Fault Detection in a Swarm of Physical Robots Based on Behavioral Outlier Detection

The ability to reliably detect faults is essential in many real-world tasks that robot swarms have the potential to perform. Most studies on fault detection in swarm robotics have been conducted exclusively in simulation, and they have focused on a single type of fault or a specific task. In a serie...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on robotics Vol. 35; no. 6; pp. 1516 - 1522
Main Authors Tarapore, Danesh, Timmis, Jon, Christensen, Anders Lyhne
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability to reliably detect faults is essential in many real-world tasks that robot swarms have the potential to perform. Most studies on fault detection in swarm robotics have been conducted exclusively in simulation, and they have focused on a single type of fault or a specific task. In a series of previous studies, we have developed a robust fault-detection approach in which robots in a swarm learn to distinguish between normal and faulty behaviors online. In this paper, we assess the performance of our fault-detection approach on a swarm of seven physical mobile robots. We experiment with three classic swarm robotics tasks and consider several types of faults in both sensors and actuators. Experimental results show that the robots are able to reliably detect the presence of hardware faults in one another even when the swarm behavior is changed during operation. This paper is thus an important step toward making robot swarms sufficiently reliable and dependable for real-world applications.
AbstractList The ability to reliably detect faults is essential in many real-world tasks that robot swarms have the potential to perform. Most studies on fault detection in swarm robotics have been conducted exclusively in simulation, and they have focused on a single type of fault or a specific task. In a series of previous studies, we have developed a robust fault-detection approach in which robots in a swarm learn to distinguish between normal and faulty behaviors online. In this paper, we assess the performance of our fault-detection approach on a swarm of seven physical mobile robots. We experiment with three classic swarm robotics tasks and consider several types of faults in both sensors and actuators. Experimental results show that the robots are able to reliably detect the presence of hardware faults in one another even when the swarm behavior is changed during operation. This paper is thus an important step toward making robot swarms sufficiently reliable and dependable for real-world applications.
Author Tarapore, Danesh
Timmis, Jon
Christensen, Anders Lyhne
Author_xml – sequence: 1
  givenname: Danesh
  orcidid: 0000-0002-3226-6861
  surname: Tarapore
  fullname: Tarapore, Danesh
  email: d.s.tarapore@soton.ac.uk
  organization: School of Electronics and Computer Science, University of Southampton, Southampton, U.K
– sequence: 2
  givenname: Jon
  orcidid: 0000-0003-1055-0471
  surname: Timmis
  fullname: Timmis, Jon
  email: jon.timmis@york.ac.uk
  organization: York Robotics Laboratory and the Department of Electronic Engineering, University of York, York, U.K
– sequence: 3
  givenname: Anders Lyhne
  orcidid: 0000-0002-9994-2908
  surname: Christensen
  fullname: Christensen, Anders Lyhne
  email: anderslyhne@gmail.com
  organization: Embodied Systems for Robotics and Learning, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark
BookMark eNpFkM1LAzEQxYNUsK3eBS8Bz1snyX4kR1utCoVKW88h2U3olu2mJrtK_3tTKsoc3sD83ht4IzRoXWsQuiUwIQTEw2a1nFAgYkIFFUCyCzQkIiUJpDkfxD3LaMJA8Cs0CmEHQFMBbIjWc9U3HX4ynSm72rW4brHC62_l99hZ_L49hrpUDV457bqApyqYCkdsarbqq3Y-npZ919TG_2dco0urmmBufnWMPubPm9lrsli-vM0eF0nJGOuSQld5WgGHUtlM66gmBWFLYoUpqlRTbnhFKdM6JZYKa4FyyK22LCu01YyN0f059-DdZ29CJ3eu9218KSmjtMgZFyJScKZK70LwxsqDr_fKHyUBeapOxurkqTr5W1203J0ttTHmD-fFaTL2AxUrbAY
CODEN ITREAE
CitedBy_id crossref_primary_10_3390_ai5010022
crossref_primary_10_1002_rob_22114
crossref_primary_10_1038_s41598_023_46238_1
crossref_primary_10_1016_j_engappai_2023_106673
crossref_primary_10_1007_s11036_021_01785_7
crossref_primary_10_1016_j_neucom_2022_05_005
crossref_primary_10_1007_s43154_022_00079_4
crossref_primary_10_3233_AIC_220127
crossref_primary_10_3389_frobt_2020_00018
crossref_primary_10_3389_frobt_2020_00054
crossref_primary_10_1007_s11071_020_05905_y
crossref_primary_10_1126_scirobotics_abm4636
crossref_primary_10_1016_j_simpat_2022_102599
crossref_primary_10_1109_TEVC_2020_3036578
Cites_doi 10.1016/S0165-0114(03)00116-7
10.1016/j.neucom.2015.05.116
10.1109/TRO.2017.2658604
10.3389/frobt.2017.00012
10.1109/JRA.1986.1087032
10.3390/s8117545
10.1016/j.robot.2011.08.008
10.1109/IROS.2014.6943084
10.1088/1748-3190/10/1/016014
10.5772/7252
10.1504/IJMIC.2006.008645
10.1017/S0263574710000457
10.7551/978-0-262-33027-5-ch072
10.3389/frobt.2018.00131
10.1007/s10514-007-9060-9
10.1371/journal.pone.0182058
10.1109/TEVC.2009.2017516
10.1038/nature14422
10.1109/TRO.2007.895081
10.1371/journal.pone.0151834
10.1145/1152934.1152936
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TRO.2019.2929015
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0468
EndPage 1522
ExternalDocumentID 10_1109_TRO_2019_2929015
8787875
Genre orig-research
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/R030073/1
  funderid: 10.13039/501100000266
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/K040820/1
  funderid: 10.13039/501100000266
– fundername: Marie Curie Intra-European Fellowship
  grantid: GiFteD-MrS/623620
GroupedDBID .DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AIBXA
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIG
RNS
VJK
XFK
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-7bd64d080caf5bb80ce409fc1f9e7d4b28e8d223bb41f29ff02806fbf357bfb33
IEDL.DBID RIE
ISSN 1552-3098
IngestDate Thu Oct 10 18:59:50 EDT 2024
Fri Aug 23 07:41:26 EDT 2024
Wed Jun 26 19:28:43 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-7bd64d080caf5bb80ce409fc1f9e7d4b28e8d223bb41f29ff02806fbf357bfb33
ORCID 0000-0002-9994-2908
0000-0003-1055-0471
0000-0002-3226-6861
OpenAccessLink https://eprints.soton.ac.uk/433404/1/08787875.pdf
PQID 2322763899
PQPubID 27625
PageCount 7
ParticipantIDs ieee_primary_8787875
crossref_primary_10_1109_TRO_2019_2929015
proquest_journals_2322763899
PublicationCentury 2000
PublicationDate 2019-Dec.
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-Dec.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref10
mutambara (ref6) 1998
ref2
ref1
ahin (ref15) 0
ref17
ref16
ref19
ref24
ref23
ref25
ref20
ref22
ref21
tarapore (ref11) 0
ref8
ref7
ref9
ref4
ref3
ref5
garattoni (ref18) 2015
References_xml – ident: ref10
  doi: 10.1016/S0165-0114(03)00116-7
– ident: ref19
  doi: 10.1016/j.neucom.2015.05.116
– ident: ref1
  doi: 10.1109/TRO.2017.2658604
– ident: ref20
  doi: 10.3389/frobt.2017.00012
– ident: ref21
  doi: 10.1109/JRA.1986.1087032
– year: 1998
  ident: ref6
  publication-title: Decentralized Estimation and Control for Multisensor Systems
  contributor:
    fullname: mutambara
– ident: ref17
  doi: 10.3390/s8117545
– ident: ref9
  doi: 10.1016/j.robot.2011.08.008
– ident: ref7
  doi: 10.1109/IROS.2014.6943084
– ident: ref13
  doi: 10.1088/1748-3190/10/1/016014
– ident: ref3
  doi: 10.5772/7252
– ident: ref16
  doi: 10.1504/IJMIC.2006.008645
– ident: ref8
  doi: 10.1017/S0263574710000457
– ident: ref12
  doi: 10.7551/978-0-262-33027-5-ch072
– start-page: 23
  year: 0
  ident: ref11
  article-title: Abnormality detection in multiagent systems inspired by the adaptive immune system
  publication-title: Proc 1st Int Conf Autonomous Agents Multiagent Syst
  contributor:
    fullname: tarapore
– ident: ref24
  doi: 10.3389/frobt.2018.00131
– ident: ref2
  doi: 10.1007/s10514-007-9060-9
– ident: ref14
  doi: 10.1371/journal.pone.0182058
– start-page: 10
  year: 0
  ident: ref15
  article-title: Swarm robotics: From sources of inspiration to domains of application
  publication-title: Proc SAB Int Workshop Swarm Robot
  contributor:
    fullname: ahin
– ident: ref4
  doi: 10.1109/TEVC.2009.2017516
– year: 2015
  ident: ref18
  article-title: Software infrastructure for E-puck (and TAM)
  contributor:
    fullname: garattoni
– ident: ref25
  doi: 10.1038/nature14422
– ident: ref5
  doi: 10.1109/TRO.2007.895081
– ident: ref22
  doi: 10.1371/journal.pone.0151834
– ident: ref23
  doi: 10.1145/1152934.1152936
SSID ssj0024903
Score 2.4439332
Snippet The ability to reliably detect faults is essential in many real-world tasks that robot swarms have the potential to perform. Most studies on fault detection in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1516
SubjectTerms Actuators
Anomaly detection
Collective behavior
Data analysis
Fault detection
Mobile robots
Multi-robot systems
multirobot systems
Outliers (statistics)
Reliability
Robot sensing systems
robot swarms
Robotics
Robots
Title Fault Detection in a Swarm of Physical Robots Based on Behavioral Outlier Detection
URI https://ieeexplore.ieee.org/document/8787875
https://www.proquest.com/docview/2322763899
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRCFgjywIJG0jeMkHilQVUilqA-pW2QntoSABLWJkPj12E7S8hpQhmRwTtad7fvsu_sMcBH3sEa5am8iY2a5DDM153xheS6RRGgKMqaPBkYP3nDu3i_IogZX61oYIYRJPhO2_jSx_DiNcn1U1gl8_ZA61JWMolZrw6tHzS3ImlHMwl0aVCHJLu3MJmOdw0Vth-qoIfnmgsydKr8WYuNdBrswqvpVJJU823nG7ejjB2Xjfzu-BzslzETXxbjYh5pIDmD7C_lgE6YDlr9k6FZkJhsrQU8JYmj6zpavKJXosTQgmqQ8zVaor9xdjFSz_rqwH43zTEHY5UbGIcwHd7OboVVesWBFGOPM8nnsubFCjRGThHP1FmrDJ6OepMKPXe4EIogVguDc7UmHSmkisZJLTHwuOcZH0EjSRBwD0jWt2BcRV-uWS0y8jTg-kx6ljmYdbMFlpfXwrWDSCM0OpEtDZaFQWygsLdSCplbiul2pvxa0KzOF5VRbhQoSOr7GXfTk779OYUvLLnJQ2tDIlrk4U0gi4-dmCH0CDnPEUA
link.rule.ids 315,783,787,799,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADr4IoFPDAgkRKG8dJPVKgKtAH6kPqFtmJLSEgQW0iJH49tpO2vAaUIRnsxLqzc9_57j4DnIV1rFGu8k1kyCyHYabWnCcs1yGSCE1BxvTWQLfntsfO_YRMCnCxqIURQpjkM1HVjyaWH8ZBqrfKLhuevsgKrBKNK7JqrSWzHjXnIGtOMQvXaGMelKzRy9Ggr7O4aNWmOm5Ivhkhc6rKr1-xsS-tLejOR5allTxX04RXg48fpI3_Hfo2bOZAE11lM2MHCiLahY0v9IMlGLZY-pKgG5GYfKwIPUWIoeE7m76iWKLHXIVoEPM4maGmMnghUs2ai9J-1E8TBWKny3fswbh1O7puW_khC1aAMU4sj4euEyrcGDBJOFd3oVw-GdQlFV7ocLshGqHCEJw7dWlTKU0sVnKJicclx3gfilEciQNAuqoVeyLgSjcOMRE3YntMupTamnewDOdzqftvGZeGb3yQGvWVhnytIT_XUBlKWoiLdrn8ylCZq8nPF9vMV6DQ9jTyood_9zqFtfao2_E7d72HI1jX38kyUipQTKapOFa4IuEnZjp9AoPBx50
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Detection+in+a+Swarm+of+Physical+Robots+Based+on+Behavioral+Outlier+Detection&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Tarapore%2C+Danesh&rft.au=Timmis%2C+Jon&rft.au=Christensen%2C+Anders+Lyhne&rft.date=2019-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1552-3098&rft.eissn=1941-0468&rft.volume=35&rft.issue=6&rft.spage=1516&rft_id=info:doi/10.1109%2FTRO.2019.2929015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon