknown domains continues to be limited. To tackle the issue, the domain generalization (DG) Re-ID task has been proposed. The current state-of-the-art approach involves deep feature matching, where key regions of image pairs are matched at the same scale. However, the method does not take into account the variability of angles in real image acquisition. To resolve the problem, we propose an innovative deep image matching framework called Cross-scale Transformer-based Matching Network (CTMN) for DG Re-ID task. CTMN model matches two images through cross-scale local respondence rather than using fixed representations. The Transformer is specifically adjusted to enable effective local interactions between query and gallery images across different scales. Additionally, deformable convolution is incorporated to better segment the local regions of the person before the procedure for matching image pairs. Lastly, the Style Normalization Module (SNM) is added to remove identity-irrelevant features, improving the matching results. Extensive experiments on multiple DG Re-ID tasks demonstrate the advantages of our proposed method over existing state-of-the-arts. |
Author | Hu, Wei Xiao, Junjie Zhang, Wenfeng Jiang, Jinhua Huang, Jianyong |
Author_xml | – sequence: 1 givenname: Junjie orcidid: 0009-0004-6861-6343 surname: Xiao fullname: Xiao, Junjie organization: School of Computer and Information Science, Chongqing Normal University, Chongqing, China – sequence: 2 givenname: Jinhua orcidid: 0009-0006-4215-5176 surname: Jiang fullname: Jiang, Jinhua organization: School of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 3 givenname: Jianyong surname: Huang fullname: Huang, Jianyong organization: Qingdao Education Equipment and Information Technology Center, Qingdao, China – sequence: 4 givenname: Wei orcidid: 0000-0002-4637-8995 surname: Hu fullname: Hu, Wei email: wei.workstation@gmail.com organization: School of Computer and Information Science, Chongqing Normal University, Chongqing, China – sequence: 5 givenname: Wenfeng orcidid: 0000-0001-7459-2510 surname: Zhang fullname: Zhang, Wenfeng email: itzhangwf@cqnu.edu.cn organization: School of Computer and Information Science, Chongqing Normal University, Chongqing, China |
BookMark | eNpNkNtKw0AQhhep4KlPoBd5gdQ95LB7WUOtBU_Y3ni1TGYnutpmZRMQfXpTK9K5mWGG7x_4TtioDS0xdi74RAhuLqdVNVsuJ5LLfKLyTCspDtixFIVJVa6K0d58xMZd98aH0sMqL4_ZcxVD16VLhDUlqwht14S4oZheQUcuuYMeX337ktxT_xniezJckzm1FGHtv6EeoEeKXWiTJ0oXjtreNx6h96E9Y4cNrDsa__VTtrqeraqb9PZhvqimtykqpfoUdK2bhnNlsHConTRCi5IkogGZoRBoZJlnuZGGG5G7PBMSFXLjdAmZU6dssYt1Ad7sR_QbiF82gLe_ixBfLMTe45qsq6EoClMg1S7TJWlysgHFh3co6waHLLXLwq2USM1_nuB269ruXNuta_vneqAudpQnoj3CCC5kqX4AUjB9bg |
CODEN | IAECCG |
Cites_doi | 10.1109/CVPR52688.2022.00485 10.1109/CVPR46437.2021.00343 10.1109/CVPR.2014.27 10.1007/978-3-319-58347-1_10 10.1016/j.patcog.2019.06.006 10.1109/LSP.2021.3115040 10.1109/ICCV.2019.00219 10.1109/ICCV48922.2021.00986 10.48550/ARXIV.1706.03762 10.1109/VCIP.2018.8698729 10.1109/CVPR46437.2021.01588 10.1007/978-3-030-58621-8_27 10.1109/ICDAR.2019.00177 10.1109/ICCV.2015.133 10.1007/978-3-031-20050-2_26 10.1145/3240508.3240552 10.1007/978-3-030-58610-2_9 10.1109/LSP.2023.3313088 10.1109/TPAMI.2019.2928294 10.1109/CVPR46437.2021.00682 