Bayesian network classifiers based on Gaussian kernel density
•We construct ENBC by imposing dependency extension on NBC with continuous attributes.•We combine smoothing parameter adjustment and the structure learning.•We control and optimize the fitting degree between classifier and data.•We present that the attributes of ENBC provide three types of informati...
Saved in:
Published in | Expert systems with applications Vol. 51; pp. 207 - 217 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We construct ENBC by imposing dependency extension on NBC with continuous attributes.•We combine smoothing parameter adjustment and the structure learning.•We control and optimize the fitting degree between classifier and data.•We present that the attributes of ENBC provide three types of information for class.•The other two information improve the classification accuracy effectively.
For learning a Bayesian network classifier, continuous attributes usually need to be discretized. But the discretization of continuous attributes may bring information missing, noise and less sensitivity to the changing of the attributes towards class variables. In this paper, we use the Gaussian kernel function with smoothing parameter to estimate the density of attributes. Bayesian network classifier with continuous attributes is established by the dependency extension of Naive Bayes classifiers. We also analyze the information provided to a class for each attributes as a basis for the dependency extension of Naive Bayes classifiers. Experimental studies on UCI data sets show that Bayesian network classifiers using Gaussian kernel function provide good classification accuracy comparing to other approaches when dealing with continuous attributes. |
---|---|
AbstractList | •We construct ENBC by imposing dependency extension on NBC with continuous attributes.•We combine smoothing parameter adjustment and the structure learning.•We control and optimize the fitting degree between classifier and data.•We present that the attributes of ENBC provide three types of information for class.•The other two information improve the classification accuracy effectively.
For learning a Bayesian network classifier, continuous attributes usually need to be discretized. But the discretization of continuous attributes may bring information missing, noise and less sensitivity to the changing of the attributes towards class variables. In this paper, we use the Gaussian kernel function with smoothing parameter to estimate the density of attributes. Bayesian network classifier with continuous attributes is established by the dependency extension of Naive Bayes classifiers. We also analyze the information provided to a class for each attributes as a basis for the dependency extension of Naive Bayes classifiers. Experimental studies on UCI data sets show that Bayesian network classifiers using Gaussian kernel function provide good classification accuracy comparing to other approaches when dealing with continuous attributes. For learning a Bayesian network classifier, continuous attributes usually need to be discretized. But the discretization of continuous attributes may bring information missing, noise and less sensitivity to the changing of the attributes towards class variables. In this paper, we use the Gaussian kernel function with smoothing parameter to estimate the density of attributes. Bayesian network classifier with continuous attributes is established by the dependency extension of Naive Bayes classifiers. We also analyze the information provided to a class for each attributes as a basis for the dependency extension of Naive Bayes classifiers. Experimental studies on UCI data sets show that Bayesian network classifiers using Gaussian kernel function provide good classification accuracy comparing to other approaches when dealing with continuous attributes. |
Author | Gao, Rui Wang, Li-min Wang, Shuang-cheng |
Author_xml | – sequence: 1 givenname: Shuang-cheng surname: Wang fullname: Wang, Shuang-cheng email: wangsc@lixin.edu.cn organization: Lixin Accounting Research Institute, Shanghai Lixin University of Commerce, Shanghai 201620, China – sequence: 2 givenname: Rui orcidid: 0000-0002-7849-2004 surname: Gao fullname: Gao, Rui email: gaorui@lixin.edu.cn, pplu_ren@163.com organization: School of Mathematics and Information, Shanghai Lixin University of Commerce, Shanghai 201620, China – sequence: 3 givenname: Li-min surname: Wang fullname: Wang, Li-min email: wanglim@jlu.edu.cn organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China |
BookMark | eNp9kD1PwzAQQC0EEm3hDzBlZEnwRxK7EgxQQUGqxAKz5dgXyW1qF19K1X9PSpkYOt1w7510b0zOQwxAyA2jBaOsvlsWgDtTcMqqgvGCCnZGRkxJkddyKs7JiE4rmZdMlpdkjLiklElK5Yg8PJk9oDchC9DvYlpltjOIvvWQMGsMgstiyOZmi7_UClKALnMQ0Pf7K3LRmg7h-m9OyOfL88fsNV-8z99mj4vcCiH6XHGw3InKllM1lTUwxhrKBaWUOwvGqsa1rRNSyKYEWkHZVqqxtRv2RgEFMSG3x7ubFL-2gL1ee7TQdSZA3KJmildlLcqqHlB1RG2KiAlabX1veh9Dn4zvNKP6UEwv9aGYPhTTjOuh2KDyf-om-bVJ-9PS_VGC4f_voZpG6yFYcD6B7bWL_pT-A63wh2I |
CitedBy_id | crossref_primary_10_1109_TEVC_2023_3290670 crossref_primary_10_1039_C8AY01087K crossref_primary_10_1016_j_knosys_2020_105638 crossref_primary_10_3390_rs13142678 crossref_primary_10_1007_s10489_021_02448_6 crossref_primary_10_1007_s11707_022_1011_4 crossref_primary_10_1016_j_ijepes_2018_05_036 crossref_primary_10_1109_ACCESS_2019_2922199 crossref_primary_10_3390_agronomy12092010 crossref_primary_10_1109_MCE_2019_2941456 crossref_primary_10_1088_1742_6596_2158_1_012001 crossref_primary_10_1142_S0219622021500644 crossref_primary_10_1016_j_eswa_2022_118152 crossref_primary_10_6000_1927_5129_2017_13_76 crossref_primary_10_1016_j_dss_2023_114119 crossref_primary_10_3390_en12163172 crossref_primary_10_1016_j_compag_2023_108072 crossref_primary_10_1016_j_ins_2019_01_026 crossref_primary_10_1016_j_procs_2021_03_105 crossref_primary_10_1016_j_jenvman_2022_115798 crossref_primary_10_3390_e19120651 crossref_primary_10_1016_j_biosystemseng_2021_06_008 crossref_primary_10_1080_10589759_2024_2354303 crossref_primary_10_1007_s10462_022_10296_0 crossref_primary_10_1007_s10812_025_01863_8 crossref_primary_10_1007_s10586_016_0621_6 crossref_primary_10_3390_app8060915 crossref_primary_10_1049_ipr2_12117 crossref_primary_10_1007_s13042_020_01131_5 crossref_primary_10_1007_s40430_017_0886_6 crossref_primary_10_2118_221475_PA |
Cites_doi | 10.1109/TIT.1968.1054142 10.1109/34.204909 10.1109/TNNLS.2014.2298402 10.1007/s10044-012-0295-5 10.1016/S0004-3702(00)00085-0 10.1007/s10994-008-5083-5 10.1016/j.ijar.2008.08.008 10.1007/s10994-008-5065-7 10.1007/s00500-012-0947-9 10.1016/j.ins.2013.09.003 10.1007/BF00116251 10.1007/BF00994016 10.1023/A:1007465528199 10.1007/s10994-006-8364-x 10.1007/BF00994110 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2015.12.031 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
EndPage | 217 |
ExternalDocumentID | 10_1016_j_eswa_2015_12_031 S0957417415008398 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c333t-82ec2d35c498976e111b0230002dceac8bdffd3737b4e05e4f58bc6d002a8e0e3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Tue Aug 05 10:06:28 EDT 2025 Tue Jul 01 03:12:27 EDT 2025 Thu Apr 24 22:51:47 EDT 2025 Fri Feb 23 02:29:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Smoothing parameters Continuous attributes Gaussian kernel function Classification accuracy Bayesian network classifiers |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-82ec2d35c498976e111b0230002dceac8bdffd3737b4e05e4f58bc6d002a8e0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7849-2004 |
PQID | 1825463456 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1825463456 crossref_citationtrail_10_1016_j_eswa_2015_12_031 crossref_primary_10_1016_j_eswa_2015_12_031 elsevier_sciencedirect_doi_10_1016_j_eswa_2015_12_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 2016-06-00 20160601 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Friedman, Geiger, Goldszmidt (bib0011) 1997; 29 Cooper, Herskovits (bib0006) 1992; 9 Dong, Zhou (bib0008) 2014; 25 Olesen (bib0022) 1993; 15 Demšar (bib0007) 2006; 7 Jing, Pavlović, Rehg (bib0016) 2008; 73 Ramoni, Sebastiani (bib0027) 2001; 125 Bouckaert (bib0001) 2005 Friedman, Goldszmidt (bib0012) 1996 Heckerman, Geiger, Chickering (bib0015) 1995; 20 Pérez, Larrañaga, Inza (bib0025) 2009; 50 He, Wang, Kwong, Wang (bib0014) 2014; 259 Yang, Webb (bib0028) 2009; 74 Fayyad, Irani (bib0010) 1993 Pearl (bib0024) 1988 Quinlan (bib0026) 1986; 1 Boullé (bib0002) 2006; 65 Duda, Hart (bib0009) 1973; vol. 3 Langley, Iba, Thompson (bib0020) 1992; vol. 90 Kobos (bib0018) 2009 . Murphy, D. W., Aha, S. L. (2014). UCI repository of machine learning databases. Grossman, Domingos (bib0013) 2004 Chickering (bib0004) 2002; 2(3) Bounhas, Mellouli, Prade, Serrurier (bib0003) 2013; 17 John, Langley (bib0017) 1995 Kohavi (bib0019) 1995; vol. 2 Chow, Liu (bib0005) 1968; 14 Pavani, Delgado-Gomez, Frangi (bib0023) 2014; 17 Demšar (10.1016/j.eswa.2015.12.031_bib0007) 2006; 7 Pavani (10.1016/j.eswa.2015.12.031_bib0023) 2014; 17 Pearl (10.1016/j.eswa.2015.12.031_bib0024) 1988 Dong (10.1016/j.eswa.2015.12.031_bib0008) 2014; 25 Fayyad (10.1016/j.eswa.2015.12.031_bib0010) 1993 Kobos (10.1016/j.eswa.2015.12.031_bib0018) 2009 Grossman (10.1016/j.eswa.2015.12.031_bib0013) 2004 Langley (10.1016/j.eswa.2015.12.031_bib0020) 1992; vol. 90 Friedman (10.1016/j.eswa.2015.12.031_bib0012) 1996 John (10.1016/j.eswa.2015.12.031_bib0017) 1995 Kohavi (10.1016/j.eswa.2015.12.031_bib0019) 1995; vol. 2 Olesen (10.1016/j.eswa.2015.12.031_bib0022) 1993; 15 Ramoni (10.1016/j.eswa.2015.12.031_bib0027) 2001; 125 Bouckaert (10.1016/j.eswa.2015.12.031_bib0001) 2005 Quinlan (10.1016/j.eswa.2015.12.031_bib0026) 1986; 1 Chickering (10.1016/j.eswa.2015.12.031_bib0004) 2002; 2(3) He (10.1016/j.eswa.2015.12.031_bib0014) 2014; 259 Cooper (10.1016/j.eswa.2015.12.031_bib0006) 1992; 9 Heckerman (10.1016/j.eswa.2015.12.031_bib0015) 1995; 20 10.1016/j.eswa.2015.12.031_bib0021 Yang (10.1016/j.eswa.2015.12.031_bib0028) 2009; 74 Jing (10.1016/j.eswa.2015.12.031_bib0016) 2008; 73 Boullé (10.1016/j.eswa.2015.12.031_bib0002) 2006; 65 Chow (10.1016/j.eswa.2015.12.031_bib0005) 1968; 14 Duda (10.1016/j.eswa.2015.12.031_bib0009) 1973; vol. 3 Bounhas (10.1016/j.eswa.2015.12.031_bib0003) 2013; 17 Friedman (10.1016/j.eswa.2015.12.031_bib0011) 1997; 29 Pérez (10.1016/j.eswa.2015.12.031_bib0025) 2009; 50 |
References_xml | – year: 1988 ident: bib0024 article-title: Probabilistic reasoning in intelligent systems: networks of plausible inference – volume: 73 start-page: 155 year: 2008 end-page: 184 ident: bib0016 article-title: Boosted bayesian network classifiers publication-title: Machine Learning – volume: vol. 90 start-page: 223 year: 1992 end-page: 228 ident: bib0020 article-title: An analysis of Bayesian classifiers publication-title: Proceedings of AAAI – volume: 125 start-page: 209 year: 2001 end-page: 226 ident: bib0027 article-title: Robust Bayes classifiers publication-title: Artificial Intelligence – volume: 17 start-page: 733 year: 2013 end-page: 751 ident: bib0003 article-title: Possibilistic classifiers for numerical data publication-title: Soft Computing – start-page: 57 year: 2009 end-page: 63 ident: bib0018 article-title: Combination of independent kernel density estimators in classification publication-title: Proceedings of the international multiconference on computer science and information technology, 2009. IMCSIT’09. – volume: 14 start-page: 462 year: 1968 end-page: 467 ident: bib0005 article-title: Approximating discrete probability distributions with dependence trees publication-title: IEEE Transactions on Information Theory – start-page: 338 year: 1995 end-page: 345 ident: bib0017 article-title: Estimating continuous distributions in Bayesian classifiers publication-title: Proceedings of the eleventh conference on uncertainty in artificial intelligence – volume: 15 start-page: 275 year: 1993 end-page: 279 ident: bib0022 article-title: Causal probabilistic networks with both discrete and continuous variables publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence – volume: 9 start-page: 309 year: 1992 end-page: 347 ident: bib0006 article-title: A bayesian method for the induction of probabilistic networks from data publication-title: Machine Learning – volume: 2(3) start-page: 445 year: 2002 end-page: 498 ident: bib0004 article-title: Learning equivalence classes of Bayesian-network structures publication-title: The Journal of Machine Learning Research – start-page: 46 year: 2004 ident: bib0013 article-title: Learning Bayesian network classifiers by maximizing conditional likelihood publication-title: Proceedings of the twenty-first international conference on machine learning – volume: 259 start-page: 252 year: 2014 end-page: 268 ident: bib0014 article-title: Bayesian classifiers based on probability density estimation and their applications to simultaneous fault diagnosis publication-title: Information Sciences – volume: 50 start-page: 341 year: 2009 end-page: 362 ident: bib0025 article-title: Bayesian classifiers based on kernel density estimation: Flexible classifiers publication-title: International Journal of Approximate Reasoning – reference: Murphy, D. W., Aha, S. L. (2014). UCI repository of machine learning databases. – volume: vol. 3 year: 1973 ident: bib0009 publication-title: Pattern classification and scene analysis – start-page: 1089 year: 2005 end-page: 1094 ident: bib0001 article-title: Naive Bayes classifiers that perform well with continuous variables publication-title: Advances in artificial intelligence, AI 2004 – volume: 65 start-page: 131 year: 2006 end-page: 165 ident: bib0002 article-title: Modl: A Bayes optimal discretization method for continuous attributes publication-title: Machine Learning – reference: . – volume: 29 start-page: 131 year: 1997 end-page: 163 ident: bib0011 article-title: Bayesian network classifiers publication-title: Machine learning – volume: 74 start-page: 39 year: 2009 end-page: 74 ident: bib0028 article-title: Discretization for naive-bayes learning: managing discretization bias and variance publication-title: Machine Learning – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib0007 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: The Journal of Machine Learning Research – volume: 25 start-page: 1200 year: 2014 end-page: 1216 ident: bib0008 article-title: Gaussian classifier-based evolutionary strategy for multimodal optimization publication-title: IEEE Transactions on Neural Networks & Learning Systems – volume: vol. 2 start-page: 1137 year: 1995 end-page: 1143 ident: bib0019 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: Proceedings of the 14th international joint conference on artificial intelligence – volume: 17 start-page: 431 year: 2014 end-page: 439 ident: bib0023 article-title: Gaussian weak classifiers based on co-occurring haar-like features for face detection publication-title: Pattern Analysis and Applications – volume: 1 start-page: 81 year: 1986 end-page: 106 ident: bib0026 article-title: Induction of decision trees publication-title: Machine Learning – volume: 20 start-page: 197 year: 1995 end-page: 243 ident: bib0015 article-title: Learning Bayesian networks: The combination of knowledge and statistical data publication-title: Machine learning – start-page: 1022 year: 1993 end-page: 1029 ident: bib0010 article-title: Multi-interval discretization of continuous-valued attributes for classification learning. publication-title: Proceedings of the 5th international joint conference on artificial intelligence (IJCAI) – start-page: 157 year: 1996 end-page: 165 ident: bib0012 article-title: Discretizing continuous attributes while learning Bayesian networks publication-title: Proceedings of the ICML – volume: 14 start-page: 462 issue: 3 year: 1968 ident: 10.1016/j.eswa.2015.12.031_bib0005 article-title: Approximating discrete probability distributions with dependence trees publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1968.1054142 – start-page: 1089 year: 2005 ident: 10.1016/j.eswa.2015.12.031_bib0001 article-title: Naive Bayes classifiers that perform well with continuous variables – volume: 15 start-page: 275 issue: 3 year: 1993 ident: 10.1016/j.eswa.2015.12.031_bib0022 article-title: Causal probabilistic networks with both discrete and continuous variables publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence doi: 10.1109/34.204909 – volume: 25 start-page: 1200 issue: 6 year: 2014 ident: 10.1016/j.eswa.2015.12.031_bib0008 article-title: Gaussian classifier-based evolutionary strategy for multimodal optimization publication-title: IEEE Transactions on Neural Networks & Learning Systems doi: 10.1109/TNNLS.2014.2298402 – volume: 17 start-page: 431 issue: 2 year: 2014 ident: 10.1016/j.eswa.2015.12.031_bib0023 article-title: Gaussian weak classifiers based on co-occurring haar-like features for face detection publication-title: Pattern Analysis and Applications doi: 10.1007/s10044-012-0295-5 – volume: 2(3) start-page: 445 year: 2002 ident: 10.1016/j.eswa.2015.12.031_bib0004 article-title: Learning equivalence classes of Bayesian-network structures publication-title: The Journal of Machine Learning Research – volume: 125 start-page: 209 issue: 1 year: 2001 ident: 10.1016/j.eswa.2015.12.031_bib0027 article-title: Robust Bayes classifiers publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(00)00085-0 – start-page: 157 year: 1996 ident: 10.1016/j.eswa.2015.12.031_bib0012 article-title: Discretizing continuous attributes while learning Bayesian networks – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.eswa.2015.12.031_bib0007 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: The Journal of Machine Learning Research – volume: 74 start-page: 39 issue: 1 year: 2009 ident: 10.1016/j.eswa.2015.12.031_bib0028 article-title: Discretization for naive-bayes learning: managing discretization bias and variance publication-title: Machine Learning doi: 10.1007/s10994-008-5083-5 – start-page: 338 year: 1995 ident: 10.1016/j.eswa.2015.12.031_bib0017 article-title: Estimating continuous distributions in Bayesian classifiers – volume: vol. 90 start-page: 223 year: 1992 ident: 10.1016/j.eswa.2015.12.031_bib0020 article-title: An analysis of Bayesian classifiers – volume: 50 start-page: 341 issue: 2 year: 2009 ident: 10.1016/j.eswa.2015.12.031_bib0025 article-title: Bayesian classifiers based on kernel density estimation: Flexible classifiers publication-title: International Journal of Approximate Reasoning doi: 10.1016/j.ijar.2008.08.008 – volume: 73 start-page: 155 issue: 2 year: 2008 ident: 10.1016/j.eswa.2015.12.031_bib0016 article-title: Boosted bayesian network classifiers publication-title: Machine Learning doi: 10.1007/s10994-008-5065-7 – start-page: 1022 year: 1993 ident: 10.1016/j.eswa.2015.12.031_bib0010 article-title: Multi-interval discretization of continuous-valued attributes for classification learning. – volume: 17 start-page: 733 year: 2013 ident: 10.1016/j.eswa.2015.12.031_bib0003 article-title: Possibilistic classifiers for numerical data publication-title: Soft Computing doi: 10.1007/s00500-012-0947-9 – volume: 259 start-page: 252 issue: 3 year: 2014 ident: 10.1016/j.eswa.2015.12.031_bib0014 article-title: Bayesian classifiers based on probability density estimation and their applications to simultaneous fault diagnosis publication-title: Information Sciences doi: 10.1016/j.ins.2013.09.003 – start-page: 57 year: 2009 ident: 10.1016/j.eswa.2015.12.031_bib0018 article-title: Combination of independent kernel density estimators in classification – volume: 1 start-page: 81 issue: 1 year: 1986 ident: 10.1016/j.eswa.2015.12.031_bib0026 article-title: Induction of decision trees publication-title: Machine Learning doi: 10.1007/BF00116251 – volume: 20 start-page: 197 issue: 3 year: 1995 ident: 10.1016/j.eswa.2015.12.031_bib0015 article-title: Learning Bayesian networks: The combination of knowledge and statistical data publication-title: Machine learning doi: 10.1007/BF00994016 – volume: vol. 2 start-page: 1137 year: 1995 ident: 10.1016/j.eswa.2015.12.031_bib0019 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection – year: 1988 ident: 10.1016/j.eswa.2015.12.031_bib0024 – volume: 29 start-page: 131 issue: 2-3 year: 1997 ident: 10.1016/j.eswa.2015.12.031_bib0011 article-title: Bayesian network classifiers publication-title: Machine learning doi: 10.1023/A:1007465528199 – ident: 10.1016/j.eswa.2015.12.031_bib0021 – volume: vol. 3 year: 1973 ident: 10.1016/j.eswa.2015.12.031_bib0009 – volume: 65 start-page: 131 issue: 1 year: 2006 ident: 10.1016/j.eswa.2015.12.031_bib0002 article-title: Modl: A Bayes optimal discretization method for continuous attributes publication-title: Machine Learning doi: 10.1007/s10994-006-8364-x – start-page: 46 year: 2004 ident: 10.1016/j.eswa.2015.12.031_bib0013 article-title: Learning Bayesian network classifiers by maximizing conditional likelihood – volume: 9 start-page: 309 issue: 4 year: 1992 ident: 10.1016/j.eswa.2015.12.031_bib0006 article-title: A bayesian method for the induction of probabilistic networks from data publication-title: Machine Learning doi: 10.1007/BF00994110 |
SSID | ssj0017007 |
Score | 2.3391197 |
Snippet | •We construct ENBC by imposing dependency extension on NBC with continuous attributes.•We combine smoothing parameter adjustment and the structure learning.•We... For learning a Bayesian network classifier, continuous attributes usually need to be discretized. But the discretization of continuous attributes may bring... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 207 |
SubjectTerms | Bayesian analysis Bayesian network classifiers Classification Classification accuracy Classifiers Continuous attributes Density Discretization Expert systems Gaussian Gaussian kernel function Kernel functions Smoothing parameters |
Title | Bayesian network classifiers based on Gaussian kernel density |
URI | https://dx.doi.org/10.1016/j.eswa.2015.12.031 https://www.proquest.com/docview/1825463456 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL158i_VRIniTtbvNZh8HD7VYq0IvWugtZLMTqJZt6QPpxd_uzD4KCvbgbR_Jsswm33zJfjPD2LWb2iCBGBw3NgkuUDROKRHikYf-Po4BYpMLZPtBb-A_D-WwxjpVLAzJKkvsLzA9R-vySrO0ZnM6GjVfkRygOySPSDwipoBf3w9plN9-rWUelH4uLPLthQ61LgNnCo0XzD8p95An8y1B4f3lnH7BdO57uvtstySNvF281wGrQXbI9qqCDLycn0fs7l6vgKIieVaou7khcjyyVO-ak8NK-STjj3o5z1t9wCyDMU9JxL5YHbNB9-Gt03PK-giOEUIsnKgFppUKafw4QlYBCFsJLSkQ5FKDgBolqbWpCNH2PrgSfCujxAQp3tcRuCBO2FY2yeCUcc_YOBHa1dYFX7q4wk6slqGnbYSELgzqzKsMo0yZPJxqWIxVpRJ7V2RMRcZUXkuhMevsZt1nWqTO2NhaVvZWPwaAQmzf2O-q-jgKZwb97tAZTJZz5RW5_pEhnv3z2edsB8-CQhl2wbYWsyVcIgdZJI18kDXYdvvppdf_BkD-25k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWDhjXhjJDYUNanjPAaGUgEtjy6AxGY5zlkqoBTRVqj_nnPiVAKJDmxRbEfRxf7uc_zdHcCZn5sowxQ9P9UZbVAULSke01VA_j5NEVNdCmT7Ufc5vH0RLwvQqWNhrKzSYX-F6SVauztNZ83mx2DQfCRyQO7QekTLI9JkEZZsdirRgKV2767bnx0mxH4VNU39PTvAxc5UMi8cfdn0Q4Eo_wry4C__9AupS_dzvQ6rjjeydvVqG7CAxSas1TUZmFuiW3BxqaZoAyNZUQm8mbb8eGBsyWtmfVbOhgW7UZNR2esNPwt8Z7nVsY-n2_B8ffXU6XquRIKnOedjL2mhbuVc6DBNiFggIVdmdxWEc7kmTE2y3Jicx2T-EH2BoRFJpqOc2lWCPvIdaBTDAneBBdqkGVe-Mj6GwqdNdmaUiANlEuJ0cbQHQW0YqV3-cFvG4l3WQrFXaY0prTFl0JJkzD04n435qLJnzO0tanvLH3NAErzPHXdafxxJi8OeeKgCh5ORDKp0_0QS9__57BNY7j493Mv7Xv_uAFaoJaqEYofQGH9O8IgoyTg7dlPuG9Mg3ko |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+network+classifiers+based+on+Gaussian+kernel+density&rft.jtitle=Expert+systems+with+applications&rft.au=Wanga%2C+Shuang-cheng&rft.au=Gao%2C+Rui&rft.au=Wangd%2C+Li-min&rft.date=2016-06-01&rft.issn=0957-4174&rft.volume=51&rft.spage=207&rft.epage=217&rft_id=info:doi/10.1016%2Fj.eswa.2015.12.031&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |