Polyacrylonitrile@TiO2 nanofibrous membrane decorated by MOF for efficient filtration and green degradation of PM2.5
[Display omitted] A systematic study was performed on PM2.5 filtration and photodegradation performance of polyacrylonitrile @TiO2/ zeolitic imidazolate framework-8(PTZ)hybrid membrane. The hybrid membrane was prepared by electrospinning technique and in situ Metal-organic frameworks (MOFs) synthesi...
Saved in:
Published in | Journal of colloid and interface science Vol. 635; pp. 598 - 610 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
A systematic study was performed on PM2.5 filtration and photodegradation performance of polyacrylonitrile @TiO2/ zeolitic imidazolate framework-8(PTZ)hybrid membrane. The hybrid membrane was prepared by electrospinning technique and in situ Metal-organic frameworks (MOFs) synthesis. The optimized membrane maintained a good PM2.5 capture efficiency (greater than 99%) and a pressure drop of 34 Pa. The larger specific surface area and higher pore structure enhance the filter interception effect and electrostatic interaction, which can have high applications for the filtering of PM2.5. In addition, zeolitic imidazolate framework-8 (ZIF-8) is uniformly coated on the surface of polyacrylonitrile @ TiO2 (PT) nanofiber to form N-Ti-O bonds, thus reducing the reorganization of electron-hole pairs and improving the efficiency of photodegradation. Compared with PT, the hybrid structure formed by PTZ has a higher degradation efficiency for PM2.5 (increased from 66% to 85%). The produced PTZ membrane exhibits a promising future in the collection and green degradation of PM2.5. |
---|---|
AbstractList | [Display omitted]
A systematic study was performed on PM2.5 filtration and photodegradation performance of polyacrylonitrile @TiO2/ zeolitic imidazolate framework-8(PTZ)hybrid membrane. The hybrid membrane was prepared by electrospinning technique and in situ Metal-organic frameworks (MOFs) synthesis. The optimized membrane maintained a good PM2.5 capture efficiency (greater than 99%) and a pressure drop of 34 Pa. The larger specific surface area and higher pore structure enhance the filter interception effect and electrostatic interaction, which can have high applications for the filtering of PM2.5. In addition, zeolitic imidazolate framework-8 (ZIF-8) is uniformly coated on the surface of polyacrylonitrile @ TiO2 (PT) nanofiber to form N-Ti-O bonds, thus reducing the reorganization of electron-hole pairs and improving the efficiency of photodegradation. Compared with PT, the hybrid structure formed by PTZ has a higher degradation efficiency for PM2.5 (increased from 66% to 85%). The produced PTZ membrane exhibits a promising future in the collection and green degradation of PM2.5. A systematic study was performed on PM2.5 filtration and photodegradation performance of polyacrylonitrile @TiO2/ zeolitic imidazolate framework-8(PTZ)hybrid membrane. The hybrid membrane was prepared by electrospinning technique and in situ Metal-organic frameworks (MOFs) synthesis. The optimized membrane maintained a good PM2.5 capture efficiency (greater than 99%) and a pressure drop of 34 Pa. The larger specific surface area and higher pore structure enhance the filter interception effect and electrostatic interaction, which can have high applications for the filtering of PM2.5. In addition, zeolitic imidazolate framework-8 (ZIF-8) is uniformly coated on the surface of polyacrylonitrile @ TiO2 (PT) nanofiber to form N-Ti-O bonds, thus reducing the reorganization of electron-hole pairs and improving the efficiency of photodegradation. Compared with PT, the hybrid structure formed by PTZ has a higher degradation efficiency for PM2.5 (increased from 66% to 85%). The produced PTZ membrane exhibits a promising future in the collection and green degradation of PM2.5.A systematic study was performed on PM2.5 filtration and photodegradation performance of polyacrylonitrile @TiO2/ zeolitic imidazolate framework-8(PTZ)hybrid membrane. The hybrid membrane was prepared by electrospinning technique and in situ Metal-organic frameworks (MOFs) synthesis. The optimized membrane maintained a good PM2.5 capture efficiency (greater than 99%) and a pressure drop of 34 Pa. The larger specific surface area and higher pore structure enhance the filter interception effect and electrostatic interaction, which can have high applications for the filtering of PM2.5. In addition, zeolitic imidazolate framework-8 (ZIF-8) is uniformly coated on the surface of polyacrylonitrile @ TiO2 (PT) nanofiber to form N-Ti-O bonds, thus reducing the reorganization of electron-hole pairs and improving the efficiency of photodegradation. Compared with PT, the hybrid structure formed by PTZ has a higher degradation efficiency for PM2.5 (increased from 66% to 85%). The produced PTZ membrane exhibits a promising future in the collection and green degradation of PM2.5. |