10.1109/WACV45572.2020.9093521 10.1109/TPAMI.2021.3069237 10.1109/TCSVT.2021.3076097 10.1214/aoms/1177729586 10.1109/IROS.2017.8202133 10.1145/3534678.3539232 10.1109/CVPR42600.2020.00321 10.1109/CVPR.2018.00016 10.1609/aaai.v35i4.16468 10.1109/WACV56688.2023.00051 10.1109/WACVW58289.2023.00009 10.1007/978-3-319-48881-3_2 10.1109/ICCV48922.2021.00061 10.1109/TKDE.2022.3178128 10.1109/ICCV48922.2021.01474 10.1109/ACCESS.2024.3390406 10.1049/ipr2.12794 10.1609/aaai.v36i1.19963 10.1109/CVPR46437.2021.01411 10.1007/s11263-024-02169-6 10.1109/TPAMI.2022.3157441 10.1007/978-3-030-01225-0_29 10.1109/CVPR52688.2022.00721 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/ACCESS.2025.3548321 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 47417 |
ExternalDocumentID | oai_doaj_org_article_dba66696cebd487e8ed2fa3017ec2bfc 10_1109_ACCESS_2025_3548321 10910127 |
Genre | orig-research |
GrantInformation_xml | – fundername: Brain-Gain Plan of New Chongqing Foundation grantid: CSTB2024YCJH-KYXM0108 – fundername: Chongqing Normal University Foundation grantid: 24XLB018; 21XLB026 funderid: 10.13039/100010338 – fundername: Science and Technology Research Program of Chongqing Municipal Education Commission grantid: KJQN202200551 – fundername: Natural Science Foundation of Chongqing grantid: CSTB2023NSCQ-MSX0407 funderid: 10.13039/501100005230 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c333t-a8b8ff0039c6dc8d291817e2cc9a24c11c9275459290915d5412c3c09d87a4d3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:26:25 EDT 2025 Sun Jul 06 05:06:50 EDT 2025 Wed Aug 27 01:39:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-a8b8ff0039c6dc8d291817e2cc9a24c11c9275459290915d5412c3c09d87a4d3 |
ORCID | 0000-0001-7459-2510 0009-0004-6861-6343 0009-0006-4215-5176 0000-0002-4637-8995 |
OpenAccessLink | https://doaj.org/article/dba66696cebd487e8ed2fa3017ec2bfc |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3548321 doaj_primary_oai_doaj_org_article_dba66696cebd487e8ed2fa3017ec2bfc ieee_primary_10910127 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | Dou (ref27) ref57 ref12 ref56 ref15 ref14 Shankar (ref22) 2018 ref53 ref52 ref11 ref55 He (ref17) 2021 ref54 ref16 Xiang (ref37) 2022 ref19 Ulyanov (ref43) 2016 ref51 ref50 Tatsunami (ref10) ref46 ref45 ref48 ref47 ref41 ref44 Arjovsky (ref25) 2019 Zheng (ref13) 2021 ref49 Ganin (ref23) ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref36 ref31 Ge (ref29) 2020 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Dosovitskiy (ref34) 2020 ref24 ref26 ref20 ref21 ref28 Muandet (ref42) Liao (ref18) Mehra (ref8) 2022 |
References_xml | – ident: ref48 doi: 10.1109/CVPR52688.2022.00485 – year: 2022 ident: ref37 article-title: Deep multimodal fusion for generalizable person re-identification publication-title: arXiv:2211.00933 – ident: ref6 doi: 10.1109/CVPR46437.2021.00343 – ident: ref47 doi: 10.1109/CVPR.2014.27 – ident: ref24 doi: 10.1007/978-3-319-58347-1_10 – ident: ref56 doi: 10.1016/j.patcog.2019.06.006 – ident: ref4 doi: 10.1109/LSP.2021.3115040 – ident: ref55 doi: 10.1109/ICCV.2019.00219 – ident: ref32 doi: 10.1109/ICCV48922.2021.00986 – ident: ref35 doi: 10.48550/ARXIV.1706.03762 – ident: ref57 doi: 10.1109/VCIP.2018.8698729 – ident: ref15 doi: 10.1109/CVPR46437.2021.01588 – ident: ref19 doi: 10.1007/978-3-030-58621-8_27 – year: 2020 ident: ref29 article-title: Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification publication-title: arXiv:2001.01526 – year: 2016 ident: ref43 article-title: Instance normalization: The missing ingredient for fast stylization publication-title: arXiv:1607.08022 – year: 2021 ident: ref17 article-title: Semi-supervised domain generalizable person re-identification publication-title: arXiv:2108.05045 – ident: ref41 doi: 10.1109/ICDAR.2019.00177 – ident: ref45 doi: 10.1109/ICCV.2015.133 – year: 2019 ident: ref25 article-title: Invariant risk minimization publication-title: arXiv:1907.02893 – ident: ref9 doi: 10.1007/978-3-031-20050-2_26 – ident: ref51 doi: 10.1145/3240508.3240552 – ident: ref54 doi: 10.1007/978-3-030-58610-2_9 – year: 2018 ident: ref22 article-title: Generalizing across domains via cross-gradient training publication-title: arXiv:1804.10745 – ident: ref39 doi: 10.1109/LSP.2023.3313088 – start-page: 38204 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref10 article-title: Sequencer: Deep LSTM for image classification – ident: ref52 doi: 10.1109/TPAMI.2019.2928294 – year: 2020 ident: ref34 article-title: An image is worth 16×16 words: Transformers for image recognition at scale publication-title: arXiv:2010.11929 – ident: ref20 doi: 10.1109/CVPR46437.2021.00682 – ident: ref53 doi: 10.1109/WACV45572.2020.9093521 – ident: ref50 doi: 10.1109/TPAMI.2021.3069237 – ident: ref1 doi: 10.1109/TCSVT.2021.3076097 – ident: ref49 doi: 10.1214/aoms/1177729586 – start-page: 10 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref42 article-title: Domain generalization via invariant feature representation – ident: ref21 doi: 10.1109/IROS.2017.8202133 – ident: ref12 doi: 10.1145/3534678.3539232 – ident: ref38 doi: 10.1109/CVPR42600.2020.00321 – ident: ref44 doi: 10.1109/CVPR.2018.00016 – start-page: 1992 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref18 article-title: TransMatcher: Deep image matching through transformers for generalizable person re-identification – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref27 article-title: Domain generalization via model-agnostic learning of semantic features – ident: ref30 doi: 10.1609/aaai.v35i4.16468 – ident: ref11 doi: 10.1109/WACV56688.2023.00051 – year: 2021 ident: ref13 article-title: Calibrated feature decomposition for generalizable person re-identification publication-title: arXiv:2111.13945 – year: 2022 ident: ref8 article-title: On certifying and improving generalization to unseen domains publication-title: arXiv:2206.12364 – ident: ref36 doi: 10.1109/WACVW58289.2023.00009 – ident: ref46 doi: 10.1007/978-3-319-48881-3_2 – ident: ref31 doi: 10.1109/ICCV48922.2021.00061 – ident: ref7 doi: 10.1109/TKDE.2022.3178128 – ident: ref33 doi: 10.1109/ICCV48922.2021.01474 – ident: ref2 doi: 10.1109/ACCESS.2024.3390406 – ident: ref3 doi: 10.1049/ipr2.12794 – ident: ref16 doi: 10.1609/aaai.v36i1.19963 – ident: ref26 doi: 10.1109/CVPR46437.2021.01411 – ident: ref14 doi: 10.1007/s11263-024-02169-6 – ident: ref28 doi: 10.1109/TPAMI.2022.3157441 – start-page: 1180 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref23 article-title: Unsupervised domain adaptation by backpropagation – ident: ref40 doi: 10.1007/978-3-030-01225-0_29 – ident: ref5 doi: 10.1109/CVPR52688.2022.00721 |
