Contactless measurement of muscle fiber conduction velocity—a novel approach using optically pumped magnetometers
Objective . Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed using invasive or surface electromyography. Because electrical currents generate magnetic fields, propagation velocity can potentially also be...
Saved in:
Published in | Journal of neural engineering Vol. 22; no. 2; pp. 26058 - 26067 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective . Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed using invasive or surface electromyography. Because electrical currents generate magnetic fields, propagation velocity can potentially also be measured magnetically using magnetomyography (MMG), offering the advantage of a contactless approach. Approach . To test this hypothesis, we recorded MMG signals from the right biceps brachii muscle of 24 healthy subjects (12 male, 12 female) using a linear array of seven optically pumped magnetometers (OPMs). Subjects maintained muscle force for 30 s at 20%, 40%, and 60% of their maximum voluntary contraction. Main results . In 20 subjects, propagation of MMG signals was observable. Change in polarity and signal cancellation enabled localization of the innervation zone. We estimated the MFCV for each condition by cross-correlating double-differentiated MMG signals. To validate our results, we examined whether MFCV estimations increased with higher force levels, a well-documented characteristic of the neuromuscular system. The median MFCV significantly increased with force ( p = 0.007), with median values of 3.2 m s −1 at 20%, 3.8 m s −1 at 40%, and 4.4 m s −1 at 60% across all 20 subjects. Significance . Our results establish the first measurements of magnetic MFCV in MMG using OPMs. These findings pave the way for further developments and application of quantum sensors for contactless clinical neurophysiology. |
---|---|
AbstractList | . Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed using invasive or surface electromyography. Because electrical currents generate magnetic fields, propagation velocity can potentially also be measured magnetically using magnetomyography (MMG), offering the advantage of a contactless approach.
. To test this hypothesis, we recorded MMG signals from the right biceps brachii muscle of 24 healthy subjects (12 male, 12 female) using a linear array of seven optically pumped magnetometers (OPMs). Subjects maintained muscle force for 30 s at 20%, 40%, and 60% of their maximum voluntary contraction.
. In 20 subjects, propagation of MMG signals was observable. Change in polarity and signal cancellation enabled localization of the innervation zone. We estimated the MFCV for each condition by cross-correlating double-differentiated MMG signals. To validate our results, we examined whether MFCV estimations increased with higher force levels, a well-documented characteristic of the neuromuscular system. The median MFCV significantly increased with force (
= 0.007), with median values of 3.2 m s
at 20%, 3.8 m s
at 40%, and 4.4 m s
at 60% across all 20 subjects.
. Our results establish the first measurements of magnetic MFCV in MMG using OPMs. These findings pave the way for further developments and application of quantum sensors for contactless clinical neurophysiology. Objective . Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed using invasive or surface electromyography. Because electrical currents generate magnetic fields, propagation velocity can potentially also be measured magnetically using magnetomyography (MMG), offering the advantage of a contactless approach. Approach . To test this hypothesis, we recorded MMG signals from the right biceps brachii muscle of 24 healthy subjects (12 male, 12 female) using a linear array of seven optically pumped magnetometers (OPMs). Subjects maintained muscle force for 30 s at 20%, 40%, and 60% of their maximum voluntary contraction. Main results . In 20 subjects, propagation of MMG signals was observable. Change in polarity and signal cancellation enabled localization of the innervation zone. We estimated the MFCV for each condition by cross-correlating double-differentiated MMG signals. To validate our results, we examined whether MFCV estimations increased with higher force levels, a well-documented characteristic of the neuromuscular system. The median MFCV significantly increased with force ( p = 0.007), with median values of 3.2 m s −1 at 20%, 3.8 m s −1 at 40%, and 4.4 m s −1 at 60% across all 20 subjects. Significance . Our results establish the first measurements of magnetic MFCV in MMG using OPMs. These findings pave the way for further developments and application of quantum sensors for contactless clinical neurophysiology. Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed using invasive or surface electromyography (EMG). Because electrical currents generate magnetic fields, their propagation velocity can also be measured biomagnetically using magnetomyography (MMG), offering the advantage of a contactless approach. To test this hypothesis, we recorded MMG signals from the right biceps brachii muscle of 24 healthy subjects (12 male, 12 female) using a linear array of seven optically pumped magnetometers (OPMs). Subjects maintained their force for 30 seconds at 20%, 40%, and 60% of their maximum voluntary contraction (MVC). In 20 subjects, propagation of MMG signals was observable, enabling us to localize the innervation zone. We then estimated the MFCV for each condition by cross-correlating double-differentiated MMG signals. To validate our results, we examined whether our MFCV estimations increased with higher force levels, a well-documented characteristic of the neuromuscular system. The median MFCV increased with force significantly (p = 0.007), with median values of 3.2 m/s at 20%, 3.8 m/s at 40%, and 4.4 m/s at 60% across all 20 subjects. Given the exploratory and pioneering nature of measuring magnetic MFCV in MMG using OPMs for the first time, we have demonstrated not only that MFCV can be measured without contact but also that the localization of the innervation zone is possible. This study paves the way for further application and development of quantum sensors for contactless clinical neurophysiology.
.Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed using invasive or surface electromyography (EMG). Because electrical currents generate magnetic fields, their propagation velocity can also be measured biomagnetically using magnetomyography (MMG), offering the advantage of a contactless approach. To test this hypothesis, we recorded MMG signals from the right biceps brachii muscle of 24 healthy subjects (12 male, 12 female) using a linear array of seven optically pumped magnetometers (OPMs). Subjects maintained their force for 30 seconds at 20%, 40%, and 60% of their maximum voluntary contraction (MVC). In 20 subjects, propagation of MMG signals was observable, enabling us to localize the innervation zone. We then estimated the MFCV for each condition by cross-correlating double-differentiated MMG signals. To validate our results, we examined whether our MFCV estimations increased with higher force levels, a well-documented characteristic of the neuromuscular system. The median MFCV increased with force significantly (p = 0.007), with median values of 3.2 m/s at 20%, 3.8 m/s at 40%, and 4.4 m/s at 60% across all 20 subjects. Given the exploratory and pioneering nature of measuring magnetic MFCV in MMG using OPMs for the first time, we have demonstrated not only that MFCV can be measured without contact but also that the localization of the innervation zone is possible. This study paves the way for further application and development of quantum sensors for contactless clinical neurophysiology.
. |
Author | Marquetand, Justus Baier, Lukas Senay, Burak Brümmer, Tim Siegel, Markus Keleş, Ahmet Doğukan Röhrle, Oliver Noury, Nima Klotz, Thomas |
Author_xml | – sequence: 1 givenname: Lukas orcidid: 0009-0008-6367-8851 surname: Baier fullname: Baier, Lukas organization: Institute for Modelling and Simulation of Biomechanical Systems , University of Stuttgart, Stuttgart, Germany – sequence: 2 givenname: Tim surname: Brümmer fullname: Brümmer, Tim organization: Institute for Modelling and Simulation of Biomechanical Systems , University of Stuttgart, Stuttgart, Germany – sequence: 3 givenname: Burak orcidid: 0009-0009-7654-5844 surname: Senay fullname: Senay, Burak organization: Institute for Modelling and Simulation of Biomechanical Systems , University of Stuttgart, Stuttgart, Germany – sequence: 4 givenname: Markus surname: Siegel fullname: Siegel, Markus organization: University of Tübingen MEG-Center, Tübingen, Germany – sequence: 5 givenname: Ahmet Doğukan surname: Keleş fullname: Keleş, Ahmet Doğukan organization: Institute for Modelling and Simulation of Biomechanical Systems , University of Stuttgart, Stuttgart, Germany – sequence: 6 givenname: Oliver surname: Röhrle fullname: Röhrle, Oliver organization: Stuttgart Center for Simulation Science , University of Stuttgart, Stuttgart, Germany – sequence: 7 givenname: Thomas orcidid: 0000-0002-0503-9815 surname: Klotz fullname: Klotz, Thomas organization: Institute for Modelling and Simulation of Biomechanical Systems , University of Stuttgart, Stuttgart, Germany – sequence: 8 givenname: Nima surname: Noury fullname: Noury, Nima organization: University of Tübingen MEG-Center, Tübingen, Germany – sequence: 9 givenname: Justus orcidid: 0000-0002-2039-5498 surname: Marquetand fullname: Marquetand, Justus organization: Institute for Modelling and Simulation of Biomechanical Systems , University of Stuttgart, Stuttgart, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40174601$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kblOxDAQhi0E4u6pkEsKFuw4yTolWnFJSDRQWz7GEBTbwQfSdjwET8iTkNXCdlRzfTOa-ecAbfvgAaETSi4o4fySzms6q5qmupRGc6a20P4mtb3xW7KHDlJ6I4TReUd20V5NplJL6D5Ki-Cz1HmAlLADmUoEBz7jYLErSQ-Aba8gYh28KTr3weMPGILu8_L780tiH6YQy3GMQepXXFLvX3AYc6_lMCzxWNwIBjv54iEHBxliOkI7Vg4Jjn_tIXq-uX5a3M0eHm_vF1cPM80YyzM-XWSbxkoFlttWadW1bctVpayUdVObinOrVVtVsjLG1Kzmje46aoBpTZRlh-hsPXfa7b1AysL1ScMwSA-hJMEob-a8bjo6oae_aFEOjBhj72Rcij-hJoCsAR1DShHsBqFErH4hVmKLlfBi_Yup5Xzd0odRvIUS_XTs__gPnF-PFQ |
CODEN | JNEOBH |
Cites_doi | 10.3389/fnins.2022.1010242 10.1063/1.1654294 10.1152/japplphysiol.00606.2004 10.1016/j.jns.2011.07.036 10.1016/j.jelekin.2020.102439 10.1080/10749357.2016.1277482 10.1016/j.jelekin.2018.04.010 10.1088/1741-2552/ace7f7 10.1155/2011/156869 10.1109/TBME.2004.827556 10.1016/j.neuroimage.2017.01.034 10.3389/fneur.2020.00934 10.1249/MSS.0000000000002196 10.1152/japplphysiol.00482.2017 10.1016/S1567-4231(04)04006-7 10.1007/978-88-470-2463-2 10.1016/j.jelekin.2020.102490 10.1007/BF02350984 10.1016/j.jelekin.2006.09.005 10.1038/nature01484 10.1016/S1050-6411(98)00042-X 10.1152/jappl.1995.79.1.23 10.11183/jhe1972.29.35 10.1016/s1050-6411(98)00021-2 10.1111/apha.12930 10.3389/fphys.2021.724755 10.1101/2024.10.15.618402 10.1016/j.jelekin.2019.06.005 10.3389/fnins.2023.1154572 10.1155/2018/5373846 10.1016/j.clinph.2021.06.009 10.1016/j.jneumeth.2003.12.002 10.1113/JP284170 10.1002/mus.20895 10.2114/jpa.15.41 10.1007/BF00417263 10.1016/j.neuroimage.2022.119027 10.1007/BF02477404 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Published by IOP Publishing Ltd Creative Commons Attribution license. |
Copyright_xml | – notice: 2025 The Author(s). Published by IOP Publishing Ltd – notice: Creative Commons Attribution license. |
DBID | O3W TSCCA AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1088/1741-2552/adc83b |
DatabaseName | IOP Publishing Free Content IOPscience (Open Access) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1741-2552 |
ExternalDocumentID | 40174601 10_1088_1741_2552_adc83b jneadc83b |
Genre | Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: 548605919 funderid: http://dx.doi.org/10.13039/501100001659 |
GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP N5L N9A O3W P2P PJBAE RIN RO9 ROL RPA SY9 TSCCA W28 XPP AAYXX ADEQX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c333t-8c83f55fabef8f6bcb96668b2bfaa454d288fcb622a2ddd43485c991de3cc0bf3 |
IEDL.DBID | IOP |
ISSN | 1741-2560 1741-2552 |
IngestDate | Wed Jul 02 05:08:28 EDT 2025 Fri Apr 18 01:24:48 EDT 2025 Sun Jul 06 05:04:44 EDT 2025 Tue Apr 22 22:33:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | MFCV OPM quantum sensor MMG EMG muscle |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Creative Commons Attribution license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-8c83f55fabef8f6bcb96668b2bfaa454d288fcb622a2ddd43485c991de3cc0bf3 |
Notes | JNE-108461.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2039-5498 0009-0008-6367-8851 0009-0009-7654-5844 0000-0002-0503-9815 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1741-2552/adc83b |
PMID | 40174601 |
PQID | 3185784591 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3185784591 pubmed_primary_40174601 crossref_primary_10_1088_1741_2552_adc83b iop_journals_10_1088_1741_2552_adc83b |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2025 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Campanini (jneadc83bbib8) 2020; 11 Hattori (jneadc83bbib24) 1991; 63 Broser (jneadc83bbib7) 2021; 56 Li (jneadc83bbib29) 1996; 15 Ghahremani Arekhloo (jneadc83bbib23) 2023; 17 Noury (jneadc83bbib34) 2024 Marquetand (jneadc83bbib30) 2021; 132 Farina (jneadc83bbib22) 2004b; 51 Casolo (jneadc83bbib11) 2020; 53 Klotz (jneadc83bbib26) 2023; 20 Saitou (jneadc83bbib38) 2000; 29 Sometti (jneadc83bbib40) 2021; 12 Cruz Martínez (jneadc83bbib14) 1990; 30 Boto (jneadc83bbib6) 2022; 252 Casolo (jneadc83bbib10) 2020; 52 Kupa (jneadc83bbib28) 1995; 79 Heckman (jneadc83bbib25) 2004; vol 4 Mito (jneadc83bbib32) 2006; 12 Masuda (jneadc83bbib31) 1999; 9 Del Vecchio (jneadc83bbib16) 2018a; 40 Zwarts (jneadc83bbib41) 1988; 58 Semeia (jneadc83bbib39) 2022; 16 Beretta-Piccoli (jneadc83bbib3) 2019; 48 Boto (jneadc83bbib5) 2017; 149 Nielsen (jneadc83bbib33) 2008; 37 Beretta-Piccoli (jneadc83bbib2) 2018; 2018 Del Vecchio (jneadc83bbib17) 2018b; 222 Barbero (jneadc83bbib1) 2012 Cohen (jneadc83bbib12) 1972; 21 Kominis (jneadc83bbib27) 2003; 422 Casolo (jneadc83bbib9) 2023; 601 Del Vecchio (jneadc83bbib15) 2017; 123 Oostenveld (jneadc83bbib35) 2011; 2011 Farina (jneadc83bbib20) 2004a; 42 Farina (jneadc83bbib19) 2004a; 97 Drost (jneadc83bbib18) 2006; 16 Rainoldi (jneadc83bbib37) 1999; 9 Conrad (jneadc83bbib13) 2017; 24 Farina (jneadc83bbib21) 2004b; 134 Blijham (jneadc83bbib4) 2011; 309 Parker (jneadc83bbib36) 1973; 11 |
References_xml | – volume: 16 year: 2022 ident: jneadc83bbib39 article-title: Optically pumped magnetometers detect altered maximal muscle activity in neuromuscular disease publication-title: Front. Neurosci. doi: 10.3389/fnins.2022.1010242 – volume: 21 start-page: 114 year: 1972 ident: jneadc83bbib12 article-title: Magnetomyography: magnetic fields around the human body produced by skeletal muscles publication-title: Appl. Phys. Lett. doi: 10.1063/1.1654294 – volume: 97 start-page: 2035 year: 2004a ident: jneadc83bbib19 article-title: Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00606.2004 – volume: 309 start-page: 40 year: 2011 ident: jneadc83bbib4 article-title: Diagnostic yield of muscle fibre conduction velocity in myopathies publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2011.07.036 – volume: 53 year: 2020 ident: jneadc83bbib11 article-title: Reproducibility of muscle fibre conduction velocity during linearly increasing force contractions publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2020.102439 – volume: 24 start-page: 262 year: 2017 ident: jneadc83bbib13 article-title: Analysis of muscle fiber conduction velocity during finger flexion and extension after stroke publication-title: Topic Stroke Rehabil. doi: 10.1080/10749357.2016.1277482 – volume: 40 start-page: 102 year: 2018a ident: jneadc83bbib16 article-title: Variability of estimates of muscle fiber conduction velocity and surface EMG amplitude across subjects and processing intervals publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2018.04.010 – volume: 20 year: 2023 ident: jneadc83bbib26 article-title: High-density magnetomyography is superior to high-density surface electromyography for motor unit decomposition: a simulation study publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ace7f7 – volume: 2011 start-page: 1 year: 2011 ident: jneadc83bbib35 article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/156869 – volume: 51 start-page: 1383 year: 2004b ident: jneadc83bbib22 article-title: Assessment of average muscle fiber conduction velocity from surface EMG signals during fatiguing dynamic contractions publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827556 – volume: 149 start-page: 404 year: 2017 ident: jneadc83bbib5 article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.01.034 – volume: 11 start-page: 934 year: 2020 ident: jneadc83bbib8 article-title: Surface EMG in clinical assessment and neurorehabilitation: barriers limiting its use publication-title: Front. Neurol. doi: 10.3389/fneur.2020.00934 – volume: 52 start-page: 955 year: 2020 ident: jneadc83bbib10 article-title: Strength training increases conduction velocity of high-threshold motor units publication-title: Med. Sci. Sports Exercise doi: 10.1249/MSS.0000000000002196 – volume: 123 start-page: 835 year: 2017 ident: jneadc83bbib15 article-title: Associations between motor unit action potential parameters and surface EMG features publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00482.2017 – volume: vol 4 start-page: 119 year: 2004 ident: jneadc83bbib25 article-title: Physiology of the motor neuron and the motor unit doi: 10.1016/S1567-4231(04)04006-7 – year: 2012 ident: jneadc83bbib1 doi: 10.1007/978-88-470-2463-2 – volume: 56 year: 2021 ident: jneadc83bbib7 article-title: Optically pumped magnetometers disclose magnetic field components of the muscular action potential publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2020.102490 – volume: 42 start-page: 432 year: 2004a ident: jneadc83bbib20 article-title: Methods for estimating muscle fibre conduction velocity from surface electromyographic signals publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02350984 – volume: 16 start-page: 586 year: 2006 ident: jneadc83bbib18 article-title: Clinical applications of high-density surface EMG: a systematic review publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2006.09.005 – volume: 422 start-page: 596 year: 2003 ident: jneadc83bbib27 article-title: A subfemtotesla multichannel atomic magnetometer publication-title: Nature doi: 10.1038/nature01484 – volume: 9 start-page: 105 year: 1999 ident: jneadc83bbib37 article-title: Repeatability of surface EMG variables during voluntary isometric contractions of the biceps brachii muscle publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/S1050-6411(98)00042-X – volume: 30 start-page: 443 year: 1990 ident: jneadc83bbib14 article-title: Conduction velocity along muscle fibers in situ in healthy infants publication-title: Electromyogr. Clin. Neurophysiol. – volume: 79 start-page: 23 year: 1995 ident: jneadc83bbib28 article-title: Effects of muscle fiber type and size on EMG median frequency and conduction velocity publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1995.79.1.23 – volume: 29 start-page: 35 year: 2000 ident: jneadc83bbib38 article-title: Innervation zones of the upper and lower limb muscles estimated by using multichannel surface EMG publication-title: J. Hum. Ergol. doi: 10.11183/jhe1972.29.35 – volume: 9 start-page: 39 year: 1999 ident: jneadc83bbib31 article-title: Changes in surface EMG parameters during static and dynamic fatiguing contractions publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/s1050-6411(98)00021-2 – volume: 222 year: 2018b ident: jneadc83bbib17 article-title: Distribution of muscle fibre conduction velocity for representative samples of motor units in the full recruitment range of the tibialis anterior muscle publication-title: Acta Physiol. doi: 10.1111/apha.12930 – volume: 12 year: 2021 ident: jneadc83bbib40 article-title: Muscle fatigue revisited—insights from optically pumped magnetometers publication-title: Front. Physiol. doi: 10.3389/fphys.2021.724755 – start-page: p 2024 year: 2024 ident: jneadc83bbib34 article-title: Detecting single motor-unit activity in magnetomyography doi: 10.1101/2024.10.15.618402 – volume: 48 start-page: 53 year: 2019 ident: jneadc83bbib3 article-title: Reliability of surface electromyography in estimating muscle fiber conduction velocity: a systematic review publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2019.06.005 – volume: 17 year: 2023 ident: jneadc83bbib23 article-title: Alignment of magnetic sensing and clinical magnetomyography publication-title: Front. Neurosci. doi: 10.3389/fnins.2023.1154572 – volume: 2018 year: 2018 ident: jneadc83bbib2 article-title: Relationship between isometric muscle force and fractal dimension of surface electromyogram publication-title: Biomed. Res. Int. doi: 10.1155/2018/5373846 – volume: 132 start-page: 2681 year: 2021 ident: jneadc83bbib30 article-title: Optically pumped magnetometers reveal fasciculations non-invasively publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2021.06.009 – volume: 134 start-page: 199 year: 2004b ident: jneadc83bbib21 article-title: Estimation of average muscle fiber conduction velocity from two-dimensional surface EMG recordings publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.12.002 – volume: 601 start-page: 1831 year: 2023 ident: jneadc83bbib9 article-title: Non-invasive estimation of muscle fibre size from high-density electromyography publication-title: J. Physiol. doi: 10.1113/JP284170 – volume: 63 start-page: 53 year: 1991 ident: jneadc83bbib24 article-title: Sex differences in the distribution of subcutaneous and internal fat publication-title: Hum. Biol. – volume: 37 start-page: 68 year: 2008 ident: jneadc83bbib33 article-title: Effect of innervation-zone distribution on estimates of average muscle-fiber conduction velocity publication-title: Muscle Nerve doi: 10.1002/mus.20895 – volume: 15 start-page: 41 year: 1996 ident: jneadc83bbib29 article-title: Distribution of muscle fiber conduction velocity of M. biceps brachii during voluntary isometric contraction with use of surface array electrodes publication-title: Appl. Hum. Sci. doi: 10.2114/jpa.15.41 – volume: 58 start-page: 278 year: 1988 ident: jneadc83bbib41 article-title: The influence of force and circulation on average muscle fibre conduction velocity during local muscle fatigue publication-title: Eur. J. Appl. Physiol. Occup. Physiol. doi: 10.1007/BF00417263 – volume: 252 year: 2022 ident: jneadc83bbib6 article-title: Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: feasibility and application in children publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119027 – volume: 11 start-page: 591 year: 1973 ident: jneadc83bbib36 article-title: Statistics of the myoelectric signal from monopolar and bipolar electrodes publication-title: Med. Biol. Eng. doi: 10.1007/BF02477404 – volume: 12 start-page: BR115 year: 2006 ident: jneadc83bbib32 article-title: Comparison of experimental and numerical muscle fiber conduction velocity (MFCV) distribution around the end-plate zone and fiber endings publication-title: Med. Sci. Monit. |
SSID | ssj0031790 |
Score | 2.4245856 |
Snippet | Objective . Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed... . Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed using... Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed using... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 26058 |
SubjectTerms | Adult Electromyography - methods EMG Female Humans Magnetometry - instrumentation Magnetometry - methods Male MFCV MMG muscle Muscle Contraction - physiology Muscle Fibers, Skeletal - physiology Muscle, Skeletal - physiology Neural Conduction - physiology OPM quantum sensor Young Adult |
Title | Contactless measurement of muscle fiber conduction velocity—a novel approach using optically pumped magnetometers |
URI | https://iopscience.iop.org/article/10.1088/1741-2552/adc83b https://www.ncbi.nlm.nih.gov/pubmed/40174601 https://www.proquest.com/docview/3185784591 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7B9tIL0G4fW9rKlUqlHrIksZ141RNCIFSppQcQHCpFfnKgeYjsHrYnfgS_sL-k4zhZBGqrikuUSHYmGc_YM55vxgDvudBpYlkW8digg6JQpYSObURdwrjIUP-69OgvX7OjU_b5nJ-vwadVLkzd9FP_FG9DoeDAwh4QJ3bRhk4itITTXWm0oGodHlGBC6fP3jv-NkzD1JeeCtmQvnUW9zHKP73hzpq0jnT_bm52y87hJnwfPjigTS6ni7ma6p_3ajk-8I-2YKM3R8leaPoE1mz1FMZ7Fbri5ZJ8IB1AtNt5H0PrK1lJjcLVtqS83VsktSPlosX-xHn8CUEX24SitMQjkjQa-r-ubySpanwkQxVz4iH3F6Ruut30H0vSoGRZQ0p5UVkk73E67TM4PTw42T-K-jMbIk0pneNAC-o4d1JZJ1ymtEJ_KhMqVU5KxplJhXBaZWkqU2MMo0xwjTaqsVTrWDn6HEZVXdmXQHwAkuaJoblQzGbYfaZp7LREQvlMuwl8HEataEJpjqILqQtReI4WnqNF4OgEdpD5Ra-f7T_avRsGvkA988ETWdl60RY-yzwXjM-SCbwIErGiij5qztCzffWfVLbhceqPEe4AQK9hNL9a2Ddo28zV206G8XpMz34DQN_2dw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELboIlW9oMJCuy0PIxUkDmGT2E68xxWw2hbY9sCqe7P87IU81Owe9tYf0V_YX8LYSUCVAPWWSLEn8uexZzzfjBE6YVyniaVZxGIDDooCleI6thFxCWU8A_0L6dHfF9l8Sc9WbNXdcxpyYaq6W_o_wmNbKLgdwo4Qx8dgQycRWMLpWBrNiRrXxu2gx4zAVgMT-pxc9ksx8eWn2oxI3yKLuzjl33q5ty_tgOx_m5xh65ntoyedzYin7R8-RY9s-QwNpyX4y8UWv8eBxRmOx4eo8eWmpIYZ0DS4-HMAiCuHi00D7bHzJBEMfrBpK8diTxvSYI3f3dxKXFbwivtS49jz4q9wVYcj759bXAP81uBCXpUWxHsyTfMcLWdffnyaR93FCpEmhKwBDU4cY04q67jLlFbg9GRcpcpJSRk1KedOqyxNZWqMoYRypsGQNJZoHStHXqBBWZX2EGEfJSR5YkjOFbUZNJ9oEjstQVA-0W6EPvTDKuq2foYIcW_OhYdAeAhEC8EIvYNxF50SNf_57m2PjABl8BEOWdpq0wifCp5zyibJCB20kP2WCo5kTsH9PHqglDdo9-LzTHw7XXw9Rnupv_Y3EHZeosH6emNfgS2yVq_DfPsFuEbaEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contactless+measurement+of+muscle+fiber+conduction+velocity-a+novel+approach+using+optically+pumped+magnetometers&rft.jtitle=Journal+of+neural+engineering&rft.au=Baier%2C+Lukas&rft.au=Br%C3%BCmmer%2C+Tim&rft.au=Senay%2C+Burak&rft.au=Siegel%2C+Markus&rft.date=2025-04-01&rft.eissn=1741-2552&rft.volume=22&rft.issue=2&rft_id=info:doi/10.1088%2F1741-2552%2Fadc83b&rft_id=info%3Apmid%2F40174601&rft.externalDocID=40174601 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |