Investigating the effect of morphology on the terrestrial gaits of amphibious fish using a reconfigurable robot
The relationship between morphology and locomotion performance in amphibious fish remains poorly understood, particularly in axial-appendage-based and appendage-based movements. To address this, we introduce Polymander, a reconfigurable robot capable of mimicking Polypterus -like walking and mudskip...
Saved in:
Published in | Bioinspiration & biomimetics Vol. 20; no. 4; pp. 46002 - 46017 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
31.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The relationship between morphology and locomotion performance in amphibious fish remains poorly understood, particularly in axial-appendage-based and appendage-based movements. To address this, we introduce Polymander, a reconfigurable robot capable of mimicking Polypterus -like walking and mudskipper-like crutching, enabling systematic investigation of body length and limb movement. Using a CPG-driven controller, we optimize locomotion patterns via multi-objective optimization in simulation, comparing resulting Pareto fronts across different morphological configurations. Our results reveal that (1) mudskipper-like crutching is better suited for short bodies, while Polypterus -like walking is better suited for longer bodies; (2) symmetric anterior-to-posterior motion of the limbs is optimal for crutching, while increased anterior limb movement benefits Polypterus -like walking; and (3) sufficient limb strength is necessary for crutching but less so for walking, where axial bending mitigate its effects. Overall, our findings provide a potential explanation of why Polypterus and mudskippers adopt their distinct gaits, emerging as optimal solutions for their morphology within the broader space of all possible gaits. |
---|---|
AbstractList | The relationship between morphology and locomotion performance in amphibious fish remains poorly understood, particularly in axial-appendage-based and appendage-based movements. To address this, we introduce Polymander, a reconfigurable robot capable of mimicking
-like walking and mudskipper-like crutching, enabling systematic investigation of body length and limb movement. Using a CPG-driven controller, we optimize locomotion patterns via multi-objective optimization in simulation, comparing resulting Pareto fronts across different morphological configurations. Our results reveal that (1) mudskipper-like crutching is better suited for short bodies, while
-like walking is better suited for longer bodies; (2) symmetric anterior-to-posterior motion of the limbs is optimal for crutching, while increased anterior limb movement benefits
-like walking; and (3) sufficient limb strength is necessary for crutching but less so for walking, where axial bending mitigate its effects. Overall, our findings provide a potential explanation of why
and mudskippers adopt their distinct gaits, emerging as optimal solutions for their morphology within the broader space of all possible gaits. The relationship between morphology and locomotion performance in amphibious fish remains poorly understood, particularly in axial-appendage-based and appendage-based movements. To address this, we introduce Polymander, a reconfigurable robot capable of mimicking Polypterus -like walking and mudskipper-like crutching, enabling systematic investigation of body length and limb movement. Using a CPG-driven controller, we optimize locomotion patterns via multi-objective optimization in simulation, comparing resulting Pareto fronts across different morphological configurations. Our results reveal that (1) mudskipper-like crutching is better suited for short bodies, while Polypterus -like walking is better suited for longer bodies; (2) symmetric anterior-to-posterior motion of the limbs is optimal for crutching, while increased anterior limb movement benefits Polypterus -like walking; and (3) sufficient limb strength is necessary for crutching but less so for walking, where axial bending mitigate its effects. Overall, our findings provide a potential explanation of why Polypterus and mudskippers adopt their distinct gaits, emerging as optimal solutions for their morphology within the broader space of all possible gaits. The relationship between morphology and locomotion performance in amphibious fish remains poorly understood, particularly in axial-appendage-based and appendage-based movements. To address this, we introduce Polymander, a reconfigurable robot capable of mimicking Polypterus-like walking and mudskipper-like crutching, enabling systematic investigation of body length and limb movement. Using a CPG-driven controller, we optimize locomotion patterns via multi-objective optimization in simulation, comparing resulting Pareto fronts across different morphological configurations. Our results reveal that (1) mudskipper-like crutching is better suited for short bodies, while Polypterus-like walking is better suited for longer bodies; (2) symmetric anterior-to-posterior motion of the limbs is optimal for crutching, while increased anterior limb movement benefits Polypterus-like walking; and (3) sufficient limb strength is necessary for crutching but less so for walking, where axial bending mitigate its effects. Overall, our findings provide a potential explanation of why Polypterus and mudskippers adopt their distinct gaits, emerging as optimal solutions for their morphology within the broader space of all possible gaits.
.The relationship between morphology and locomotion performance in amphibious fish remains poorly understood, particularly in axial-appendage-based and appendage-based movements. To address this, we introduce Polymander, a reconfigurable robot capable of mimicking Polypterus-like walking and mudskipper-like crutching, enabling systematic investigation of body length and limb movement. Using a CPG-driven controller, we optimize locomotion patterns via multi-objective optimization in simulation, comparing resulting Pareto fronts across different morphological configurations. Our results reveal that (1) mudskipper-like crutching is better suited for short bodies, while Polypterus-like walking is better suited for longer bodies; (2) symmetric anterior-to-posterior motion of the limbs is optimal for crutching, while increased anterior limb movement benefits Polypterus-like walking; and (3) sufficient limb strength is necessary for crutching but less so for walking, where axial bending mitigate its effects. Overall, our findings provide a potential explanation of why Polypterus and mudskippers adopt their distinct gaits, emerging as optimal solutions for their morphology within the broader space of all possible gaits.
. |
Author | Paez, Laura Gevers, Louis Standen, Emily Fu, Qiyuan Ijspeert, Auke Gupta, Astha |
Author_xml | – sequence: 1 givenname: Louis orcidid: 0009-0001-7599-7058 surname: Gevers fullname: Gevers, Louis organization: École Polytechnique Fédérale de Lausanne (EPFL) Biorobotics Laboratory, Institute of Bioengineering, Lausanne, Switzerland – sequence: 2 givenname: Astha orcidid: 0000-0001-8213-9564 surname: Gupta fullname: Gupta, Astha organization: École Polytechnique Fédérale de Lausanne (EPFL) Biorobotics Laboratory, Institute of Bioengineering, Lausanne, Switzerland – sequence: 3 givenname: Laura surname: Paez fullname: Paez, Laura organization: École Polytechnique Fédérale de Lausanne (EPFL) Biorobotics Laboratory, Institute of Bioengineering, Lausanne, Switzerland – sequence: 4 givenname: Qiyuan orcidid: 0000-0002-5275-4555 surname: Fu fullname: Fu, Qiyuan organization: École Polytechnique Fédérale de Lausanne (EPFL) Biorobotics Laboratory, Institute of Bioengineering, Lausanne, Switzerland – sequence: 5 givenname: Emily surname: Standen fullname: Standen, Emily organization: University of Ottawa Standen Lab, Department of Biology, Ottawa, Canada – sequence: 6 givenname: Auke orcidid: 0000-0003-1417-9980 surname: Ijspeert fullname: Ijspeert, Auke organization: École Polytechnique Fédérale de Lausanne (EPFL) Biorobotics Laboratory, Institute of Bioengineering, Lausanne, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40403755$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kT1PwzAQhi1URD9gZ0IeGQh1bCdxRlTxUakSC8yW49ipqyQOdoLUf49DSjemO909d3rvvSWYtbZVANzG6DFGjK3jjLKIxDlai7KUOLsAi3Npds4ZnoOl9weEEpozfAXmFFFEsiRZALttv5XvTSV601aw3yuotFayh1bDxrpub2tbHaFtf3u9ci7gzogaVsL0fsRE0-1NYezgoTZ-Dwc_rhLQKWlbbarBiaJW0NnC9tfgUovaq5tTXIHPl-ePzVu0e3_dbp52kSSE9JFIKEYqjVlaJDIjeckoU4yUaZmxXORpyJJwQpwyhDOKszyVBcV5ViCFYkk1WYH7aW_n7NcQJPPGeKnqWrQqCOUEozRnFLMkoHcndCgaVfLOmUa4I_8zKQBoAqSz3julz0iM-PgHPhrNR9P59Icw8jCNGNvxgx1cG479H_8BmMWJGQ |
CODEN | BBIICI |
Cites_doi | 10.1016/j.neunet.2008.03.014 10.1111/j.1469-7998.1960.tb05921.x 10.1109/TRO.2012.2234311 10.1038/nature13708 10.1242/jeb.162909 10.1016/j.xcrp.2023.101589 10.1016/j.zool.2016.05.001 10.1126/science.aaf0984 10.1126/science.288.5463.100 10.1093/icb/ict048 10.1002/ar.24117 10.1126/science.1138353 10.1093/icb/ict067 10.3389/fnbot.2020.604426 10.1109/4235.996017 10.1111/jfb.12318 10.1017/S0140525X01000127 10.1016/j.oceaneng.2021.108862 10.1093/icb/icac016 10.1007/bfb0013365 10.1242/jeb.029041 10.1242/jeb.047902 10.18910/84869 10.1242/jeb.168716 10.1007/BF01185408 10.1111/j.1469-7580.2012.01491.x 10.1109/ACCESS.2020.2990567 10.1093/icb/ict051 10.1109/TMECH.2011.2132732 10.1242/jeb.242395 10.1109/biorob.2006.1639162 10.1007/s40747-022-00883-7 10.1109/IROS.2011.6094819 10.1109/ICRA.2013.6631012 10.1038/375678a0 10.1126/scirobotics.adn1125 10.1101/2023.09.25.559130 10.1109/IROS.2012.6386109 10.1098/rsif.2015.1089 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Published by IOP Publishing Ltd Creative Commons Attribution license. |
Copyright_xml | – notice: 2025 The Author(s). Published by IOP Publishing Ltd – notice: Creative Commons Attribution license. |
DBID | O3W TSCCA AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1088/1748-3190/addc27 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1748-3190 |
ExternalDocumentID | 40403755 10_1088_1748_3190_addc27 bbaddc27 |
Genre | Journal Article |
GrantInformation_xml | – fundername: H2020 European Research Council grantid: 951477 funderid: http://dx.doi.org/10.13039/100010663 |
GroupedDBID | --- 1JI 4.4 53G 5B3 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IJHAN IOP IZVLO KOT LAP N5L N9A O3W P2P PJBAE RIN RO9 ROL RPA SY9 TN5 TSCCA W28 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c333t-a5420e6186b5c739d848e83d6d789a963d6540316802742796cb4297b0e01c4f3 |
IEDL.DBID | IOP |
ISSN | 1748-3182 1748-3190 |
IngestDate | Fri May 23 17:33:11 EDT 2025 Tue Jun 03 01:34:24 EDT 2025 Thu Jul 03 08:43:46 EDT 2025 Tue Jun 03 22:14:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | multi-objective optimization central pattern generators (CPG) biomimetic robotics morphologies locomotion amphibious fish |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Creative Commons Attribution license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-a5420e6186b5c739d848e83d6d789a963d6540316802742796cb4297b0e01c4f3 |
Notes | BB-104193.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5275-4555 0000-0001-8213-9564 0009-0001-7599-7058 0000-0003-1417-9980 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1748-3190/addc27 |
PMID | 40403755 |
PQID | 3206984285 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | iop_journals_10_1088_1748_3190_addc27 pubmed_primary_40403755 crossref_primary_10_1088_1748_3190_addc27 proquest_miscellaneous_3206984285 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-31 |
PublicationDateYYYYMMDD | 2025-07-31 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinspiration & biomimetics |
PublicationTitleAbbrev | BB |
PublicationTitleAlternate | Bioinspir. Biomim |
PublicationYear | 2025 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Clack (bbaddc27bib1) 2012 Jan Ijspeert (bbaddc27bib14) 2008; 21 Ijspeert (bbaddc27bib22) 2007; 315 Minicozzi (bbaddc27bib11) 2020; 303 Foster (bbaddc27bib39) 2018; 221 Arreguit (bbaddc27bib29) 2021 Kuramoto (bbaddc27bib35) 1975 Standen (bbaddc27bib44) 2016; 119 Ashley-Ross (bbaddc27bib3) 2013; 53 Knüsel (bbaddc27bib31) 2020; 14 Lin (bbaddc27bib18) 2023; 4 Deb (bbaddc27bib36) 2011 Ekeberg (bbaddc27bib32) 1993; 69 Sordino (bbaddc27bib9) 1995; 375 Iida (bbaddc27bib15) 2016 Graham (bbaddc27bib4) 1997 Webb (bbaddc27bib30) 1975; 190 Pace (bbaddc27bib41) 2011; 214 Dickinson (bbaddc27bib2) 2000; 288 Ren (bbaddc27bib17) 2021; 227 Li (bbaddc27bib28) 2022; 9 Arreguit (bbaddc27bib33) 2024 Kawano (bbaddc27bib42) 2013; 53 Webb (bbaddc27bib13) 2001; 24 Ishida (bbaddc27bib19) 2024; 9 Blank (bbaddc27bib38) 2020; 8 Du (bbaddc27bib43) 2017; 220 Knüsel (bbaddc27bib25) 2013; 53 Standen (bbaddc27bib6) 2014; 513 Harris (bbaddc27bib7) 1960; 134 Oliveira (bbaddc27bib27) 2013 Crespi (bbaddc27bib23) 2013; 29 Deb (bbaddc27bib37) 2002; 6 Pace (bbaddc27bib40) 2009; 212 Yano (bbaddc27bib10) 2013; 222 Lauder (bbaddc27bib12) 2022; 62 Oliveira (bbaddc27bib26) 2011 Todorov (bbaddc27bib34) 2012 Lachat (bbaddc27bib20) 2006 Yu (bbaddc27bib21) 2012; 17 Lutek (bbaddc27bib8) 2022; 225 Karakasiliotis (bbaddc27bib24) 2016; 13 McInroe (bbaddc27bib16) 2016; 353 Pace (bbaddc27bib5) 2014; 84 |
References_xml | – volume: 21 start-page: 642 year: 2008 ident: bbaddc27bib14 article-title: Central pattern generators for locomotion control in animals and robots: a review publication-title: Neural Netw. doi: 10.1016/j.neunet.2008.03.014 – volume: 134 start-page: 107 year: 1960 ident: bbaddc27bib7 article-title: On the locomotion of the mud-skipper Periophthalmus koelreuteri (Pallas): (Gobiidae) publication-title: Proc. Zool. Soc. London doi: 10.1111/j.1469-7998.1960.tb05921.x – volume: 29 start-page: 308 year: 2013 ident: bbaddc27bib23 article-title: Salamandra robotica II: an amphibious robot to study salamander-like swimming and walking gaits publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2012.2234311 – start-page: pp 3 year: 2011 ident: bbaddc27bib36 – volume: 513 start-page: 54 year: 2014 ident: bbaddc27bib6 article-title: Developmental plasticity and the origin of tetrapods publication-title: Nature doi: 10.1038/nature13708 – volume: 220 start-page: 3406 year: 2017 ident: bbaddc27bib43 article-title: Phenotypic plasticity of muscle fiber type in the pectoral fins of Polypterus senegalus reared in a terrestrial environment publication-title: J. Exp. Biol. doi: 10.1242/jeb.162909 – volume: 4 year: 2023 ident: bbaddc27bib18 article-title: Mudskipper-inspired amphibious robotic fish enhances locomotion performance by pectoral-caudal fins coordination publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2023.101589 – volume: 119 start-page: 447 year: 2016 ident: bbaddc27bib44 article-title: Locomotor flexibility of Polypterus senegalus across various aquatic and terrestrial substrates publication-title: Zoology doi: 10.1016/j.zool.2016.05.001 – volume: 353 start-page: 154 year: 2016 ident: bbaddc27bib16 article-title: Tail use improves performance on soft substrates in models of early vertebrate land locomotors publication-title: Science doi: 10.1126/science.aaf0984 – start-page: pp 2015 year: 2016 ident: bbaddc27bib15 article-title: Biologically inspired robotics – volume: 288 start-page: 100 year: 2000 ident: bbaddc27bib2 article-title: How animals move: an integrative view publication-title: Science doi: 10.1126/science.288.5463.100 – volume: 53 start-page: 192 year: 2013 ident: bbaddc27bib3 article-title: Vertebrate land invasions–past, present and future: an introduction to the symposium publication-title: Integr. Comp. Biol. doi: 10.1093/icb/ict048 – volume: 303 start-page: 53 year: 2020 ident: bbaddc27bib11 article-title: Are extreme anatomical modifications required for fish to move effectively on land? comparative anatomy of the posterior axial skeleton in the cyprinodontiformes publication-title: Anat. Rec. doi: 10.1002/ar.24117 – volume: 315 start-page: 1416 year: 2007 ident: bbaddc27bib22 article-title: From swimming to walking with a salamander robot driven by a spinal cord model publication-title: Science doi: 10.1126/science.1138353 – volume: 53 start-page: 269 year: 2013 ident: bbaddc27bib25 article-title: A Salamander’s flexible spinal network for locomotion, modeled at two levels of abstraction publication-title: Integr. Comp. Biol. doi: 10.1093/icb/ict067 – volume: 14 year: 2020 ident: bbaddc27bib31 article-title: Reproducing five motor behaviors in a salamander robot with virtual muscles and a distributed CPG controller regulated by drive signals and proprioceptive feedback publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2020.604426 – volume: 6 start-page: 182 year: 2002 ident: bbaddc27bib37 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 84 start-page: 639 year: 2014 ident: bbaddc27bib5 article-title: Sustained periodic terrestrial locomotion in air-breathing fishes publication-title: J. Fish Biol. doi: 10.1111/jfb.12318 – volume: 24 start-page: 1033 year: 2001 ident: bbaddc27bib13 article-title: Can robots make good models of biological behaviour? publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X01000127 – volume: 227 year: 2021 ident: bbaddc27bib17 article-title: Research status of bionic amphibious robots: a review publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108862 – year: 2012 ident: bbaddc27bib1 – volume: 62 start-page: 721 year: 2022 ident: bbaddc27bib12 article-title: Robotics as a comparative method in ecology and evolutionary biology publication-title: Integr. Comp. Biol. doi: 10.1093/icb/icac016 – start-page: pp 420 year: 1975 ident: bbaddc27bib35 article-title: Self-entrainment of a population of coupled non-linear oscillators doi: 10.1007/bfb0013365 – year: 1997 ident: bbaddc27bib4 – volume: 212 start-page: 2279 year: 2009 ident: bbaddc27bib40 article-title: Mudskipper pectoral fin kinematics in aquatic and terrestrial environments publication-title: J. Exp. Biol. doi: 10.1242/jeb.029041 – volume: 214 start-page: 530 year: 2011 ident: bbaddc27bib41 article-title: Locomotor behavior across an environmental transition in the ropefish, Erpetoichthys calabaricus publication-title: J. Exp. Biol. doi: 10.1242/jeb.047902 – start-page: p 29 year: 2021 ident: bbaddc27bib29 article-title: Multi-objective optimization based 3D walking of a neuromuscular driven salamander model in simulation doi: 10.18910/84869 – volume: 221 year: 2018 ident: bbaddc27bib39 article-title: Fin and body neuromuscular coordination changes during walking and swimming in Polypterus senegalus publication-title: J. Exp. Biol. doi: 10.1242/jeb.168716 – volume: 69 start-page: 363 year: 1993 ident: bbaddc27bib32 article-title: A combined neuronal and mechanical model of fish swimming publication-title: Biol. Cybern. doi: 10.1007/BF01185408 – volume: 222 start-page: 100 year: 2013 ident: bbaddc27bib10 article-title: The making of differences between fins and limbs publication-title: J. Anat. doi: 10.1111/j.1469-7580.2012.01491.x – volume: 8 start-page: 89497 year: 2020 ident: bbaddc27bib38 article-title: Pymoo: multi-objective optimization in Python publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2990567 – volume: 53 start-page: 283 year: 2013 ident: bbaddc27bib42 article-title: Propulsive forces of mudskipper fins and salamander limbs during terrestrial locomotion: implications for the invasion of land publication-title: Integr. Comp. Biol. doi: 10.1093/icb/ict051 – volume: 17 start-page: 847 year: 2012 ident: bbaddc27bib21 article-title: On a bio-inspired amphibious robot capable of multimodal motion publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2011.2132732 – volume: 225 year: 2022 ident: bbaddc27bib8 article-title: Patterns and processes in amphibious fish: biomechanics and neural control of fish terrestrial locomotion publication-title: J. Exp. Biol. doi: 10.1242/jeb.242395 – start-page: pp 643 year: 2006 ident: bbaddc27bib20 article-title: BoxyBot: a swimming and crawling fish robot controlled by a central pattern generator doi: 10.1109/biorob.2006.1639162 – volume: 9 start-page: 1707 year: 2022 ident: bbaddc27bib28 article-title: Multi-objective evolutionary design of central pattern generator network for biomimetic robotic fish publication-title: Complex Intell. Syst. doi: 10.1007/s40747-022-00883-7 – start-page: pp 2286 year: 2011 ident: bbaddc27bib26 article-title: Multi-objective parameter CPG optimization for gait generation of a quadruped robot considering behavioral diversity doi: 10.1109/IROS.2011.6094819 – start-page: pp 3130 year: 2013 ident: bbaddc27bib27 article-title: Multi-objective parameter CPG optimization for gait generation of a biped robot doi: 10.1109/ICRA.2013.6631012 – volume: 375 start-page: 678 year: 1995 ident: bbaddc27bib9 article-title: Hox gene expression in teleost fins and the origin of vertebrate digits publication-title: Nature doi: 10.1038/375678a0 – volume: 9 start-page: eadn1125 year: 2024 ident: bbaddc27bib19 article-title: Paleoinspired robotics as an experimental approach to the history of life publication-title: Sci. Robot. doi: 10.1126/scirobotics.adn1125 – volume: 190 start-page: 1 year: 1975 ident: bbaddc27bib30 article-title: Hydrodynamics and energetics of fish propulsion publication-title: Bull. Fish. Res. Board Can. – year: 2024 ident: bbaddc27bib33 article-title: FARMS: framework for animal and robot modeling and simulation doi: 10.1101/2023.09.25.559130 – start-page: pp 5026 year: 2012 ident: bbaddc27bib34 article-title: MuJoCo: a physics engine for model-based control doi: 10.1109/IROS.2012.6386109 – volume: 13 year: 2016 ident: bbaddc27bib24 article-title: From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2015.1089 |
SSID | ssj0054982 |
Score | 2.3888614 |
Snippet | The relationship between morphology and locomotion performance in amphibious fish remains poorly understood, particularly in axial-appendage-based and... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 46002 |
SubjectTerms | amphibious fish Animals biomimetic robotics Biomimetics - instrumentation central pattern generators (CPG) Computer Simulation Equipment Design Equipment Failure Analysis Extremities - physiology Fishes - anatomy & histology Fishes - physiology Gait - physiology locomotion Locomotion - physiology Models, Biological morphologies multi-objective optimization Robotics - instrumentation |
Title | Investigating the effect of morphology on the terrestrial gaits of amphibious fish using a reconfigurable robot |
URI | https://iopscience.iop.org/article/10.1088/1748-3190/addc27 https://www.ncbi.nlm.nih.gov/pubmed/40403755 https://www.proquest.com/docview/3206984285 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED515YWXMSiMwkCeBEh7SMlix3a0pwpRVUisPFCtD5MiO3G6CjWp2vRh-_XcOWm1IUCIlyhSTnFyd_bd-T7fAbxT0roij0VgULqBKM5lYHOCidlI5hZNCtd0OPnrpRxPxZdZPOvAxf4sTLVql_4B3jaFghsWtoA4_RF9aNrSS0KC3GSROoBHXKPhpNN7k2-7ZRjjHt8pqqXWUZuj_N0bHtikAxz3z-6mNzujJ3C9--AGbfJjsK3tILv7pZbjf_7RERy27igbNqRPoePKZ9AblhiKL2_ZB-YBon7nvQfVvZoc5Zyh58gaNAirCrasUGCekFWlf4YCo74fpOBsbhb1hsgMKs_CEu6WFYvNDSPY_ZwZ5uPyYjHfrukoF1tXtqqfw3T0-funcdD2awgyznkdmFhEoaMC_DbOFE9yLbTTPJe50gnpQi7RP6ROWT5BrBKZWTSHyoYuPM9EwV9At6xK9xKYMgZdLy05d0bIItImUbEsEpUl1uRC9uFsJ7F01ZTlSH06XeuUuJkSN9OGm314j4xP27m5-Qvd6U7oKc4xSpyY0iFDUh6FMtEYqMV9OG60YT-qwFWQqzh-9Y-jvIbHEbUQ9tvDJ9Ct11v3Bv2a2r71-ovXCb_6CfhA8XM |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKlRAX1BZoF2hrJEDqIRDiZ46o7YqW5wEEN8uO7e0eSFa74cC_74yTRVSCiluk2HH0je2Z8XyeIWRHSReiFzyzIN2Mx0OZOY80MVdI70ClMI2Xk8_O5fE1_30rbvs6p-kuTDPpt_59eOwSBXcQ9oQ4fQA2NB7plTlSbipw3Sc-LpC3goGqgQl9wW7mWzH4PqlaVN9DF32c8rmv_KOXFmDsl03OpHqG78hKbzPSo-4P35M3of5AVo9q8JfvHugeTSzOdDy-SponiTPqEQXzjnaUDdpEetcAqqkhber0DlDF4hw4C-nIjtsZNrMg4bFDciyN49kfitz4EbU0Oc9xPLqf4n0rOm1c066R6-HPq-_HWV9UIasYY21mBS_ygFnynagUK73mOmjmpVe6RIF5CUYclrNKUVxVysqBzlIuD_lhxSNbJ4t1U4dPhCprwT7SkrFguYyFtqUSMpaqKp31XA7ItzmkZtLlzjAp5q21QfgNwm86-AdkFzA3_QKa_afd9lwqBhYCRjdsHQAQw4pclhq8KTEgHztxPY7KYatiSoiNV47ylSxd_hia01_nJ5tkucCSv-k4d4ssttP78BnskNZ9SXPtL2Xc1Qg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+effect+of+morphology+on+the+terrestrial+gaits+of+amphibious+fish+using+a+reconfigurable+robot&rft.jtitle=Bioinspiration+%26+biomimetics&rft.au=Gevers%2C+Louis&rft.au=Gupta%2C+Astha&rft.au=Paez%2C+Laura&rft.au=Fu%2C+Qiyuan&rft.date=2025-07-31&rft.issn=1748-3182&rft.eissn=1748-3190&rft.volume=20&rft.issue=4&rft.spage=46002&rft_id=info:doi/10.1088%2F1748-3190%2Faddc27&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1748_3190_addc27 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3182&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3182&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3182&client=summon |