Twofold 2-perfect bowtie systems with an extra property
A bowtie is a closed trail whose graph consists of two 3-cycles with exactly one vertex in common. A 2-fold bowtie system of order n is an edge-disjoint decomposition of 2 K n into bowties. A 2-fold bowtie system is said to be 2-perfect provided that every pair of distinct vertices is joined by two...
Saved in:
Published in | Aequationes mathematicae Vol. 82; no. 1-2; pp. 143 - 153 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
SP Birkhäuser Verlag Basel
01.09.2011
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0001-9054 1420-8903 |
DOI | 10.1007/s00010-011-0075-0 |
Cover
Abstract | A bowtie is a closed trail whose graph consists of two 3-cycles with exactly one vertex in common. A 2-fold bowtie system of order
n
is an edge-disjoint decomposition of 2
K
n
into bowties. A 2-fold bowtie system is said to be 2-perfect provided that every pair of distinct vertices is joined by
two
paths of length 2. It is said to be
extra
provided these two paths always have distinct midpoints. The extra property guarantees that the two paths
x
,
a
,
y
and
x
,
b
,
y
between every pair of vertices form a 4-cycle (
x
,
a
,
y
,
b
), and that the collection of all such 4-cycles is a
four
-fold 4-cycle system. We show that the spectrum for extra 2-perfect 2-fold bowtie systems is precisely the set of all
n
≡ 0 or 1 (mod 3),
. Additionally, with an obvious definition, we show that the spectrum for extra 2-perfect 2-fold maximum packings of 2
K
n
with bowties is precisely the set of all
n
≡ 2 (mod 3),
. |
---|---|
AbstractList | A bowtie is a closed trail whose graph consists of two 3-cycles with exactly one vertex in common. A 2-fold bowtie system of order n is an edge-disjoint decomposition of 2K sub( )ninto bowties. A 2-fold bowtie system is said to be 2-perfect provided that every pair of distinct vertices is joined by two paths of length 2. It is said to be extra provided these two paths always have distinct midpoints. The extra property guarantees that the two paths x, a, y and x, b, y between every pair of vertices form a 4-cycle (x, a, y, b), and that the collection of all such 4-cycles is a four-fold 4-cycle system. We show that the spectrum for extra 2-perfect 2-fold bowtie systems is precisely the set of all n 0 or 1 (mod 3), n >= 6 . Additionally, with an obvious definition, we show that the spectrum for extra 2-perfect 2-fold maximum packings of 2K sub( )nwith bowties is precisely the set of all n 2 (mod 3), n >= 8 . A bowtie is a closed trail whose graph consists of two 3-cycles with exactly one vertex in common. A 2-fold bowtie system of order n is an edge-disjoint decomposition of 2K ^sub n^ into bowties. A 2-fold bowtie system is said to be 2-perfect provided that every pair of distinct vertices is joined by two paths of length 2. It is said to be extra provided these two paths always have distinct midpoints. The extra property guarantees that the two paths x, a, y and x, b, y between every pair of vertices form a 4-cycle (x, a, y, b), and that the collection of all such 4-cycles is a four-fold 4-cycle system. We show that the spectrum for extra 2-perfect 2-fold bowtie systems is precisely the set of all n 0 or 1 (mod 3), n 6 . Additionally, with an obvious definition, we show that the spectrum for extra 2-perfect 2-fold maximum packings of 2K ^sub n^ with bowties is precisely the set of all n 2 (mod 3), n 8 .[PUBLICATION ABSTRACT] A bowtie is a closed trail whose graph consists of two 3-cycles with exactly one vertex in common. A 2-fold bowtie system of order n is an edge-disjoint decomposition of 2 K n into bowties. A 2-fold bowtie system is said to be 2-perfect provided that every pair of distinct vertices is joined by two paths of length 2. It is said to be extra provided these two paths always have distinct midpoints. The extra property guarantees that the two paths x , a , y and x , b , y between every pair of vertices form a 4-cycle ( x , a , y , b ), and that the collection of all such 4-cycles is a four -fold 4-cycle system. We show that the spectrum for extra 2-perfect 2-fold bowtie systems is precisely the set of all n ≡ 0 or 1 (mod 3), . Additionally, with an obvious definition, we show that the spectrum for extra 2-perfect 2-fold maximum packings of 2 K n with bowties is precisely the set of all n ≡ 2 (mod 3), . |
Author | Meszka, Mariusz Billington, Elizabeth J. Lindner, C. C. |
Author_xml | – sequence: 1 givenname: Elizabeth J. surname: Billington fullname: Billington, Elizabeth J. email: ejb@maths.uq.edu.au organization: School of Mathematics and Physics, The University of Queensland – sequence: 2 givenname: C. C. surname: Lindner fullname: Lindner, C. C. organization: Department of Mathematics and Statistics, Auburn University – sequence: 3 givenname: Mariusz surname: Meszka fullname: Meszka, Mariusz organization: Faculty of Applied Mathematics, AGH University of Science and Technology |
BookMark | eNp1kM1Lw0AQxRepYFv9A7wFT15WZz-S3Ryl-AUFL70vm2SiKWm27m6p_e_dEEEQPA2P-b03w1uQ2eAGJOSawR0DUPcBABhQYIwmmVM4I3MmOVBdgpiR-bimJeTygixC2CbFlRJzojZH17q-yTjdo2-xjlnljrHDLJxCxF3Ijl38yOyQ4Vf0Ntt7l7h4uiTnre0DXv3MJdk8PW5WL3T99vy6eljTWggRqRa60ZUUha5lW2pRqLJUubV5JWXT8qphCnVeVKJEsLK2WpU155VsOQqWK7Ekt1Nsuvt5wBDNrgs19r0d0B2CYYViOYAuioTe_EG37uCH9JzRiqWrBRshNkG1dyF4bM3edzvrT4aBGYs0U5EmFWnGIg0kD588IbHDO_rf4P9N36uSdV4 |
CODEN | AEMABN |
Cites_doi | 10.1007/BF02784058 10.1016/0012-365X(93)E0008-R 10.1093/oso/9780198535768.001.0001 |
ContentType | Journal Article |
Copyright | Springer Basel AG 2011 |
Copyright_xml | – notice: Springer Basel AG 2011 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1007/s00010-011-0075-0 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1420-8903 |
EndPage | 153 |
ExternalDocumentID | 2375906691 10_1007_s00010_011_0075_0 |
Genre | Feature |
GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DARCH DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF0 PQQKQ PT4 PT5 Q2X QOK QOS R4E R89 R9I REI RHV RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION 7SC 7TB 8FD ABRTQ FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c333t-838d8b4368c4f983679975aa5b44df2bd17e856b39e0a4ca879c22b4f2e31573 |
IEDL.DBID | U2A |
ISSN | 0001-9054 |
IngestDate | Thu Sep 04 21:38:47 EDT 2025 Fri Jul 25 19:37:43 EDT 2025 Tue Jul 01 01:41:41 EDT 2025 Fri Feb 21 02:37:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | bowtie Complete graph decomposition 05C38 2-perfect 05B30 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-838d8b4368c4f983679975aa5b44df2bd17e856b39e0a4ca879c22b4f2e31573 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 871975616 |
PQPubID | 36840 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1671500866 proquest_journals_871975616 crossref_primary_10_1007_s00010_011_0075_0 springer_journals_10_1007_s00010_011_0075_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Aequationes mathematicae |
PublicationTitleAbbrev | Aequat. Math |
PublicationYear | 2011 |
Publisher | SP Birkhäuser Verlag Basel Springer Nature B.V |
Publisher_xml | – name: SP Birkhäuser Verlag Basel – name: Springer Nature B.V |
References | Billington, Lindner (CR2) 1994; 135 Vanstone, Stinson, Schellenberg, Rosa, Rees, Colbourn, Carter, Carter (CR7) 1993; 3 CR3 CR6 Colbourn, Dinitz (CR4) 2006 Adams (CR1) 1993; 44 Colbourn, Rosa (CR5) 1999 75_CR3 C.J. Colbourn (75_CR5) 1999 S.A. Vanstone (75_CR7) 1993; 3 75_CR6 P. Adams (75_CR1) 1993; 44 (75_CR4) 2006 E.J. Billington (75_CR2) 1994; 135 |
References_xml | – year: 1999 ident: CR5 publication-title: Triple Systems – ident: CR6 – volume: 44 start-page: 243 year: 1993 end-page: 253 ident: CR1 article-title: Lambda-fold 2-perfect bowties publication-title: Utilitas Mathematica – volume: 3 start-page: 305 issue: 3 year: 1993 end-page: 319 ident: CR7 article-title: Hanani triple systems publication-title: Israel J. Math. doi: 10.1007/BF02784058 – volume: 135 start-page: 61 year: 1994 end-page: 68 ident: CR2 article-title: The spectrum for 2-perfect bowtie systems publication-title: Discrete Math. doi: 10.1016/0012-365X(93)E0008-R – ident: CR3 – year: 2006 ident: CR4 publication-title: The Handbook of Combinatorial Designs – ident: 75_CR3 – volume-title: Triple Systems year: 1999 ident: 75_CR5 doi: 10.1093/oso/9780198535768.001.0001 – volume: 44 start-page: 243 year: 1993 ident: 75_CR1 publication-title: Utilitas Mathematica – volume: 3 start-page: 305 issue: 3 year: 1993 ident: 75_CR7 publication-title: Israel J. Math. doi: 10.1007/BF02784058 – volume-title: The Handbook of Combinatorial Designs year: 2006 ident: 75_CR4 – ident: 75_CR6 – volume: 135 start-page: 61 year: 1994 ident: 75_CR2 publication-title: Discrete Math. doi: 10.1016/0012-365X(93)E0008-R |
SSID | ssj0012773 |
Score | 1.8336328 |
Snippet | A bowtie is a closed trail whose graph consists of two 3-cycles with exactly one vertex in common. A 2-fold bowtie system of order
n
is an edge-disjoint... A bowtie is a closed trail whose graph consists of two 3-cycles with exactly one vertex in common. A 2-fold bowtie system of order n is an edge-disjoint... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 143 |
SubjectTerms | Analysis Collection Combinatorics Decomposition Graph algorithms Graphs Mathematics Mathematics and Statistics |
Title | Twofold 2-perfect bowtie systems with an extra property |
URI | https://link.springer.com/article/10.1007/s00010-011-0075-0 https://www.proquest.com/docview/871975616 https://www.proquest.com/docview/1671500866 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-yXfQgfuKcjgielEDXfPa4yeZQttMG81SSJgVB2tF2DP97k34NRQ-eemhIy8tr3u-X33uvANwLrGWMI44o9jQigYmRJEGElKbKwQkfK1fgPF-w2Yq8rOm6ruPOm2z3RpIsd-q22M3BEZdEZemvjXPI8vQutdTdfY0rf9RKBz6vZWXP5R5Q0kiZv03xPRjtEeYPUbSMNdMTcFyDRDiqVvUUHJjkDBzN2w6r-Tngy10apx8a-mhjMpeTAVW6K94NrHoz59CdsEKZQLv7ZhJu3KF7VnxegOV0snyaofonCCjCGBdIYKGFcn3iIxIHAjMeBJxKSRUhOvaVHnIjKFM4MJ4kkRQ8iHxfkdg3eEg5vgSdJE3MFYDaUT-PBYp4hijmCaNFhCVj0qIerXgPPDTGCDdVq4uwbWpcWi60lgud5UKvB_qNucLa6_PQki_7bmzIeuCuvWvd1WkQMjHpNg-HjFsIanmUHfPYWHk_w5_Pu_7X6D44rM5-XS7YDegU2dbcWvBQqAHojqbj8cJdn99eJ4PSeb4AjpW8iA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6hcmD3wGtZUZ5G4gQySmPHdo4VAgqlnILEniw7diQESqomFYJfj908EGg5cI7lOOPHfJ9n5gvAsSBGZSTlOCKBwTS2GVY0TrE2kfZwIiTaFzhP7tjont48RA9NHXfZZru3IcnFSd0Vu3k44pOoHP11fg47nr5MHQUPerA8vPo3vuiCByFvAsuBzz6IaBvM_F8nn93RB8b8EhZdeJvLNUjacdZJJk9n80qfpW9fJBx_-CHrsNqgTzSsl8sGLNl8E35POunW8g_w5KXIimeDQjy1M5_sgXTxUj1aVIs-l8hf3SKVI3eszxSa-tv8WfW6BcnlRXI-ws3fFXBKCKmwIMII7QXoU5rFgjAexzxSKtKUmizUZsCtiJgmsQ0UTZXgcRqGmmahJYOIk7_Qy4vcbgMynlMGLNY0sFSzQFgjUqIYUw5OGc37cNLaWE5rDQ3ZqSUvjCGdMaQ3hgz6sNvOgmy2Uykdq3NjYwPWh6PuqdsHPrihclvMSzlg3GFbR9Bcm9PW7h89fPu-nR-1PoSVUTK5lbfXd-Nd-FVfMPuEsz3oVbO53XcIpdIHzYp8B_qQ2RE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6iIPogXnHOSwSflLC2SZP0cahjXjZ82GBvIWlSEKQta8fw35usl6Hog88NaTk9yfnO-U6-AHDDsZYJjhkKsacRiUyCJIlipHSoHJwIsHIHnEdjOpyS51k4q-85LZpu94aSrM40OJWmtOzlOum1B98cNHENVTYVtjEP2Zx9y-7GvnP0adBvaYSA1RSz5_oQQtLQmr9N8T0wrdHmD4J0FXcG-2CvBoywX_3hA7Bh0kOwO2rVVosjwCbLLMk-NAxQbuauPwOqbFm-G1jpNBfQVVuhTKHdiecS5q4APy8_j8Fk8Di5H6L6QgQUY4xLxDHXXDnN-JgkEceURRELpQwVIToJlPaZ4SFVODKeJLHkLIqDQJEkMNgPGT4Bm2mWmlMAtUsDPRop4hmiqMeN5jGWlEqLgLRiHXDbGEPkleyFaAWOV5YT1nLCWU54HdBtzCXqFVAIm4jZb6M-7YDr9ql1XcdHyNRki0L4lFk4anMqO-ausfJ6hj_fd_av0Vdg--1hIF6fxi9dsFOVhF2L2DnYLOcLc2ExRakuV37zBRodwKc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Twofold+2-perfect+bowtie+systems+with+an+extra+property&rft.jtitle=Aequationes+mathematicae&rft.au=Billington%2C+Elizabeth+J.&rft.au=Lindner%2C+C.+C.&rft.au=Meszka%2C+Mariusz&rft.date=2011-09-01&rft.issn=0001-9054&rft.eissn=1420-8903&rft.volume=82&rft.issue=1-2&rft.spage=143&rft.epage=153&rft_id=info:doi/10.1007%2Fs00010-011-0075-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00010_011_0075_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-9054&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-9054&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-9054&client=summon |