SSID | ssj0000816957 |
Score | 2.3341165 |
Snippet | While the person re-identification (Re-ID) task has made significant progress in closed-set setting in recent years, its generalizability to unknown domains... |
SourceID | doaj crossref ieee |
SourceType | Open Website Index Database Publisher |
StartPage | 47406 |
SubjectTerms | Accuracy Adaptation models Convolution cross-scale local respondence deep image matching deformable convolution Domain generalization Feature extraction Identification of persons Image matching Image segmentation Pedestrians person re-identification Transformers |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlFeysBI-nCcOBnbiqpCokJQpDJFfpwXpBZV6cKv585OUYuExBY5TmL7HN9357vPjN1xoXpaOYglMRAKCiDUGdHjgciVUNL1nA-QnWaTN_E4T-d1srrPhQEAH3wGHbr0e_l2adbkKusSiSVtlTZYAy23kKz141ChEySKVNbMQli1OxiNsBNoA_K0kyAyT3h_R_t4kv6dU1W8UhkfsemmOSGW5KOzrnTHfP1iavx3e4_ZYQ0vo0GYDydsDxan7GCLdPCMvY-oafErCgei2Qa3wioeokKz0ROuzeSViqYhQDzCu1FNTk0RYPjQs0fp0QvEIc3X1X6_FpuNH2ajSVwfsBCbJEmqWOU6d47Sc01mTW55gfpeAjemUFyYft8UXCLEQgiFPUltKvrcJKZX2FwqYZNz1lwsF3DBIm6NUBb1baak0JZrhbADLL7auJRL3mb3m3EvPwONRunNj15RBjGVJKayFlObDUk2P1WJA9sX4PCW9S9VWq3Q9ioyA9qi2QU5WO4ULlgSDNfOtFmLRLL1vSCNyz_Kr9g-tSH4V65Zs1qt4QYRR6Vv_Uz7BtmA1Ao priority: 102 providerName: IEEE |
Title | Cross-Scale Transformer-Based Matching Network for Generalizable Person Re-Identification |
URI | https://ieeexplore.ieee.org/document/10910127 https://doaj.org/article/dba66696cebd487e8ed2fa3017ec2bfc |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQjyLKo_LASGjiOHE8thFVhUSFIEhlivwcC6rK_-fOTlE6sbDmcXG-s-4-n86fCbljXKVaeZcIVCDk2ECoS5THc7xSXAmf-tAguywX7_xpVax6R31hT1iUB47ATaxWwLBlaZy2QK5d5SzzCqalcIZpbzD6Qs7rLaZCDK6yUhaikxnKUjmZ1jX8ESwIWfGQA03PWbaXioJi_94RKyHDzE_IcUcN6TQO6ZQcuPUZOeoJBp6TjxotJW8ArKPNjnO6TTKDZGTpM8RVrCjRZWzupnCXdsLS2L0FL70Ehk1fXRK36PquZjckzfyxqRdJdzhCYvI83yaq0pX3uLXWlNZUlknI1cIxY6Ri3GSZkUwAPQL6A_AUtuAZM7lJpa2E4ja_IIP159pdEsqs4cpCriyV4NoyrYAyOAumjS-YYCNyv4Op_YoSGG1YOqSyjai2iGrboToiM4Ty91HUrw4XwKtt59X2L6-OyBAd0fueRCEycfUfxq_JIQ44FlJuyGC7-Xa3QC22ehxm0TjsAvwB9j7NHg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-swEB6xHIAD2wNRtpcDR1Iax4mTI1SgwoMKQZHgFHkZX5AKQu2FX8-MnSJAehK3yHGS8YzjWTzzGeBISN0z2mOqGIFQcgKhKRkeD2WlpVa-50OC7LAcPMirx-KxLVYPtTCIGJLPsMuXYS_fvdgph8pOGMSSt0rnYZEUf5HFcq3PkAqfIVEXqsUWos4np_0-DYO8QFF0c7LNc5F90z8Bpv_buSpBrVyswXBGUMwmee5OJ6Zr339gNf6a4nVYbQ3M5DTOiA2Yw_EmrHyBHfwDT30mLb0n8WAymlmu-JaekUpzyQ2tzhyXSoYxRTyhu0kLT805YPTQbbDTkztMY6GvbyN_WzC6OB_1B2l7xEJq8zyfpLoylfdcoGtLZysnatL4CoW1tRbSZpmthSJekxFFIylcITNhc9urXaW0dPk2LIxfxrgDiXBWakcat9RKGieMJsMDHb3a-kIo0YHjGd-b1wik0QQHpFc3UUwNi6lpxdSBM5bNZ1dGwQ4NxN6m_akaZzR5X3Vp0ThyvLBCJ7ymJUuhFcbbDmyxSL58L0pj9z_tf2FpMLq5bq4vh__2YJnpidGWfViYvE3xgOyPiTkMs-4DEUjXUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Scale+Transformer-Based+Matching+Network+for+Generalizable+Person+Re-Identification&rft.jtitle=IEEE+access&rft.au=Xiao%2C+Junjie&rft.au=Jiang%2C+Jinhua&rft.au=Huang%2C+Jianyong&rft.au=Hu%2C+Wei&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=47406&rft.epage=47417&rft_id=info:doi/10.1109%2FACCESS.2025.3548321&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3548321 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |