Bayesian network classifiers based on Gaussian kernel density

•We construct ENBC by imposing dependency extension on NBC with continuous attributes.•We combine smoothing parameter adjustment and the structure learning.•We control and optimize the fitting degree between classifier and data.•We present that the attributes of ENBC provide three types of informati...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 51; pp. 207 - 217
Main Authors Wang, Shuang-cheng, Gao, Rui, Wang, Li-min
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We construct ENBC by imposing dependency extension on NBC with continuous attributes.•We combine smoothing parameter adjustment and the structure learning.•We control and optimize the fitting degree between classifier and data.•We present that the attributes of ENBC provide three types of information for class.•The other two information improve the classification accuracy effectively. For learning a Bayesian network classifier, continuous attributes usually need to be discretized. But the discretization of continuous attributes may bring information missing, noise and less sensitivity to the changing of the attributes towards class variables. In this paper, we use the Gaussian kernel function with smoothing parameter to estimate the density of attributes. Bayesian network classifier with continuous attributes is established by the dependency extension of Naive Bayes classifiers. We also analyze the information provided to a class for each attributes as a basis for the dependency extension of Naive Bayes classifiers. Experimental studies on UCI data sets show that Bayesian network classifiers using Gaussian kernel function provide good classification accuracy comparing to other approaches when dealing with continuous attributes.
AbstractList •We construct ENBC by imposing dependency extension on NBC with continuous attributes.•We combine smoothing parameter adjustment and the structure learning.•We control and optimize the fitting degree between classifier and data.•We present that the attributes of ENBC provide three types of information for class.•The other two information improve the classification accuracy effectively. For learning a Bayesian network classifier, continuous attributes usually need to be discretized. But the discretization of continuous attributes may bring information missing, noise and less sensitivity to the changing of the attributes towards class variables. In this paper, we use the Gaussian kernel function with smoothing parameter to estimate the density of attributes. Bayesian network classifier with continuous attributes is established by the dependency extension of Naive Bayes classifiers. We also analyze the information provided to a class for each attributes as a basis for the dependency extension of Naive Bayes classifiers. Experimental studies on UCI data sets show that Bayesian network classifiers using Gaussian kernel function provide good classification accuracy comparing to other approaches when dealing with continuous attributes.
For learning a Bayesian network classifier, continuous attributes usually need to be discretized. But the discretization of continuous attributes may bring information missing, noise and less sensitivity to the changing of the attributes towards class variables. In this paper, we use the Gaussian kernel function with smoothing parameter to estimate the density of attributes. Bayesian network classifier with continuous attributes is established by the dependency extension of Naive Bayes classifiers. We also analyze the information provided to a class for each attributes as a basis for the dependency extension of Naive Bayes classifiers. Experimental studies on UCI data sets show that Bayesian network classifiers using Gaussian kernel function provide good classification accuracy comparing to other approaches when dealing with continuous attributes.
Author Gao, Rui
Wang, Li-min
Wang, Shuang-cheng
Author_xml – sequence: 1
  givenname: Shuang-cheng
  surname: Wang
  fullname: Wang, Shuang-cheng
  email: wangsc@lixin.edu.cn
  organization: Lixin Accounting Research Institute, Shanghai Lixin University of Commerce, Shanghai 201620, China
– sequence: 2
  givenname: Rui
  orcidid: 0000-0002-7849-2004
  surname: Gao
  fullname: Gao, Rui
  email: gaorui@lixin.edu.cn, pplu_ren@163.com
  organization: School of Mathematics and Information, Shanghai Lixin University of Commerce, Shanghai 201620, China
– sequence: 3
  givenname: Li-min
  surname: Wang
  fullname: Wang, Li-min
  email: wanglim@jlu.edu.cn
  organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China
BookMark eNp9kD1PwzAQQC0EEm3hDzBlZEnwRxK7EgxQQUGqxAKz5dgXyW1qF19K1X9PSpkYOt1w7510b0zOQwxAyA2jBaOsvlsWgDtTcMqqgvGCCnZGRkxJkddyKs7JiE4rmZdMlpdkjLiklElK5Yg8PJk9oDchC9DvYlpltjOIvvWQMGsMgstiyOZmi7_UClKALnMQ0Pf7K3LRmg7h-m9OyOfL88fsNV-8z99mj4vcCiH6XHGw3InKllM1lTUwxhrKBaWUOwvGqsa1rRNSyKYEWkHZVqqxtRv2RgEFMSG3x7ubFL-2gL1ee7TQdSZA3KJmildlLcqqHlB1RG2KiAlabX1veh9Dn4zvNKP6UEwv9aGYPhTTjOuh2KDyf-om-bVJ-9PS_VGC4f_voZpG6yFYcD6B7bWL_pT-A63wh2I
CitedBy_id crossref_primary_10_1109_TEVC_2023_3290670
crossref_primary_10_1039_C8AY01087K
crossref_primary_10_1016_j_knosys_2020_105638
crossref_primary_10_3390_rs13142678
crossref_primary_10_1007_s10489_021_02448_6
crossref_primary_10_1007_s11707_022_1011_4
crossref_primary_10_1016_j_ijepes_2018_05_036
crossref_primary_10_1109_ACCESS_2019_2922199
crossref_primary_10_3390_agronomy12092010
crossref_primary_10_1109_MCE_2019_2941456
crossref_primary_10_1088_1742_6596_2158_1_012001
crossref_primary_10_1142_S0219622021500644
crossref_primary_10_1016_j_eswa_2022_118152
crossref_primary_10_6000_1927_5129_2017_13_76
crossref_primary_10_1016_j_dss_2023_114119
crossref_primary_10_3390_en12163172
crossref_primary_10_1016_j_compag_2023_108072
crossref_primary_10_1016_j_ins_2019_01_026
crossref_primary_10_1016_j_procs_2021_03_105
crossref_primary_10_1016_j_jenvman_2022_115798
crossref_primary_10_3390_e19120651
crossref_primary_10_1016_j_biosystemseng_2021_06_008
crossref_primary_10_1080_10589759_2024_2354303
crossref_primary_10_1007_s10462_022_10296_0
crossref_primary_10_1007_s10812_025_01863_8
crossref_primary_10_1007_s10586_016_0621_6
crossref_primary_10_3390_app8060915
crossref_primary_10_1049_ipr2_12117
crossref_primary_10_1007_s13042_020_01131_5
crossref_primary_10_1007_s40430_017_0886_6
crossref_primary_10_2118_221475_PA
Cites_doi 10.1109/TIT.1968.1054142
10.1109/34.204909
10.1109/TNNLS.2014.2298402
10.1007/s10044-012-0295-5
10.1016/S0004-3702(00)00085-0
10.1007/s10994-008-5083-5
10.1016/j.ijar.2008.08.008
10.1007/s10994-008-5065-7
10.1007/s00500-012-0947-9
10.1016/j.ins.2013.09.003
10.1007/BF00116251
10.1007/BF00994016
10.1023/A:1007465528199
10.1007/s10994-006-8364-x
10.1007/BF00994110
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2015.12.031
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 217
ExternalDocumentID 10_1016_j_eswa_2015_12_031
S0957417415008398
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-82ec2d35c498976e111b0230002dceac8bdffd3737b4e05e4f58bc6d002a8e0e3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Tue Aug 05 10:06:28 EDT 2025
Tue Jul 01 03:12:27 EDT 2025
Thu Apr 24 22:51:47 EDT 2025
Fri Feb 23 02:29:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Smoothing parameters
Continuous attributes
Gaussian kernel function
Classification accuracy
Bayesian network classifiers
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-82ec2d35c498976e111b0230002dceac8bdffd3737b4e05e4f58bc6d002a8e0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7849-2004
PQID 1825463456
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1825463456
crossref_citationtrail_10_1016_j_eswa_2015_12_031
crossref_primary_10_1016_j_eswa_2015_12_031
elsevier_sciencedirect_doi_10_1016_j_eswa_2015_12_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-01
2016-06-00
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Friedman, Geiger, Goldszmidt (bib0011) 1997; 29
Cooper, Herskovits (bib0006) 1992; 9
Dong, Zhou (bib0008) 2014; 25
Olesen (bib0022) 1993; 15
Demšar (bib0007) 2006; 7
Jing, Pavlović, Rehg (bib0016) 2008; 73
Ramoni, Sebastiani (bib0027) 2001; 125
Bouckaert (bib0001) 2005
Friedman, Goldszmidt (bib0012) 1996
Heckerman, Geiger, Chickering (bib0015) 1995; 20
Pérez, Larrañaga, Inza (bib0025) 2009; 50
He, Wang, Kwong, Wang (bib0014) 2014; 259
Yang, Webb (bib0028) 2009; 74
Fayyad, Irani (bib0010) 1993
Pearl (bib0024) 1988
Quinlan (bib0026) 1986; 1
Boullé (bib0002) 2006; 65
Duda, Hart (bib0009) 1973; vol. 3
Langley, Iba, Thompson (bib0020) 1992; vol. 90
Kobos (bib0018) 2009
.
Murphy, D. W., Aha, S. L. (2014). UCI repository of machine learning databases.
Grossman, Domingos (bib0013) 2004
Chickering (bib0004) 2002; 2(3)
Bounhas, Mellouli, Prade, Serrurier (bib0003) 2013; 17
John, Langley (bib0017) 1995
Kohavi (bib0019) 1995; vol. 2
Chow, Liu (bib0005) 1968; 14
Pavani, Delgado-Gomez, Frangi (bib0023) 2014; 17
Demšar (10.1016/j.eswa.2015.12.031_bib0007) 2006; 7
Pavani (10.1016/j.eswa.2015.12.031_bib0023) 2014; 17
Pearl (10.1016/j.eswa.2015.12.031_bib0024) 1988
Dong (10.1016/j.eswa.2015.12.031_bib0008) 2014; 25
Fayyad (10.1016/j.eswa.2015.12.031_bib0010) 1993
Kobos (10.1016/j.eswa.2015.12.031_bib0018) 2009
Grossman (10.1016/j.eswa.2015.12.031_bib0013) 2004
Langley (10.1016/j.eswa.2015.12.031_bib0020) 1992; vol. 90
Friedman (10.1016/j.eswa.2015.12.031_bib0012) 1996
John (10.1016/j.eswa.2015.12.031_bib0017) 1995
Kohavi (10.1016/j.eswa.2015.12.031_bib0019) 1995; vol. 2
Olesen (10.1016/j.eswa.2015.12.031_bib0022) 1993; 15
Ramoni (10.1016/j.eswa.2015.12.031_bib0027) 2001; 125
Bouckaert (10.1016/j.eswa.2015.12.031_bib0001) 2005
Quinlan (10.1016/j.eswa.2015.12.031_bib0026) 1986; 1
Chickering (10.1016/j.eswa.2015.12.031_bib0004) 2002; 2(3)
He (10.1016/j.eswa.2015.12.031_bib0014) 2014; 259
Cooper (10.1016/j.eswa.2015.12.031_bib0006) 1992; 9
Heckerman (10.1016/j.eswa.2015.12.031_bib0015) 1995; 20
10.1016/j.eswa.2015.12.031_bib0021
Yang (10.1016/j.eswa.2015.12.031_bib0028) 2009; 74
Jing (10.1016/j.eswa.2015.12.031_bib0016) 2008; 73
Boullé (10.1016/j.eswa.2015.12.031_bib0002) 2006; 65
Chow (10.1016/j.eswa.2015.12.031_bib0005) 1968; 14
Duda (10.1016/j.eswa.2015.12.031_bib0009) 1973; vol. 3
Bounhas (10.1016/j.eswa.2015.12.031_bib0003) 2013; 17
Friedman (10.1016/j.eswa.2015.12.031_bib0011) 1997; 29
Pérez (10.1016/j.eswa.2015.12.031_bib0025) 2009; 50
References_xml – year: 1988
  ident: bib0024
  article-title: Probabilistic reasoning in intelligent systems: networks of plausible inference
– volume: 73
  start-page: 155
  year: 2008
  end-page: 184
  ident: bib0016
  article-title: Boosted bayesian network classifiers
  publication-title: Machine Learning
– volume: vol. 90
  start-page: 223
  year: 1992
  end-page: 228
  ident: bib0020
  article-title: An analysis of Bayesian classifiers
  publication-title: Proceedings of AAAI
– volume: 125
  start-page: 209
  year: 2001
  end-page: 226
  ident: bib0027
  article-title: Robust Bayes classifiers
  publication-title: Artificial Intelligence
– volume: 17
  start-page: 733
  year: 2013
  end-page: 751
  ident: bib0003
  article-title: Possibilistic classifiers for numerical data
  publication-title: Soft Computing
– start-page: 57
  year: 2009
  end-page: 63
  ident: bib0018
  article-title: Combination of independent kernel density estimators in classification
  publication-title: Proceedings of the international multiconference on computer science and information technology, 2009. IMCSIT’09.
– volume: 14
  start-page: 462
  year: 1968
  end-page: 467
  ident: bib0005
  article-title: Approximating discrete probability distributions with dependence trees
  publication-title: IEEE Transactions on Information Theory
– start-page: 338
  year: 1995
  end-page: 345
  ident: bib0017
  article-title: Estimating continuous distributions in Bayesian classifiers
  publication-title: Proceedings of the eleventh conference on uncertainty in artificial intelligence
– volume: 15
  start-page: 275
  year: 1993
  end-page: 279
  ident: bib0022
  article-title: Causal probabilistic networks with both discrete and continuous variables
  publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence
– volume: 9
  start-page: 309
  year: 1992
  end-page: 347
  ident: bib0006
  article-title: A bayesian method for the induction of probabilistic networks from data
  publication-title: Machine Learning
– volume: 2(3)
  start-page: 445
  year: 2002
  end-page: 498
  ident: bib0004
  article-title: Learning equivalence classes of Bayesian-network structures
  publication-title: The Journal of Machine Learning Research
– start-page: 46
  year: 2004
  ident: bib0013
  article-title: Learning Bayesian network classifiers by maximizing conditional likelihood
  publication-title: Proceedings of the twenty-first international conference on machine learning
– volume: 259
  start-page: 252
  year: 2014
  end-page: 268
  ident: bib0014
  article-title: Bayesian classifiers based on probability density estimation and their applications to simultaneous fault diagnosis
  publication-title: Information Sciences
– volume: 50
  start-page: 341
  year: 2009
  end-page: 362
  ident: bib0025
  article-title: Bayesian classifiers based on kernel density estimation: Flexible classifiers
  publication-title: International Journal of Approximate Reasoning
– reference: Murphy, D. W., Aha, S. L. (2014). UCI repository of machine learning databases.
– volume: vol. 3
  year: 1973
  ident: bib0009
  publication-title: Pattern classification and scene analysis
– start-page: 1089
  year: 2005
  end-page: 1094
  ident: bib0001
  article-title: Naive Bayes classifiers that perform well with continuous variables
  publication-title: Advances in artificial intelligence, AI 2004
– volume: 65
  start-page: 131
  year: 2006
  end-page: 165
  ident: bib0002
  article-title: Modl: A Bayes optimal discretization method for continuous attributes
  publication-title: Machine Learning
– reference: .
– volume: 29
  start-page: 131
  year: 1997
  end-page: 163
  ident: bib0011
  article-title: Bayesian network classifiers
  publication-title: Machine learning
– volume: 74
  start-page: 39
  year: 2009
  end-page: 74
  ident: bib0028
  article-title: Discretization for naive-bayes learning: managing discretization bias and variance
  publication-title: Machine Learning
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0007
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: The Journal of Machine Learning Research
– volume: 25
  start-page: 1200
  year: 2014
  end-page: 1216
  ident: bib0008
  article-title: Gaussian classifier-based evolutionary strategy for multimodal optimization
  publication-title: IEEE Transactions on Neural Networks & Learning Systems
– volume: vol. 2
  start-page: 1137
  year: 1995
  end-page: 1143
  ident: bib0019
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: Proceedings of the 14th international joint conference on artificial intelligence
– volume: 17
  start-page: 431
  year: 2014
  end-page: 439
  ident: bib0023
  article-title: Gaussian weak classifiers based on co-occurring haar-like features for face detection
  publication-title: Pattern Analysis and Applications
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: bib0026
  article-title: Induction of decision trees
  publication-title: Machine Learning
– volume: 20
  start-page: 197
  year: 1995
  end-page: 243
  ident: bib0015
  article-title: Learning Bayesian networks: The combination of knowledge and statistical data
  publication-title: Machine learning
– start-page: 1022
  year: 1993
  end-page: 1029
  ident: bib0010
  article-title: Multi-interval discretization of continuous-valued attributes for classification learning.
  publication-title: Proceedings of the 5th international joint conference on artificial intelligence (IJCAI)
– start-page: 157
  year: 1996
  end-page: 165
  ident: bib0012
  article-title: Discretizing continuous attributes while learning Bayesian networks
  publication-title: Proceedings of the ICML
– volume: 14
  start-page: 462
  issue: 3
  year: 1968
  ident: 10.1016/j.eswa.2015.12.031_bib0005
  article-title: Approximating discrete probability distributions with dependence trees
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1968.1054142
– start-page: 1089
  year: 2005
  ident: 10.1016/j.eswa.2015.12.031_bib0001
  article-title: Naive Bayes classifiers that perform well with continuous variables
– volume: 15
  start-page: 275
  issue: 3
  year: 1993
  ident: 10.1016/j.eswa.2015.12.031_bib0022
  article-title: Causal probabilistic networks with both discrete and continuous variables
  publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence
  doi: 10.1109/34.204909
– volume: 25
  start-page: 1200
  issue: 6
  year: 2014
  ident: 10.1016/j.eswa.2015.12.031_bib0008
  article-title: Gaussian classifier-based evolutionary strategy for multimodal optimization
  publication-title: IEEE Transactions on Neural Networks & Learning Systems
  doi: 10.1109/TNNLS.2014.2298402
– volume: 17
  start-page: 431
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2015.12.031_bib0023
  article-title: Gaussian weak classifiers based on co-occurring haar-like features for face detection
  publication-title: Pattern Analysis and Applications
  doi: 10.1007/s10044-012-0295-5
– volume: 2(3)
  start-page: 445
  year: 2002
  ident: 10.1016/j.eswa.2015.12.031_bib0004
  article-title: Learning equivalence classes of Bayesian-network structures
  publication-title: The Journal of Machine Learning Research
– volume: 125
  start-page: 209
  issue: 1
  year: 2001
  ident: 10.1016/j.eswa.2015.12.031_bib0027
  article-title: Robust Bayes classifiers
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(00)00085-0
– start-page: 157
  year: 1996
  ident: 10.1016/j.eswa.2015.12.031_bib0012
  article-title: Discretizing continuous attributes while learning Bayesian networks
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.eswa.2015.12.031_bib0007
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: The Journal of Machine Learning Research
– volume: 74
  start-page: 39
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2015.12.031_bib0028
  article-title: Discretization for naive-bayes learning: managing discretization bias and variance
  publication-title: Machine Learning
  doi: 10.1007/s10994-008-5083-5
– start-page: 338
  year: 1995
  ident: 10.1016/j.eswa.2015.12.031_bib0017
  article-title: Estimating continuous distributions in Bayesian classifiers
– volume: vol. 90
  start-page: 223
  year: 1992
  ident: 10.1016/j.eswa.2015.12.031_bib0020
  article-title: An analysis of Bayesian classifiers
– volume: 50
  start-page: 341
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2015.12.031_bib0025
  article-title: Bayesian classifiers based on kernel density estimation: Flexible classifiers
  publication-title: International Journal of Approximate Reasoning
  doi: 10.1016/j.ijar.2008.08.008
– volume: 73
  start-page: 155
  issue: 2
  year: 2008
  ident: 10.1016/j.eswa.2015.12.031_bib0016
  article-title: Boosted bayesian network classifiers
  publication-title: Machine Learning
  doi: 10.1007/s10994-008-5065-7
– start-page: 1022
  year: 1993
  ident: 10.1016/j.eswa.2015.12.031_bib0010
  article-title: Multi-interval discretization of continuous-valued attributes for classification learning.
– volume: 17
  start-page: 733
  year: 2013
  ident: 10.1016/j.eswa.2015.12.031_bib0003
  article-title: Possibilistic classifiers for numerical data
  publication-title: Soft Computing
  doi: 10.1007/s00500-012-0947-9
– volume: 259
  start-page: 252
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2015.12.031_bib0014
  article-title: Bayesian classifiers based on probability density estimation and their applications to simultaneous fault diagnosis
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2013.09.003
– start-page: 57
  year: 2009
  ident: 10.1016/j.eswa.2015.12.031_bib0018
  article-title: Combination of independent kernel density estimators in classification
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: 10.1016/j.eswa.2015.12.031_bib0026
  article-title: Induction of decision trees
  publication-title: Machine Learning
  doi: 10.1007/BF00116251
– volume: 20
  start-page: 197
  issue: 3
  year: 1995
  ident: 10.1016/j.eswa.2015.12.031_bib0015
  article-title: Learning Bayesian networks: The combination of knowledge and statistical data
  publication-title: Machine learning
  doi: 10.1007/BF00994016
– volume: vol. 2
  start-page: 1137
  year: 1995
  ident: 10.1016/j.eswa.2015.12.031_bib0019
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
– year: 1988
  ident: 10.1016/j.eswa.2015.12.031_bib0024
– volume: 29
  start-page: 131
  issue: 2-3
  year: 1997
  ident: 10.1016/j.eswa.2015.12.031_bib0011
  article-title: Bayesian network classifiers
  publication-title: Machine learning
  doi: 10.1023/A:1007465528199
– ident: 10.1016/j.eswa.2015.12.031_bib0021
– volume: vol. 3
  year: 1973
  ident: 10.1016/j.eswa.2015.12.031_bib0009
– volume: 65
  start-page: 131
  issue: 1
  year: 2006
  ident: 10.1016/j.eswa.2015.12.031_bib0002
  article-title: Modl: A Bayes optimal discretization method for continuous attributes
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-8364-x
– start-page: 46
  year: 2004
  ident: 10.1016/j.eswa.2015.12.031_bib0013
  article-title: Learning Bayesian network classifiers by maximizing conditional likelihood
– volume: 9
  start-page: 309
  issue: 4
  year: 1992
  ident: 10.1016/j.eswa.2015.12.031_bib0006
  article-title: A bayesian method for the induction of probabilistic networks from data
  publication-title: Machine Learning
  doi: 10.1007/BF00994110
SSID ssj0017007
Score 2.3391197
Snippet •We construct ENBC by imposing dependency extension on NBC with continuous attributes.•We combine smoothing parameter adjustment and the structure learning.•We...
For learning a Bayesian network classifier, continuous attributes usually need to be discretized. But the discretization of continuous attributes may bring...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 207
SubjectTerms Bayesian analysis
Bayesian network classifiers
Classification
Classification accuracy
Classifiers
Continuous attributes
Density
Discretization
Expert systems
Gaussian
Gaussian kernel function
Kernel functions
Smoothing parameters
Title Bayesian network classifiers based on Gaussian kernel density
URI https://dx.doi.org/10.1016/j.eswa.2015.12.031
https://www.proquest.com/docview/1825463456
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL158i_VRIniTtbvNZh8HD7VYq0IvWugtZLMTqJZt6QPpxd_uzD4KCvbgbR_Jsswm33zJfjPD2LWb2iCBGBw3NgkuUDROKRHikYf-Po4BYpMLZPtBb-A_D-WwxjpVLAzJKkvsLzA9R-vySrO0ZnM6GjVfkRygOySPSDwipoBf3w9plN9-rWUelH4uLPLthQ61LgNnCo0XzD8p95An8y1B4f3lnH7BdO57uvtstySNvF281wGrQXbI9qqCDLycn0fs7l6vgKIieVaou7khcjyyVO-ak8NK-STjj3o5z1t9wCyDMU9JxL5YHbNB9-Gt03PK-giOEUIsnKgFppUKafw4QlYBCFsJLSkQ5FKDgBolqbWpCNH2PrgSfCujxAQp3tcRuCBO2FY2yeCUcc_YOBHa1dYFX7q4wk6slqGnbYSELgzqzKsMo0yZPJxqWIxVpRJ7V2RMRcZUXkuhMevsZt1nWqTO2NhaVvZWPwaAQmzf2O-q-jgKZwb97tAZTJZz5RW5_pEhnv3z2edsB8-CQhl2wbYWsyVcIgdZJI18kDXYdvvppdf_BkD-25k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWDhjXhjJDYUNanjPAaGUgEtjy6AxGY5zlkqoBTRVqj_nnPiVAKJDmxRbEfRxf7uc_zdHcCZn5sowxQ9P9UZbVAULSke01VA_j5NEVNdCmT7Ufc5vH0RLwvQqWNhrKzSYX-F6SVauztNZ83mx2DQfCRyQO7QekTLI9JkEZZsdirRgKV2767bnx0mxH4VNU39PTvAxc5UMi8cfdn0Q4Eo_wry4C__9AupS_dzvQ6rjjeydvVqG7CAxSas1TUZmFuiW3BxqaZoAyNZUQm8mbb8eGBsyWtmfVbOhgW7UZNR2esNPwt8Z7nVsY-n2_B8ffXU6XquRIKnOedjL2mhbuVc6DBNiFggIVdmdxWEc7kmTE2y3Jicx2T-EH2BoRFJpqOc2lWCPvIdaBTDAneBBdqkGVe-Mj6GwqdNdmaUiANlEuJ0cbQHQW0YqV3-cFvG4l3WQrFXaY0prTFl0JJkzD04n435qLJnzO0tanvLH3NAErzPHXdafxxJi8OeeKgCh5ORDKp0_0QS9__57BNY7j493Mv7Xv_uAFaoJaqEYofQGH9O8IgoyTg7dlPuG9Mg3ko
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+network+classifiers+based+on+Gaussian+kernel+density&rft.jtitle=Expert+systems+with+applications&rft.au=Wanga%2C+Shuang-cheng&rft.au=Gao%2C+Rui&rft.au=Wangd%2C+Li-min&rft.date=2016-06-01&rft.issn=0957-4174&rft.volume=51&rft.spage=207&rft.epage=217&rft_id=info:doi/10.1016%2Fj.eswa.2015.12.031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon