Contactless measurement of muscle fiber conduction velocity—a novel approach using optically pumped magnetometers

Objective . Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed using invasive or surface electromyography. Because electrical currents generate magnetic fields, propagation velocity can potentially also be...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 22; no. 2; pp. 26058 - 26067
Main Authors Baier, Lukas, Brümmer, Tim, Senay, Burak, Siegel, Markus, Keleş, Ahmet Doğukan, Röhrle, Oliver, Klotz, Thomas, Noury, Nima, Marquetand, Justus
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective . Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed using invasive or surface electromyography. Because electrical currents generate magnetic fields, propagation velocity can potentially also be measured magnetically using magnetomyography (MMG), offering the advantage of a contactless approach. Approach . To test this hypothesis, we recorded MMG signals from the right biceps brachii muscle of 24 healthy subjects (12 male, 12 female) using a linear array of seven optically pumped magnetometers (OPMs). Subjects maintained muscle force for 30 s at 20%, 40%, and 60% of their maximum voluntary contraction. Main results . In 20 subjects, propagation of MMG signals was observable. Change in polarity and signal cancellation enabled localization of the innervation zone. We estimated the MFCV for each condition by cross-correlating double-differentiated MMG signals. To validate our results, we examined whether MFCV estimations increased with higher force levels, a well-documented characteristic of the neuromuscular system. The median MFCV significantly increased with force ( p = 0.007), with median values of 3.2 m s −1 at 20%, 3.8 m s −1 at 40%, and 4.4 m s −1 at 60% across all 20 subjects. Significance . Our results establish the first measurements of magnetic MFCV in MMG using OPMs. These findings pave the way for further developments and application of quantum sensors for contactless clinical neurophysiology.
AbstractList . Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed using invasive or surface electromyography. Because electrical currents generate magnetic fields, propagation velocity can potentially also be measured magnetically using magnetomyography (MMG), offering the advantage of a contactless approach. . To test this hypothesis, we recorded MMG signals from the right biceps brachii muscle of 24 healthy subjects (12 male, 12 female) using a linear array of seven optically pumped magnetometers (OPMs). Subjects maintained muscle force for 30 s at 20%, 40%, and 60% of their maximum voluntary contraction. . In 20 subjects, propagation of MMG signals was observable. Change in polarity and signal cancellation enabled localization of the innervation zone. We estimated the MFCV for each condition by cross-correlating double-differentiated MMG signals. To validate our results, we examined whether MFCV estimations increased with higher force levels, a well-documented characteristic of the neuromuscular system. The median MFCV significantly increased with force ( = 0.007), with median values of 3.2 m s at 20%, 3.8 m s at 40%, and 4.4 m s at 60% across all 20 subjects. . Our results establish the first measurements of magnetic MFCV in MMG using OPMs. These findings pave the way for further developments and application of quantum sensors for contactless clinical neurophysiology.
Objective . Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed using invasive or surface electromyography. Because electrical currents generate magnetic fields, propagation velocity can potentially also be measured magnetically using magnetomyography (MMG), offering the advantage of a contactless approach. Approach . To test this hypothesis, we recorded MMG signals from the right biceps brachii muscle of 24 healthy subjects (12 male, 12 female) using a linear array of seven optically pumped magnetometers (OPMs). Subjects maintained muscle force for 30 s at 20%, 40%, and 60% of their maximum voluntary contraction. Main results . In 20 subjects, propagation of MMG signals was observable. Change in polarity and signal cancellation enabled localization of the innervation zone. We estimated the MFCV for each condition by cross-correlating double-differentiated MMG signals. To validate our results, we examined whether MFCV estimations increased with higher force levels, a well-documented characteristic of the neuromuscular system. The median MFCV significantly increased with force ( p = 0.007), with median values of 3.2 m s −1 at 20%, 3.8 m s −1 at 40%, and 4.4 m s −1 at 60% across all 20 subjects. Significance . Our results establish the first measurements of magnetic MFCV in MMG using OPMs. These findings pave the way for further developments and application of quantum sensors for contactless clinical neurophysiology.
Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed using invasive or surface electromyography (EMG). Because electrical currents generate magnetic fields, their propagation velocity can also be measured biomagnetically using magnetomyography (MMG), offering the advantage of a contactless approach. To test this hypothesis, we recorded MMG signals from the right biceps brachii muscle of 24 healthy subjects (12 male, 12 female) using a linear array of seven optically pumped magnetometers (OPMs). Subjects maintained their force for 30 seconds at 20%, 40%, and 60% of their maximum voluntary contraction (MVC). In 20 subjects, propagation of MMG signals was observable, enabling us to localize the innervation zone. We then estimated the MFCV for each condition by cross-correlating double-differentiated MMG signals. To validate our results, we examined whether our MFCV estimations increased with higher force levels, a well-documented characteristic of the neuromuscular system. The median MFCV increased with force significantly (p = 0.007), with median values of 3.2 m/s at 20%, 3.8 m/s at 40%, and 4.4 m/s at 60% across all 20 subjects. Given the exploratory and pioneering nature of measuring magnetic MFCV in MMG using OPMs for the first time, we have demonstrated not only that MFCV can be measured without contact but also that the localization of the innervation zone is possible. This study paves the way for further application and development of quantum sensors for contactless clinical neurophysiology.&#xD.Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed using invasive or surface electromyography (EMG). Because electrical currents generate magnetic fields, their propagation velocity can also be measured biomagnetically using magnetomyography (MMG), offering the advantage of a contactless approach. To test this hypothesis, we recorded MMG signals from the right biceps brachii muscle of 24 healthy subjects (12 male, 12 female) using a linear array of seven optically pumped magnetometers (OPMs). Subjects maintained their force for 30 seconds at 20%, 40%, and 60% of their maximum voluntary contraction (MVC). In 20 subjects, propagation of MMG signals was observable, enabling us to localize the innervation zone. We then estimated the MFCV for each condition by cross-correlating double-differentiated MMG signals. To validate our results, we examined whether our MFCV estimations increased with higher force levels, a well-documented characteristic of the neuromuscular system. The median MFCV increased with force significantly (p = 0.007), with median values of 3.2 m/s at 20%, 3.8 m/s at 40%, and 4.4 m/s at 60% across all 20 subjects. Given the exploratory and pioneering nature of measuring magnetic MFCV in MMG using OPMs for the first time, we have demonstrated not only that MFCV can be measured without contact but also that the localization of the innervation zone is possible. This study paves the way for further application and development of quantum sensors for contactless clinical neurophysiology.&#xD.
Author Marquetand, Justus
Baier, Lukas
Senay, Burak
Brümmer, Tim
Siegel, Markus
Keleş, Ahmet Doğukan
Röhrle, Oliver
Noury, Nima
Klotz, Thomas
Author_xml – sequence: 1
  givenname: Lukas
  orcidid: 0009-0008-6367-8851
  surname: Baier
  fullname: Baier, Lukas
