Polyacrylonitrile@TiO2 nanofibrous membrane decorated by MOF for efficient filtration and green degradation of PM2.5

[Display omitted] A systematic study was performed on PM2.5 filtration and photodegradation performance of polyacrylonitrile @TiO2/ zeolitic imidazolate framework-8(PTZ)hybrid membrane. The hybrid membrane was prepared by electrospinning technique and in situ Metal-organic frameworks (MOFs) synthesi...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 635; pp. 598 - 610
Main Authors Yang, Zhengren, Zhen, Yuhua, Feng, Yao, Jiang, Xiaolin, Qin, Zheng, Yang, Wenjie, Qie, Yuanyue
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] A systematic study was performed on PM2.5 filtration and photodegradation performance of polyacrylonitrile @TiO2/ zeolitic imidazolate framework-8(PTZ)hybrid membrane. The hybrid membrane was prepared by electrospinning technique and in situ Metal-organic frameworks (MOFs) synthesis. The optimized membrane maintained a good PM2.5 capture efficiency (greater than 99%) and a pressure drop of 34 Pa. The larger specific surface area and higher pore structure enhance the filter interception effect and electrostatic interaction, which can have high applications for the filtering of PM2.5. In addition, zeolitic imidazolate framework-8 (ZIF-8) is uniformly coated on the surface of polyacrylonitrile @ TiO2 (PT) nanofiber to form N-Ti-O bonds, thus reducing the reorganization of electron-hole pairs and improving the efficiency of photodegradation. Compared with PT, the hybrid structure formed by PTZ has a higher degradation efficiency for PM2.5 (increased from 66% to 85%). The produced PTZ membrane exhibits a promising future in the collection and green degradation of PM2.5.
AbstractList [Display omitted] A systematic study was performed on PM2.5 filtration and photodegradation performance of polyacrylonitrile @TiO2/ zeolitic imidazolate framework-8(PTZ)hybrid membrane. The hybrid membrane was prepared by electrospinning technique and in situ Metal-organic frameworks (MOFs) synthesis. The optimized membrane maintained a good PM2.5 capture efficiency (greater than 99%) and a pressure drop of 34 Pa. The larger specific surface area and higher pore structure enhance the filter interception effect and electrostatic interaction, which can have high applications for the filtering of PM2.5. In addition, zeolitic imidazolate framework-8 (ZIF-8) is uniformly coated on the surface of polyacrylonitrile @ TiO2 (PT) nanofiber to form N-Ti-O bonds, thus reducing the reorganization of electron-hole pairs and improving the efficiency of photodegradation. Compared with PT, the hybrid structure formed by PTZ has a higher degradation efficiency for PM2.5 (increased from 66% to 85%). The produced PTZ membrane exhibits a promising future in the collection and green degradation of PM2.5.
A systematic study was performed on PM2.5 filtration and photodegradation performance of polyacrylonitrile @TiO2/ zeolitic imidazolate framework-8(PTZ)hybrid membrane. The hybrid membrane was prepared by electrospinning technique and in situ Metal-organic frameworks (MOFs) synthesis. The optimized membrane maintained a good PM2.5 capture efficiency (greater than 99%) and a pressure drop of 34 Pa. The larger specific surface area and higher pore structure enhance the filter interception effect and electrostatic interaction, which can have high applications for the filtering of PM2.5. In addition, zeolitic imidazolate framework-8 (ZIF-8) is uniformly coated on the surface of polyacrylonitrile @ TiO2 (PT) nanofiber to form N-Ti-O bonds, thus reducing the reorganization of electron-hole pairs and improving the efficiency of photodegradation. Compared with PT, the hybrid structure formed by PTZ has a higher degradation efficiency for PM2.5 (increased from 66% to 85%). The produced PTZ membrane exhibits a promising future in the collection and green degradation of PM2.5.A systematic study was performed on PM2.5 filtration and photodegradation performance of polyacrylonitrile @TiO2/ zeolitic imidazolate framework-8(PTZ)hybrid membrane. The hybrid membrane was prepared by electrospinning technique and in situ Metal-organic frameworks (MOFs) synthesis. The optimized membrane maintained a good PM2.5 capture efficiency (greater than 99%) and a pressure drop of 34 Pa. The larger specific surface area and higher pore structure enhance the filter interception effect and electrostatic interaction, which can have high applications for the filtering of PM2.5. In addition, zeolitic imidazolate framework-8 (ZIF-8) is uniformly coated on the surface of polyacrylonitrile @ TiO2 (PT) nanofiber to form N-Ti-O bonds, thus reducing the reorganization of electron-hole pairs and improving the efficiency of photodegradation. Compared with PT, the hybrid structure formed by PTZ has a higher degradation efficiency for PM2.5 (increased from 66% to 85%). The produced PTZ membrane exhibits a promising future in the collection and green degradation of PM2.5.
Author Yang, Zhengren
Feng, Yao
Zhen, Yuhua
Qin, Zheng
Jiang, Xiaolin
Yang, Wenjie
Qie, Yuanyue
Author_xml – sequence: 1
  givenname: Zhengren
  surname: Yang
  fullname: Yang, Zhengren
– sequence: 2
  givenname: Yuhua
  surname: Zhen
  fullname: Zhen, Yuhua
– sequence: 3
  givenname: Yao
  surname: Feng
  fullname: Feng, Yao
– sequence: 4
  givenname: Xiaolin
  surname: Jiang
  fullname: Jiang, Xiaolin
– sequence: 5
  givenname: Zheng
  surname: Qin
  fullname: Qin, Zheng
– sequence: 6
  givenname: Wenjie
  surname: Yang
  fullname: Yang, Wenjie
– sequence: 7
  givenname: Yuanyue
  surname: Qie
  fullname: Qie, Yuanyue
BookMark eNp9kE1LAzEQhoNUsK3-AU85etk1yTb7AR4U8Qss7UHPIZtMJGWb1CQK_fdmrScPhWEGZuYZ5n1naOK8A4QuKSkpofX1ptwoG0tGGCvpGOwETSnpeNFQUk3QlBBGi67pmjM0i3FDCKWcd1OU1n7YSxX2g3c2BTvA7ZtdMeyk88b2wX9FvIVtH6QDrEH5IBNo3O_xcvWIjQ8YjLHKgkvY2CHlsfUOS6fxRwBwmfkIUh-63uD1kpX8HJ0aOUS4-Ktz9P748Hb_XLyunl7u714LVVVVKlrGeyZ51fC61ox0TPcUatMp2RK-aBVIqDTpWqUaYNo0VC8WlWwNzy3ZtKaao6vD3V3wn18Qk9jaqGAYspgsTLCmZi3Nqcur7WFVBR9jACOUTb9fZ0l2EJSI0WixEaPRYjRa0DFYRtk_dBfsVob9cejmAEHW_20hiDiaqEDbACoJ7e0x_AeDDZq7
CitedBy_id crossref_primary_10_1021_acs_jafc_4c10134
crossref_primary_10_1016_j_jece_2023_111680
crossref_primary_10_1016_j_seppur_2024_128291
crossref_primary_10_1016_j_desal_2023_117091
crossref_primary_10_1016_j_jhazmat_2024_134781
crossref_primary_10_1016_j_apsusc_2024_160751
crossref_primary_10_1016_j_optmat_2023_114143
crossref_primary_10_1016_j_microc_2024_110714
crossref_primary_10_1016_j_arabjc_2024_105765
crossref_primary_10_1021_acsapm_3c02355
crossref_primary_10_3390_polym16070889
crossref_primary_10_1002_adfm_202304773
crossref_primary_10_1002_pen_26690
crossref_primary_10_1021_acsami_3c11941
crossref_primary_10_1016_j_jwpe_2024_105859
crossref_primary_10_1016_j_apsadv_2023_100504
crossref_primary_10_1016_j_trac_2024_118021
crossref_primary_10_1016_j_seppur_2023_125658
crossref_primary_10_1016_j_ces_2024_120060
crossref_primary_10_1016_j_electacta_2024_143777
crossref_primary_10_1016_j_jece_2023_110742
crossref_primary_10_1016_j_memsci_2024_123524
crossref_primary_10_1016_j_seppur_2024_127150
crossref_primary_10_1016_j_microc_2024_110951
crossref_primary_10_3390_polym16091239
crossref_primary_10_1016_j_cej_2024_153542
crossref_primary_10_1016_j_jece_2023_110913
crossref_primary_10_1007_s42114_024_00930_6
crossref_primary_10_1016_j_seppur_2024_128793
crossref_primary_10_1016_j_ijbiomac_2025_141987
crossref_primary_10_1016_j_seppur_2024_129948
crossref_primary_10_1007_s13369_025_10092_2
crossref_primary_10_1016_j_infrared_2025_105819
crossref_primary_10_1016_j_scitotenv_2024_175926
crossref_primary_10_1016_j_seppur_2023_125404
Cites_doi 10.1016/j.coco.2020.100533
10.1126/science.1152516
10.3390/catal11030400
10.1021/es404778w
10.1039/C6TA04620G
10.1016/j.jallcom.2020.154008
10.1021/acsami.9b21340
10.1016/S0266-3538(03)00178-7
10.1021/acs.nanolett.6b04771
10.1007/s10570-018-1982-1
10.1016/j.ultsonch.2013.12.012
10.1021/acsami.9b19646
10.1021/acsami.6b05746
10.1007/s10311-021-01231-w
10.1161/CIR.0b013e3181dbece1
10.1016/j.cej.2020.126584
10.1016/j.carbpol.2018.09.039
10.1016/j.cej.2018.01.025
10.1016/j.scitotenv.2022.159254
10.1039/C4CE00032C
10.1016/j.ces.2010.10.035
10.1039/c1jm12754c
10.1021/ja405086e
10.1002/advs.201902590
10.1016/j.apcatb.2019.03.002
10.1021/cr4006473
10.1016/j.cej.2017.09.104
10.1021/j100142a010
10.1016/j.scitotenv.2018.08.050
10.1039/C4RA08820D
10.1021/jacs.7b11589
10.1021/cr300014x
10.1021/acsami.9b13162
10.1016/j.jcou.2018.01.024
10.1039/C7RA10916D
10.1007/s10570-018-1696-4
10.1016/j.jcis.2020.08.075
10.1002/smll.201603151
10.1007/978-3-319-42789-8_37-1
10.1080/10473289.2006.10464485
10.1038/ncomms7205
10.1016/j.seppur.2022.121881
10.1039/C3CS60475F
10.1016/j.carbpol.2018.12.081
10.1021/acs.nanolett.6b00771
10.1016/j.apcatb.2017.07.020
10.1021/jacs.6b02553
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright © 2022 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright © 2022 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.jcis.2022.12.122
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 610
ExternalDocumentID 10_1016_j_jcis_2022_12_122
S0021979722022706
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XFK
XPP
YQT
ZGI
ZMT
ZU3
ZXP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
ID FETCH-LOGICAL-c333t-825b2a537566d2092db1e6f9ca80548ceae3d098cc7e2df71d443a8f598ca78f3
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 15:58:47 EDT 2025
Thu Apr 24 23:02:22 EDT 2025
Tue Jul 01 04:18:58 EDT 2025
Fri Feb 23 02:37:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Photocatalytic
Filtration
ZIF-8
PAN
PM2.5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-825b2a537566d2092db1e6f9ca80548ceae3d098cc7e2df71d443a8f598ca78f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2762817629
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2762817629
crossref_citationtrail_10_1016_j_jcis_2022_12_122
crossref_primary_10_1016_j_jcis_2022_12_122
elsevier_sciencedirect_doi_10_1016_j_jcis_2022_12_122
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhang (b0040) 2016; 16
R. Al-Attabi, Y.S. Morsi, J.A. Schütz et al., Electrospun membranes for airborne contaminants capture[J], Bechelany M, Makhlouf A, Handbook of Nanofibers, Springer-Cham Barhoum A, 2018. pp. 1-18.
Markham (b0170) 1993; 97
Su (b0125) 2018; 25
Li, Wang, Hao (b0275) 2023; 857
Nasalevich (b0285) 2014; 16
Yoo, Jhung (b0160) 2019; 11
Ma (b0230) 2019; 208
Sohara (b0295) 2021; 11
Yan (b0260) 2017; 218
Fan, Yujia, et al., Flexible Micro‐Nano Composite Membranes Based on a Two‐Step Strategy: Charge Recovery and Efficiently Gradient Air Filtration, Polymer International.
Khanjani, Morsali (b0120) 2014; 21
Liu (b0055) 2019; 11
Xiao, Liang, Zhang, Tao, Ling, Yang (b0205) 2018; 2
Wang (b0250) 2019; 250
Zhu (b0080) 2022; 300
Laurier (b0115) 2013; 135
Banerjee (b0100) 2008; 319
Riyadh Al-Attabi, Yosry Morsi, Jürg A. Schütz, Ludovic F. Dumée, One-pot synthesis of catalytic molybdenum based nanocomposite nano-fiber membranes for aerosol air remediation, Sci. Total Environ., 647 (2019) 725–733.
Khalid (b0035) 2017; 17
Arden Pope III, Dockery (b0005) 2006; 56
Sambaer, Zatloukal, Kimmer (b0030) 2011; 66
Liu, Hsu, Lee (b0020) 2015; 6
DeCoste, Peterson (b0110) 2014; 114
Huang, Zhang, Kotaki, Ramakrishna (b0025) 2003; 63
Huang (b0265) 2018; 24
Saliba (b0165) 2018; 140
Li (b0255) 2020; 825
Zhang (b0065) 2017; 13
Hasija (b0280) 2021; 19
Yan (b0245) 2016; 4
Fan (b0045) 2020; 22
Zhang, Yuan, Feng (b0220) 2016; 138
Dou, Zhang, Kaiser (b0155) 2020; 7
Cui (b0070) 2021; 582
Barea, Montoro, Navarro (b0105) 2014; 43
Jing (b0145) 2014; 4
Guo (b0090) 2021; 405
Yang (b0270) 2018; 334
Li (b0130) 2020; 12
Li (b0240) 2011; 21
Wu (b0015) 2014; 48
Dai, Li, Wang (b0235) 2018; 338
Zhou, Long, Yaghi (b0095) 2012; 112
Brook (b0010) 2010; 121
Zeng (b0135) 2016; 8
Ma, Zhang, Nie (b0225) 2018; 25
Ma (b0200) 2019; 203
Zhang (b0060) 2018; 8
Kumari (b0175) 2013; 117
DeCoste (10.1016/j.jcis.2022.12.122_b0110) 2014; 114
Huang (10.1016/j.jcis.2022.12.122_b0025) 2003; 63
Dou (10.1016/j.jcis.2022.12.122_b0155) 2020; 7
Li (10.1016/j.jcis.2022.12.122_b0130) 2020; 12
Ma (10.1016/j.jcis.2022.12.122_b0230) 2019; 208
Su (10.1016/j.jcis.2022.12.122_b0125) 2018; 25
Zhou (10.1016/j.jcis.2022.12.122_b0095) 2012; 112
Barea (10.1016/j.jcis.2022.12.122_b0105) 2014; 43
Markham (10.1016/j.jcis.2022.12.122_b0170) 1993; 97
Yoo (10.1016/j.jcis.2022.12.122_b0160) 2019; 11
Ma (10.1016/j.jcis.2022.12.122_b0200) 2019; 203
Yang (10.1016/j.jcis.2022.12.122_b0270) 2018; 334
Kumari (10.1016/j.jcis.2022.12.122_b0175) 2013; 117
Fan (10.1016/j.jcis.2022.12.122_b0045) 2020; 22
Brook (10.1016/j.jcis.2022.12.122_b0010) 2010; 121
Zhang (10.1016/j.jcis.2022.12.122_b0220) 2016; 138
Yan (10.1016/j.jcis.2022.12.122_b0245) 2016; 4
Yan (10.1016/j.jcis.2022.12.122_b0260) 2017; 218
Liu (10.1016/j.jcis.2022.12.122_b0055) 2019; 11
Laurier (10.1016/j.jcis.2022.12.122_b0115) 2013; 135
Saliba (10.1016/j.jcis.2022.12.122_b0165) 2018; 140
Li (10.1016/j.jcis.2022.12.122_b0255) 2020; 825
Zhu (10.1016/j.jcis.2022.12.122_b0080) 2022; 300
Li (10.1016/j.jcis.2022.12.122_b0275) 2023; 857
Zhang (10.1016/j.jcis.2022.12.122_b0060) 2018; 8
Dai (10.1016/j.jcis.2022.12.122_b0235) 2018; 338
Guo (10.1016/j.jcis.2022.12.122_b0090) 2021; 405
Zhang (10.1016/j.jcis.2022.12.122_b0065) 2017; 13
Jing (10.1016/j.jcis.2022.12.122_b0145) 2014; 4
Sambaer (10.1016/j.jcis.2022.12.122_b0030) 2011; 66
Cui (10.1016/j.jcis.2022.12.122_b0070) 2021; 582
Zeng (10.1016/j.jcis.2022.12.122_b0135) 2016; 8
Huang (10.1016/j.jcis.2022.12.122_b0265) 2018; 24
10.1016/j.jcis.2022.12.122_b0215
Ma (10.1016/j.jcis.2022.12.122_b0225) 2018; 25
Khalid (10.1016/j.jcis.2022.12.122_b0035) 2017; 17
Liu (10.1016/j.jcis.2022.12.122_b0020) 2015; 6
Zhang (10.1016/j.jcis.2022.12.122_b0040) 2016; 16
Khanjani (10.1016/j.jcis.2022.12.122_b0120) 2014; 21
Wang (10.1016/j.jcis.2022.12.122_b0250) 2019; 250
Banerjee (10.1016/j.jcis.2022.12.122_b0100) 2008; 319
Wu (10.1016/j.jcis.2022.12.122_b0015) 2014; 48
10.1016/j.jcis.2022.12.122_b0050
Nasalevich (10.1016/j.jcis.2022.12.122_b0285) 2014; 16
Hasija (10.1016/j.jcis.2022.12.122_b0280) 2021; 19
10.1016/j.jcis.2022.12.122_b0210
Li (10.1016/j.jcis.2022.12.122_b0240) 2011; 21
Arden Pope III (10.1016/j.jcis.2022.12.122_b0005) 2006; 56
Sohara (10.1016/j.jcis.2022.12.122_b0295) 2021; 11
Xiao (10.1016/j.jcis.2022.12.122_b0205) 2018; 2
References_xml – volume: 121
  start-page: 2331
  year: 2010
  end-page: 2378
  ident: b0010
  article-title: Particulate matter air pollution and cardiovascular disease an update to the scientific statement from the american heart association
  publication-title: Circulation
– volume: 66
  start-page: 613
  year: 2011
  end-page: 623
  ident: b0030
  article-title: 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process
  publication-title: Chem. Eng. Sci.
– volume: 11
  start-page: 400
  year: 2021
  ident: b0295
  article-title: Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter (PM2. 5) Collected on TiO2-Supporting Quartz Fiber Filters
  publication-title: Catalysts
– volume: 114
  start-page: 5695
  year: 2014
  end-page: 5727
  ident: b0110
  article-title: Metal–organic frameworks for air purification of toxic chemicals
  publication-title: Chem. Rev.
– volume: 208
  start-page: 328
  year: 2019
  end-page: 335
  ident: b0230
  article-title: Lightweight and porous cellulose-based foams with high loadings of zeolitic imidazolate frameworks-8 for adsorption applications
  publication-title: Carbohydr. Polym.
– volume: 97
  start-page: 10319
  year: 1993
  end-page: 10325
  ident: b0170
  article-title: Resonance Raman studies of imidazole, imidazolium, and their derivatives: the effect of deuterium substitution
  publication-title: J. Phys. Chem.
– volume: 405
  year: 2021
  ident: b0090
  article-title: PAA@ ZIF-8 incorporated nanofibrous membrane for high-efficiency PM2. 5 capture
  publication-title: Chem. Eng. J.
– volume: 117
  start-page: 11006
  year: 2013
  end-page: 11012
  ident: b0175
  article-title: Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8: A Raman study
  publication-title: Chem. A Eur. J.
– volume: 338
  start-page: 82
  year: 2018
  end-page: 91
  ident: b0235
  article-title: Morphology controlled porous poly (lactic acid)/zeolitic imidazolate framework-8 fibrous membranes with superior PM2. 5 capture capacity
  publication-title: Chem. Eng. J.
– volume: 300
  year: 2022
  ident: b0080
  article-title: Metal-organic framework decorated polyimide nanofiber aerogels for efficient high-temperature particulate matter removal
  publication-title: Sep. Purif. Technol.
– volume: 140
  start-page: 1812
  year: 2018
  end-page: 1823
  ident: b0165
  article-title: Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 17259
  year: 2011
  end-page: 17264
  ident: b0240
  article-title: Metal–organic frameworks: promising materials for improving the open circuit voltage of dye-sensitized solar cells
  publication-title: J. Mater. Chem.
– volume: 8
  start-page: 7932
  year: 2018
  end-page: 7941
  ident: b0060
  article-title: Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2. 5 capture
  publication-title: RSC Adv.
– reference: Fan, Yujia, et al., Flexible Micro‐Nano Composite Membranes Based on a Two‐Step Strategy: Charge Recovery and Efficiently Gradient Air Filtration, Polymer International.
– volume: 8
  start-page: 20274
  year: 2016
  end-page: 20282
  ident: b0135
  article-title: Sonocrystallization of ZIF-8 on electrostatic spinning TiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 3642
  year: 2016
  end-page: 3649
  ident: b0040
  article-title: Nanofiber air filters with high-temperature stability for efficient PM2. 5 removal from the pollution sources
  publication-title: Nano Lett.
– reference: R. Al-Attabi, Y.S. Morsi, J.A. Schütz et al., Electrospun membranes for airborne contaminants capture[J], Bechelany M, Makhlouf A, Handbook of Nanofibers, Springer-Cham Barhoum A, 2018. pp. 1-18.
– volume: 6
  start-page: 6205
  year: 2015
  ident: b0020
  article-title: Transparent air filter for high-efficiency PM2.5 capture
  publication-title: Nat. Commun.
– volume: 43
  start-page: 5419
  year: 2014
  end-page: 5430
  ident: b0105
  article-title: Toxic gas removal–metal–organic frameworks for the capture and degradation of toxic gases and vapours
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 8730
  year: 2020
  end-page: 8739
  ident: b0130
  article-title: Zeoliticimidazolate framework-8/ polypropylene–polycarbonate barklike meltblown fibrous membranes by a facile in situ growth method for efficient PM2. 5 capture
  publication-title: ACS Appl. Mater. Interfaces
– volume: 218
  start-page: 743
  year: 2017
  end-page: 750
  ident: b0260
  article-title: Palladium-decorated hierarchical titania constructed from the metal-organic frameworks NH2-MIL-125 (Ti) as a robust photocatalyst for hydrogen evolution
  publication-title: Appl. Catal. B
– volume: 48
  start-page: 3438
  year: 2014
  end-page: 3448
  ident: b0015
  article-title: Association of cardiopulmonary health effects with source-appointed ambient fine particulate in Beijing, China: a combined analysis from the Healthy Volunteer Natural Relocation (HVNR) Study
  publication-title: Environ. Sci. Technol.
– reference: Riyadh Al-Attabi, Yosry Morsi, Jürg A. Schütz, Ludovic F. Dumée, One-pot synthesis of catalytic molybdenum based nanocomposite nano-fiber membranes for aerosol air remediation, Sci. Total Environ., 647 (2019) 725–733.
– volume: 11
  start-page: 40592
  year: 2019
  end-page: 40601
  ident: b0055
  article-title: Polyethylene/polypropylene bicomponent spunbond air filtration materials containing magnesium stearate for efficient fine particle capture
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 47649
  year: 2019
  end-page: 47657
  ident: b0160
  article-title: Effect of functional groups of metal–organic frameworks, coated on cotton, on removal of particulate matters via selective interactions
  publication-title: ACS Appl. Mater. Interfaces
– volume: 319
  start-page: 939
  year: 2008
  end-page: 943
  ident: b0100
  article-title: High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture
  publication-title: Science
– volume: 250
  start-page: 369
  year: 2019
  end-page: 381
  ident: b0250
  article-title: MOF-derived hollow TiO2@ C/FeTiO3 nanoparticles as photoanodes with enhanced full spectrum light PEC activities
  publication-title: Appl Catal B
– volume: 112
  start-page: 673
  year: 2012
  end-page: 674
  ident: b0095
  article-title: Introduction to metal–organic frameworks
  publication-title: Chem. Rev.
– volume: 22
  year: 2020
  ident: b0045
  article-title: Polyvinylidene fluoride composite nanofibrous filter for high-efficiency PM2. 5 capture
  publication-title: Compos. Commun.
– volume: 2
  year: 2018
  ident: b0205
  article-title: Advanced Materials for Capturing Particulate Matter: Progress and Perspectives Small
  publication-title: Methods
– volume: 25
  start-page: 5999
  year: 2018
  end-page: 6010
  ident: b0225
  article-title: Multifunctional cellulose-based air filters with high loadings of metal–organic frameworks prepared by in situ growth method for gas adsorption and antibacterial applications[J]
  publication-title: Cellul.
– volume: 857
  year: 2023
  ident: b0275
  article-title: Highly efficient photodegradation of magnetic GO-Fe3O4@ SiO2@ CdS for phenanthrene and pyrene: Mechanism insight and application assessment
  publication-title: Sci. Total Environ.
– volume: 7
  start-page: 1902590
  year: 2020
  ident: b0155
  article-title: Electrospinning of metal–organic frameworks for energy and environmental applications
  publication-title: Adv. Sci.
– volume: 4
  start-page: 54454
  year: 2014
  end-page: 54462
  ident: b0145
  article-title: Photocatalytic degradation of methylene blue in ZIF-8
  publication-title: Rsc Advances
– volume: 56
  start-page: 709
  year: 2006
  end-page: 742
  ident: b0005
  article-title: Health Effects of Fine Particulate Air Pollution: Lines that Connect
  publication-title: J. Air Waste Manag. Assoc.
– volume: 16
  start-page: 4919
  year: 2014
  end-page: 4926
  ident: b0285
  article-title: Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges
  publication-title: CrstEngComm
– volume: 21
  start-page: 1424
  year: 2014
  end-page: 1429
  ident: b0120
  article-title: Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye “congo red”
  publication-title: Ultrason. Sonochem.
– volume: 25
  start-page: 1997
  year: 2018
  end-page: 2008
  ident: b0125
  article-title: Functionalization of cellulose fiber by in situ growth of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for preparing a cellulose-based air filter with gas adsorption ability
  publication-title: Cellul.
– volume: 17
  start-page: 1140
  year: 2017
  end-page: 1148
  ident: b0035
  article-title: Direct blow-spinning of nanofibers on a window screen for highly efficient PM2. 5 removal
  publication-title: Nano Lett.
– volume: 4
  start-page: 15126
  year: 2016
  end-page: 15133
  ident: b0245
  article-title: Co-ZIF-9/TiO
  publication-title: J. Mater. Chem. A
– volume: 135
  start-page: 14488
  year: 2013
  end-page: 14491
  ident: b0115
  article-title: Iron (III)-based metal–organic frameworks as visible light photocatalysts
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 369
  year: 2018
  end-page: 375
  ident: b0265
  article-title: A ZIF-8 decorated TiO2 grid-like film with high CO2 adsorption for CO2 photoreduction
  publication-title: J. CO2 Util.
– volume: 582
  start-page: 506
  year: 2021
  end-page: 514
  ident: b0070
  article-title: Flexible and transparent composite nanofiber membrane that was fabricated via a “green” electrospinning method for efficient particulate matter 2.5 capture
  publication-title: J. Colloid Interface Sci.
– volume: 13
  start-page: 1603151
  year: 2017
  ident: b0065
  article-title: A controlled design of ripple-like polyamide-6 nanofiber/nets membrane for high-efficiency air filter
  publication-title: Small
– volume: 138
  start-page: 5785
  year: 2016
  end-page: 5788
  ident: b0220
  article-title: Preparation of nanofibrous metal–organic framework filters for efficient air pollution control[J]
  publication-title: J. Am. Chem. Soc.
– volume: 63
  start-page: 2223
  year: 2003
  end-page: 2253
  ident: b0025
  article-title: A review on polymer nanofibers by electrospinning and their applications in nanocomposites
  publication-title: Compos. Sci. Technol.
– volume: 19
  start-page: 2941
  year: 2021
  end-page: 2966
  ident: b0280
  article-title: Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO
  publication-title: Environ. Chem. Lett.
– volume: 203
  start-page: 415
  year: 2019
  end-page: 422
  ident: b0200
  article-title: Design of double-component metal–organic framework air filters with PM2. 5 capture, gas adsorption and antibacterial capacities
  publication-title: Carbohydr. Polym.
– volume: 334
  start-page: 355
  year: 2018
  end-page: 376
  ident: b0270
  article-title: Insight into the highly efficient degradation of PAHs in water over graphene oxide/Ag
  publication-title: Chem. Eng. J.
– volume: 825
  year: 2020
  ident: b0255
  article-title: Fabrication of ZIF-8@ TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation
  publication-title: J. Alloy. Compd.
– volume: 22
  year: 2020
  ident: 10.1016/j.jcis.2022.12.122_b0045
  article-title: Polyvinylidene fluoride composite nanofibrous filter for high-efficiency PM2. 5 capture
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2020.100533
– volume: 319
  start-page: 939
  issue: 5865
  year: 2008
  ident: 10.1016/j.jcis.2022.12.122_b0100
  article-title: High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture
  publication-title: Science
  doi: 10.1126/science.1152516
– volume: 11
  start-page: 400
  issue: 3
  year: 2021
  ident: 10.1016/j.jcis.2022.12.122_b0295
  article-title: Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter (PM2. 5) Collected on TiO2-Supporting Quartz Fiber Filters
  publication-title: Catalysts
  doi: 10.3390/catal11030400
– volume: 48
  start-page: 3438
  year: 2014
  ident: 10.1016/j.jcis.2022.12.122_b0015
  article-title: Association of cardiopulmonary health effects with source-appointed ambient fine particulate in Beijing, China: a combined analysis from the Healthy Volunteer Natural Relocation (HVNR) Study
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es404778w
– volume: 4
  start-page: 15126
  issue: 39
  year: 2016
  ident: 10.1016/j.jcis.2022.12.122_b0245
  article-title: Co-ZIF-9/TiO2 nanostructure for superior CO2 photoreduction activity
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04620G
– volume: 825
  year: 2020
  ident: 10.1016/j.jcis.2022.12.122_b0255
  article-title: Fabrication of ZIF-8@ TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2020.154008
– volume: 12
  start-page: 8730
  issue: 7
  year: 2020
  ident: 10.1016/j.jcis.2022.12.122_b0130
  article-title: Zeoliticimidazolate framework-8/ polypropylene–polycarbonate barklike meltblown fibrous membranes by a facile in situ growth method for efficient PM2. 5 capture
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21340
– volume: 63
  start-page: 2223
  issue: 15
  year: 2003
  ident: 10.1016/j.jcis.2022.12.122_b0025
  article-title: A review on polymer nanofibers by electrospinning and their applications in nanocomposites
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/S0266-3538(03)00178-7
– volume: 17
  start-page: 1140
  issue: 2
  year: 2017
  ident: 10.1016/j.jcis.2022.12.122_b0035
  article-title: Direct blow-spinning of nanofibers on a window screen for highly efficient PM2. 5 removal
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04771
– volume: 25
  start-page: 5999
  issue: 10
  year: 2018
  ident: 10.1016/j.jcis.2022.12.122_b0225
  article-title: Multifunctional cellulose-based air filters with high loadings of metal–organic frameworks prepared by in situ growth method for gas adsorption and antibacterial applications[J]
  publication-title: Cellul.
  doi: 10.1007/s10570-018-1982-1
– ident: 10.1016/j.jcis.2022.12.122_b0050
– volume: 21
  start-page: 1424
  issue: 4
  year: 2014
  ident: 10.1016/j.jcis.2022.12.122_b0120
  article-title: Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye “congo red”
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2013.12.012
– volume: 11
  start-page: 47649
  issue: 50
  year: 2019
  ident: 10.1016/j.jcis.2022.12.122_b0160
  article-title: Effect of functional groups of metal–organic frameworks, coated on cotton, on removal of particulate matters via selective interactions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b19646
– volume: 8
  start-page: 20274
  issue: 31
  year: 2016
  ident: 10.1016/j.jcis.2022.12.122_b0135
  article-title: Sonocrystallization of ZIF-8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b05746
– volume: 19
  start-page: 2941
  issue: 4
  year: 2021
  ident: 10.1016/j.jcis.2022.12.122_b0280
  article-title: Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO2 conversion, and bacterial inactivation: a review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-021-01231-w
– volume: 121
  start-page: 2331
  year: 2010
  ident: 10.1016/j.jcis.2022.12.122_b0010
  article-title: Particulate matter air pollution and cardiovascular disease an update to the scientific statement from the american heart association
  publication-title: Circulation
  doi: 10.1161/CIR.0b013e3181dbece1
– volume: 405
  year: 2021
  ident: 10.1016/j.jcis.2022.12.122_b0090
  article-title: PAA@ ZIF-8 incorporated nanofibrous membrane for high-efficiency PM2. 5 capture
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126584
– volume: 203
  start-page: 415
  year: 2019
  ident: 10.1016/j.jcis.2022.12.122_b0200
  article-title: Design of double-component metal–organic framework air filters with PM2. 5 capture, gas adsorption and antibacterial capacities
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.09.039
– volume: 338
  start-page: 82
  year: 2018
  ident: 10.1016/j.jcis.2022.12.122_b0235
  article-title: Morphology controlled porous poly (lactic acid)/zeolitic imidazolate framework-8 fibrous membranes with superior PM2. 5 capture capacity
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.025
– volume: 857
  year: 2023
  ident: 10.1016/j.jcis.2022.12.122_b0275
  article-title: Highly efficient photodegradation of magnetic GO-Fe3O4@ SiO2@ CdS for phenanthrene and pyrene: Mechanism insight and application assessment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.159254
– volume: 16
  start-page: 4919
  issue: 23
  year: 2014
  ident: 10.1016/j.jcis.2022.12.122_b0285
  article-title: Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges
  publication-title: CrstEngComm
  doi: 10.1039/C4CE00032C
– volume: 66
  start-page: 613
  issue: 4
  year: 2011
  ident: 10.1016/j.jcis.2022.12.122_b0030
  article-title: 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2010.10.035
– volume: 21
  start-page: 17259
  issue: 43
  year: 2011
  ident: 10.1016/j.jcis.2022.12.122_b0240
  article-title: Metal–organic frameworks: promising materials for improving the open circuit voltage of dye-sensitized solar cells
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm12754c
– volume: 135
  start-page: 14488
  issue: 39
  year: 2013
  ident: 10.1016/j.jcis.2022.12.122_b0115
  article-title: Iron (III)-based metal–organic frameworks as visible light photocatalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405086e
– volume: 7
  start-page: 1902590
  issue: 3
  year: 2020
  ident: 10.1016/j.jcis.2022.12.122_b0155
  article-title: Electrospinning of metal–organic frameworks for energy and environmental applications
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902590
– volume: 250
  start-page: 369
  year: 2019
  ident: 10.1016/j.jcis.2022.12.122_b0250
  article-title: MOF-derived hollow TiO2@ C/FeTiO3 nanoparticles as photoanodes with enhanced full spectrum light PEC activities
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2019.03.002
– volume: 114
  start-page: 5695
  issue: 11
  year: 2014
  ident: 10.1016/j.jcis.2022.12.122_b0110
  article-title: Metal–organic frameworks for air purification of toxic chemicals
  publication-title: Chem. Rev.
  doi: 10.1021/cr4006473
– volume: 2
  issue: 7
  year: 2018
  ident: 10.1016/j.jcis.2022.12.122_b0205
  article-title: Advanced Materials for Capturing Particulate Matter: Progress and Perspectives Small
  publication-title: Methods
– volume: 334
  start-page: 355
  year: 2018
  ident: 10.1016/j.jcis.2022.12.122_b0270
  article-title: Insight into the highly efficient degradation of PAHs in water over graphene oxide/Ag3PO4 composites under visible light irradiation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.104
– volume: 97
  start-page: 10319
  issue: 40
  year: 1993
  ident: 10.1016/j.jcis.2022.12.122_b0170
  article-title: Resonance Raman studies of imidazole, imidazolium, and their derivatives: the effect of deuterium substitution
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100142a010
– ident: 10.1016/j.jcis.2022.12.122_b0210
  doi: 10.1016/j.scitotenv.2018.08.050
– volume: 4
  start-page: 54454
  issue: 97
  year: 2014
  ident: 10.1016/j.jcis.2022.12.122_b0145
  article-title: Photocatalytic degradation of methylene blue in ZIF-8
  publication-title: Rsc Advances
  doi: 10.1039/C4RA08820D
– volume: 140
  start-page: 1812
  issue: 5
  year: 2018
  ident: 10.1016/j.jcis.2022.12.122_b0165
  article-title: Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11589
– volume: 112
  start-page: 673
  issue: 2
  year: 2012
  ident: 10.1016/j.jcis.2022.12.122_b0095
  article-title: Introduction to metal–organic frameworks
  publication-title: Chem. Rev.
  doi: 10.1021/cr300014x
– volume: 11
  start-page: 40592
  issue: 43
  year: 2019
  ident: 10.1016/j.jcis.2022.12.122_b0055
  article-title: Polyethylene/polypropylene bicomponent spunbond air filtration materials containing magnesium stearate for efficient fine particle capture
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13162
– volume: 24
  start-page: 369
  year: 2018
  ident: 10.1016/j.jcis.2022.12.122_b0265
  article-title: A ZIF-8 decorated TiO2 grid-like film with high CO2 adsorption for CO2 photoreduction
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2018.01.024
– volume: 117
  start-page: 11006
  issue: 43
  year: 2013
  ident: 10.1016/j.jcis.2022.12.122_b0175
  article-title: Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8: A Raman study
  publication-title: Chem. A Eur. J.
– volume: 8
  start-page: 7932
  issue: 15
  year: 2018
  ident: 10.1016/j.jcis.2022.12.122_b0060
  article-title: Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2. 5 capture
  publication-title: RSC Adv.
  doi: 10.1039/C7RA10916D
– volume: 25
  start-page: 1997
  issue: 3
  year: 2018
  ident: 10.1016/j.jcis.2022.12.122_b0125
  article-title: Functionalization of cellulose fiber by in situ growth of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for preparing a cellulose-based air filter with gas adsorption ability
  publication-title: Cellul.
  doi: 10.1007/s10570-018-1696-4
– volume: 582
  start-page: 506
  year: 2021
  ident: 10.1016/j.jcis.2022.12.122_b0070
  article-title: Flexible and transparent composite nanofiber membrane that was fabricated via a “green” electrospinning method for efficient particulate matter 2.5 capture
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.08.075
– volume: 13
  start-page: 1603151
  issue: 10
  year: 2017
  ident: 10.1016/j.jcis.2022.12.122_b0065
  article-title: A controlled design of ripple-like polyamide-6 nanofiber/nets membrane for high-efficiency air filter
  publication-title: Small
  doi: 10.1002/smll.201603151
– ident: 10.1016/j.jcis.2022.12.122_b0215
  doi: 10.1007/978-3-319-42789-8_37-1
– volume: 56
  start-page: 709
  issue: 6
  year: 2006
  ident: 10.1016/j.jcis.2022.12.122_b0005
  article-title: Health Effects of Fine Particulate Air Pollution: Lines that Connect
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.1080/10473289.2006.10464485
– volume: 6
  start-page: 6205
  year: 2015
  ident: 10.1016/j.jcis.2022.12.122_b0020
  article-title: Transparent air filter for high-efficiency PM2.5 capture
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7205
– volume: 300
  year: 2022
  ident: 10.1016/j.jcis.2022.12.122_b0080
  article-title: Metal-organic framework decorated polyimide nanofiber aerogels for efficient high-temperature particulate matter removal
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.121881
– volume: 43
  start-page: 5419
  issue: 16
  year: 2014
  ident: 10.1016/j.jcis.2022.12.122_b0105
  article-title: Toxic gas removal–metal–organic frameworks for the capture and degradation of toxic gases and vapours
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60475F
– volume: 208
  start-page: 328
  year: 2019
  ident: 10.1016/j.jcis.2022.12.122_b0230
  article-title: Lightweight and porous cellulose-based foams with high loadings of zeolitic imidazolate frameworks-8 for adsorption applications
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.12.081
– volume: 16
  start-page: 3642
  issue: 6
  year: 2016
  ident: 10.1016/j.jcis.2022.12.122_b0040
  article-title: Nanofiber air filters with high-temperature stability for efficient PM2. 5 removal from the pollution sources
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00771
– volume: 218
  start-page: 743
  year: 2017
  ident: 10.1016/j.jcis.2022.12.122_b0260
  article-title: Palladium-decorated hierarchical titania constructed from the metal-organic frameworks NH2-MIL-125 (Ti) as a robust photocatalyst for hydrogen evolution
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.07.020
– volume: 138
  start-page: 5785
  issue: 18
  year: 2016
  ident: 10.1016/j.jcis.2022.12.122_b0220
  article-title: Preparation of nanofibrous metal–organic framework filters for efficient air pollution control[J]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02553
SSID ssj0011559
Score 2.4799385
Snippet [Display omitted] A systematic study was performed on PM2.5 filtration and photodegradation performance of polyacrylonitrile @TiO2/ zeolitic imidazolate...
A systematic study was performed on PM2.5 filtration and photodegradation performance of polyacrylonitrile @TiO2/ zeolitic imidazolate framework-8(PTZ)hybrid...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 598
SubjectTerms Filtration
PAN
Photocatalytic
PM2.5
ZIF-8
Title Polyacrylonitrile@TiO2 nanofibrous membrane decorated by MOF for efficient filtration and green degradation of PM2.5
URI https://dx.doi.org/10.1016/j.jcis.2022.12.122
https://www.proquest.com/docview/2762817629
Volume 635
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSx0xEA9iD-qhVFvxo0qE3srqy8dukpvy8PHa8tSDgreQr5WV5z5ZXg9e_Nud2Q9pC3ooLHsIybJkJjO_SSa_IeSbKmUaJaMzp4TPpNNF5nVAwkuAI6LIpQ-4Dzm7KKY38udtfrtCxsNdGEyr7G1_Z9Nba923nPSzefJYVXjHF1abMopzpMFrabelVKjlx8-vaR4Mj926NA-WYe_-4kyX43UfKqTs5hy3BBnnbzmnf8x063smn8jHHjTSs-6_NslKqrfI2nio1bZFNv6gFfxMlleL-ZMLDcTisGAbWPen19Ulp7WrQZV8A8E-fUgPECfXiUaMPwFwRuqf6OxyQgHF0tQSS4A_omU174l1qasjvcM0HRhz17iuGBNdlPRqxo_zL-Rmcn49nmZ9dYUsCCGWGYSGnrtcKAB0kY8Mj56lojTBaYBxOiSXRBwZHYJKPJaKRSmF02UOTU7pUmyT1XpRpx1CDddIq-ggFkwyQgcWAXbxGEeBF96YXcKGabWhpx7HChhzO-SY3VsUhUVRWIYP3yXfX8c8dsQb7_bOB2nZv9THgmd4d9zRIFoLIsPDEph6EIPl4CU0g5fZ-89v75N1rE3fpfl8JavL5nc6AASz9Ietih6SD2c_fk0vXgBXie-L
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6h5QA9oJZSFfpypd6qlI2dh30rWrFaCrtwWCRull9BQUsWRcuBf9-ZjYMKEhwqRTlYnijy2DPf2ONvAH6UVRaGQcnElMImmZFFYqUjwkuEI6LIM-toH3I6KyaX2Z-r_GoDRv1dGEqrjLa_s-lrax1bDuNoHt7VNd3xxdVWqpJzosEj2u1NYqfKB7B5dHI6mT0eJtDJW5fpkSYkEO_OdGleN64m1m7OaVcw5fwl__TMUq_dz_gt7ETcyI66X3sHG6HZha1RX65tF978wyz4HlYXy8WDcS2G47hmW1z6v-f1OWeNaXA22RbjfXYbbjFUbgLzFIIi5vTMPrDp-ZghkGVhzS2BLolV9SJy6zLTeHZNmTooc92arh4TW1bsYsp_5XtwOT6ejyZJLLCQOCHEKsHo0HKTixIxnedDxb1NQ1EpZyQiOemCCcIPlXSuDNxXZeqzTBhZ5dhkSlmJDzBolk34CExxScyKBsPBkHnskHpEXtz7oeOFVWof0n5YtYvs41QEY6H7NLMbTarQpAqd0sP34eejzF3HvfFq77zXln4ygzQ6h1flvveq1agyOi_BoUc1aI6OQqb4Ugf_-e1vsDWZT8_02cns9BNsU6n6LuvnMwxW7X34goBmZb_GCfsXj-HyPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyacrylonitrile%40TiO2+nanofibrous+membrane+decorated+by+MOF+for+efficient+filtration+and+green+degradation+of+PM2.5&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Yang%2C+Zhengren&rft.au=Zhen%2C+Yuhua&rft.au=Feng%2C+Yao&rft.au=Jiang%2C+Xiaolin&rft.date=2023-04-01&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=635&rft.spage=598&rft.epage=610&rft_id=info:doi/10.1016%2Fj.jcis.2022.12.122&rft.externalDocID=S0021979722022706
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon