Twofold 2-perfect bowtie systems with an extra property

A bowtie is a closed trail whose graph consists of two 3-cycles with exactly one vertex in common. A 2-fold bowtie system of order n is an edge-disjoint decomposition of 2 K n into bowties. A 2-fold bowtie system is said to be 2-perfect provided that every pair of distinct vertices is joined by two...

Full description

Saved in:
Bibliographic Details
Published inAequationes mathematicae Vol. 82; no. 1-2; pp. 143 - 153
Main Authors Billington, Elizabeth J., Lindner, C. C., Meszka, Mariusz
Format Journal Article
LanguageEnglish
Published Basel SP Birkhäuser Verlag Basel 01.09.2011
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0001-9054
1420-8903
DOI10.1007/s00010-011-0075-0

Cover

Abstract A bowtie is a closed trail whose graph consists of two 3-cycles with exactly one vertex in common. A 2-fold bowtie system of order n is an edge-disjoint decomposition of 2 K n into bowties. A 2-fold bowtie system is said to be 2-perfect provided that every pair of distinct vertices is joined by two paths of length 2. It is said to be extra provided these two paths always have distinct midpoints. The extra property guarantees that the two paths x , a , y and x , b , y between every pair of vertices form a 4-cycle ( x , a , y , b ), and that the collection of all such 4-cycles is a four -fold 4-cycle system. We show that the spectrum for extra 2-perfect 2-fold bowtie systems is precisely the set of all n ≡ 0 or 1 (mod 3), . Additionally, with an obvious definition, we show that the spectrum for extra 2-perfect 2-fold maximum packings of 2 K n with bowties is precisely the set of all n ≡ 2 (mod 3), .
AbstractList A bowtie is a closed trail whose graph consists of two 3-cycles with exactly one vertex in common. A 2-fold bowtie system of order n is an edge-disjoint decomposition of 2K sub( )ninto bowties. A 2-fold bowtie system is said to be 2-perfect provided that every pair of distinct vertices is joined by two paths of length 2. It is said to be extra provided these two paths always have distinct midpoints. The extra property guarantees that the two paths x, a, y and x, b, y between every pair of vertices form a 4-cycle (x, a, y, b), and that the collection of all such 4-cycles is a four-fold 4-cycle system. We show that the spectrum for extra 2-perfect 2-fold bowtie systems is precisely the set of all n 0 or 1 (mod 3), n >= 6 . Additionally, with an obvious definition, we show that the spectrum for extra 2-perfect 2-fold maximum packings of 2K sub( )nwith bowties is precisely the set of all n 2 (mod 3), n >= 8 .
A bowtie is a closed trail whose graph consists of two 3-cycles with exactly one vertex in common. A 2-fold bowtie system of order n is an edge-disjoint decomposition of 2K ^sub n^ into bowties. A 2-fold bowtie system is said to be 2-perfect provided that every pair of distinct vertices is joined by two paths of length 2. It is said to be extra provided these two paths always have distinct midpoints. The extra property guarantees that the two paths x, a, y and x, b, y between every pair of vertices form a 4-cycle (x, a, y, b), and that the collection of all such 4-cycles is a four-fold 4-cycle system. We show that the spectrum for extra 2-perfect 2-fold bowtie systems is precisely the set of all n 0 or 1 (mod 3), n 6 . Additionally, with an obvious definition, we show that the spectrum for extra 2-perfect 2-fold maximum packings of 2K ^sub n^ with bowties is precisely the set of all n 2 (mod 3), n 8 .[PUBLICATION ABSTRACT]
A bowtie is a closed trail whose graph consists of two 3-cycles with exactly one vertex in common. A 2-fold bowtie system of order n is an edge-disjoint decomposition of 2 K n into bowties. A 2-fold bowtie system is said to be 2-perfect provided that every pair of distinct vertices is joined by two paths of length 2. It is said to be extra provided these two paths always have distinct midpoints. The extra property guarantees that the two paths x , a , y and x , b , y between every pair of vertices form a 4-cycle ( x , a , y , b ), and that the collection of all such 4-cycles is a four -fold 4-cycle system. We show that the spectrum for extra 2-perfect 2-fold bowtie systems is precisely the set of all n ≡ 0 or 1 (mod 3), . Additionally, with an obvious definition, we show that the spectrum for extra 2-perfect 2-fold maximum packings of 2 K n with bowties is precisely the set of all n ≡ 2 (mod 3), .
Author Meszka, Mariusz
Billington, Elizabeth J.
Lindner, C. C.
Author_xml – sequence: 1
  givenname: Elizabeth J.
  surname: Billington
  fullname: Billington, Elizabeth J.
  email: ejb@maths.uq.edu.au
  organization: School of Mathematics and Physics, The University of Queensland
– sequence: 2
  givenname: C. C.
  surname: Lindner
  fullname: Lindner, C. C.
  organization: Department of Mathematics and Statistics, Auburn University
– sequence: 3
  givenname: Mariusz
  surname: Meszka
  fullname: Meszka, Mariusz
  organization: Faculty of Applied Mathematics, AGH University of Science and Technology
BookMark eNp1kM1Lw0AQxRepYFv9A7wFT15WZz-S3Ryl-AUFL70vm2SiKWm27m6p_e_dEEEQPA2P-b03w1uQ2eAGJOSawR0DUPcBABhQYIwmmVM4I3MmOVBdgpiR-bimJeTygixC2CbFlRJzojZH17q-yTjdo2-xjlnljrHDLJxCxF3Ijl38yOyQ4Vf0Ntt7l7h4uiTnre0DXv3MJdk8PW5WL3T99vy6eljTWggRqRa60ZUUha5lW2pRqLJUubV5JWXT8qphCnVeVKJEsLK2WpU155VsOQqWK7Ekt1Nsuvt5wBDNrgs19r0d0B2CYYViOYAuioTe_EG37uCH9JzRiqWrBRshNkG1dyF4bM3edzvrT4aBGYs0U5EmFWnGIg0kD588IbHDO_rf4P9N36uSdV4
CODEN AEMABN
Cites_doi 10.1007/BF02784058
10.1016/0012-365X(93)E0008-R
10.1093/oso/9780198535768.001.0001
ContentType Journal Article
Copyright Springer Basel AG 2011
Copyright_xml – notice: Springer Basel AG 2011
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s00010-011-0075-0
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1420-8903
EndPage 153
ExternalDocumentID 2375906691
10_1007_s00010_011_0075_0
Genre Feature
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DARCH
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
7SC
7TB
8FD
ABRTQ
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-838d8b4368c4f983679975aa5b44df2bd17e856b39e0a4ca879c22b4f2e31573
IEDL.DBID U2A
ISSN 0001-9054
IngestDate Thu Sep 04 21:38:47 EDT 2025
Fri Jul 25 19:37:43 EDT 2025
Tue Jul 01 01:41:41 EDT 2025
Fri Feb 21 02:37:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords bowtie
Complete graph decomposition
05C38
2-perfect
05B30
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-838d8b4368c4f983679975aa5b44df2bd17e856b39e0a4ca879c22b4f2e31573
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 871975616
PQPubID 36840
PageCount 11
ParticipantIDs proquest_miscellaneous_1671500866
proquest_journals_871975616
crossref_primary_10_1007_s00010_011_0075_0
springer_journals_10_1007_s00010_011_0075_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Aequationes mathematicae
PublicationTitleAbbrev Aequat. Math
PublicationYear 2011
Publisher SP Birkhäuser Verlag Basel
Springer Nature B.V
Publisher_xml – name: SP Birkhäuser Verlag Basel
– name: Springer Nature B.V
References Billington, Lindner (CR2) 1994; 135
Vanstone, Stinson, Schellenberg, Rosa, Rees, Colbourn, Carter, Carter (CR7) 1993; 3
CR3
CR6
Colbourn, Dinitz (CR4) 2006
Adams (CR1) 1993; 44
Colbourn, Rosa (CR5) 1999
75_CR3
C.J. Colbourn (75_CR5) 1999
S.A. Vanstone (75_CR7) 1993; 3
75_CR6
P. Adams (75_CR1) 1993; 44
(75_CR4) 2006
E.J. Billington (75_CR2) 1994; 135
References_xml – year: 1999
  ident: CR5
  publication-title: Triple Systems
– ident: CR6
– volume: 44
  start-page: 243
  year: 1993
  end-page: 253
  ident: CR1
  article-title: Lambda-fold 2-perfect bowties
  publication-title: Utilitas Mathematica
– volume: 3
  start-page: 305
  issue: 3
  year: 1993
  end-page: 319
  ident: CR7
  article-title: Hanani triple systems
  publication-title: Israel J. Math.
  doi: 10.1007/BF02784058
– volume: 135
  start-page: 61
  year: 1994
  end-page: 68
  ident: CR2
  article-title: The spectrum for 2-perfect bowtie systems
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(93)E0008-R
– ident: CR3
– year: 2006
  ident: CR4
  publication-title: The Handbook of Combinatorial Designs
– ident: 75_CR3
– volume-title: Triple Systems
  year: 1999
  ident: 75_CR5
  doi: 10.1093/oso/9780198535768.001.0001
– volume: 44
  start-page: 243
  year: 1993
  ident: 75_CR1
  publication-title: Utilitas Mathematica
– volume: 3
  start-page: 305
  issue: 3
  year: 1993
  ident: 75_CR7
  publication-title: Israel J. Math.
  doi: 10.1007/BF02784058
– volume-title: The Handbook of Combinatorial Designs
  year: 2006
  ident: 75_CR4
– ident: 75_CR6
– volume: 135
  start-page: 61
  year: 1994
  ident: 75_CR2
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(93)E0008-R
SSID ssj0012773
Score 1.8336328
Snippet A bowtie is a closed trail whose graph consists of two 3-cycles with exactly one vertex in common. A 2-fold bowtie system of order n is an edge-disjoint...
A bowtie is a closed trail whose graph consists of two 3-cycles with exactly one vertex in common. A 2-fold bowtie system of order n is an edge-disjoint...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 143
SubjectTerms Analysis
Collection
Combinatorics
Decomposition
Graph algorithms
Graphs
Mathematics
Mathematics and Statistics
Title Twofold 2-perfect bowtie systems with an extra property
URI https://link.springer.com/article/10.1007/s00010-011-0075-0
https://www.proquest.com/docview/871975616
https://www.proquest.com/docview/1671500866
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-yXfQgfuKcjgielEDXfPa4yeZQttMG81SSJgVB2tF2DP97k34NRQ-eemhIy8tr3u-X33uvANwLrGWMI44o9jQigYmRJEGElKbKwQkfK1fgPF-w2Yq8rOm6ruPOm2z3RpIsd-q22M3BEZdEZemvjXPI8vQutdTdfY0rf9RKBz6vZWXP5R5Q0kiZv03xPRjtEeYPUbSMNdMTcFyDRDiqVvUUHJjkDBzN2w6r-Tngy10apx8a-mhjMpeTAVW6K94NrHoz59CdsEKZQLv7ZhJu3KF7VnxegOV0snyaofonCCjCGBdIYKGFcn3iIxIHAjMeBJxKSRUhOvaVHnIjKFM4MJ4kkRQ8iHxfkdg3eEg5vgSdJE3MFYDaUT-PBYp4hijmCaNFhCVj0qIerXgPPDTGCDdVq4uwbWpcWi60lgud5UKvB_qNucLa6_PQki_7bmzIeuCuvWvd1WkQMjHpNg-HjFsIanmUHfPYWHk_w5_Pu_7X6D44rM5-XS7YDegU2dbcWvBQqAHojqbj8cJdn99eJ4PSeb4AjpW8iA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6hcmD3wGtZUZ5G4gQySmPHdo4VAgqlnILEniw7diQESqomFYJfj908EGg5cI7lOOPHfJ9n5gvAsSBGZSTlOCKBwTS2GVY0TrE2kfZwIiTaFzhP7tjont48RA9NHXfZZru3IcnFSd0Vu3k44pOoHP11fg47nr5MHQUPerA8vPo3vuiCByFvAsuBzz6IaBvM_F8nn93RB8b8EhZdeJvLNUjacdZJJk9n80qfpW9fJBx_-CHrsNqgTzSsl8sGLNl8E35POunW8g_w5KXIimeDQjy1M5_sgXTxUj1aVIs-l8hf3SKVI3eszxSa-tv8WfW6BcnlRXI-ws3fFXBKCKmwIMII7QXoU5rFgjAexzxSKtKUmizUZsCtiJgmsQ0UTZXgcRqGmmahJYOIk7_Qy4vcbgMynlMGLNY0sFSzQFgjUqIYUw5OGc37cNLaWE5rDQ3ZqSUvjCGdMaQ3hgz6sNvOgmy2Uykdq3NjYwPWh6PuqdsHPrihclvMSzlg3GFbR9Bcm9PW7h89fPu-nR-1PoSVUTK5lbfXd-Nd-FVfMPuEsz3oVbO53XcIpdIHzYp8B_qQ2RE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6iIPogXnHOSwSflLC2SZP0cahjXjZ82GBvIWlSEKQta8fw35usl6Hog88NaTk9yfnO-U6-AHDDsZYJjhkKsacRiUyCJIlipHSoHJwIsHIHnEdjOpyS51k4q-85LZpu94aSrM40OJWmtOzlOum1B98cNHENVTYVtjEP2Zx9y-7GvnP0adBvaYSA1RSz5_oQQtLQmr9N8T0wrdHmD4J0FXcG-2CvBoywX_3hA7Bh0kOwO2rVVosjwCbLLMk-NAxQbuauPwOqbFm-G1jpNBfQVVuhTKHdiecS5q4APy8_j8Fk8Di5H6L6QgQUY4xLxDHXXDnN-JgkEceURRELpQwVIToJlPaZ4SFVODKeJLHkLIqDQJEkMNgPGT4Bm2mWmlMAtUsDPRop4hmiqMeN5jGWlEqLgLRiHXDbGEPkleyFaAWOV5YT1nLCWU54HdBtzCXqFVAIm4jZb6M-7YDr9ql1XcdHyNRki0L4lFk4anMqO-ausfJ6hj_fd_av0Vdg--1hIF6fxi9dsFOVhF2L2DnYLOcLc2ExRakuV37zBRodwKc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Twofold+2-perfect+bowtie+systems+with+an+extra+property&rft.jtitle=Aequationes+mathematicae&rft.au=Billington%2C+Elizabeth+J.&rft.au=Lindner%2C+C.+C.&rft.au=Meszka%2C+Mariusz&rft.date=2011-09-01&rft.issn=0001-9054&rft.eissn=1420-8903&rft.volume=82&rft.issue=1-2&rft.spage=143&rft.epage=153&rft_id=info:doi/10.1007%2Fs00010-011-0075-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00010_011_0075_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-9054&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-9054&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-9054&client=summon