  organization: Institute for Modelling and Simulation of Biomechanical Systems , University of Stuttgart, Stuttgart, Germany
– sequence: 2
  givenname: Tim
  surname: Brümmer
  fullname: Brümmer, Tim
  organization: Institute for Modelling and Simulation of Biomechanical Systems , University of Stuttgart, Stuttgart, Germany
– sequence: 3
  givenname: Burak
  orcidid: 0009-0009-7654-5844
  surname: Senay
  fullname: Senay, Burak
  organization: Institute for Modelling and Simulation of Biomechanical Systems , University of Stuttgart, Stuttgart, Germany
– sequence: 4
  givenname: Markus
  surname: Siegel
  fullname: Siegel, Markus
  organization: University of Tübingen MEG-Center, Tübingen, Germany
– sequence: 5
  givenname: Ahmet Doğukan
  surname: Keleş
  fullname: Keleş, Ahmet Doğukan
  organization: Institute for Modelling and Simulation of Biomechanical Systems , University of Stuttgart, Stuttgart, Germany
– sequence: 6
  givenname: Oliver
  surname: Röhrle
  fullname: Röhrle, Oliver
  organization: Stuttgart Center for Simulation Science , University of Stuttgart, Stuttgart, Germany
– sequence: 7
  givenname: Thomas
  orcidid: 0000-0002-0503-9815
  surname: Klotz
  fullname: Klotz, Thomas
  organization: Institute for Modelling and Simulation of Biomechanical Systems , University of Stuttgart, Stuttgart, Germany
– sequence: 8
  givenname: Nima
  surname: Noury
  fullname: Noury, Nima
  organization: University of Tübingen MEG-Center, Tübingen, Germany
– sequence: 9
  givenname: Justus
  orcidid: 0000-0002-2039-5498
  surname: Marquetand
  fullname: Marquetand, Justus
  organization: Institute for Modelling and Simulation of Biomechanical Systems , University of Stuttgart, Stuttgart, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40174601$$D View this record in MEDLINE/PubMed
BookMark eNp1kblOxDAQhi0E4u6pkEsKFuw4yTolWnFJSDRQWz7GEBTbwQfSdjwET8iTkNXCdlRzfTOa-ecAbfvgAaETSi4o4fySzms6q5qmupRGc6a20P4mtb3xW7KHDlJ6I4TReUd20V5NplJL6D5Ki-Cz1HmAlLADmUoEBz7jYLErSQ-Aba8gYh28KTr3weMPGILu8_L780tiH6YQy3GMQepXXFLvX3AYc6_lMCzxWNwIBjv54iEHBxliOkI7Vg4Jjn_tIXq-uX5a3M0eHm_vF1cPM80YyzM-XWSbxkoFlttWadW1bctVpayUdVObinOrVVtVsjLG1Kzmje46aoBpTZRlh-hsPXfa7b1AysL1ScMwSA-hJMEob-a8bjo6oae_aFEOjBhj72Rcij-hJoCsAR1DShHsBqFErH4hVmKLlfBi_Yup5Xzd0odRvIUS_XTs__gPnF-PFQ
CODEN JNEOBH
Cites_doi 10.3389/fnins.2022.1010242
10.1063/1.1654294
10.1152/japplphysiol.00606.2004
10.1016/j.jns.2011.07.036
10.1016/j.jelekin.2020.102439
10.1080/10749357.2016.1277482
10.1016/j.jelekin.2018.04.010
10.1088/1741-2552/ace7f7
10.1155/2011/156869
10.1109/TBME.2004.827556
10.1016/j.neuroimage.2017.01.034
10.3389/fneur.2020.00934
10.1249/MSS.0000000000002196
10.1152/japplphysiol.00482.2017
10.1016/S1567-4231(04)04006-7
10.1007/978-88-470-2463-2
10.1016/j.jelekin.2020.102490
10.1007/BF02350984
10.1016/j.jelekin.2006.09.005
10.1038/nature01484
10.1016/S1050-6411(98)00042-X
10.1152/jappl.1995.79.1.23
10.11183/jhe1972.29.35
10.1016/s1050-6411(98)00021-2
10.1111/apha.12930
10.3389/fphys.2021.724755
10.1101/2024.10.15.618402
10.1016/j.jelekin.2019.06.005
10.3389/fnins.2023.1154572
10.1155/2018/5373846
10.1016/j.clinph.2021.06.009
10.1016/j.jneumeth.2003.12.002
10.1113/JP284170
10.1002/mus.20895
10.2114/jpa.15.41
10.1007/BF00417263
10.1016/j.neuroimage.2022.119027
10.1007/BF02477404
ContentType Journal Article
Copyright 2025 The Author(s). Published by IOP Publishing Ltd
Creative Commons Attribution license.
Copyright_xml – notice: 2025 The Author(s). Published by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
DBID O3W
TSCCA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2552/adc83b
DatabaseName IOP Publishing Free Content
IOPscience (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 40174601
10_1088_1741_2552_adc83b
jneadc83b
Genre Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: 548605919
  funderid: http://dx.doi.org/10.13039/501100001659
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
TSCCA
W28
XPP
AAYXX
ADEQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c333t-8c83f55fabef8f6bcb96668b2bfaa454d288fcb622a2ddd43485c991de3cc0bf3
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Wed Jul 02 05:08:28 EDT 2025
Fri Apr 18 01:24:48 EDT 2025
Sun Jul 06 05:04:44 EDT 2025
Tue Apr 22 22:33:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords MFCV
OPM
quantum sensor
MMG
EMG
muscle
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-8c83f55fabef8f6bcb96668b2bfaa454d288fcb622a2ddd43485c991de3cc0bf3
Notes JNE-108461.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2039-5498
0009-0008-6367-8851
0009-0009-7654-5844
0000-0002-0503-9815
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1741-2552/adc83b
PMID 40174601
PQID 3185784591
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_3185784591
pubmed_primary_40174601
crossref_primary_10_1088_1741_2552_adc83b
iop_journals_10_1088_1741_2552_adc83b
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Campanini (jneadc83bbib8) 2020; 11
Hattori (jneadc83bbib24) 1991; 63
Broser (jneadc83bbib7) 2021; 56
Li (jneadc83bbib29) 1996; 15
Ghahremani Arekhloo (jneadc83bbib23) 2023; 17
Noury (jneadc83bbib34) 2024
Marquetand (jneadc83bbib30) 2021; 132
Farina (jneadc83bbib22) 2004b; 51
Casolo (jneadc83bbib11) 2020; 53
Klotz (jneadc83bbib26) 2023; 20
Saitou (jneadc83bbib38) 2000; 29
Sometti (jneadc83bbib40) 2021; 12
Cruz Martínez (jneadc83bbib14) 1990; 30
Boto (jneadc83bbib6) 2022; 252
Casolo (jneadc83bbib10) 2020; 52
Kupa (jneadc83bbib28) 1995; 79
Heckman (jneadc83bbib25) 2004; vol 4
Mito (jneadc83bbib32) 2006; 12
Masuda (jneadc83bbib31) 1999; 9
Del Vecchio (jneadc83bbib16) 2018a; 40
Zwarts (jneadc83bbib41) 1988; 58
Semeia (jneadc83bbib39) 2022; 16
Beretta-Piccoli (jneadc83bbib3) 2019; 48
Boto (jneadc83bbib5) 2017; 149
Nielsen (jneadc83bbib33) 2008; 37
Beretta-Piccoli (jneadc83bbib2) 2018; 2018
Del Vecchio (jneadc83bbib17) 2018b; 222
Barbero (jneadc83bbib1) 2012
Cohen (jneadc83bbib12) 1972; 21
Kominis (jneadc83bbib27) 2003; 422
Casolo (jneadc83bbib9) 2023; 601
Del Vecchio (jneadc83bbib15) 2017; 123
Oostenveld (jneadc83bbib35) 2011; 2011
Farina (jneadc83bbib20) 2004a; 42
Farina (jneadc83bbib19) 2004a; 97
Drost (jneadc83bbib18) 2006; 16
Rainoldi (jneadc83bbib37) 1999; 9
Conrad (jneadc83bbib13) 2017; 24
Farina (jneadc83bbib21) 2004b; 134
Blijham (jneadc83bbib4) 2011; 309
Parker (jneadc83bbib36) 1973; 11
References_xml – volume: 16
  year: 2022
  ident: jneadc83bbib39
  article-title: Optically pumped magnetometers detect altered maximal muscle activity in neuromuscular disease
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.1010242
– volume: 21
  start-page: 114
  year: 1972
  ident: jneadc83bbib12
  article-title: Magnetomyography: magnetic fields around the human body produced by skeletal muscles
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1654294
– volume: 97
  start-page: 2035
  year: 2004a
  ident: jneadc83bbib19
  article-title: Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00606.2004
– volume: 309
  start-page: 40
  year: 2011
  ident: jneadc83bbib4
  article-title: Diagnostic yield of muscle fibre conduction velocity in myopathies
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2011.07.036
– volume: 53
  year: 2020
  ident: jneadc83bbib11
  article-title: Reproducibility of muscle fibre conduction velocity during linearly increasing force contractions
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2020.102439
– volume: 24
  start-page: 262
  year: 2017
  ident: jneadc83bbib13
  article-title: Analysis of muscle fiber conduction velocity during finger flexion and extension after stroke
  publication-title: Topic Stroke Rehabil.
  doi: 10.1080/10749357.2016.1277482
– volume: 40
  start-page: 102
  year: 2018a
  ident: jneadc83bbib16
  article-title: Variability of estimates of muscle fiber conduction velocity and surface EMG amplitude across subjects and processing intervals
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2018.04.010
– volume: 20
  year: 2023
  ident: jneadc83bbib26
  article-title: High-density magnetomyography is superior to high-density surface electromyography for motor unit decomposition: a simulation study
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ace7f7
– volume: 2011
  start-page: 1
  year: 2011
  ident: jneadc83bbib35
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/156869
– volume: 51
  start-page: 1383
  year: 2004b
  ident: jneadc83bbib22
  article-title: Assessment of average muscle fiber conduction velocity from surface EMG signals during fatiguing dynamic contractions
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827556
– volume: 149
  start-page: 404
  year: 2017
  ident: jneadc83bbib5
  article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.01.034
– volume: 11
  start-page: 934
  year: 2020
  ident: jneadc83bbib8
  article-title: Surface EMG in clinical assessment and neurorehabilitation: barriers limiting its use
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2020.00934
– volume: 52
  start-page: 955
  year: 2020
  ident: jneadc83bbib10
  article-title: Strength training increases conduction velocity of high-threshold motor units
  publication-title: Med. Sci. Sports Exercise
  doi: 10.1249/MSS.0000000000002196
– volume: 123
  start-page: 835
  year: 2017
  ident: jneadc83bbib15
  article-title: Associations between motor unit action potential parameters and surface EMG features
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00482.2017
– volume: vol 4
  start-page: 119
  year: 2004
  ident: jneadc83bbib25
  article-title: Physiology of the motor neuron and the motor unit
  doi: 10.1016/S1567-4231(04)04006-7
– year: 2012
  ident: jneadc83bbib1
  doi: 10.1007/978-88-470-2463-2
– volume: 56
  year: 2021
  ident: jneadc83bbib7
  article-title: Optically pumped magnetometers disclose magnetic field components of the muscular action potential
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2020.102490
– volume: 42
  start-page: 432
  year: 2004a
  ident: jneadc83bbib20
  article-title: Methods for estimating muscle fibre conduction velocity from surface electromyographic signals
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02350984
– volume: 16
  start-page: 586
  year: 2006
  ident: jneadc83bbib18
  article-title: Clinical applications of high-density surface EMG: a systematic review
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2006.09.005
– volume: 422
  start-page: 596
  year: 2003
  ident: jneadc83bbib27
  article-title: A subfemtotesla multichannel atomic magnetometer
  publication-title: Nature
  doi: 10.1038/nature01484
– volume: 9
  start-page: 105
  year: 1999
  ident: jneadc83bbib37
  article-title: Repeatability of surface EMG variables during voluntary isometric contractions of the biceps brachii muscle
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/S1050-6411(98)00042-X
– volume: 30
  start-page: 443
  year: 1990
  ident: jneadc83bbib14
  article-title: Conduction velocity along muscle fibers in situ in healthy infants
  publication-title: Electromyogr. Clin. Neurophysiol.
– volume: 79
  start-page: 23
  year: 1995
  ident: jneadc83bbib28
  article-title: Effects of muscle fiber type and size on EMG median frequency and conduction velocity
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1995.79.1.23
– volume: 29
  start-page: 35
  year: 2000
  ident: jneadc83bbib38
  article-title: Innervation zones of the upper and lower limb muscles estimated by using multichannel surface EMG
  publication-title: J. Hum. Ergol.