Author | Yang, Zhengren Feng, Yao Zhen, Yuhua Qin, Zheng Jiang, Xiaolin Yang, Wenjie Qie, Yuanyue |
Author_xml | – sequence: 1 givenname: Zhengren surname: Yang fullname: Yang, Zhengren – sequence: 2 givenname: Yuhua surname: Zhen fullname: Zhen, Yuhua – sequence: 3 givenname: Yao surname: Feng fullname: Feng, Yao – sequence: 4 givenname: Xiaolin surname: Jiang fullname: Jiang, Xiaolin – sequence: 5 givenname: Zheng surname: Qin fullname: Qin, Zheng – sequence: 6 givenname: Wenjie surname: Yang fullname: Yang, Wenjie – sequence: 7 givenname: Yuanyue surname: Qie fullname: Qie, Yuanyue |
BookMark | eNp9kE1LAzEQhoNUsK3-AU85etk1yTb7AR4U8Qss7UHPIZtMJGWb1CQK_fdmrScPhWEGZuYZ5n1naOK8A4QuKSkpofX1ptwoG0tGGCvpGOwETSnpeNFQUk3QlBBGi67pmjM0i3FDCKWcd1OU1n7YSxX2g3c2BTvA7ZtdMeyk88b2wX9FvIVtH6QDrEH5IBNo3O_xcvWIjQ8YjLHKgkvY2CHlsfUOS6fxRwBwmfkIUh-63uD1kpX8HJ0aOUS4-Ktz9P748Hb_XLyunl7u714LVVVVKlrGeyZ51fC61ox0TPcUatMp2RK-aBVIqDTpWqUaYNo0VC8WlWwNzy3ZtKaao6vD3V3wn18Qk9jaqGAYspgsTLCmZi3Nqcur7WFVBR9jACOUTb9fZ0l2EJSI0WixEaPRYjRa0DFYRtk_dBfsVob9cejmAEHW_20hiDiaqEDbACoJ7e0x_AeDDZq7 |
CitedBy_id | crossref_primary_10_1021_acs_jafc_4c10134 crossref_primary_10_1016_j_jece_2023_111680 crossref_primary_10_1016_j_seppur_2024_128291 crossref_primary_10_1016_j_desal_2023_117091 crossref_primary_10_1016_j_jhazmat_2024_134781 crossref_primary_10_1016_j_apsusc_2024_160751 crossref_primary_10_1016_j_optmat_2023_114143 crossref_primary_10_1016_j_microc_2024_110714 crossref_primary_10_1016_j_arabjc_2024_105765 crossref_primary_10_1021_acsapm_3c02355 crossref_primary_10_3390_polym16070889 crossref_primary_10_1002_adfm_202304773 crossref_primary_10_1002_pen_26690 crossref_primary_10_1021_acsami_3c11941 crossref_primary_10_1016_j_jwpe_2024_105859 crossref_primary_10_1016_j_apsadv_2023_100504 crossref_primary_10_1016_j_trac_2024_118021 crossref_primary_10_1016_j_seppur_2023_125658 crossref_primary_10_1016_j_ces_2024_120060 crossref_primary_10_1016_j_electacta_2024_143777 crossref_primary_10_1016_j_jece_2023_110742 crossref_primary_10_1016_j_memsci_2024_123524 crossref_primary_10_1016_j_seppur_2024_127150 crossref_primary_10_1016_j_microc_2024_110951 crossref_primary_10_3390_polym16091239 crossref_primary_10_1016_j_cej_2024_153542 crossref_primary_10_1016_j_jece_2023_110913 crossref_primary_10_1007_s42114_024_00930_6 crossref_primary_10_1016_j_seppur_2024_128793 crossref_primary_10_1016_j_ijbiomac_2025_141987 crossref_primary_10_1016_j_seppur_2024_129948 crossref_primary_10_1007_s13369_025_10092_2 crossref_primary_10_1016_j_infrared_2025_105819 crossref_primary_10_1016_j_scitotenv_2024_175926 crossref_primary_10_1016_j_seppur_2023_125404 |
Cites_doi | 10.1016/j.coco.2020.100533 10.1126/science.1152516 10.3390/catal11030400 10.1021/es404778w 10.1039/C6TA04620G 10.1016/j.jallcom.2020.154008 10.1021/acsami.9b21340 10.1016/S0266-3538(03)00178-7 10.1021/acs.nanolett.6b04771 10.1007/s10570-018-1982-1 10.1016/j.ultsonch.2013.12.012 10.1021/acsami.9b19646 10.1021/acsami.6b05746 10.1007/s10311-021-01231-w 10.1161/CIR.0b013e3181dbece1 10.1016/j.cej.2020.126584 10.1016/j.carbpol.2018.09.039 10.1016/j.cej.2018.01.025 10.1016/j.scitotenv.2022.159254 10.1039/C4CE00032C 10.1016/j.ces.2010.10.035 10.1039/c1jm12754c 10.1021/ja405086e 10.1002/advs.201902590 10.1016/j.apcatb.2019.03.002 10.1021/cr4006473 10.1016/j.cej.2017.09.104 10.1021/j100142a010 10.1016/j.scitotenv.2018.08.050 10.1039/C4RA08820D 10.1021/jacs.7b11589 10.1021/cr300014x 10.1021/acsami.9b13162 10.1016/j.jcou.2018.01.024 10.1039/C7RA10916D 10.1007/s10570-018-1696-4 10.1016/j.jcis.2020.08.075 10.1002/smll.201603151 10.1007/978-3-319-42789-8_37-1 10.1080/10473289.2006.10464485 10.1038/ncomms7205 10.1016/j.seppur.2022.121881 10.1039/C3CS60475F 10.1016/j.carbpol.2018.12.081 10.1021/acs.nanolett.6b00771 10.1016/j.apcatb.2017.07.020 10.1021/jacs.6b02553 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.jcis.2022.12.122 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 610 |
ExternalDocumentID | 10_1016_j_jcis_2022_12_122 S0021979722022706 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XFK XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 |
ID | FETCH-LOGICAL-c333t-825b2a537566d2092db1e6f9ca80548ceae3d098cc7e2df71d443a8f598ca78f3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 15:58:47 EDT 2025 Thu Apr 24 23:02:22 EDT 2025 Tue Jul 01 04:18:58 EDT 2025 Fri Feb 23 02:37:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Photocatalytic Filtration ZIF-8 PAN PM2.5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-825b2a537566d2092db1e6f9ca80548ceae3d098cc7e2df71d443a8f598ca78f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2762817629 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2762817629 crossref_citationtrail_10_1016_j_jcis_2022_12_122 crossref_primary_10_1016_j_jcis_2022_12_122 elsevier_sciencedirect_doi_10_1016_j_jcis_2022_12_122 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 20230401 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zhang (b0040) 2016; 16 R. Al-Attabi, Y.S. Morsi, J.A. Schütz et al., Electrospun membranes for airborne contaminants capture[J], Bechelany M, Makhlouf A, Handbook of Nanofibers, Springer-Cham Barhoum A, 2018. pp. 1-18. Markham (b0170) 1993; 97 Su (b0125) 2018; 25 Li, Wang, Hao (b0275) 2023; 857 Nasalevich (b0285) 2014; 16 Yoo, Jhung (b0160) 2019; 11 Ma (b0230) 2019; 208 Sohara (b0295) 2021; 11 Yan (b0260) 2017; 218 Fan, Yujia, et al., Flexible Micro‐Nano Composite Membranes Based on a Two‐Step Strategy: Charge Recovery and Efficiently Gradient Air Filtration, Polymer International. Khanjani, Morsali (b0120) 2014; 21 Liu (b0055) 2019; 11 Xiao, Liang, Zhang, Tao, Ling, Yang (b0205) 2018; 2 Wang (b0250) 2019; 250 Zhu (b0080) 2022; 300 Laurier (b0115) 2013; 135 Banerjee (b0100) 2008; 319 Riyadh Al-Attabi, Yosry Morsi, Jürg A. Schütz, Ludovic F. Dumée, One-pot synthesis of catalytic molybdenum based nanocomposite nano-fiber membranes for aerosol air remediation, Sci. Total Environ., 647 (2019) 725–733. Khalid (b0035) 2017; 17 Arden Pope III, Dockery (b0005) 2006; 56 Sambaer, Zatloukal, Kimmer (b0030) 2011; 66 Liu, Hsu, Lee (b0020) 2015; 6 DeCoste, Peterson (b0110) 2014; 114 Huang, Zhang, Kotaki, Ramakrishna (b0025) 2003; 63 Huang (b0265) 2018; 24 Saliba (b0165) 2018; 140 Li (b0255) 2020; 825 Zhang (b0065) 2017; 13 Hasija (b0280) 2021; 19 Yan (b0245) 2016; 4 Fan (b0045) 2020; 22 Zhang, Yuan, Feng (b0220) 2016; 138 Dou, Zhang, Kaiser (b0155) 2020; 7 Cui (b0070) 2021; 582 Barea, Montoro, Navarro (b0105) 2014; 43 Jing (b0145) 2014; 4 Guo (b0090) 2021; 405 Yang (b0270) 2018; 334 Li (b0130) 2020; 12 Li (b0240) 2011; 21 Wu (b0015) 2014; 48 Dai, Li, Wang (b0235) 2018; 338 Zhou, Long, Yaghi (b0095) 2012; 112 Brook (b0010) 2010; 121 Zeng (b0135) 2016; 8 Ma, Zhang, Nie (b0225) 2018; 25 Ma (b0200) 2019; 203 Zhang (b0060) 2018; 8 Kumari (b0175) 2013; 117 DeCoste (10.1016/j.jcis.2022.12.122_b0110) 2014; 114 Huang (10.1016/j.jcis.2022.12.122_b0025) 2003; 63 Dou (10.1016/j.jcis.2022.12.122_b0155) 2020; 7 Li (10.1016/j.jcis.2022.12.122_b0130) 2020; 12 Ma (10.1016/j.jcis.2022.12.122_b0230) 2019; 208 Su (10.1016/j.jcis.2022.12.122_b0125) 2018; 25 Zhou (10.1016/j.jcis.2022.12.122_b0095) 2012; 112 Barea (10.1016/j.jcis.2022.12.122_b0105) 2014; 43 Markham (10.1016/j.jcis.2022.12.122_b0170) 1993; 97 Yoo (10.1016/j.jcis.2022.12.122_b0160) 2019; 11 Ma (10.1016/j.jcis.2022.12.122_b0200) 2019; 203 Yang (10.1016/j.jcis.2022.12.122_b0270) 2018; 334 Kumari (10.1016/j.jcis.2022.12.122_b0175) 2013; 117 Fan (10.1016/j.jcis.2022.12.122_b0045) 2020; 22 Brook (10.1016/j.jcis.2022.12.122_b0010) 2010; 121 Zhang (10.1016/j.jcis.2022.12.122_b0220) 2016; 138 Yan (10.1016/j.jcis.2022.12.122_b0245) 2016; 4 Yan (10.1016/j.jcis.2022.12.122_b0260) 2017; 218 Liu (10.1016/j.jcis.2022.12.122_b0055) 2019; 11 Laurier (10.1016/j.jcis.2022.12.122_b0115) 2013; 135 Saliba (10.1016/j.jcis.2022.12.122_b0165) 2018; 140 Li (10.1016/j.jcis.2022.12.122_b0255) 2020; 825 Zhu (10.1016/j.jcis.2022.12.122_b0080) 2022; 300 Li (10.1016/j.jcis.2022.12.122_b0275) 2023; 857 Zhang (10.1016/j.jcis.2022.12.122_b0060) 2018; 8 Dai (10.1016/j.jcis.2022.12.122_b0235) 2018; 338 Guo (10.1016/j.jcis.2022.12.122_b0090) 2021; 405 Zhang (10.1016/j.jcis.2022.12.122_b0065) 2017; 13 Jing (10.1016/j.jcis.2022.12.122_b0145) 2014; 4 Sambaer (10.1016/j.jcis.2022.12.122_b0030) 2011; 66 Cui (10.1016/j.jcis.2022.12.122_b0070) 2021; 582 Zeng (10.1016/j.jcis.2022.12.122_b0135) 2016; 8 Huang (10.1016/j.jcis.2022.12.122_b0265) 2018; 24 10.1016/j.jcis.2022.12.122_b0215 Ma (10.1016/j.jcis.2022.12.122_b0225) 2018; 25 Khalid (10.1016/j.jcis.2022.12.122_b0035) 2017; 17 Liu (10.1016/j.jcis.2022.12.122_b0020) 2015; 6 Zhang (10.1016/j.jcis.2022.12.122_b0040) 2016; 16 Khanjani (10.1016/j.jcis.2022.12.122_b0120) 2014; 21 Wang (10.1016/j.jcis.2022.12.122_b0250) 2019; 250 Banerjee (10.1016/j.jcis.2022.12.122_b0100) 2008; 319 Wu (10.1016/j.jcis.2022.12.122_b0015) 2014; 48 10.1016/j.jcis.2022.12.122_b0050 Nasalevich (10.1016/j.jcis.2022.12.122_b0285) 2014; 16 Hasija (10.1016/j.jcis.2022.12.122_b0280) 2021; 19 10.1016/j.jcis.2022.12.122_b0210 Li (10.1016/j.jcis.2022.12.122_b0240) 2011; 21 Arden Pope III (10.1016/j.jcis.2022.12.122_b0005) 2006; 56 Sohara (10.1016/j.jcis.2022.12.122_b0295) 2021; 11 Xiao (10.1016/j.jcis.2022.12.122_b0205) 2018; 2 |
References_xml | – volume: 121 start-page: 2331 year: 2010 end-page: 2378 ident: b0010 article-title: Particulate matter air pollution and cardiovascular disease an update to the scientific statement from the american heart association publication-title: Circulation – volume: 66 start-page: 613 year: 2011 end-page: 623 ident: b0030 article-title: 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process publication-title: Chem. Eng. Sci. – volume: 11 start-page: 400 year: 2021 ident: b0295 article-title: Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter (PM2. 5) Collected on TiO2-Supporting Quartz Fiber Filters publication-title: Catalysts – volume: 114 start-page: 5695 year: 2014 end-page: 5727 ident: b0110 article-title: Metal–organic frameworks for air purification of toxic chemicals publication-title: Chem. Rev. – volume: 208 start-page: 328 year: 2019 end-page: 335 ident: b0230 article-title: Lightweight and porous cellulose-based foams with high loadings of zeolitic imidazolate frameworks-8 for adsorption applications publication-title: Carbohydr. Polym. – volume: 97 start-page: 10319 year: 1993 end-page: 10325 ident: b0170 article-title: Resonance Raman studies of imidazole, imidazolium, and their derivatives: the effect of deuterium substitution publication-title: J. Phys. Chem. – volume: 405 year: 2021 ident: b0090 article-title: PAA@ ZIF-8 incorporated nanofibrous membrane for high-efficiency PM2. 5 capture publication-title: Chem. Eng. J. – volume: 117 start-page: 11006 year: 2013 end-page: 11012 ident: b0175 article-title: Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8: A Raman study publication-title: Chem. A Eur. J. – volume: 338 start-page: 82 year: 2018 end-page: 91 ident: b0235 article-title: Morphology controlled porous poly (lactic acid)/zeolitic imidazolate framework-8 fibrous membranes with superior PM2. 5 capture capacity publication-title: Chem. Eng. J. – volume: 300 year: 2022 ident: b0080 article-title: Metal-organic framework decorated polyimide nanofiber aerogels for efficient high-temperature particulate matter removal publication-title: Sep. Purif. Technol. – volume: 140 start-page: 1812 year: 2018 end-page: 1823 ident: b0165 article-title: Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 17259 year: 2011 end-page: 17264 ident: b0240 article-title: Metal–organic frameworks: promising materials for improving the open circuit voltage of dye-sensitized solar cells publication-title: J. Mater. Chem. – volume: 8 start-page: 7932 year: 2018 end-page: 7941 ident: b0060 article-title: Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2. 5 capture publication-title: RSC Adv. – reference: Fan, Yujia, et al., Flexible Micro‐Nano Composite Membranes Based on a Two‐Step Strategy: Charge Recovery and Efficiently Gradient Air Filtration, Polymer International. – volume: 8 start-page: 20274 year: 2016 end-page: 20282 ident: b0135 article-title: Sonocrystallization of ZIF-8 on electrostatic spinning TiO publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 3642 year: 2016 end-page: 3649 ident: b0040 article-title: Nanofiber air filters with high-temperature stability for efficient PM2. 5 removal from the pollution sources publication-title: Nano Lett. – reference: R. Al-Attabi, Y.S. Morsi, J.A. Schütz et al., Electrospun membranes for airborne contaminants capture[J], Bechelany M, Makhlouf A, Handbook of Nanofibers, Springer-Cham Barhoum A, 2018. pp. 1-18. – volume: 6 start-page: 6205 year: 2015 ident: b0020 article-title: Transparent air filter for high-efficiency PM2.5 capture publication-title: Nat. Commun. – volume: 43 start-page: 5419 year: 2014 end-page: 5430 ident: b0105 article-title: Toxic gas removal–metal–organic frameworks for the capture and degradation of toxic gases and vapours publication-title: Chem. Soc. Rev. – volume: 12 start-page: 8730 year: 2020 end-page: 8739 ident: b0130 article-title: Zeoliticimidazolate framework-8/ polypropylene–polycarbonate barklike meltblown fibrous membranes by a facile in situ growth method for efficient PM2. 5 capture publication-title: ACS Appl. Mater. Interfaces – volume: 218 start-page: 743 year: 2017 end-page: 750 ident: b0260 article-title: Palladium-decorated hierarchical titania constructed from the metal-organic frameworks NH2-MIL-125 (Ti) as a robust photocatalyst for hydrogen evolution publication-title: Appl. Catal. B – volume: 48 start-page: 3438 year: 2014 end-page: 3448 ident: b0015 article-title: Association of cardiopulmonary health effects with source-appointed ambient fine particulate in Beijing, China: a combined analysis from the Healthy Volunteer Natural Relocation (HVNR) Study publication-title: Environ. Sci. Technol. – reference: Riyadh Al-Attabi, Yosry Morsi, Jürg A. Schütz, Ludovic F. Dumée, One-pot synthesis of catalytic molybdenum based nanocomposite nano-fiber membranes for aerosol air remediation, Sci. Total Environ., 647 (2019) 725–733. – volume: 11 start-page: 40592 year: 2019 end-page: 40601 ident: b0055 article-title: Polyethylene/polypropylene bicomponent spunbond air filtration materials containing magnesium stearate for efficient fine particle capture publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 47649 year: 2019 end-page: 47657 ident: b0160 article-title: Effect of functional groups of metal–organic frameworks, coated on cotton, on removal of particulate matters via selective interactions publication-title: ACS Appl. Mater. Interfaces – volume: 319 start-page: 939 year: 2008 end-page: 943 ident: b0100 article-title: High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture publication-title: Science – volume: 250 start-page: 369 year: 2019 end-page: 381 ident: b0250 article-title: MOF-derived hollow TiO2@ C/FeTiO3 nanoparticles as photoanodes with enhanced full spectrum light PEC activities publication-title: Appl Catal B – volume: 112 start-page: 673 year: 2012 end-page: 674 ident: b0095 article-title: Introduction to metal–organic frameworks publication-title: Chem. Rev. – volume: 22 year: 2020 ident: b0045 article-title: Polyvinylidene fluoride composite nanofibrous filter for high-efficiency PM2. 5 capture publication-title: Compos. Commun. – volume: 2 year: 2018 ident: b0205 article-title: Advanced Materials for Capturing Particulate Matter: Progress and Perspectives Small publication-title: Methods – volume: 25 start-page: 5999 year: 2018 end-page: 6010 ident: b0225 article-title: Multifunctional cellulose-based air filters with high loadings of metal–organic frameworks prepared by in situ growth method for gas adsorption and antibacterial applications[J] publication-title: Cellul. – volume: 857 year: 2023 ident: b0275 article-title: Highly efficient photodegradation of magnetic GO-Fe3O4@ SiO2@ CdS for phenanthrene and pyrene: Mechanism insight and application assessment publication-title: Sci. Total Environ. – volume: 7 start-page: 1902590 year: 2020 ident: b0155 article-title: Electrospinning of metal–organic frameworks for energy and environmental applications publication-title: Adv. Sci. – volume: 4 start-page: 54454 year: 2014 end-page: 54462 ident: b0145 article-title: Photocatalytic degradation of methylene blue in ZIF-8 publication-title: Rsc Advances – volume: 56 start-page: 709 year: 2006 end-page: 742 ident: b0005 article-title: Health Effects of Fine Particulate Air Pollution: Lines that Connect publication-title: J. Air Waste Manag. Assoc. – volume: 16 start-page: 4919 year: 2014 end-page: 4926 ident: b0285 article-title: Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges publication-title: CrstEngComm – volume: 21 start-page: 1424 year: 2014 end-page: 1429 ident: b0120 article-title: Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye “congo red” publication-title: Ultrason. Sonochem. – volume: 25 start-page: 1997 year: 2018 end-page: 2008 ident: b0125 article-title: Functionalization of cellulose fiber by in situ growth of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for preparing a cellulose-based air filter with gas adsorption ability publication-title: Cellul. – volume: 17 start-page: 1140 year: 2017 end-page: 1148 ident: b0035 article-title: Direct blow-spinning of nanofibers on a window screen for highly efficient PM2. 5 removal publication-title: Nano Lett. – volume: 4 start-page: 15126 year: 2016 end-page: 15133 ident: b0245 article-title: Co-ZIF-9/TiO publication-title: J. Mater. Chem. A – volume: 135 start-page: 14488 year: 2013 end-page: 14491 ident: b0115 article-title: Iron (III)-based metal–organic frameworks as visible light photocatalysts publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 369 year: 2018 end-page: 375 ident: b0265 article-title: A ZIF-8 decorated TiO2 grid-like film with high CO2 adsorption for CO2 photoreduction publication-title: J. CO2 Util. – volume: 582 start-page: 506 year: 2021 end-page: 514 ident: b0070 article-title: Flexible and transparent composite nanofiber membrane that was fabricated via a “green” electrospinning method for efficient particulate matter 2.5 capture publication-title: J. Colloid Interface Sci. – volume: 13 start-page: 1603151 year: 2017 ident: b0065 article-title: A controlled design of ripple-like polyamide-6 nanofiber/nets membrane for high-efficiency air filter publication-title: Small – volume: 138 start-page: 5785 year: 2016 end-page: 5788 ident: b0220 article-title: Preparation of nanofibrous metal–organic framework filters for efficient air pollution control[J] publication-title: J. Am. Chem. Soc. – volume: 63 start-page: 2223 year: 2003 end-page: 2253 ident: b0025 article-title: A review on polymer nanofibers by electrospinning and their applications in nanocomposites publication-title: Compos. Sci. Technol. – volume: 19 start-page: 2941 year: 2021 end-page: 2966 ident: b0280 article-title: Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO publication-title: Environ. Chem. Lett. – volume: 203 start-page: 415 year: 2019 end-page: 422 ident: b0200 article-title: Design of double-component metal–organic framework air filters with PM2. 5 capture, gas adsorption and antibacterial capacities publication-title: Carbohydr. Polym. – volume: 334 start-page: 355 year: 2018 end-page: 376 ident: b0270 article-title: Insight into the highly efficient degradation of PAHs in water over graphene oxide/Ag publication-title: Chem. Eng. J. – volume: 825 year: 2020 ident: b0255 article-title: Fabrication of ZIF-8@ TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation publication-title: J. Alloy. Compd. – volume: 22 year: 2020 ident: 10.1016/j.jcis.2022.12.122_b0045 article-title: Polyvinylidene fluoride composite nanofibrous filter for high-efficiency PM2. 5 capture publication-title: Compos. Commun. doi: 10.1016/j.coco.2020.100533 – volume: 319 start-page: 939 issue: 5865 year: 2008 ident: 10.1016/j.jcis.2022.12.122_b0100 article-title: High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture publication-title: Science doi: 10.1126/science.1152516 – volume: 11 start-page: 400 issue: 3 year: 2021 ident: 10.1016/j.jcis.2022.12.122_b0295 article-title: Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter (PM2. 5) Collected on TiO2-Supporting Quartz Fiber Filters publication-title: Catalysts doi: 10.3390/catal11030400 – volume: 48 start-page: 3438 year: 2014 ident: 10.1016/j.jcis.2022.12.122_b0015 article-title: Association of cardiopulmonary health effects with source-appointed ambient fine particulate in Beijing, China: a combined analysis from the Healthy Volunteer Natural Relocation (HVNR) Study publication-title: Environ. Sci. Technol. doi: 10.1021/es404778w – volume: 4 start-page: 15126 issue: 39 year: 2016 ident: 10.1016/j.jcis.2022.12.122_b0245 article-title: Co-ZIF-9/TiO2 nanostructure for superior CO2 photoreduction activity publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04620G – volume: 825 year: 2020 ident: 10.1016/j.jcis.2022.12.122_b0255 article-title: Fabrication of ZIF-8@ TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.154008 – volume: 12 start-page: 8730 issue: 7 year: 2020 ident: 10.1016/j.jcis.2022.12.122_b0130 article-title: Zeoliticimidazolate framework-8/ polypropylene–polycarbonate barklike meltblown fibrous membranes by a facile in situ growth method for efficient PM2. 5 capture publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b21340 – volume: 63 start-page: 2223 issue: 15 year: 2003 ident: 10.1016/j.jcis.2022.12.122_b0025 article-title: A review on polymer nanofibers by electrospinning and their applications in nanocomposites publication-title: Compos. Sci. Technol. doi: 10.1016/S0266-3538(03)00178-7 – volume: 17 start-page: 1140 issue: 2 year: 2017 ident: 10.1016/j.jcis.2022.12.122_b0035 article-title: Direct blow-spinning of nanofibers on a window screen for highly efficient PM2. 5 removal publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04771 – volume: 25 start-page: 5999 issue: 10 year: 2018 ident: 10.1016/j.jcis.2022.12.122_b0225 article-title: Multifunctional cellulose-based air filters with high loadings of metal–organic frameworks prepared by in situ growth method for gas adsorption and antibacterial applications[J] publication-title: Cellul. doi: 10.1007/s10570-018-1982-1 – ident: 10.1016/j.jcis.2022.12.122_b0050 – volume: 21 start-page: 1424 issue: 4 year: 2014 ident: 10.1016/j.jcis.2022.12.122_b0120 article-title: Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye “congo red” publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2013.12.012 – volume: 11 start-page: 47649 issue: 50 year: 2019 ident: 10.1016/j.jcis.2022.12.122_b0160 article-title: Effect of functional groups of metal–organic frameworks, coated on cotton, on removal of particulate matters via selective interactions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b19646 – volume: 8 start-page: 20274 issue: 31 year: 2016 ident: 10.1016/j.jcis.2022.12.122_b0135 article-title: Sonocrystallization of ZIF-8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05746 – volume: 19 start-page: 2941 issue: 4 year: 2021 ident: 10.1016/j.jcis.2022.12.122_b0280 article-title: Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO2 conversion, and bacterial inactivation: a review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-021-01231-w – volume: 121 start-page: 2331 year: 2010 ident: 10.1016/j.jcis.2022.12.122_b0010 article-title: Particulate matter air pollution and cardiovascular disease an update to the scientific statement from the american heart association publication-title: Circulation doi: 10.1161/CIR.0b013e3181dbece1 – volume: 405 year: 2021 ident: 10.1016/j.jcis.2022.12.122_b0090 article-title: PAA@ ZIF-8 incorporated nanofibrous membrane for high-efficiency PM2. 5 capture publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126584 – volume: 203 start-page: 415 year: 2019 ident: 10.1016/j.jcis.2022.12.122_b0200 article-title: Design of double-component metal–organic framework air filters with PM2. 5 capture, gas adsorption and antibacterial capacities publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.09.039 – volume: 338 start-page: 82 year: 2018 ident: 10.1016/j.jcis.2022.12.122_b0235 article-title: Morphology controlled porous poly (lactic acid)/zeolitic imidazolate framework-8 fibrous membranes with superior PM2. 5 capture capacity publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.025 – volume: 857 year: 2023 ident: 10.1016/j.jcis.2022.12.122_b0275 article-title: Highly efficient photodegradation of magnetic GO-Fe3O4@ SiO2@ CdS for phenanthrene and pyrene: Mechanism insight and application assessment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.159254 – volume: 16 start-page: 4919 issue: 23 year: 2014 ident: 10.1016/j.jcis.2022.12.122_b0285 article-title: Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges publication-title: CrstEngComm doi: 10.1039/C4CE00032C – volume: 66 start-page: 613 issue: 4 year: 2011 ident: 10.1016/j.jcis.2022.12.122_b0030 article-title: 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.10.035 – volume: 21 start-page: 17259 issue: 43 year: 2011 ident: 10.1016/j.jcis.2022.12.122_b0240 article-title: Metal–organic frameworks: promising materials for improving the open circuit voltage of dye-sensitized solar cells publication-title: J. Mater. Chem. doi: 10.1039/c1jm12754c – volume: 135 start-page: 14488 issue: 39 year: 2013 ident: 10.1016/j.jcis.2022.12.122_b0115 article-title: Iron (III)-based metal–organic frameworks as visible light photocatalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405086e – volume: 7 start-page: 1902590 issue: 3 year: 2020 ident: 10.1016/j.jcis.2022.12.122_b0155 article-title: Electrospinning of metal–organic frameworks for energy and environmental applications publication-title: Adv. Sci. doi: 10.1002/advs.201902590 – volume: 250 start-page: 369 year: 2019 ident: 10.1016/j.jcis.2022.12.122_b0250 article-title: MOF-derived hollow TiO2@ C/FeTiO3 nanoparticles as photoanodes with enhanced full spectrum light PEC activities publication-title: Appl Catal B doi: 10.1016/j.apcatb.2019.03.002 – volume: 114 start-page: 5695 issue: 11 year: 2014 ident: 10.1016/j.jcis.2022.12.122_b0110 article-title: Metal–organic frameworks for air purification of toxic chemicals publication-title: Chem. Rev. doi: 10.1021/cr4006473 – volume: 2 issue: 7 year: 2018 ident: 10.1016/j.jcis.2022.12.122_b0205 article-title: Advanced Materials for Capturing Particulate Matter: Progress and Perspectives Small publication-title: Methods – volume: 334 start-page: 355 year: 2018 ident: 10.1016/j.jcis.2022.12.122_b0270 article-title: Insight into the highly efficient degradation of PAHs in water over graphene oxide/Ag3PO4 composites under visible light irradiation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.104 – volume: 97 start-page: 10319 issue: 40 year: 1993 ident: 10.1016/j.jcis.2022.12.122_b0170 article-title: Resonance Raman studies of imidazole, imidazolium, and their derivatives: the effect of deuterium substitution publication-title: J. Phys. Chem. doi: 10.1021/j100142a010 – ident: 10.1016/j.jcis.2022.12.122_b0210 doi: 10.1016/j.scitotenv.2018.08.050 – volume: 4 start-page: 54454 issue: 97 year: 2014 ident: 10.1016/j.jcis.2022.12.122_b0145 article-title: Photocatalytic degradation of methylene blue in ZIF-8 publication-title: Rsc Advances doi: 10.1039/C4RA08820D – volume: 140 start-page: 1812 issue: 5 year: 2018 ident: 10.1016/j.jcis.2022.12.122_b0165 article-title: Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11589 – volume: 112 start-page: 673 issue: 2 year: 2012 ident: 10.1016/j.jcis.2022.12.122_b0095 article-title: Introduction to metal–organic frameworks publication-title: Chem. Rev. doi: 10.1021/cr300014x – volume: 11 start-page: 40592 issue: 43 year: 2019 ident: 10.1016/j.jcis.2022.12.122_b0055 article-title: Polyethylene/polypropylene bicomponent spunbond air filtration materials containing magnesium stearate for efficient fine particle capture publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13162 – volume: 24 start-page: 369 year: 2018 ident: 10.1016/j.jcis.2022.12.122_b0265 article-title: A ZIF-8 decorated TiO2 grid-like film with high CO2 adsorption for CO2 photoreduction publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2018.01.024 – volume: 117 start-page: 11006 issue: 43 year: 2013 ident: 10.1016/j.jcis.2022.12.122_b0175 article-title: Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8: A Raman study publication-title: Chem. A Eur. J. – volume: 8 start-page: 7932 issue: 15 year: 2018 ident: 10.1016/j.jcis.2022.12.122_b0060 article-title: Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2. 5 capture publication-title: RSC Adv. doi: 10.1039/C7RA10916D – volume: 25 start-page: 1997 issue: 3 year: 2018 ident: 10.1016/j.jcis.2022.12.122_b0125 article-title: Functionalization of cellulose fiber by in situ growth of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for preparing a cellulose-based air filter with gas adsorption ability publication-title: Cellul. doi: 10.1007/s10570-018-1696-4 – volume: 582 start-page: 506 year: 2021 ident: 10.1016/j.jcis.2022.12.122_b0070 article-title: Flexible and transparent composite nanofiber membrane that was fabricated via a “green” electrospinning method for efficient particulate matter 2.5 capture publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.08.075 – volume: 13 start-page: 1603151 issue: 10 year: 2017 ident: 10.1016/j.jcis.2022.12.122_b0065 article-title: A controlled design of ripple-like polyamide-6 nanofiber/nets membrane for high-efficiency air filter publication-title: Small doi: 10.1002/smll.201603151 – ident: 10.1016/j.jcis.2022.12.122_b0215 doi: 10.1007/978-3-319-42789-8_37-1 – volume: 56 start-page: 709 issue: 6 year: 2006 ident: 10.1016/j.jcis.2022.12.122_b0005 article-title: Health Effects of Fine Particulate Air Pollution: Lines that Connect publication-title: J. Air Waste Manag. Assoc. doi: 10.1080/10473289.2006.10464485 – volume: 6 start-page: 6205 year: 2015 ident: 10.1016/j.jcis.2022.12.122_b0020 article-title: Transparent air filter for high-efficiency PM2.5 capture publication-title: Nat. Commun. doi: 10.1038/ncomms7205 – volume: 300 year: 2022 ident: 10.1016/j.jcis.2022.12.122_b0080 article-title: Metal-organic framework decorated polyimide nanofiber aerogels for efficient high-temperature particulate matter removal publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121881 – volume: 43 start-page: 5419 issue: 16 year: 2014 ident: 10.1016/j.jcis.2022.12.122_b0105 article-title: Toxic gas removal–metal–organic frameworks for the capture and degradation of toxic gases and vapours publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60475F – volume: 208 start-page: 328 year: 2019 ident: 10.1016/j.jcis.2022.12.122_b0230 article-title: Lightweight and porous cellulose-based foams with high loadings of zeolitic imidazolate frameworks-8 for adsorption applications publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.12.081 – volume: 16 start-page: 3642 issue: 6 year: 2016 ident: 10.1016/j.jcis.2022.12.122_b0040 article-title: Nanofiber air filters with high-temperature stability for efficient PM2. 5 removal from the pollution sources publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00771 – volume: 218 start-page: 743 year: 2017 ident: 10.1016/j.jcis.2022.12.122_b0260 article-title: Palladium-decorated hierarchical titania constructed from the metal-organic frameworks NH2-MIL-125 (Ti) as a robust photocatalyst for hydrogen evolution publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.07.020 – volume: 138 start-page: 5785 issue: 18 year: 2016 ident: 10.1016/j.jcis.2022.12.122_b0220 article-title: Preparation of nanofibrous metal–organic framework filters for efficient air pollution control[J] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02553 |
SSID | ssj0011559 |
Score | 2.4799385 |
Snippet | [Display omitted]
A systematic study was performed on PM2.5 filtration and photodegradation performance of polyacrylonitrile @TiO2/ zeolitic imidazolate... A systematic study was performed on PM2.5 filtration and photodegradation performance of polyacrylonitrile @TiO2/ zeolitic imidazolate framework-8(PTZ)hybrid... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 598 |
SubjectTerms | Filtration PAN Photocatalytic PM2.5 ZIF-8 |
Title | Polyacrylonitrile@TiO2 nanofibrous membrane decorated by MOF for efficient filtration and green degradation of PM2.5 |
URI | https://dx.doi.org/10.1016/j.jcis.2022.12.122 https://www.proquest.com/docview/2762817629 |
Volume | 635 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSx0xEA9iD-qhVFvxo0qE3srqy8dukpvy8PHa8tSDgreQr5WV5z5ZXg9e_Nud2Q9pC3ooLHsIybJkJjO_SSa_IeSbKmUaJaMzp4TPpNNF5nVAwkuAI6LIpQ-4Dzm7KKY38udtfrtCxsNdGEyr7G1_Z9Nba923nPSzefJYVXjHF1abMopzpMFrabelVKjlx8-vaR4Mj926NA-WYe_-4kyX43UfKqTs5hy3BBnnbzmnf8x063smn8jHHjTSs-6_NslKqrfI2nio1bZFNv6gFfxMlleL-ZMLDcTisGAbWPen19Ulp7WrQZV8A8E-fUgPECfXiUaMPwFwRuqf6OxyQgHF0tQSS4A_omU174l1qasjvcM0HRhz17iuGBNdlPRqxo_zL-Rmcn49nmZ9dYUsCCGWGYSGnrtcKAB0kY8Mj56lojTBaYBxOiSXRBwZHYJKPJaKRSmF02UOTU7pUmyT1XpRpx1CDddIq-ggFkwyQgcWAXbxGEeBF96YXcKGabWhpx7HChhzO-SY3VsUhUVRWIYP3yXfX8c8dsQb7_bOB2nZv9THgmd4d9zRIFoLIsPDEph6EIPl4CU0g5fZ-89v75N1rE3fpfl8JavL5nc6AASz9Ietih6SD2c_fk0vXgBXie-L |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6h5QA9oJZSFfpypd6qlI2dh30rWrFaCrtwWCRull9BQUsWRcuBf9-ZjYMKEhwqRTlYnijy2DPf2ONvAH6UVRaGQcnElMImmZFFYqUjwkuEI6LIM-toH3I6KyaX2Z-r_GoDRv1dGEqrjLa_s-lrax1bDuNoHt7VNd3xxdVWqpJzosEj2u1NYqfKB7B5dHI6mT0eJtDJW5fpkSYkEO_OdGleN64m1m7OaVcw5fwl__TMUq_dz_gt7ETcyI66X3sHG6HZha1RX65tF978wyz4HlYXy8WDcS2G47hmW1z6v-f1OWeNaXA22RbjfXYbbjFUbgLzFIIi5vTMPrDp-ZghkGVhzS2BLolV9SJy6zLTeHZNmTooc92arh4TW1bsYsp_5XtwOT6ejyZJLLCQOCHEKsHo0HKTixIxnedDxb1NQ1EpZyQiOemCCcIPlXSuDNxXZeqzTBhZ5dhkSlmJDzBolk34CExxScyKBsPBkHnskHpEXtz7oeOFVWof0n5YtYvs41QEY6H7NLMbTarQpAqd0sP34eejzF3HvfFq77zXln4ygzQ6h1flvveq1agyOi_BoUc1aI6OQqb4Ugf_-e1vsDWZT8_02cns9BNsU6n6LuvnMwxW7X34goBmZb_GCfsXj-HyPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyacrylonitrile%40TiO2+nanofibrous+membrane+decorated+by+MOF+for+efficient+filtration+and+green+degradation+of+PM2.5&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Yang%2C+Zhengren&rft.au=Zhen%2C+Yuhua&rft.au=Feng%2C+Yao&rft.au=Jiang%2C+Xiaolin&rft.date=2023-04-01&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=635&rft.spage=598&rft.epage=610&rft_id=info:doi/10.1016%2Fj.jcis.2022.12.122&rft.externalDocID=S0021979722022706 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |