Investigating the effect of morphology on the terrestrial gaits of amphibious fish using a reconfigurable robot

The relationship between morphology and locomotion performance in amphibious fish remains poorly understood, particularly in axial-appendage-based and appendage-based movements. To address this, we introduce Polymander, a reconfigurable robot capable of mimicking Polypterus -like walking and mudskip...

Full description

Saved in:
Bibliographic Details
Published inBioinspiration & biomimetics Vol. 20; no. 4; pp. 46002 - 46017
Main Authors Gevers, Louis, Gupta, Astha, Paez, Laura, Fu, Qiyuan, Standen, Emily, Ijspeert, Auke
Format Journal Article
LanguageEnglish
Published England IOP Publishing 31.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The relationship between morphology and locomotion performance in amphibious fish remains poorly understood, particularly in axial-appendage-based and appendage-based movements. To address this, we introduce Polymander, a reconfigurable robot capable of mimicking Polypterus -like walking and mudskipper-like crutching, enabling systematic investigation of body length and limb movement. Using a CPG-driven controller, we optimize locomotion patterns via multi-objective optimization in simulation, comparing resulting Pareto fronts across different morphological configurations. Our results reveal that (1) mudskipper-like crutching is better suited for short bodies, while Polypterus -like walking is better suited for longer bodies; (2) symmetric anterior-to-posterior motion of the limbs is optimal for crutching, while increased anterior limb movement benefits Polypterus -like walking; and (3) sufficient limb strength is necessary for crutching but less so for walking, where axial bending mitigate its effects. Overall, our findings provide a potential explanation of why Polypterus and mudskippers adopt their distinct gaits, emerging as optimal solutions for their morphology within the broader space of all possible gaits.
AbstractList The relationship between morphology and locomotion performance in amphibious fish remains poorly understood, particularly in axial-appendage-based and appendage-based movements. To address this, we introduce Polymander, a reconfigurable robot capable of mimicking -like walking and mudskipper-like crutching, enabling systematic investigation of body length and limb movement. Using a CPG-driven controller, we optimize locomotion patterns via multi-objective optimization in simulation, comparing resulting Pareto fronts across different morphological configurations. Our results reveal that (1) mudskipper-like crutching is better suited for short bodies, while -like walking is better suited for longer bodies; (2) symmetric anterior-to-posterior motion of the limbs is optimal for crutching, while increased anterior limb movement benefits -like walking; and (3) sufficient limb strength is necessary for crutching but less so for walking, where axial bending mitigate its effects. Overall, our findings provide a potential explanation of why and mudskippers adopt their distinct gaits, emerging as optimal solutions for their morphology within the broader space of all possible gaits.
The relationship between morphology and locomotion performance in amphibious fish remains poorly understood, particularly in axial-appendage-based and appendage-based movements. To address this, we introduce Polymander, a reconfigurable robot capable of mimicking Polypterus -like walking and mudskipper-like crutching, enabling systematic investigation of body length and limb movement. Using a CPG-driven controller, we optimize locomotion patterns via multi-objective optimization in simulation, comparing resulting Pareto fronts across different morphological configurations. Our results reveal that (1) mudskipper-like crutching is better suited for short bodies, while Polypterus -like walking is better suited for longer bodies; (2) symmetric anterior-to-posterior motion of the limbs is optimal for crutching, while increased anterior limb movement benefits Polypterus -like walking; and (3) sufficient limb strength is necessary for crutching but less so for walking, where axial bending mitigate its effects. Overall, our findings provide a potential explanation of why Polypterus and mudskippers adopt their distinct gaits, emerging as optimal solutions for their morphology within the broader space of all possible gaits.
The relationship between morphology and locomotion performance in amphibious fish remains poorly understood, particularly in axial-appendage-based and appendage-based movements. To address this, we introduce Polymander, a reconfigurable robot capable of mimicking Polypterus-like walking and mudskipper-like crutching, enabling systematic investigation of body length and limb movement. Using a CPG-driven controller, we optimize locomotion patterns via multi-objective optimization in simulation, comparing resulting Pareto fronts across different morphological configurations. Our results reveal that (1) mudskipper-like crutching is better suited for short bodies, while Polypterus-like walking is better suited for longer bodies; (2) symmetric anterior-to-posterior motion of the limbs is optimal for crutching, while increased anterior limb movement benefits Polypterus-like walking; and (3) sufficient limb strength is necessary for crutching but less so for walking, where axial bending mitigate its effects. Overall, our findings provide a potential explanation of why Polypterus and mudskippers adopt their distinct gaits, emerging as optimal solutions for their morphology within the broader space of all possible gaits.&#xD.The relationship between morphology and locomotion performance in amphibious fish remains poorly understood, particularly in axial-appendage-based and appendage-based movements. To address this, we introduce Polymander, a reconfigurable robot capable of mimicking Polypterus-like walking and mudskipper-like crutching, enabling systematic investigation of body length and limb movement. Using a CPG-driven controller, we optimize locomotion patterns via multi-objective optimization in simulation, comparing resulting Pareto fronts across different morphological configurations. Our results reveal that (1) mudskipper-like crutching is better suited for short bodies, while Polypterus-like walking is better suited for longer bodies; (2) symmetric anterior-to-posterior motion of the limbs is optimal for crutching, while increased anterior limb movement benefits Polypterus-like walking; and (3) sufficient limb strength is necessary for crutching but less so for walking, where axial bending mitigate its effects. Overall, our findings provide a potential explanation of why Polypterus and mudskippers adopt their distinct gaits, emerging as optimal solutions for their morphology within the broader space of all possible gaits.&#xD.
Author Paez, Laura
Gevers, Louis
Standen, Emily
Fu, Qiyuan
Ijspeert, Auke
Gupta, Astha
Author_xml – sequence: 1
  givenname: Louis
  orcidid: 0009-0001-7599-7058
  surname: Gevers
  fullname: Gevers, Louis
  organization: École Polytechnique Fédérale de Lausanne (EPFL) Biorobotics Laboratory, Institute of Bioengineering, Lausanne, Switzerland
– sequence: 2
  givenname: Astha
  orcidid: 0000-0001-8213-9564
  surname: Gupta
  fullname: Gupta, Astha
  organization: École Polytechnique Fédérale de Lausanne (EPFL) Biorobotics Laboratory, Institute of Bioengineering, Lausanne, Switzerland
– sequence: 3
  givenname: Laura
  surname: Paez
  fullname: Paez, Laura
  organization: École Polytechnique Fédérale de Lausanne (EPFL) Biorobotics Laboratory, Institute of Bioengineering, Lausanne, Switzerland
– sequence: 4
  givenname: Qiyuan
  orcidid: 0000-0002-5275-4555
  surname: Fu
  fullname: Fu, Qiyuan
  organization: École Polytechnique Fédérale de Lausanne (EPFL) Biorobotics Laboratory, Institute of Bioengineering, Lausanne, Switzerland
– sequence: 5
  givenname: Emily
  surname: Standen
  fullname: Standen, Emily
  organization: University of Ottawa Standen Lab, Department of Biology, Ottawa, Canada
– sequence: 6
  givenname: Auke
  orcidid: 0000-0003-1417-9980
  surname: Ijspeert
  fullname: Ijspeert, Auke
  organization: École Polytechnique Fédérale de Lausanne (EPFL) Biorobotics Laboratory, Institute of Bioengineering, Lausanne, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40403755$$D View this record in MEDLINE/PubMed
BookMark eNp1kT1PwzAQhi1URD9gZ0IeGQh1bCdxRlTxUakSC8yW49ipqyQOdoLUf49DSjemO909d3rvvSWYtbZVANzG6DFGjK3jjLKIxDlai7KUOLsAi3Npds4ZnoOl9weEEpozfAXmFFFEsiRZALttv5XvTSV601aw3yuotFayh1bDxrpub2tbHaFtf3u9ci7gzogaVsL0fsRE0-1NYezgoTZ-Dwc_rhLQKWlbbarBiaJW0NnC9tfgUovaq5tTXIHPl-ePzVu0e3_dbp52kSSE9JFIKEYqjVlaJDIjeckoU4yUaZmxXORpyJJwQpwyhDOKszyVBcV5ViCFYkk1WYH7aW_n7NcQJPPGeKnqWrQqCOUEozRnFLMkoHcndCgaVfLOmUa4I_8zKQBoAqSz3julz0iM-PgHPhrNR9P59Icw8jCNGNvxgx1cG479H_8BmMWJGQ
CODEN BBIICI
Cites_doi 10.1016/j.neunet.2008.03.014
10.1111/j.1469-7998.1960.tb05921.x
10.1109/TRO.2012.2234311
10.1038/nature13708
10.1242/jeb.162909
10.1016/j.xcrp.2023.101589
10.1016/j.zool.2016.05.001
10.1126/science.aaf0984
10.1126/science.288.5463.100
10.1093/icb/ict048
10.1002/ar.24117
10.1126/science.1138353
10.1093/icb/ict067
10.3389/fnbot.2020.604426
10.1109/4235.996017
10.1111/jfb.12318
10.1017/S0140525X01000127
10.1016/j.oceaneng.2021.108862
10.1093/icb/icac016
10.1007/bfb0013365
10.1242/jeb.029041
10.1242/jeb.047902
10.18910/84869
10.1242/jeb.168716
10.1007/BF01185408
10.1111/j.1469-7580.2012.01491.x
10.1109/ACCESS.2020.2990567
10.1093/icb/ict051
10.1109/TMECH.2011.2132732
10.1242/jeb.242395
10.1109/biorob.2006.1639162
10.1007/s40747-022-00883-7
10.1109/IROS.2011.6094819
10.1109/ICRA.2013.6631012
10.1038/375678a0
10.1126/scirobotics.adn1125
10.1101/2023.09.25.559130
10.1109/IROS.2012.6386109
10.1098/rsif.2015.1089
ContentType Journal Article
Copyright 2025 The Author(s). Published by IOP Publishing Ltd
Creative Commons Attribution license.
Copyright_xml – notice: 2025 The Author(s). Published by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
DBID O3W
TSCCA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1748-3190/addc27
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1748-3190
ExternalDocumentID 40403755
10_1088_1748_3190_addc27
bbaddc27
Genre Journal Article
GrantInformation_xml – fundername: H2020 European Research Council
  grantid: 951477
  funderid: http://dx.doi.org/10.13039/100010663
GroupedDBID ---
1JI
4.4
53G
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
TN5
TSCCA
W28
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c333t-a5420e6186b5c739d848e83d6d789a963d6540316802742796cb4297b0e01c4f3
IEDL.DBID IOP
ISSN 1748-3182
1748-3190
IngestDate Fri May 23 17:33:11 EDT 2025
Tue Jun 03 01:34:24 EDT 2025
Thu Jul 03 08:43:46 EDT 2025
Tue Jun 03 22:14:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords multi-objective optimization
central pattern generators (CPG)
biomimetic robotics
morphologies
locomotion
amphibious fish
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-a5420e6186b5c739d848e83d6d789a963d6540316802742796cb4297b0e01c4f3
Notes BB-104193.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5275-4555
0000-0001-8213-9564
0009-0001-7599-7058
0000-0003-1417-9980
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1748-3190/addc27
PMID 40403755
PQID 3206984285
PQPubID 23479
PageCount 16
ParticipantIDs iop_journals_10_1088_1748_3190_addc27
pubmed_primary_40403755
crossref_primary_10_1088_1748_3190_addc27
proquest_miscellaneous_3206984285
PublicationCentury 2000
PublicationDate 2025-07-31
PublicationDateYYYYMMDD 2025-07-31
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-31
  day: 31
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinspiration & biomimetics
PublicationTitleAbbrev BB
PublicationTitleAlternate Bioinspir. Biomim
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Clack (bbaddc27bib1) 2012
Jan Ijspeert (bbaddc27bib14) 2008; 21
Ijspeert (bbaddc27bib22) 2007; 315
Minicozzi (bbaddc27bib11) 2020; 303
Foster (bbaddc27bib39) 2018; 221
Arreguit (bbaddc27bib29) 2021
Kuramoto (bbaddc27bib35) 1975
Standen (bbaddc27bib44) 2016; 119
Ashley-Ross (bbaddc27bib3) 2013; 53
Knüsel (bbaddc27bib31) 2020; 14
Lin (bbaddc27bib18) 2023; 4
Deb (bbaddc27bib36) 2011
Ekeberg (bbaddc27bib32) 1993; 69
Sordino (bbaddc27bib9) 1995; 375
Iida (bbaddc27bib15) 2016
Graham (bbaddc27bib4) 1997
Webb (bbaddc27bib30) 1975; 190
Pace (bbaddc27bib41) 2011; 214
Dickinson (bbaddc27bib2) 2000; 288
Ren (bbaddc27bib17) 2021; 227
Li (bbaddc27bib28) 2022; 9
Arreguit (bbaddc27bib33) 2024
Kawano (bbaddc27bib42) 2013; 53
Webb (bbaddc27bib13) 2001; 24
Ishida (bbaddc27bib19) 2024; 9
Blank (bbaddc27bib38) 2020; 8
Du (bbaddc27bib43) 2017; 220
Knüsel (bbaddc27bib25) 2013; 53
Standen (bbaddc27bib6) 2014; 513
Harris (bbaddc27bib7) 1960; 134
Oliveira (bbaddc27bib27) 2013
Crespi (bbaddc27bib23) 2013; 29
Deb (bbaddc27bib37) 2002; 6
Pace (bbaddc27bib40) 2009; 212
Yano (bbaddc27bib10) 2013; 222
Lauder (bbaddc27bib12) 2022; 62
Oliveira (bbaddc27bib26) 2011
Todorov (bbaddc27bib34) 2012
Lachat (bbaddc27bib20) 2006
Yu (bbaddc27bib21) 2012; 17
Lutek (bbaddc27bib8) 2022; 225
Karakasiliotis (bbaddc27bib24) 2016; 13
McInroe (bbaddc27bib16) 2016; 353
Pace (bbaddc27bib5) 2014; 84
References_xml – volume: 21
  start-page: 642
  year: 2008
  ident: bbaddc27bib14
  article-title: Central pattern generators for locomotion control in animals and robots: a review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2008.03.014
– volume: 134
  start-page: 107
  year: 1960
  ident: bbaddc27bib7
  article-title: On the locomotion of the mud-skipper Periophthalmus koelreuteri (Pallas): (Gobiidae)
  publication-title: Proc. Zool. Soc. London
  doi: 10.1111/j.1469-7998.1960.tb05921.x
– volume: 29
  start-page: 308
  year: 2013
  ident: bbaddc27bib23
  article-title: Salamandra robotica II: an amphibious robot to study salamander-like swimming and walking gaits
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2012.2234311
– start-page: pp 3
  year: 2011
  ident: bbaddc27bib36
– volume: 513
  start-page: 54
  year: 2014
  ident: bbaddc27bib6
  article-title: Developmental plasticity and the origin of tetrapods
  publication-title: Nature
  doi: 10.1038/nature13708
– volume: 220
  start-page: 3406
  year: 2017
  ident: bbaddc27bib43
  article-title: Phenotypic plasticity of muscle fiber type in the pectoral fins of Polypterus senegalus reared in a terrestrial environment
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.162909
– volume: 4
  year: 2023
  ident: bbaddc27bib18
  article-title: Mudskipper-inspired amphibious robotic fish enhances locomotion performance by pectoral-caudal fins coordination
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2023.101589
– volume: 119
  start-page: 447
  year: 2016
  ident: bbaddc27bib44
  article-title: Locomotor flexibility of Polypterus senegalus across various aquatic and terrestrial substrates
  publication-title: Zoology
  doi: 10.1016/j.zool.2016.05.001
– volume: 353
  start-page: 154
  year: 2016
  ident: bbaddc27bib16
  article-title: Tail use improves performance on soft substrates in models of early vertebrate land locomotors
  publication-title: Science
  doi: 10.1126/science.aaf0984
– start-page: pp 2015
  year: 2016
  ident: bbaddc27bib15
  article-title: Biologically inspired robotics
– volume: 288
  start-page: 100
  year: 2000
  ident: bbaddc27bib2
  article-title: How animals move: an integrative view
  publication-title: Science
  doi: 10.1126/science.288.5463.100
– volume: 53
  start-page: 192
  year: 2013
  ident: bbaddc27bib3
  article-title: Vertebrate land invasions–past, present and future: an introduction to the symposium
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/ict048
– volume: 303
  start-page: 53
  year: 2020
  ident: bbaddc27bib11
  article-title: Are extreme anatomical modifications required for fish to move effectively on land? comparative anatomy of the posterior axial skeleton in the cyprinodontiformes
  publication-title: Anat. Rec.
  doi: 10.1002/ar.24117
– volume: 315
  start-page: 1416
  year: 2007
  ident: bbaddc27bib22
  article-title: From swimming to walking with a salamander robot driven by a spinal cord model
  publication-title: Science
  doi: 10.1126/science.1138353
– volume: 53
  start-page: 269
  year: 2013
  ident: bbaddc27bib25
  article-title: A Salamander’s flexible spinal network for locomotion, modeled at two levels of abstraction
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/ict067
– volume: 14
  year: 2020
  ident: bbaddc27bib31
  article-title: Reproducing five motor behaviors in a salamander robot with virtual muscles and a distributed CPG controller regulated by drive signals and proprioceptive feedback
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2020.604426
– volume: 6
  start-page: 182
  year: 2002
  ident: bbaddc27bib37
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 84
  start-page: 639
  year: 2014
  ident: bbaddc27bib5
  article-title: Sustained periodic terrestrial locomotion in air-breathing fishes
  publication-title: J. Fish Biol.
  doi: 10.1111/jfb.12318
– volume: 24
  start-page: 1033
  year: 2001
  ident: bbaddc27bib13
  article-title: Can robots make good models of biological behaviour?
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X01000127
– volume: 227
  year: 2021
  ident: bbaddc27bib17
  article-title: Research status of bionic amphibious robots: a review
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108862
– year: 2012
  ident: bbaddc27bib1
– volume: 62
  start-page: 721
  year: 2022
  ident: bbaddc27bib12
  article-title: Robotics as a comparative method in ecology and evolutionary biology
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/icac016
– start-page: pp 420
  year: 1975
  ident: bbaddc27bib35
  article-title: Self-entrainment of a population of coupled non-linear oscillators
  doi: 10.1007/bfb0013365
– year: 1997
  ident: bbaddc27bib4
– volume: 212
  start-page: 2279
  year: 2009
  ident: bbaddc27bib40
  article-title: Mudskipper pectoral fin kinematics in aquatic and terrestrial environments
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.029041
– volume: 214
  start-page: 530
  year: 2011
  ident: bbaddc27bib41
  article-title: Locomotor behavior across an environmental transition in the ropefish, Erpetoichthys calabaricus
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.047902
– start-page: p 29
  year: 2021
  ident: bbaddc27bib29
  article-title: Multi-objective optimization based 3D walking of a neuromuscular driven salamander model in simulation
  doi: 10.18910/84869
– volume: 221
  year: 2018
  ident: bbaddc27bib39
  article-title: Fin and body neuromuscular coordination changes during walking and swimming in Polypterus senegalus
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.168716
– volume: 69
  start-page: 363
  year: 1993
  ident: bbaddc27bib32
  article-title: A combined neuronal and mechanical model of fish swimming
  publication-title: Biol. Cybern.
  doi: 10.1007/BF01185408
– volume: 222
  start-page: 100
  year: 2013
  ident: bbaddc27bib10
  article-title: The making of differences between fins and limbs
  publication-title: J. Anat.
  doi: 10.1111/j.1469-7580.2012.01491.x
– volume: 8
  start-page: 89497
  year: 2020
  ident: bbaddc27bib38
  article-title: Pymoo: multi-objective optimization in Python
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990567
– volume: 53
  start-page: 283
  year: 2013
  ident: bbaddc27bib42
  article-title: Propulsive forces of mudskipper fins and salamander limbs during terrestrial locomotion: implications for the invasion of land
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/ict051
– volume: 17
  start-page: 847
  year: 2012
  ident: bbaddc27bib21
  article-title: On a bio-inspired amphibious robot capable of multimodal motion
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2011.2132732
– volume: 225
  year: 2022
  ident: bbaddc27bib8
  article-title: Patterns and processes in amphibious fish: biomechanics and neural control of fish terrestrial locomotion
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.242395
– start-page: pp 643
  year: 2006
  ident: bbaddc27bib20
  article-title: BoxyBot: a swimming and crawling fish robot controlled by a central pattern generator
  doi: 10.1109/biorob.2006.1639162
– volume: 9
  start-page: 1707
  year: 2022
  ident: bbaddc27bib28
  article-title: Multi-objective evolutionary design of central pattern generator network for biomimetic robotic fish
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-022-00883-7
– start-page: pp 2286
  year: 2011
  ident: bbaddc27bib26
  article-title: Multi-objective parameter CPG optimization for gait generation of a quadruped robot considering behavioral diversity
  doi: 10.1109/IROS.2011.6094819
– start-page: pp 3130
  year: 2013
  ident: bbaddc27bib27
  article-title: Multi-objective parameter CPG optimization for gait generation of a biped robot
  doi: 10.1109/ICRA.2013.6631012
– volume: 375
  start-page: 678
  year: 1995
  ident: bbaddc27bib9
  article-title: Hox gene expression in teleost fins and the origin of vertebrate digits
  publication-title: Nature
  doi: 10.1038/375678a0
– volume: 9
  start-page: eadn1125
  year: 2024
  ident: bbaddc27bib19
  article-title: Paleoinspired robotics as an experimental approach to the history of life
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.adn1125
– volume: 190
  start-page: 1
  year: 1975
  ident: bbaddc27bib30
  article-title: Hydrodynamics and energetics of fish propulsion
  publication-title: Bull. Fish. Res. Board Can.
– year: 2024
  ident: bbaddc27bib33
  article-title: FARMS: framework for animal and robot modeling and simulation
  doi: 10.1101/2023.09.25.559130
– start-page: pp 5026
  year: 2012
  ident: bbaddc27bib34
  article-title: MuJoCo: a physics engine for model-based control
  doi: 10.1109/IROS.2012.6386109
– volume: 13
  year: 2016
  ident: bbaddc27bib24
  article-title: From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2015.1089
SSID ssj0054982
Score 2.3888614
Snippet The relationship between morphology and locomotion performance in amphibious fish remains poorly understood, particularly in axial-appendage-based and...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 46002
SubjectTerms amphibious fish
Animals
biomimetic robotics
Biomimetics - instrumentation
central pattern generators (CPG)
Computer Simulation
Equipment Design
Equipment Failure Analysis
Extremities - physiology
Fishes - anatomy & histology
Fishes - physiology
Gait - physiology
locomotion
Locomotion - physiology
Models, Biological
morphologies
multi-objective optimization
Robotics - instrumentation
Title Investigating the effect of morphology on the terrestrial gaits of amphibious fish using a reconfigurable robot
URI https://iopscience.iop.org/article/10.1088/1748-3190/addc27
https://www.ncbi.nlm.nih.gov/pubmed/40403755
https://www.proquest.com/docview/3206984285
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED515YWXMSiMwkCeBEh7SMlix3a0pwpRVUisPFCtD5MiO3G6CjWp2vRh-_XcOWm1IUCIlyhSTnFyd_bd-T7fAbxT0roij0VgULqBKM5lYHOCidlI5hZNCtd0OPnrpRxPxZdZPOvAxf4sTLVql_4B3jaFghsWtoA4_RF9aNrSS0KC3GSROoBHXKPhpNN7k2-7ZRjjHt8pqqXWUZuj_N0bHtikAxz3z-6mNzujJ3C9--AGbfJjsK3tILv7pZbjf_7RERy27igbNqRPoePKZ9AblhiKL2_ZB-YBon7nvQfVvZoc5Zyh58gaNAirCrasUGCekFWlf4YCo74fpOBsbhb1hsgMKs_CEu6WFYvNDSPY_ZwZ5uPyYjHfrukoF1tXtqqfw3T0-funcdD2awgyznkdmFhEoaMC_DbOFE9yLbTTPJe50gnpQi7RP6ROWT5BrBKZWTSHyoYuPM9EwV9At6xK9xKYMgZdLy05d0bIItImUbEsEpUl1uRC9uFsJ7F01ZTlSH06XeuUuJkSN9OGm314j4xP27m5-Qvd6U7oKc4xSpyY0iFDUh6FMtEYqMV9OG60YT-qwFWQqzh-9Y-jvIbHEbUQ9tvDJ9Ct11v3Bv2a2r71-ovXCb_6CfhA8XM
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKlRAX1BZoF2hrJEDqIRDiZ46o7YqW5wEEN8uO7e0eSFa74cC_74yTRVSCiluk2HH0je2Z8XyeIWRHSReiFzyzIN2Mx0OZOY80MVdI70ClMI2Xk8_O5fE1_30rbvs6p-kuTDPpt_59eOwSBXcQ9oQ4fQA2NB7plTlSbipw3Sc-LpC3goGqgQl9wW7mWzH4PqlaVN9DF32c8rmv_KOXFmDsl03OpHqG78hKbzPSo-4P35M3of5AVo9q8JfvHugeTSzOdDy-SponiTPqEQXzjnaUDdpEetcAqqkhber0DlDF4hw4C-nIjtsZNrMg4bFDciyN49kfitz4EbU0Oc9xPLqf4n0rOm1c066R6-HPq-_HWV9UIasYY21mBS_ygFnynagUK73mOmjmpVe6RIF5CUYclrNKUVxVysqBzlIuD_lhxSNbJ4t1U4dPhCprwT7SkrFguYyFtqUSMpaqKp31XA7ItzmkZtLlzjAp5q21QfgNwm86-AdkFzA3_QKa_afd9lwqBhYCRjdsHQAQw4pclhq8KTEgHztxPY7KYatiSoiNV47ylSxd_hia01_nJ5tkucCSv-k4d4ssttP78BnskNZ9SXPtL2Xc1Qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+effect+of+morphology+on+the+terrestrial+gaits+of+amphibious+fish+using+a+reconfigurable+robot&rft.jtitle=Bioinspiration+%26+biomimetics&rft.au=Gevers%2C+Louis&rft.au=Gupta%2C+Astha&rft.au=Paez%2C+Laura&rft.au=Fu%2C+Qiyuan&rft.date=2025-07-31&rft.issn=1748-3182&rft.eissn=1748-3190&rft.volume=20&rft.issue=4&rft.spage=46002&rft_id=info:doi/10.1088%2F1748-3190%2Faddc27&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1748_3190_addc27
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3182&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3182&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3182&client=summon