  doi: 10.11183/jhe1972.29.35
– volume: 9
  start-page: 39
  year: 1999
  ident: jneadc83bbib31
  article-title: Changes in surface EMG parameters during static and dynamic fatiguing contractions
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/s1050-6411(98)00021-2
– volume: 222
  year: 2018b
  ident: jneadc83bbib17
  article-title: Distribution of muscle fibre conduction velocity for representative samples of motor units in the full recruitment range of the tibialis anterior muscle
  publication-title: Acta Physiol.
  doi: 10.1111/apha.12930
– volume: 12
  year: 2021
  ident: jneadc83bbib40
  article-title: Muscle fatigue revisited—insights from optically pumped magnetometers
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2021.724755
– start-page: p 2024
  year: 2024
  ident: jneadc83bbib34
  article-title: Detecting single motor-unit activity in magnetomyography
  doi: 10.1101/2024.10.15.618402
– volume: 48
  start-page: 53
  year: 2019
  ident: jneadc83bbib3
  article-title: Reliability of surface electromyography in estimating muscle fiber conduction velocity: a systematic review
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2019.06.005
– volume: 17
  year: 2023
  ident: jneadc83bbib23
  article-title: Alignment of magnetic sensing and clinical magnetomyography
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2023.1154572
– volume: 2018
  year: 2018
  ident: jneadc83bbib2
  article-title: Relationship between isometric muscle force and fractal dimension of surface electromyogram
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2018/5373846
– volume: 132
  start-page: 2681
  year: 2021
  ident: jneadc83bbib30
  article-title: Optically pumped magnetometers reveal fasciculations non-invasively
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2021.06.009
– volume: 134
  start-page: 199
  year: 2004b
  ident: jneadc83bbib21
  article-title: Estimation of average muscle fiber conduction velocity from two-dimensional surface EMG recordings
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.12.002
– volume: 601
  start-page: 1831
  year: 2023
  ident: jneadc83bbib9
  article-title: Non-invasive estimation of muscle fibre size from high-density electromyography
  publication-title: J. Physiol.
  doi: 10.1113/JP284170
– volume: 63
  start-page: 53
  year: 1991
  ident: jneadc83bbib24
  article-title: Sex differences in the distribution of subcutaneous and internal fat
  publication-title: Hum. Biol.
– volume: 37
  start-page: 68
  year: 2008
  ident: jneadc83bbib33
  article-title: Effect of innervation-zone distribution on estimates of average muscle-fiber conduction velocity
  publication-title: Muscle Nerve
  doi: 10.1002/mus.20895
– volume: 15
  start-page: 41
  year: 1996
  ident: jneadc83bbib29
  article-title: Distribution of muscle fiber conduction velocity of M. biceps brachii during voluntary isometric contraction with use of surface array electrodes
  publication-title: Appl. Hum. Sci.
  doi: 10.2114/jpa.15.41
– volume: 58
  start-page: 278
  year: 1988
  ident: jneadc83bbib41
  article-title: The influence of force and circulation on average muscle fibre conduction velocity during local muscle fatigue
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
  doi: 10.1007/BF00417263
– volume: 252
  year: 2022
  ident: jneadc83bbib6
  article-title: Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: feasibility and application in children
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119027
– volume: 11
  start-page: 591
  year: 1973
  ident: jneadc83bbib36
  article-title: Statistics of the myoelectric signal from monopolar and bipolar electrodes
  publication-title: Med. Biol. Eng.
  doi: 10.1007/BF02477404
– volume: 12
  start-page: BR115
  year: 2006
  ident: jneadc83bbib32
  article-title: Comparison of experimental and numerical muscle fiber conduction velocity (MFCV) distribution around the end-plate zone and fiber endings
  publication-title: Med. Sci. Monit.
SSID ssj0031790
Score 2.4245856
Snippet Objective . Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed...
. Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed using...
Muscle fiber conduction velocity (MFCV) describes the speed at which electrical activity propagates along muscle fibers and is typically assessed using...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 26058
SubjectTerms Adult
Electromyography - methods
EMG
Female
Humans
Magnetometry - instrumentation
Magnetometry - methods
Male
MFCV
MMG
muscle
Muscle Contraction - physiology
Muscle Fibers, Skeletal - physiology
Muscle, Skeletal - physiology
Neural Conduction - physiology
OPM
quantum sensor
Young Adult
Title Contactless measurement of muscle fiber conduction velocity—a novel approach using optically pumped magnetometers
URI https://iopscience.iop.org/article/10.1088/1741-2552/adc83b
https://www.ncbi.nlm.nih.gov/pubmed/40174601
https://www.proquest.com/docview/3185784591
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7B9tIL0G4fW9rKlUqlHrIksZ141RNCIFSppQcQHCpFfnKgeYjsHrYnfgS_sL-k4zhZBGqrikuUSHYmGc_YM55vxgDvudBpYlkW8digg6JQpYSObURdwrjIUP-69OgvX7OjU_b5nJ-vwadVLkzd9FP_FG9DoeDAwh4QJ3bRhk4itITTXWm0oGodHlGBC6fP3jv-NkzD1JeeCtmQvnUW9zHKP73hzpq0jnT_bm52y87hJnwfPjigTS6ni7ma6p_3ajk-8I-2YKM3R8leaPoE1mz1FMZ7Fbri5ZJ8IB1AtNt5H0PrK1lJjcLVtqS83VsktSPlosX-xHn8CUEX24SitMQjkjQa-r-ubySpanwkQxVz4iH3F6Ruut30H0vSoGRZQ0p5UVkk73E67TM4PTw42T-K-jMbIk0pneNAC-o4d1JZJ1ymtEJ_KhMqVU5KxplJhXBaZWkqU2MMo0xwjTaqsVTrWDn6HEZVXdmXQHwAkuaJoblQzGbYfaZp7LREQvlMuwl8HEataEJpjqILqQtReI4WnqNF4OgEdpD5Ra-f7T_avRsGvkA988ETWdl60RY-yzwXjM-SCbwIErGiij5qztCzffWfVLbhceqPEe4AQK9hNL9a2Ddo28zV206G8XpMz34DQN_2dw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELboIlW9oMJCuy0PIxUkDmGT2E68xxWw2hbY9sCqe7P87IU81Owe9tYf0V_YX8LYSUCVAPWWSLEn8uexZzzfjBE6YVyniaVZxGIDDooCleI6thFxCWU8A_0L6dHfF9l8Sc9WbNXdcxpyYaq6W_o_wmNbKLgdwo4Qx8dgQycRWMLpWBrNiRrXxu2gx4zAVgMT-pxc9ksx8eWn2oxI3yKLuzjl33q5ty_tgOx_m5xh65ntoyedzYin7R8-RY9s-QwNpyX4y8UWv8eBxRmOx4eo8eWmpIYZ0DS4-HMAiCuHi00D7bHzJBEMfrBpK8diTxvSYI3f3dxKXFbwivtS49jz4q9wVYcj759bXAP81uBCXpUWxHsyTfMcLWdffnyaR93FCpEmhKwBDU4cY04q67jLlFbg9GRcpcpJSRk1KedOqyxNZWqMoYRypsGQNJZoHStHXqBBWZX2EGEfJSR5YkjOFbUZNJ9oEjstQVA-0W6EPvTDKuq2foYIcW_OhYdAeAhEC8EIvYNxF50SNf_57m2PjABl8BEOWdpq0wifCp5zyibJCB20kP2WCo5kTsH9PHqglDdo9-LzTHw7XXw9Rnupv_Y3EHZeosH6emNfgS2yVq_DfPsFuEbaEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contactless+measurement+of+muscle+fiber+conduction+velocity-a+novel+approach+using+optically+pumped+magnetometers&rft.jtitle=Journal+of+neural+engineering&rft.au=Baier%2C+Lukas&rft.au=Br%C3%BCmmer%2C+Tim&rft.au=Senay%2C+Burak&rft.au=Siegel%2C+Markus&rft.date=2025-04-01&rft.eissn=1741-2552&rft.volume=22&rft.issue=2&rft_id=info:doi/10.1088%2F1741-2552%2Fadc83b&rft_id=info%3Apmid%2F40174601&rft.externalDocID=40174601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon