SDDNet: Real-Time Crack Segmentation
This article reports the development of a pure deep learning method for segmenting concrete cracks in images. The objectives are to achieve the real-time performance while effectively negating a wide range of various complex backgrounds and crack-like features. To achieve the goals, an original conv...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 67; no. 9; pp. 8016 - 8025 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article reports the development of a pure deep learning method for segmenting concrete cracks in images. The objectives are to achieve the real-time performance while effectively negating a wide range of various complex backgrounds and crack-like features. To achieve the goals, an original convolutional neural network is proposed. The model consists of standard convolutions, densely connected separable convolution modules, a modified atrous spatial pyramid pooling module, and a decoder module. The semantic damage detection network (SDDNet) is trained on a manually created crack dataset, and the trained network records the mean intersection-over-union of 0.846 on the test set. Each test image is analyzed, and the representative segmentation results are presented. The results show that the SDDNet segments cracks effectively unless the features are too faint. The proposed model is also compared with the most recent models, which show that it returns better evaluation metrics even though its number of parameters is 88 times less than in the compared models. In addition, the model processes in real-time (36 FPS) images at 1025 × 512 pixels, which is 46 times faster than in a recent work. |
---|---|
AbstractList | This article reports the development of a pure deep learning method for segmenting concrete cracks in images. The objectives are to achieve the real-time performance while effectively negating a wide range of various complex backgrounds and crack-like features. To achieve the goals, an original convolutional neural network is proposed. The model consists of standard convolutions, densely connected separable convolution modules, a modified atrous spatial pyramid pooling module, and a decoder module. The semantic damage detection network (SDDNet) is trained on a manually created crack dataset, and the trained network records the mean intersection-over-union of 0.846 on the test set. Each test image is analyzed, and the representative segmentation results are presented. The results show that the SDDNet segments cracks effectively unless the features are too faint. The proposed model is also compared with the most recent models, which show that it returns better evaluation metrics even though its number of parameters is 88 times less than in the compared models. In addition, the model processes in real-time (36 FPS) images at 1025 × 512 pixels, which is 46 times faster than in a recent work. This article reports the development of a pure deep learning method for segmenting concrete cracks in images. The objectives are to achieve the real-time performance while effectively negating a wide range of various complex backgrounds and crack-like features. To achieve the goals, an original convolutional neural network is proposed. The model consists of standard convolutions, densely connected separable convolution modules, a modified atrous spatial pyramid pooling module, and a decoder module. The semantic damage detection network (SDDNet) is trained on a manually created crack dataset, and the trained network records the mean intersection-over-union of 0.846 on the test set. Each test image is analyzed, and the representative segmentation results are presented. The results show that the SDDNet segments cracks effectively unless the features are too faint. The proposed model is also compared with the most recent models, which show that it returns better evaluation metrics even though its number of parameters is 88 times less than in the compared models. In addition, the model processes in real-time (36 FPS) images at 1025 × 512 pixels, which is 46 times faster than in a recent work. |
Author | Cha, Young-Jin Choi, Wooram |
Author_xml | – sequence: 1 givenname: Wooram orcidid: 0000-0001-9099-8334 surname: Choi fullname: Choi, Wooram email: choiw@myumanitoba.ca organization: Civil Engineering Department, the University of Manitoba, Winnipeg, MB, Canada – sequence: 2 givenname: Young-Jin orcidid: 0000-0002-0738-5615 surname: Cha fullname: Cha, Young-Jin email: young.cha@umanitoba.ca organization: Civil Engineering Department, the University of Manitoba, Winnipeg, MB, Canada |
BookMark | eNp9UE1Lw0AUXKSCbfUueCnoNfXtd9abtFULRcHG87LZvkhqm9RNeui_d0uKBw9e3oNh5s28GZBeVVdIyDWFMaVg7rP5bMyAmjEzQjIlz0ifSqkTY0TaI31gOk0AhLogg6ZZA1AhqeyTu-V0-ortw-gd3SbJyi2OJsH5r9ESP7dYta4t6-qSnBdu0-DVaQ_Jx9Msm7wki7fn-eRxkXjOeZukQisuUBc8L7hb5TQCAngM5JTKteOpF3IlAXRhDFvlwuWgGEPtvY-w5ENy293dhfp7j01r1_U-VNHSMgGUxpGqyIKO5UPdNAELuwvl1oWDpWCPXdjYhT12YU9dRIn6I_Fl91obXLn5T3jTCUtE_PVJYwrKOP8BMk9qPw |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1016_j_autcon_2023_105262 crossref_primary_10_1061_JBENF2_BEENG_7032 crossref_primary_10_1016_j_autcon_2023_105022 crossref_primary_10_3390_machines11020169 crossref_primary_10_1016_j_tust_2022_104403 crossref_primary_10_3390_buildings13010118 crossref_primary_10_1016_j_autcon_2020_103484 crossref_primary_10_1109_ACCESS_2024_3368376 crossref_primary_10_1016_j_jobe_2024_110814 crossref_primary_10_1016_j_engappai_2024_107976 crossref_primary_10_1109_JSEN_2021_3089718 crossref_primary_10_1038_s41598_023_28530_2 crossref_primary_10_1109_JIOT_2024_3401217 crossref_primary_10_1109_TIM_2023_3298391 crossref_primary_10_3390_app14167194 crossref_primary_10_1007_s13349_023_00684_7 crossref_primary_10_1016_j_tust_2021_103949 crossref_primary_10_1109_ACCESS_2023_3287770 crossref_primary_10_1016_j_rineng_2023_101267 crossref_primary_10_1109_TITS_2024_3492731 crossref_primary_10_1016_j_autcon_2020_103371 crossref_primary_10_1109_TITS_2022_3141827 crossref_primary_10_1016_j_autcon_2023_104840 crossref_primary_10_1111_exsy_13784 crossref_primary_10_1016_j_measurement_2024_116639 crossref_primary_10_1016_j_autcon_2023_104839 crossref_primary_10_1080_10298436_2024_2317432 crossref_primary_10_1109_ACCESS_2023_3283613 crossref_primary_10_13168_cs_2024_0025 crossref_primary_10_1016_j_autcon_2021_103989 crossref_primary_10_1109_ACCESS_2023_3330142 crossref_primary_10_1177_14759217221123485 crossref_primary_10_1109_ACCESS_2020_3011106 crossref_primary_10_1049_ipr2_12976 crossref_primary_10_1007_s13534_024_00415_x crossref_primary_10_1002_stc_2910 crossref_primary_10_1038_s41598_024_81119_1 crossref_primary_10_1364_OE_435230 crossref_primary_10_1016_j_autcon_2024_105328 crossref_primary_10_1111_mice_12613 crossref_primary_10_3390_s23218824 crossref_primary_10_1016_j_compind_2023_103921 crossref_primary_10_1109_ACCESS_2024_3492193 crossref_primary_10_1080_09349847_2023_2180559 crossref_primary_10_1080_19475683_2023_2166112 crossref_primary_10_1007_s00530_022_01008_3 crossref_primary_10_1016_j_aei_2023_102214 crossref_primary_10_1109_ACCESS_2023_3262702 crossref_primary_10_1016_j_conbuildmat_2021_123896 crossref_primary_10_1109_TITS_2024_3432995 crossref_primary_10_1109_JSEN_2023_3281585 crossref_primary_10_1007_s11440_023_01889_2 crossref_primary_10_1016_j_ymssp_2024_112240 crossref_primary_10_1109_TRS_2024_3516413 crossref_primary_10_1016_j_eswa_2024_124950 crossref_primary_10_1016_j_autcon_2023_104743 crossref_primary_10_1038_s41598_024_63575_x crossref_primary_10_1109_TITS_2024_3420763 crossref_primary_10_1016_j_autcon_2021_104022 crossref_primary_10_1016_j_autcon_2022_104568 crossref_primary_10_1016_j_autcon_2022_104689 crossref_primary_10_3390_s23010504 crossref_primary_10_1016_j_ijpvp_2023_105112 crossref_primary_10_1007_s00138_024_01591_7 crossref_primary_10_1109_JSEN_2021_3112005 crossref_primary_10_1016_j_aei_2022_101575 crossref_primary_10_1016_j_jii_2022_100403 crossref_primary_10_1016_j_autcon_2021_103606 crossref_primary_10_3233_JIFS_210475 crossref_primary_10_1080_10298436_2023_2286461 crossref_primary_10_1111_jmi_13098 crossref_primary_10_1016_j_conbuildmat_2024_138731 crossref_primary_10_1109_TITS_2023_3325989 crossref_primary_10_1177_14759217211053776 crossref_primary_10_1186_s12938_022_01008_4 crossref_primary_10_1049_ipr2_12512 crossref_primary_10_1080_02564602_2023_2242318 crossref_primary_10_1109_TITS_2022_3204334 crossref_primary_10_1007_s11554_021_01130_x crossref_primary_10_1177_14759217241254748 crossref_primary_10_1016_j_measurement_2022_111550 crossref_primary_10_1002_2475_8876_12221 crossref_primary_10_1016_j_tust_2024_106108 crossref_primary_10_1109_TIM_2024_3417538 crossref_primary_10_1080_13467581_2023_2238038 crossref_primary_10_1016_j_autcon_2023_105069 crossref_primary_10_3390_app11136017 crossref_primary_10_1109_TITS_2022_3197712 crossref_primary_10_1155_2021_9923704 crossref_primary_10_1016_j_autcon_2023_104895 crossref_primary_10_1016_j_autcon_2023_104894 crossref_primary_10_1016_j_aei_2023_102279 crossref_primary_10_1109_ACCESS_2021_3105279 crossref_primary_10_1109_TITS_2023_3234330 crossref_primary_10_1177_14759217221150376 crossref_primary_10_1016_j_aei_2024_102670 crossref_primary_10_1177_14759217241271000 crossref_primary_10_1016_j_conbuildmat_2024_135151 crossref_primary_10_1109_ACCESS_2021_3073921 crossref_primary_10_1177_14759217241301098 crossref_primary_10_1016_j_autcon_2024_105354 crossref_primary_10_1007_s11042_024_19884_4 crossref_primary_10_3390_drones8120725 crossref_primary_10_1177_1369433220986638 crossref_primary_10_1109_TII_2024_3371982 crossref_primary_10_1177_1369433220986637 crossref_primary_10_1177_13694332241266538 crossref_primary_10_3390_s22062330 crossref_primary_10_1111_mice_12844 crossref_primary_10_1038_s41598_024_54835_x crossref_primary_10_1109_TIM_2021_3075022 crossref_primary_10_1016_j_autcon_2024_105357 crossref_primary_10_1016_j_dsp_2025_105069 crossref_primary_10_1109_TITS_2021_3134374 crossref_primary_10_1016_j_ijcce_2024_12_003 crossref_primary_10_1007_s00530_024_01408_7 crossref_primary_10_1007_s11803_023_2153_4 crossref_primary_10_3390_app112110310 crossref_primary_10_3390_s20164403 crossref_primary_10_1016_j_ymssp_2020_107537 crossref_primary_10_1142_S0219519423500914 crossref_primary_10_1109_ACCESS_2021_3111223 crossref_primary_10_1109_TITS_2021_3119900 crossref_primary_10_1111_mice_13103 crossref_primary_10_1016_j_autcon_2024_105367 crossref_primary_10_1177_14759217231177314 crossref_primary_10_1080_10589759_2025_2452368 crossref_primary_10_1016_j_autcon_2022_104229 crossref_primary_10_1016_j_engappai_2024_108497 crossref_primary_10_1155_2021_1547025 crossref_primary_10_1007_s13042_023_02054_7 crossref_primary_10_1016_j_tust_2023_105428 crossref_primary_10_1063_5_0053851 crossref_primary_10_1007_s13349_024_00893_8 crossref_primary_10_1177_03611981241297985 crossref_primary_10_1109_ACCESS_2023_3312718 crossref_primary_10_1155_2023_4752072 crossref_primary_10_1007_s11042_025_20729_x crossref_primary_10_1109_ACCESS_2024_3353729 crossref_primary_10_1109_TII_2022_3147814 crossref_primary_10_1080_10589759_2025_2459310 crossref_primary_10_1080_21681163_2021_1972342 crossref_primary_10_1109_TITS_2024_3424525 crossref_primary_10_1016_j_compeleceng_2024_109764 crossref_primary_10_1080_10298436_2022_2027414 crossref_primary_10_1080_10589759_2024_2406448 crossref_primary_10_1016_j_heliyon_2024_e25892 crossref_primary_10_1080_10589759_2023_2291429 crossref_primary_10_32604_cmes_2021_015875 crossref_primary_10_1007_s00138_020_01158_2 crossref_primary_10_3390_rs15215158 crossref_primary_10_1016_j_matcom_2025_02_003 crossref_primary_10_1111_ppa_13783 crossref_primary_10_3390_s24051542 crossref_primary_10_3390_rs14225793 crossref_primary_10_3390_info15040206 crossref_primary_10_1016_j_conbuildmat_2021_125658 crossref_primary_10_1080_17452007_2023_2244949 crossref_primary_10_1016_j_engappai_2023_107507 crossref_primary_10_1109_TIM_2024_3458059 crossref_primary_10_1016_j_aei_2025_103186 crossref_primary_10_3390_app11115074 crossref_primary_10_1155_2023_3879096 crossref_primary_10_1016_j_dsp_2025_105148 crossref_primary_10_1016_j_procs_2022_09_457 crossref_primary_10_1109_TIE_2022_3204953 crossref_primary_10_1109_TITS_2024_3464528 crossref_primary_10_1177_14759217241305537 crossref_primary_10_1016_j_inpa_2024_03_002 crossref_primary_10_1049_itr2_12173 crossref_primary_10_1109_ACCESS_2021_3069466 crossref_primary_10_1109_TIM_2023_3317386 crossref_primary_10_1016_j_engappai_2024_108300 crossref_primary_10_1016_j_eswa_2023_121686 crossref_primary_10_1155_2023_9982080 crossref_primary_10_1177_14759217241293467 crossref_primary_10_1016_j_cscm_2024_e04131 crossref_primary_10_1016_j_dibe_2022_100088 crossref_primary_10_3390_app142411541 crossref_primary_10_1002_2475_8876_12362 crossref_primary_10_1016_j_autcon_2022_104275 crossref_primary_10_3788_LOP220754 crossref_primary_10_1016_j_aei_2024_102578 crossref_primary_10_1016_j_engappai_2025_110364 crossref_primary_10_3390_s23062938 crossref_primary_10_1109_TII_2022_3233674 crossref_primary_10_1016_j_engappai_2024_108574 crossref_primary_10_1080_15325008_2024_2319325 crossref_primary_10_1080_10298436_2022_2065488 crossref_primary_10_1109_TASE_2023_3309629 crossref_primary_10_1155_2021_5298882 crossref_primary_10_1016_j_tust_2022_104472 crossref_primary_10_3390_fractalfract8080468 crossref_primary_10_1080_15732479_2022_2152840 crossref_primary_10_1016_j_autcon_2024_105614 crossref_primary_10_1016_j_autcon_2024_105612 crossref_primary_10_1061_JCCEE5_CPENG_6339 crossref_primary_10_1007_s11042_022_13152_z crossref_primary_10_3390_s23094192 crossref_primary_10_1016_j_aei_2024_102584 crossref_primary_10_1109_TIM_2023_3342222 crossref_primary_10_1002_eng2_12872 crossref_primary_10_1007_s00530_024_01509_3 crossref_primary_10_1016_j_engappai_2022_105130 crossref_primary_10_1007_s10921_020_00715_z crossref_primary_10_3390_rs13142665 crossref_primary_10_3390_agriculture14040591 crossref_primary_10_1016_j_autcon_2021_104017 crossref_primary_10_1016_j_autcon_2022_104412 crossref_primary_10_1061_JCCEE5_CPENG_5512 crossref_primary_10_3390_s22228714 crossref_primary_10_1016_j_autcon_2021_103831 crossref_primary_10_1002_tal_2099 crossref_primary_10_3390_s21124135 crossref_primary_10_1177_14759217221140976 crossref_primary_10_1631_jzus_A2200175 crossref_primary_10_1016_j_engappai_2025_110302 crossref_primary_10_1007_s11709_023_0965_y crossref_primary_10_1016_j_istruc_2023_05_062 crossref_primary_10_1016_j_measurement_2023_112892 crossref_primary_10_3390_s21030824 crossref_primary_10_1177_14759217221139730 crossref_primary_10_1111_jmi_12906 crossref_primary_10_1177_14759217231168212 crossref_primary_10_1016_j_autcon_2023_105217 crossref_primary_10_3390_en16237726 crossref_primary_10_1002_suco_202400222 crossref_primary_10_1109_ACCESS_2023_3329991 crossref_primary_10_1016_j_wace_2023_100626 crossref_primary_10_1007_s11042_023_15753_8 crossref_primary_10_3390_s21165598 crossref_primary_10_1080_10298436_2023_2258438 crossref_primary_10_1177_14759217221088457 crossref_primary_10_1007_s11709_024_1071_5 crossref_primary_10_1109_TITS_2023_3275570 crossref_primary_10_1080_15732479_2021_1994617 crossref_primary_10_1049_gtd2_12756 crossref_primary_10_3390_s24134288 crossref_primary_10_1007_s11665_023_08923_0 crossref_primary_10_1109_ACCESS_2020_3037667 crossref_primary_10_3390_rs15092400 crossref_primary_10_3390_s22093341 crossref_primary_10_1177_1475921720985437 crossref_primary_10_3390_rs16224267 crossref_primary_10_1109_TITS_2023_3331769 crossref_primary_10_1016_j_autcon_2024_105646 crossref_primary_10_1016_j_tust_2024_106085 crossref_primary_10_1109_TITS_2024_3511036 crossref_primary_10_3390_s23042244 crossref_primary_10_1177_09544097231214578 crossref_primary_10_1109_TITS_2023_3301591 crossref_primary_10_1016_j_bspc_2023_105025 crossref_primary_10_1109_TIM_2025_3546391 crossref_primary_10_2174_2666255813999200918143531 crossref_primary_10_1016_j_ijtst_2023_11_005 crossref_primary_10_1016_j_istruc_2024_107073 crossref_primary_10_1049_ipr2_12940 crossref_primary_10_1109_TIM_2025_3545506 crossref_primary_10_1016_j_autcon_2024_105770 crossref_primary_10_1016_j_autcon_2025_106009 crossref_primary_10_1016_j_conbuildmat_2022_128543 crossref_primary_10_1109_TAI_2024_3366146 crossref_primary_10_1016_j_infrared_2024_105241 crossref_primary_10_1111_mice_12667 crossref_primary_10_1016_j_autcon_2024_105896 crossref_primary_10_1109_TITS_2024_3405995 crossref_primary_10_1002_eng2_12837 crossref_primary_10_1016_j_jtte_2022_11_003 crossref_primary_10_1109_ACCESS_2023_3340310 crossref_primary_10_1016_j_engfracmech_2024_110373 crossref_primary_10_1002_rob_22260 |
Cites_doi | 10.1038/nature14539 10.1016/j.neucom.2019.01.036 10.1109/CVPR.2015.7298965 10.1080/10298436.2018.1485917 10.1109/ITSC.2017.8317714 10.1016/j.autcon.2018.12.006 10.1111/mice.12428 10.1109/CVPR.2017.195 10.1109/TPAMI.2016.2644615 10.1111/mice.12412 10.1145/3287921.3287949 10.1002/stc.2286 10.1007/978-3-030-01234-2_49 10.1109/CVPR.2017.243 10.1109/CVPR.2016.350 10.1016/j.autcon.2018.11.028 10.4231/R7ZC8111 10.1111/mice.12375 10.1109/TPAMI.2016.2577031 10.1111/mice.12334 10.1109/ICDAR.2005.251 10.1111/mice.12263 10.1111/mice.12387 10.1061/(ASCE)CP.1943-5487.0000775 10.1007/978-3-319-50835-1_22 10.1111/mice.12367 10.1109/CVPR.2009.5206848 10.1109/WACV.2017.58 10.1109/CVPR.2016.90 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIE.2019.2945265 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9948 |
EndPage | 8025 |
ExternalDocumentID | 10_1109_TIE_2019_2945265 8863123 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: 1262624; 533690-18 funderid: 10.13039/501100000038 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c333t-847634e7f3bf3adb1847403294a66b7a38c45d5007f992db4ab0622e7cccd5053 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Mon Jun 30 10:15:15 EDT 2025 Tue Jul 01 00:16:33 EDT 2025 Thu Apr 24 23:02:55 EDT 2025 Wed Aug 27 02:39:16 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-847634e7f3bf3adb1847403294a66b7a38c45d5007f992db4ab0622e7cccd5053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0738-5615 0000-0001-9099-8334 |
OpenAccessLink | http://hdl.handle.net/1993/35153 |
PQID | 2401124086 |
PQPubID | 85464 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8863123 crossref_primary_10_1109_TIE_2019_2945265 crossref_citationtrail_10_1109_TIE_2019_2945265 proquest_journals_2401124086 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref14 howard (ref28) 2017 kingma (ref39) 2014 ref11 ref10 ref2 yosinski (ref9) 0 ref1 ronneberger (ref17) 0 ref38 ref16 srivastava (ref33) 2014; 15 ref19 ref18 goodfellow (ref3) 2016 simonyan (ref5) 2014 ref24 ref23 abadi (ref36) 0 ref26 ioffe (ref29) 2015 ref25 ref20 dumoulin (ref31) 2016 ref41 ref22 ref21 ref27 ref8 ref7 ref4 ref6 nair (ref30) 0 chen (ref32) 2017 ref40 |
References_xml | – ident: ref2 doi: 10.1038/nature14539 – start-page: 3320 year: 0 ident: ref9 article-title: How transferable are features in deep neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref41 doi: 10.1016/j.neucom.2019.01.036 – ident: ref37 doi: 10.1109/CVPR.2015.7298965 – ident: ref10 doi: 10.1080/10298436.2018.1485917 – ident: ref18 doi: 10.1109/ITSC.2017.8317714 – ident: ref24 doi: 10.1016/j.autcon.2018.12.006 – ident: ref19 doi: 10.1111/mice.12428 – ident: ref7 doi: 10.1109/CVPR.2017.195 – start-page: 807 year: 0 ident: ref30 article-title: Rectified linear units improve restricted boltzmann machines publication-title: Proc 27th Int Conf Mach Learn – ident: ref27 doi: 10.1109/TPAMI.2016.2644615 – ident: ref20 doi: 10.1111/mice.12412 – year: 2017 ident: ref32 article-title: Rethinking atrous convolution for semantic image segmentation publication-title: arXiv 1706 05587 – ident: ref11 doi: 10.1145/3287921.3287949 – ident: ref23 doi: 10.1002/stc.2286 – ident: ref26 doi: 10.1007/978-3-030-01234-2_49 – ident: ref8 doi: 10.1109/CVPR.2017.243 – ident: ref35 doi: 10.1109/CVPR.2016.350 – ident: ref22 doi: 10.1016/j.autcon.2018.11.028 – ident: ref34 doi: 10.4231/R7ZC8111 – ident: ref12 doi: 10.1111/mice.12375 – ident: ref13 doi: 10.1109/TPAMI.2016.2577031 – ident: ref14 doi: 10.1111/mice.12334 – ident: ref4 doi: 10.1109/ICDAR.2005.251 – ident: ref1 doi: 10.1111/mice.12263 – ident: ref15 doi: 10.1111/mice.12387 – ident: ref21 doi: 10.1061/(ASCE)CP.1943-5487.0000775 – start-page: 234 year: 0 ident: ref17 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assisted Int – volume: 15 start-page: 1929 year: 2014 ident: ref33 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – year: 2015 ident: ref29 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: arXiv 1502 03167 – start-page: 265 year: 0 ident: ref36 article-title: Tensorflow: A system for large-scale machine learning publication-title: Proc Symp Oper Syst Des Implementation – year: 2016 ident: ref3 publication-title: Deep Learning – ident: ref38 doi: 10.1007/978-3-319-50835-1_22 – year: 2016 ident: ref31 article-title: A guide to convolution arithmetic for deep learning publication-title: ArXiv 1603 07285 – ident: ref16 doi: 10.1111/mice.12367 – year: 2014 ident: ref5 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – ident: ref25 doi: 10.1109/CVPR.2009.5206848 – year: 2017 ident: ref28 article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv 1704 04861 – ident: ref40 doi: 10.1109/WACV.2017.58 – ident: ref6 doi: 10.1109/CVPR.2016.90 – year: 2014 ident: ref39 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 |
SSID | ssj0014515 |
Score | 2.693699 |
Snippet | This article reports the development of a pure deep learning method for segmenting concrete cracks in images. The objectives are to achieve the real-time... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8016 |
SubjectTerms | Artificial neural networks Computational efficiency Computer architecture Convolution Crack segmentation Damage detection Decoding deep learning (DL) Feature extraction Image segmentation Machine learning Modules Real time Real-time systems separable convolution structural health monitoring (SHM) |
Title | SDDNet: Real-Time Crack Segmentation |
URI | https://ieeexplore.ieee.org/document/8863123 https://www.proquest.com/docview/2401124086 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH5qO8HAVRCFgjJ0QcJtiOMcbKiHClI70FbqFtmOzVBIUUkXfj3PucQlxBZFtuS8OH7fl3d8AB2DcdENxURrKglCak2CG24TptEb2kwKnolNTKbeeOE-LNmyBtdVLYxSKks-U11zmcXy47Xcml9lvSDwKJ60dagjcctrtaqIgctytQLHdIxF0leGJO2wN78fmhyusOuERlCbfXFBmabKj4M48y6jfZiU68qTSlbdbSq68v1by8b_LvwA9gqYad3l--IQaio5gt1PzQeb0JkNBlOV3lqPiBWJKQWx-hsuV9ZMPb0UFUnJMSxGw3l_TArNBCIppSlBZ-NRV_maCk15LJDA-a5N8cm55wmf00C6LGaIDHQYOrFwubA9x1G-lBJvM3oCjWSdqFOwkDj7XEgEDApZmGOADNOO9qjg0g153IJeacZIFg3Fja7Fc5QRCzuM0PCRMXxUGL4FV9WM17yZxh9jm8aO1bjChC1ol28qKr62twhRCcJGF9nZ2e-zzmHHMTw5yw1rQyPdbNUFgolUXGa76ANiRcF5 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH4qZQAGroIoZ4YuSCRN4zhp2FAPtdB2oK3ULbIdm6GQopIu_HqekzTiEmKLIltyXhx_35d3AdQ0x0UYikyliDCRUiuz2WC2SRWioU0FZ2mzieHI603d-xmdleCmyIWRUqbBZ9LSl6kvP1qIlf5VVm82PYIn7QZsIu7TRpatVfgMXJr1K3B0zViUfWunpB3UJ_2OjuIKLCfQLbXpFxBKu6r8OIpTfOnuwXC9siysZG6tEm6J929FG_-79H3YzYmmcZftjAMoyfgQdj6VH6xAbdxuj2RyazwiWzR1MojRWjIxN8by6SXPSYqPYNrtTFo9M--aYApCSGIi3HjElb4iXBEWcZRwvmsTfHLmedxnpClcGlHkBioInIi7jNue40hfCIG3KTmGcryI5QkYKJ19xgVSBok6zNFUhipHeYQz4QYsqkJ9bcZQ5CXFdWeL5zCVFnYQouFDbfgwN3wVrosZr1k5jT_GVrQdi3G5Catwvn5TYf69vYXIS5A4uqjPTn-fdQVbvclwEA76o4cz2Ha0ak4jxc6hnCxX8gKpRcIv0x31Aa0rxMI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SDDNet%3A+Real-Time+Crack+Segmentation&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Choi%2C+Wooram&rft.au=Young-Jin%2C+Cha&rft.date=2020-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=67&rft.issue=9&rft.spage=8016&rft_id=info:doi/10.1109%2FTIE.2019.2945265&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |