Rapid and selective lithium recovery from desalination brine using an electrochemical system

Due to the steep increase in the use of mobile electronics and electric vehicles, there has been a dramatic rise in the global lithium consumption. Although seawater is considered as an ideal future source of lithium, technological advances are necessary to ensure the economic feasibility of lithium...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science--processes & impacts Vol. 21; no. 4; pp. 667 - 676
Main Authors Kim, Seoni, Joo, Hwajoo, Moon, Taegyun, Kim, Seung-Hyun, Yoon, Jeyong
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the steep increase in the use of mobile electronics and electric vehicles, there has been a dramatic rise in the global lithium consumption. Although seawater is considered as an ideal future source of lithium, technological advances are necessary to ensure the economic feasibility of lithium recovery from seawater because the concentration and portion of Li+ are extremely low in seawater. Especially, battery-based electrochemical systems for lithium recovery have been considered as promising lithium recovery methods, though they have not been considered for seawater applications due to the extremely low concentration of Li+. In this study, we demonstrate that an electrochemical system based on a battery electrode material (λ-MnO2) can be used for efficient lithium recovery from desalination brine (2-3 times concentrated seawater). Our approach was able to capture Li+ within a substantially short period of time compared to conventional processes at a rate that was at least 3 times faster than that of adsorption processes, and our approach did not require acid or toxic chemicals unlike the other recovery technologies. Moreover, by consecutive operation of the system, a lithium recovery solution containing 190 mM of Li+ was obtained with only a small consumption of energy (3.07 Wh gLi-1), and the purity of Li+ was increased to 99.0%.
AbstractList Due to the steep increase in the use of mobile electronics and electric vehicles, there has been a dramatic rise in the global lithium consumption. Although seawater is considered as an ideal future source of lithium, technological advances are necessary to ensure the economic feasibility of lithium recovery from seawater because the concentration and portion of Li + are extremely low in seawater. Especially, battery-based electrochemical systems for lithium recovery have been considered as promising lithium recovery methods, though they have not been considered for seawater applications due to the extremely low concentration of Li + . In this study, we demonstrate that an electrochemical system based on a battery electrode material (λ-MnO 2 ) can be used for efficient lithium recovery from desalination brine (2–3 times concentrated seawater). Our approach was able to capture Li + within a substantially short period of time compared to conventional processes at a rate that was at least 3 times faster than that of adsorption processes, and our approach did not require acid or toxic chemicals unlike the other recovery technologies. Moreover, by consecutive operation of the system, a lithium recovery solution containing 190 mM of Li + was obtained with only a small consumption of energy (3.07 Wh g Li −1 ), and the purity of Li + was increased to 99.0%.
Due to the steep increase in the use of mobile electronics and electric vehicles, there has been a dramatic rise in the global lithium consumption. Although seawater is considered as an ideal future source of lithium, technological advances are necessary to ensure the economic feasibility of lithium recovery from seawater because the concentration and portion of Li+ are extremely low in seawater. Especially, battery-based electrochemical systems for lithium recovery have been considered as promising lithium recovery methods, though they have not been considered for seawater applications due to the extremely low concentration of Li+. In this study, we demonstrate that an electrochemical system based on a battery electrode material (λ-MnO2) can be used for efficient lithium recovery from desalination brine (2–3 times concentrated seawater). Our approach was able to capture Li+ within a substantially short period of time compared to conventional processes at a rate that was at least 3 times faster than that of adsorption processes, and our approach did not require acid or toxic chemicals unlike the other recovery technologies. Moreover, by consecutive operation of the system, a lithium recovery solution containing 190 mM of Li+ was obtained with only a small consumption of energy (3.07 Wh gLi−1), and the purity of Li+ was increased to 99.0%.
Due to the steep increase in the use of mobile electronics and electric vehicles, there has been a dramatic rise in the global lithium consumption. Although seawater is considered as an ideal future source of lithium, technological advances are necessary to ensure the economic feasibility of lithium recovery from seawater because the concentration and portion of Li+ are extremely low in seawater. Especially, battery-based electrochemical systems for lithium recovery have been considered as promising lithium recovery methods, though they have not been considered for seawater applications due to the extremely low concentration of Li+. In this study, we demonstrate that an electrochemical system based on a battery electrode material (λ-MnO2) can be used for efficient lithium recovery from desalination brine (2-3 times concentrated seawater). Our approach was able to capture Li+ within a substantially short period of time compared to conventional processes at a rate that was at least 3 times faster than that of adsorption processes, and our approach did not require acid or toxic chemicals unlike the other recovery technologies. Moreover, by consecutive operation of the system, a lithium recovery solution containing 190 mM of Li+ was obtained with only a small consumption of energy (3.07 Wh gLi-1), and the purity of Li+ was increased to 99.0%.
Author Kim, Seung-Hyun
Kim, Seoni
Joo, Hwajoo
Yoon, Jeyong
Moon, Taegyun
Author_xml – sequence: 1
  givenname: Seoni
  orcidid: 0000-0002-8250-9307
  surname: Kim
  fullname: Kim, Seoni
  email: jeyong@snu.ac.kr
  organization: School of Chemical and Biological Engineering and Institute of Chemical Processes (ICP), Seoul National University, Seoul 08826, Republic of Korea. jeyong@snu.ac.kr
– sequence: 2
  givenname: Hwajoo
  surname: Joo
  fullname: Joo, Hwajoo
  email: jeyong@snu.ac.kr
  organization: School of Chemical and Biological Engineering and Institute of Chemical Processes (ICP), Seoul National University, Seoul 08826, Republic of Korea. jeyong@snu.ac.kr
– sequence: 3
  givenname: Taegyun
  surname: Moon
  fullname: Moon, Taegyun
  email: jeyong@snu.ac.kr
  organization: School of Chemical and Biological Engineering and Institute of Chemical Processes (ICP), Seoul National University, Seoul 08826, Republic of Korea. jeyong@snu.ac.kr
– sequence: 4
  givenname: Seung-Hyun
  surname: Kim
  fullname: Kim, Seung-Hyun
  organization: Department of Civil Engineering, Kyungnam University, Changwon 51767, Republic of Korea
– sequence: 5
  givenname: Jeyong
  orcidid: 0000-0003-4455-3670
  surname: Yoon
  fullname: Yoon, Jeyong
  email: jeyong@snu.ac.kr
  organization: School of Chemical and Biological Engineering and Institute of Chemical Processes (ICP), Seoul National University, Seoul 08826, Republic of Korea. jeyong@snu.ac.kr and Korea Environment Institute, Sejong 30147, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30799481$$D View this record in MEDLINE/PubMed
BookMark eNo9kF1LwzAUhoNM3Jy78QdIwDuhmo92SS5lbCpMBNE7oaTpqctok5m0g_176zZ3bs65eN73wHOJBs47QOiakntKuHowEhpCUiWrMzRiJCOJkCobnG4phmgS45r0IzMqs-kFGnIilEolHaGvd72xJdauxBFqMK3dAq5tu7JdgwMYv4Www1XwDS4h6to63VrvcBGsA9xF6777MN5HgzcraKzRNY672EJzhc4rXUeYHPcYfS7mH7PnZPn29DJ7XCaGc94mUhBaCpFCSoygkilhJK8UJ6AMp4apLEsLWVRSpiXTjBZMKFFNKXBOWalSPka3h95N8D8dxDZf-y64_mXOGCVCTgkRPXV3oEzwMQao8k2wjQ67nJL8z2U-k_PXvctFD98cK7uigfKE_pvjv2vicAQ
CitedBy_id crossref_primary_10_3390_en13236235
crossref_primary_10_1021_acsestengg_2c00323
crossref_primary_10_3390_pr10122654
crossref_primary_10_1016_j_elecom_2021_106980
crossref_primary_10_1016_j_cej_2020_127715
crossref_primary_10_1016_j_mineng_2022_107652
crossref_primary_10_1002_adma_201905440
crossref_primary_10_3390_en14227610
crossref_primary_10_1016_j_coelec_2022_101089
crossref_primary_10_1016_j_desal_2023_116715
crossref_primary_10_1016_j_rser_2021_111813
crossref_primary_10_30724_1998_9903_2022_24_2_186_195
crossref_primary_10_1021_acsomega_1c05516
crossref_primary_10_1002_ente_202100145
crossref_primary_10_3390_membranes11100753
crossref_primary_10_1021_acs_est_9b07646
crossref_primary_10_1016_j_jfluchem_2020_109593
crossref_primary_10_1016_j_desal_2023_116797
crossref_primary_10_1007_s10853_020_05019_1
crossref_primary_10_1016_j_enconman_2023_117396
crossref_primary_10_1021_acs_chemrev_1c00396
crossref_primary_10_1007_s10570_021_04148_3
crossref_primary_10_1016_j_coelec_2019_04_010
crossref_primary_10_3390_nano13050895
crossref_primary_10_1016_j_desal_2023_116944
crossref_primary_10_1149_2_0221910jes
crossref_primary_10_1016_j_jelechem_2019_113389
crossref_primary_10_1016_j_cej_2024_151708
crossref_primary_10_1002_advs_202201380
crossref_primary_10_3389_fceng_2022_1008680
crossref_primary_10_1002_chem_202302776
crossref_primary_10_1016_j_coelec_2021_100778
crossref_primary_10_1002_cssc_202102182
crossref_primary_10_3390_batteries10010027
crossref_primary_10_1016_j_chemosphere_2023_137865
crossref_primary_10_1016_j_watres_2022_118822
crossref_primary_10_1016_j_molliq_2022_119667
crossref_primary_10_1016_j_cej_2022_140074
crossref_primary_10_1021_acsestwater_1c00014
crossref_primary_10_1021_acs_energyfuels_2c04113
crossref_primary_10_1002_celc_202400035
crossref_primary_10_1016_j_desal_2020_114883
crossref_primary_10_1016_j_desal_2022_116228
crossref_primary_10_1016_j_desal_2022_116189
crossref_primary_10_1016_j_desal_2023_116883
crossref_primary_10_1016_j_jclepro_2020_124905
crossref_primary_10_3390_membranes10060114
crossref_primary_10_1016_j_desal_2022_115611
crossref_primary_10_1080_07366299_2023_2206440
crossref_primary_10_1149_1945_7111_ac716e
Cites_doi 10.1016/j.apenergy.2014.01.013
10.1039/c2ee22977c
10.1016/j.cej.2013.09.068
10.1002/chem.201403535
10.1016/j.memsci.2016.02.062
10.1016/j.ces.2007.01.016
10.1016/j.apenergy.2013.04.005
10.1149/1.2221003
10.1016/j.cej.2012.09.019
10.1016/j.desal.2017.06.024
10.1149/2.0591609jes
10.1080/07366299.2011.573435
10.1080/07366298708918581
10.1016/j.chemosphere.2015.01.024
10.1016/j.seppur.2016.08.031
10.1016/j.watres.2010.06.052
10.1016/j.cej.2013.08.060
10.1016/j.desal.2017.10.013
10.1016/j.desal.2006.08.020
10.1002/cssc.201500368
10.1016/j.seppur.2016.03.013
10.1016/j.hydromet.2012.11.013
10.1016/j.jelechem.2017.11.071
10.1016/j.rser.2011.11.023
10.1039/c3ee43870h
10.1038/nchem.2085
10.1021/acs.est.5b00032
10.1016/j.cej.2015.02.023
10.1016/j.cej.2018.05.030
10.1016/j.watres.2009.03.010
10.1149/05848.0173ecst
10.1002/ente.201700488
10.1016/j.memsci.2015.02.025
10.4491/eer.2011.16.4.205
10.2320/matertrans.M2013028
10.1021/ie401977s
10.1080/01496398608056148
10.1007/978-3-642-68182-0
10.1021/acs.jpcc.5b11722
10.1126/science.1200488
10.1149/2.1531714jes
10.1021/acs.est.5b00463
10.1016/j.colsurfa.2014.12.025
10.1016/j.desal.2014.12.018
10.1016/j.watres.2015.09.032
10.1021/ie000911h
10.1016/j.jclepro.2008.11.013
10.1039/b417616m
10.1016/j.electacta.2017.08.178
10.1016/j.watres.2015.11.012
10.1016/j.seppur.2017.11.045
10.1016/j.desal.2013.02.014
10.1107/S0567739476001551
10.1021/ie010847j
10.1039/c3cp50919b
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID NPM
AAYXX
CITATION
7ST
C1K
SOI
DOI 10.1039/c8em00498f
DatabaseName PubMed
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle PubMed
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Environment Abstracts
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7895
EndPage 676
ExternalDocumentID 10_1039_C8EM00498F
30799481
Genre Journal Article
GroupedDBID -JG
0-7
0R~
53G
705
AAEMU
AAHBH
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
H13
HZ~
H~N
J3I
NPM
O-G
O9-
PQQKQ
R7E
RAOCF
RCNCU
RPMJG
RRC
RSCEA
AAYXX
CITATION
7ST
C1K
SOI
ID FETCH-LOGICAL-c333t-8701d774e40c718297c83f930e9c31c29554b8bf884d2a21b2797f61e3312d943
ISSN 2050-7887
IngestDate Fri Sep 13 08:18:58 EDT 2024
Fri Aug 23 00:51:07 EDT 2024
Tue Aug 27 13:49:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-8701d774e40c718297c83f930e9c31c29554b8bf884d2a21b2797f61e3312d943
ORCID 0000-0003-4455-3670
0000-0002-8250-9307
PMID 30799481
PQID 2210786007
PQPubID 105658
PageCount 10
ParticipantIDs proquest_journals_2210786007
crossref_primary_10_1039_C8EM00498F
pubmed_primary_30799481
PublicationCentury 2000
PublicationDate 20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 20190101
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Environmental science--processes & impacts
PublicationTitleAlternate Environ Sci Process Impacts
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Chitrakar (C8EM00498F-(cit7)/*[position()=1]) 2001; 40
Zhou (C8EM00498F-(cit59)/*[position()=1]) 2018; 425
Greenlee (C8EM00498F-(cit41)/*[position()=1]) 2009; 43
Umeno (C8EM00498F-(cit12)/*[position()=1]) 2002; 41
Nishihama (C8EM00498F-(cit11)/*[position()=1]) 2011; 29
Zhao (C8EM00498F-(cit28)/*[position()=1]) 2017; 252
Liu (C8EM00498F-(cit53)/*[position()=1]) 2015; 468
Lee (C8EM00498F-(cit20)/*[position()=1]) 2013; 15
Shannon (C8EM00498F-(cit55)/*[position()=1]) 1976; 32
Hong (C8EM00498F-(cit49)/*[position()=1]) 2013; 234
Ooi (C8EM00498F-(cit56)/*[position()=1]) 1987; 5
Larcher (C8EM00498F-(cit2)/*[position()=1]) 2015; 7
Kim (C8EM00498F-(cit24)/*[position()=1]) 2015; 49
Hoshino (C8EM00498F-(cit17)/*[position()=1]) 2014; 58
Grosjean (C8EM00498F-(cit5)/*[position()=1]) 2012; 16
Ryu (C8EM00498F-(cit14)/*[position()=1]) 2013; 52
Zhang (C8EM00498F-(cit9)/*[position()=1]) 2007; 62
Park (C8EM00498F-(cit51)/*[position()=1]) 2015; 87
Trócoli (C8EM00498F-(cit21)/*[position()=1]) 2014; 20
Marchini (C8EM00498F-(cit25)/*[position()=1]) 2016; 120
Jeppesen (C8EM00498F-(cit45)/*[position()=1]) 2009; 17
Vikström (C8EM00498F-(cit3)/*[position()=1]) 2013; 110
Ober (C8EM00498F-(cit4)/*[position()=1]) 2018
Marchini (C8EM00498F-(cit29)/*[position()=1]) 2018; 819
Trocoli (C8EM00498F-(cit27)/*[position()=1]) 2016; 28
Kim (C8EM00498F-(cit39)/*[position()=1]) 2015; 483
Kim (C8EM00498F-(cit22)/*[position()=1]) 2015; 125
Kim (C8EM00498F-(cit33)/*[position()=1]) 2018; 4
Palagonia (C8EM00498F-(cit34)/*[position()=1]) 2017; 164
Hoshino (C8EM00498F-(cit16)/*[position()=1]) 2013; 317
Zhu (C8EM00498F-(cit52)/*[position()=1]) 2014; 235
Hong (C8EM00498F-(cit50)/*[position()=1]) 2015; 271
Hwang (C8EM00498F-(cit15)/*[position()=1]) 2016; 166
Trócoli (C8EM00498F-(cit23)/*[position()=1]) 2015; 8
Hoshino (C8EM00498F-(cit18)/*[position()=1]) 2015; 359
Pasta (C8EM00498F-(cit19)/*[position()=1]) 2012; 5
Kim (C8EM00498F-(cit32)/*[position()=1]) 2018; 6
Lawagon (C8EM00498F-(cit31)/*[position()=1]) 2018; 348
Gerlach (C8EM00498F-(cit48)/*[position()=1]) 1981
Mericq (C8EM00498F-(cit42)/*[position()=1]) 2010; 44
Elimelech (C8EM00498F-(cit35)/*[position()=1]) 2011; 333
Ryu (C8EM00498F-(cit13)/*[position()=1]) 2013; 54
Choi (C8EM00498F-(cit43)/*[position()=1]) 2017; 420
Gallagher (C8EM00498F-(cit1)/*[position()=1]) 2014; 7
Brewer (C8EM00498F-(cit47)/*[position()=1]) 1975; 1
Ooi (C8EM00498F-(cit6)/*[position()=1]) 1986; 21
Missoni (C8EM00498F-(cit26)/*[position()=1]) 2016; 163
Al-Sahali (C8EM00498F-(cit40)/*[position()=1]) 2007; 214
Thackeray (C8EM00498F-(cit60)/*[position()=1]) 2005; 15
Kanoh (C8EM00498F-(cit57)/*[position()=1]) 1993; 140
Diallo (C8EM00498F-(cit36)/*[position()=1]) 2015; 49
Prante (C8EM00498F-(cit38)/*[position()=1]) 2014; 120
Zhao (C8EM00498F-(cit44)/*[position()=1]) 2013; 133
Park (C8EM00498F-(cit54)/*[position()=1]) 2016; 510
Valavala (C8EM00498F-(cit46)/*[position()=1]) 2011; 16
Han (C8EM00498F-(cit10)/*[position()=1]) 2012; 210
Gude (C8EM00498F-(cit37)/*[position()=1]) 2016; 89
Bard (C8EM00498F-(cit58)/*[position()=1]) 1980
Swain (C8EM00498F-(cit8)/*[position()=1]) 2017; 172
Siekierka (C8EM00498F-(cit30)/*[position()=1]) 2018; 194
References_xml – volume: 120
  start-page: 104
  year: 2014
  ident: C8EM00498F-(cit38)/*[position()=1]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.01.013
  contributor:
    fullname: Prante
– volume: 5
  start-page: 9487
  year: 2012
  ident: C8EM00498F-(cit19)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22977c
  contributor:
    fullname: Pasta
– volume: 4
  start-page: 175
  year: 2018
  ident: C8EM00498F-(cit33)/*[position()=1]
  publication-title: Environ. Sci.: Water Res. Technol.
  contributor:
    fullname: Kim
– volume: 235
  start-page: 340
  year: 2014
  ident: C8EM00498F-(cit52)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.09.068
  contributor:
    fullname: Zhu
– volume: 20
  start-page: 9888
  year: 2014
  ident: C8EM00498F-(cit21)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201403535
  contributor:
    fullname: Trócoli
– volume: 510
  start-page: 141
  year: 2016
  ident: C8EM00498F-(cit54)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.02.062
  contributor:
    fullname: Park
– volume: 62
  start-page: 4869
  year: 2007
  ident: C8EM00498F-(cit9)/*[position()=1]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2007.01.016
  contributor:
    fullname: Zhang
– volume: 28
  start-page: 114005
  year: 2016
  ident: C8EM00498F-(cit27)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Trocoli
– volume: 110
  start-page: 252
  year: 2013
  ident: C8EM00498F-(cit3)/*[position()=1]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.04.005
  contributor:
    fullname: Vikström
– volume: 140
  start-page: 3162
  year: 1993
  ident: C8EM00498F-(cit57)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2221003
  contributor:
    fullname: Kanoh
– volume: 210
  start-page: 482
  year: 2012
  ident: C8EM00498F-(cit10)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.09.019
  contributor:
    fullname: Han
– volume: 420
  start-page: 54
  year: 2017
  ident: C8EM00498F-(cit43)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.06.024
  contributor:
    fullname: Choi
– volume: 163
  start-page: A1898
  year: 2016
  ident: C8EM00498F-(cit26)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0591609jes
  contributor:
    fullname: Missoni
– volume: 29
  start-page: 421
  year: 2011
  ident: C8EM00498F-(cit11)/*[position()=1]
  publication-title: Solvent Extr. Ion Exch.
  doi: 10.1080/07366299.2011.573435
  contributor:
    fullname: Nishihama
– volume: 5
  start-page: 561
  year: 1987
  ident: C8EM00498F-(cit56)/*[position()=1]
  publication-title: Solvent Extr. Ion Exch.
  doi: 10.1080/07366298708918581
  contributor:
    fullname: Ooi
– volume: 125
  start-page: 50
  year: 2015
  ident: C8EM00498F-(cit22)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.01.024
  contributor:
    fullname: Kim
– volume: 172
  start-page: 388
  year: 2017
  ident: C8EM00498F-(cit8)/*[position()=1]
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.08.031
  contributor:
    fullname: Swain
– volume: 44
  start-page: 5260
  year: 2010
  ident: C8EM00498F-(cit42)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.06.052
  contributor:
    fullname: Mericq
– volume: 234
  start-page: 16
  year: 2013
  ident: C8EM00498F-(cit49)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.08.060
  contributor:
    fullname: Hong
– volume: 425
  start-page: 30
  year: 2018
  ident: C8EM00498F-(cit59)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.10.013
  contributor:
    fullname: Zhou
– volume: 214
  start-page: 227
  year: 2007
  ident: C8EM00498F-(cit40)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.08.020
  contributor:
    fullname: Al-Sahali
– volume: 8
  start-page: 2514
  year: 2015
  ident: C8EM00498F-(cit23)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500368
  contributor:
    fullname: Trócoli
– volume: 166
  start-page: 34
  year: 2016
  ident: C8EM00498F-(cit15)/*[position()=1]
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.03.013
  contributor:
    fullname: Hwang
– volume-title: Mineral commodity summaries 2018
  year: 2018
  ident: C8EM00498F-(cit4)/*[position()=1]
  contributor:
    fullname: Ober
– volume: 133
  start-page: 75
  year: 2013
  ident: C8EM00498F-(cit44)/*[position()=1]
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2012.11.013
  contributor:
    fullname: Zhao
– volume: 819
  start-page: 428
  year: 2018
  ident: C8EM00498F-(cit29)/*[position()=1]
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2017.11.071
  contributor:
    fullname: Marchini
– volume: 16
  start-page: 1735
  year: 2012
  ident: C8EM00498F-(cit5)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2011.11.023
  contributor:
    fullname: Grosjean
– volume: 7
  start-page: 1555
  year: 2014
  ident: C8EM00498F-(cit1)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43870h
  contributor:
    fullname: Gallagher
– volume: 7
  start-page: 19
  year: 2015
  ident: C8EM00498F-(cit2)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2085
  contributor:
    fullname: Larcher
– volume: 49
  start-page: 9415
  year: 2015
  ident: C8EM00498F-(cit24)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00032
  contributor:
    fullname: Kim
– volume: 271
  start-page: 71
  year: 2015
  ident: C8EM00498F-(cit50)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.02.023
  contributor:
    fullname: Hong
– volume: 348
  start-page: 1000
  year: 2018
  ident: C8EM00498F-(cit31)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.030
  contributor:
    fullname: Lawagon
– volume: 43
  start-page: 2317
  year: 2009
  ident: C8EM00498F-(cit41)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.03.010
  contributor:
    fullname: Greenlee
– volume: 58
  start-page: 173
  year: 2014
  ident: C8EM00498F-(cit17)/*[position()=1]
  publication-title: ECS Trans.
  doi: 10.1149/05848.0173ecst
  contributor:
    fullname: Hoshino
– volume: 6
  start-page: 340
  year: 2018
  ident: C8EM00498F-(cit32)/*[position()=1]
  publication-title: Energy Technol.
  doi: 10.1002/ente.201700488
  contributor:
    fullname: Kim
– volume: 483
  start-page: 34
  year: 2015
  ident: C8EM00498F-(cit39)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.02.025
  contributor:
    fullname: Kim
– volume: 16
  start-page: 205
  year: 2011
  ident: C8EM00498F-(cit46)/*[position()=1]
  publication-title: Environ. Eng. Res.
  doi: 10.4491/eer.2011.16.4.205
  contributor:
    fullname: Valavala
– volume: 54
  start-page: 1029
  year: 2013
  ident: C8EM00498F-(cit13)/*[position()=1]
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.M2013028
  contributor:
    fullname: Ryu
– volume: 52
  start-page: 13738
  year: 2013
  ident: C8EM00498F-(cit14)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie401977s
  contributor:
    fullname: Ryu
– volume: 21
  start-page: 755
  year: 1986
  ident: C8EM00498F-(cit6)/*[position()=1]
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496398608056148
  contributor:
    fullname: Ooi
– volume-title: Marine pollution: diagnosis and therapy
  year: 1981
  ident: C8EM00498F-(cit48)/*[position()=1]
  doi: 10.1007/978-3-642-68182-0
  contributor:
    fullname: Gerlach
– volume: 120
  start-page: 15875
  year: 2016
  ident: C8EM00498F-(cit25)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b11722
  contributor:
    fullname: Marchini
– volume: 333
  start-page: 712
  year: 2011
  ident: C8EM00498F-(cit35)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1200488
  contributor:
    fullname: Elimelech
– volume: 164
  start-page: E586
  year: 2017
  ident: C8EM00498F-(cit34)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1531714jes
  contributor:
    fullname: Palagonia
– volume: 49
  start-page: 9390
  year: 2015
  ident: C8EM00498F-(cit36)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00463
  contributor:
    fullname: Diallo
– volume: 1
  start-page: 415
  year: 1975
  ident: C8EM00498F-(cit47)/*[position()=1]
  publication-title: Chem. Oceanogr.
  contributor:
    fullname: Brewer
– volume: 468
  start-page: 280
  year: 2015
  ident: C8EM00498F-(cit53)/*[position()=1]
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2014.12.025
  contributor:
    fullname: Liu
– volume-title: Electrochemical methods: fundamentals and applications
  year: 1980
  ident: C8EM00498F-(cit58)/*[position()=1]
  contributor:
    fullname: Bard
– volume: 359
  start-page: 59
  year: 2015
  ident: C8EM00498F-(cit18)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.12.018
  contributor:
    fullname: Hoshino
– volume: 87
  start-page: 320
  year: 2015
  ident: C8EM00498F-(cit51)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.09.032
  contributor:
    fullname: Park
– volume: 40
  start-page: 2054
  year: 2001
  ident: C8EM00498F-(cit7)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie000911h
  contributor:
    fullname: Chitrakar
– volume: 17
  start-page: 703
  year: 2009
  ident: C8EM00498F-(cit45)/*[position()=1]
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2008.11.013
  contributor:
    fullname: Jeppesen
– volume: 15
  start-page: 2257
  year: 2005
  ident: C8EM00498F-(cit60)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b417616m
  contributor:
    fullname: Thackeray
– volume: 252
  start-page: 350
  year: 2017
  ident: C8EM00498F-(cit28)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.08.178
  contributor:
    fullname: Zhao
– volume: 89
  start-page: 87
  year: 2016
  ident: C8EM00498F-(cit37)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.11.012
  contributor:
    fullname: Gude
– volume: 194
  start-page: 231
  year: 2018
  ident: C8EM00498F-(cit30)/*[position()=1]
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.11.045
  contributor:
    fullname: Siekierka
– volume: 317
  start-page: 11
  year: 2013
  ident: C8EM00498F-(cit16)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.02.014
  contributor:
    fullname: Hoshino
– volume: 32
  start-page: 751
  year: 1976
  ident: C8EM00498F-(cit55)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
  doi: 10.1107/S0567739476001551
  contributor:
    fullname: Shannon
– volume: 41
  start-page: 4281
  year: 2002
  ident: C8EM00498F-(cit12)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie010847j
  contributor:
    fullname: Umeno
– volume: 15
  start-page: 7690
  year: 2013
  ident: C8EM00498F-(cit20)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp50919b
  contributor:
    fullname: Lee
SSID ssj0000851856
Score 2.373483
Snippet Due to the steep increase in the use of mobile electronics and electric vehicles, there has been a dramatic rise in the global lithium consumption. Although...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 667
SubjectTerms Batteries
Desalination
Economic conditions
Electric vehicles
Electrochemistry
Electrode materials
Feasibility studies
Information systems
Lithium
Manganese dioxide
Organic chemistry
Recovery
Saline water
Seawater
Title Rapid and selective lithium recovery from desalination brine using an electrochemical system
URI https://www.ncbi.nlm.nih.gov/pubmed/30799481
https://www.proquest.com/docview/2210786007/abstract/
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk9B4QFxHYSBL8FYZEttJ7Mdp6tQhxgN00h6QIsexYZN60dpqGr-e41vSMSYxXqIqrhP1fF-d45PznYPQe9tkTFprCQBuCDeKElU2iuS2sqasWq59Es3xl3J8wj-dFqepxX1Ul6yaD_rXX3Ul_4MqnANcnUr2Dsh2F4UT8BnwhSMgDMd_wvirWpz5UqvDpW9n47KAwK3-ebaeDt1OF37QVRCQtGapnPTWo904xd9wvQz6xGHshKNT6YBQ3PlayL5XwyUNpTaELILIwAduy6i37N8NhTbN3wwsGn2ajg_Mji_V-XzeQT0PL_4nyvy4Ws9uzIfViIzTQIxPOElUF58wfh2jWeGSFkMvzRsrNlAFzKyFmbrNirCbXwJrL6YeO1iJpKsr0z-1ulzCNHQfbdNKFrAB394fTY4-d5E251SKoky1aZn82N9tBz1I8687JrfsNrzXMXmMHsXtAt4P2D9B98zsKXq4UUTyGfruWYCBBbhjAY4swIkF2LEAb7IAexZgzwKYjP9gAQ4seI5ODkeTgzGJPTOIZoyt4OGW5S249IZnGtwOKistmJUsM1KzXFMJ7mMjGisEb6mieQM2q2yZG8Zy2krOXqCt2XxmXiIsS2Ek59RUzoUppFKGM561cElXt1cM0LtksHoRSqPUPqWByfpAjI69hQ8HaC_Zso5_nWVNaQ6uqWuNMEC7wb7dJRIer24deY12eqLtoa3Vxdq8Addw1byN2P8GJ9Nmtw
link.rule.ids 315,786,790,27957,27958
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+and+selective+lithium+recovery+from+desalination+brine+using+an+electrochemical+system&rft.jtitle=Environmental+science--processes+%26+impacts&rft.au=Kim%2C+Seoni&rft.au=Joo%2C+Hwajoo&rft.au=Moon%2C+Taegyun&rft.au=Kim%2C+Seung-Hyun&rft.date=2019-01-01&rft.eissn=2050-7895&rft_id=info:doi/10.1039%2Fc8em00498f&rft_id=info%3Apmid%2F30799481&rft.externalDocID=30799481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7887&client=summon