Deep Reinforcement Learning-Based Hierarchical Time Division Duplexing Control for Dense Wireless and Mobile Networks

Future wireless and mobile network services must accommodate highly dynamic downlink and uplink traffic asymmetry. To fulfill this requirement, the third-generation partnership project (3GPP) introduced the enhanced interference mitigation and traffic adaptation strategy in addition to dynamic time...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 20; no. 11; pp. 7135 - 7150
Main Authors Tuong, Van Dat, Dao, Nhu-Ngoc, Noh, Wonjong, Cho, Sungrae
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Future wireless and mobile network services must accommodate highly dynamic downlink and uplink traffic asymmetry. To fulfill this requirement, the third-generation partnership project (3GPP) introduced the enhanced interference mitigation and traffic adaptation strategy in addition to dynamic time division duplexing (TDD). In this study, we develop a reinforcement learning (RL)-based dynamic TDD framework that effectively controls interference and serves various traffic demands. First, we introduce an interference-penalty model that evaluates interference indirectly based on the duplexing policy. This can significantly reduce overhead for measuring and exchanging channel information in a dense network. Second, we design a new mixed-reward model that consists of the achievable data rate and the implicit interference penalty. Third, we implement deep RL algorithms that base station (BSs) use to train their radio frame configurations (RFCs). The training process at each BS takes into account the traffic demand and the RFCs of the surrounding BSs. The BSs are coordinated in a single-leader multi-follower Stackelberg game, which achieves a global RFC setup that maximizes the data rate and minimizes the interference. Extensive simulations show that the proposed framework stably converges in various environments and provides near-optimal performance equivalent to 95% or more of the full-search-based optimal performance, which is 48.84%, 41.92%, and 62.11% higher than the currently utilized random RFC, fixed RFC, and traffic-matched RFC approaches.
AbstractList Future wireless and mobile network services must accommodate highly dynamic downlink and uplink traffic asymmetry. To fulfill this requirement, the third-generation partnership project (3GPP) introduced the enhanced interference mitigation and traffic adaptation strategy in addition to dynamic time division duplexing (TDD). In this study, we develop a reinforcement learning (RL)-based dynamic TDD framework that effectively controls interference and serves various traffic demands. First, we introduce an interference-penalty model that evaluates interference indirectly based on the duplexing policy. This can significantly reduce overhead for measuring and exchanging channel information in a dense network. Second, we design a new mixed-reward model that consists of the achievable data rate and the implicit interference penalty. Third, we implement deep RL algorithms that base station (BSs) use to train their radio frame configurations (RFCs). The training process at each BS takes into account the traffic demand and the RFCs of the surrounding BSs. The BSs are coordinated in a single-leader multi-follower Stackelberg game, which achieves a global RFC setup that maximizes the data rate and minimizes the interference. Extensive simulations show that the proposed framework stably converges in various environments and provides near-optimal performance equivalent to 95% or more of the full-search-based optimal performance, which is 48.84%, 41.92%, and 62.11% higher than the currently utilized random RFC, fixed RFC, and traffic-matched RFC approaches.
Author Noh, Wonjong
Tuong, Van Dat
Dao, Nhu-Ngoc
Cho, Sungrae
Author_xml – sequence: 1
  givenname: Van Dat
  orcidid: 0000-0002-7178-088X
  surname: Tuong
  fullname: Tuong, Van Dat
  organization: School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea
– sequence: 2
  givenname: Nhu-Ngoc
  orcidid: 0000-0003-1565-4376
  surname: Dao
  fullname: Dao, Nhu-Ngoc
  email: nndao@sejong.ac.kr
  organization: Department of Computer Science and Engineering, Sejong University, Seoul, South Korea
– sequence: 3
  givenname: Wonjong
  orcidid: 0000-0001-5668-0453
  surname: Noh
  fullname: Noh, Wonjong
  email: wonjong.noh@hallym.ac.kr
  organization: School of Software, Hallym University, Chuncheon, Republic of Korea
– sequence: 4
  givenname: Sungrae
  orcidid: 0000-0003-1879-688X
  surname: Cho
  fullname: Cho, Sungrae
  email: srcho@cau.ac.kr
  organization: School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea
BookMark eNo9kE1LAzEQhoNUsK3eBS8Bz1uTTdJsjtqqFaqCVHpctsmspm6TNdn68e9NafE0w_C878AzQD3nHSB0TsmIUqKuFsvJKCc5HTFSEKXIEepTIYosz3nR2-1snNFcjk_QIMY1IVSOheij7RSgxS9gXe2Dhg24Ds-hCs66t-ymimDwzEKogn63umrwwm4AT-2XjdY7PN22DfwkFE-864JvcGrBU3AR8NIGaCBGXDmDH_3KNoCfoPv24SOeouO6aiKcHeYQvd7dLiazbP58_zC5nmeaMdZlUq20AEU5V0aZcQ1UQ2GAa1asjGSCKCGNICAUKQRNB84l1ZxDwaQUxrAhutz3tsF_biF25dpvg0svy1ykcBKm8kSRPaWDjzFAXbbBbqrwW1JS7uSWSW65k1se5KbIxT5iAeAfV5ypgiv2B6ccd5w
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3371169
crossref_primary_10_1109_TII_2021_3117968
crossref_primary_10_1109_TWC_2023_3252621
crossref_primary_10_3390_s22051746
Cites_doi 10.1109/INFOCOM.2018.8486280
10.1155/2017/8182150
10.1109/CompComm.2017.8322686
10.1109/LWC.2018.2825330
10.1109/VTCFall.2019.8891402
10.1109/TVT.2018.2864704
10.1109/VTCSpring.2016.7504204
10.1109/LWC.2017.2702747
10.1109/JSAC.2017.2726218
10.1109/VTCSpring.2019.8746715
10.1109/GLOCOMW.2012.6477639
10.1109/PIMRC.2013.6666413
10.1109/ICCW.2017.7962728
10.1155/2017/8198017
10.2200/S00014ED1V01Y200508COM001
10.1038/nature14236
10.1109/JSAC.2019.2933973
10.1017/S0962492913000032
10.1109/ICCChina.2014.7008242
10.1201/9781315381619
10.1109/VTCSpring.2015.7145843
10.1109/ICCW.2019.8756987
10.1109/GLOCOMW.2015.7414146
10.1007/BF00992698
10.1109/WCNC.2018.8377314
10.1002/9781119307600
10.1109/TWC.2013.060513.120959
10.1109/JSAC.2015.2417013
10.1007/s11276-019-01941-8
10.1109/MCOM.2012.6353682
10.1109/ISWCS.2014.6933488
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2021.3080990
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 7150
ExternalDocumentID 10_1109_TWC_2021_3080990
9439849
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF) Grant through the Korean Government Ministry of Science and ICT (MSIT)
  grantid: NRF-2020R1F1A1069119
  funderid: 10.13039/501100003725
– fundername: Institute for Information and Communications Technology Promotion (IITP) Grant through the Korean Government by the Ministry of Science and ICT (MSIT) (A study on core technology of 5G mobile communication using millimeter wave band)
  grantid: 2018-0-00889
  funderid: 10.13039/501100014188
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AIBXA
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-79bc5e91449d9d6fe1ce8de4c38bd7350957d50e5908517354471c44e83775dd3
IEDL.DBID RIE
ISSN 1536-1276
IngestDate Thu Oct 10 18:01:12 EDT 2024
Fri Aug 23 02:52:24 EDT 2024
Mon Nov 04 11:47:56 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-79bc5e91449d9d6fe1ce8de4c38bd7350957d50e5908517354471c44e83775dd3
ORCID 0000-0001-5668-0453
0000-0002-7178-088X
0000-0003-1879-688X
0000-0003-1565-4376
OpenAccessLink https://doi.org/10.1109/twc.2021.3080990
PQID 2595720292
PQPubID 105736
PageCount 16
ParticipantIDs ieee_primary_9439849
proquest_journals_2595720292
crossref_primary_10_1109_TWC_2021_3080990
PublicationCentury 2000
PublicationDate 2021-Nov.
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-Nov.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref11
ref10
hausknecht (ref40) 2015
(ref3) 2012
ref2
(ref29) 2017
ref39
ref17
ref16
ref19
yi ong (ref38) 2015
ref18
(ref31) 2017
(ref46) 2010
mnih (ref42) 2013
(ref4) 2017
sutton (ref27) 2018
fudenberg (ref32) 1991; 393
ref24
ref45
ref23
ref26
ref47
ref25
(ref33) 2017
ref20
ref22
ref44
ref21
gu (ref41) 2016
(ref1) 2019
(ref30) 2019
(ref28) 2017
(ref48) 2019
ref8
ref7
ref9
ref6
hasselt (ref43) 2016
ref5
References_xml – ident: ref14
  doi: 10.1109/INFOCOM.2018.8486280
– ident: ref17
  doi: 10.1155/2017/8182150
– ident: ref5
  doi: 10.1109/CompComm.2017.8322686
– year: 2019
  ident: ref48
  publication-title: Study of enablers for network automation for 5G
– year: 2017
  ident: ref4
  publication-title: NR and NG-RAN Overall Description
– ident: ref6
  doi: 10.1109/LWC.2018.2825330
– year: 2018
  ident: ref27
  publication-title: Reinforcement Learning An Introduction
  contributor:
    fullname: sutton
– year: 2019
  ident: ref1
  publication-title: Cisco Visual Networking Index Global Mobile Data Traffic Forecast Update
– ident: ref7
  doi: 10.1109/VTCFall.2019.8891402
– ident: ref10
  doi: 10.1109/TVT.2018.2864704
– ident: ref12
  doi: 10.1109/VTCSpring.2016.7504204
– year: 2017
  ident: ref28
  publication-title: Overview of Duplexing and Cross-Link Interference Mitigation
– ident: ref35
  doi: 10.1109/LWC.2017.2702747
– ident: ref15
  doi: 10.1109/JSAC.2017.2726218
– year: 2017
  ident: ref29
  publication-title: Discussion on Dynamic TDD and Cross-Link Interference Mitigation Schemes
– ident: ref20
  doi: 10.1109/VTCSpring.2019.8746715
– ident: ref18
  doi: 10.1109/GLOCOMW.2012.6477639
– ident: ref13
  doi: 10.1109/PIMRC.2013.6666413
– start-page: 2829
  year: 2016
  ident: ref41
  article-title: Continuous deep Q-learning with model-based acceleration
  publication-title: Proc 33rd Int Conf Mach Learn
  contributor:
    fullname: gu
– ident: ref16
  doi: 10.1109/ICCW.2017.7962728
– year: 2010
  ident: ref46
  publication-title: Further Advancements for E-UTRA Physical Layer Aspects
– ident: ref22
  doi: 10.1155/2017/8198017
– volume: 393
  year: 1991
  ident: ref32
  publication-title: Game Theory
  contributor:
    fullname: fudenberg
– ident: ref45
  doi: 10.2200/S00014ED1V01Y200508COM001
– ident: ref39
  doi: 10.1038/nature14236
– ident: ref36
  doi: 10.1109/JSAC.2019.2933973
– year: 2013
  ident: ref42
  article-title: Playing atari with deep reinforcement learning
  publication-title: arXiv 1312 5602
  contributor:
    fullname: mnih
– ident: ref37
  doi: 10.1017/S0962492913000032
– year: 2017
  ident: ref33
  publication-title: Study on new radio access technology physical layer aspects
– year: 2012
  ident: ref3
– ident: ref23
  doi: 10.1109/ICCChina.2014.7008242
– year: 2019
  ident: ref30
  publication-title: Cross Link Interference (CLI) handling and Remote Interference Management (RIM) for NR
– ident: ref34
  doi: 10.1201/9781315381619
– ident: ref9
  doi: 10.1109/VTCSpring.2015.7145843
– ident: ref21
  doi: 10.1109/ICCW.2019.8756987
– ident: ref26
  doi: 10.1109/GLOCOMW.2015.7414146
– year: 2015
  ident: ref38
  article-title: Distributed deep Q-learning
  publication-title: arXiv 1508 04186
  contributor:
    fullname: yi ong
– year: 2015
  ident: ref40
  article-title: Deep reinforcement learning in parameterized action space
  publication-title: arXiv 1511 04143
  contributor:
    fullname: hausknecht
– start-page: 2094
  year: 2016
  ident: ref43
  article-title: Deep reinforcement learning with double Q-learning
  publication-title: Proc 30th AAAI Conf Artif Intell
  contributor:
    fullname: hasselt
– ident: ref44
  doi: 10.1007/BF00992698
– ident: ref2
  doi: 10.1109/WCNC.2018.8377314
– year: 2017
  ident: ref31
  publication-title: Cross-Link Interference Management Based on Coordinated Beamforming
– ident: ref47
  doi: 10.1002/9781119307600
– ident: ref25
  doi: 10.1109/TWC.2013.060513.120959
– ident: ref19
  doi: 10.1109/JSAC.2015.2417013
– ident: ref24
  doi: 10.1007/s11276-019-01941-8
– ident: ref11
  doi: 10.1109/MCOM.2012.6353682
– ident: ref8
  doi: 10.1109/ISWCS.2014.6933488
SSID ssj0017655
Score 2.4536393
Snippet Future wireless and mobile network services must accommodate highly dynamic downlink and uplink traffic asymmetry. To fulfill this requirement, the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 7135
SubjectTerms 5G mobile communication
Algorithms
Deep learning
Deep Q-learning
duplexing control
Game theory
Heuristic algorithms
intercell interference
Interference
Machine learning
Optimization
Radio equipment
radio frame configuration
reinforcement learning
Resource management
stackelberg game
Switches
Time division
Wireless communication
Wireless networks
Title Deep Reinforcement Learning-Based Hierarchical Time Division Duplexing Control for Dense Wireless and Mobile Networks
URI https://ieeexplore.ieee.org/document/9439849
https://www.proquest.com/docview/2595720292
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxh4I8pLHliQSEliO45HaKkqpDIgEGxRbV8RokoraBZ-PWcnrRAwsEWRfbJ89j18990BnMkcuZBORS5ObCRcPI5GickiZ2yax5ar1Hlw8vAuGzyK22f5vAIXSywMIobkM-z4zxDLd1Nb-aeyS03aMxd6FVaV1jVWaxkxUFnocEoX2PeVUcuQZKwvH5665AimSYeTeRSk7zcVFHqq_BLEQbv0N2G4WFedVPLWqeamYz9_lGz878K3YKMxM9lVfS62YQXLHVj_VnxwF6oe4ozdYyidasMrIWuqrb5E16TcHBu8enhy6JYyYR4swnqvNRid9aqZL6VZvrBunezOiArrkVOMzGfUTkiCslHp2HBqSPCwuzrd_GMPHvs3D91B1DRhiCznfB4pbaxETX6XdtplY0ws5g6F5blxipO9IZWTMfre6TKhH4LUnRUCyfNV0jm-D61yWuIBMDRZnqIYkVlghTSxHjsiQ8NTLdORytpwvuBLMatrbRTBR4l1QTwsPA-Lhodt2PXbvBzX7HAbjheMLJrL-FGQhycVTdbp4d-zjmDN064hhsfQmr9XeEK2xtychkP2BVjQ0T8
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xcNjlwBttea0Pe0HalCS24_gILagstIdV0XKLantaoUVpBc2FX8_YSSu0cOAWWbZjeex5eOabAfgpc-RCOhW5OLGRcPE4GiUmi5yxaR5brlLnwcn9Qda7E7_v5f0K_FpiYRAxBJ9h238GX76b2so_lZ1pkp650F9gjfTqPKvRWkufgcpCjVO6wr6yjFo6JWN9NvzbIVMwTdqcFKTAf98IoVBV5R0rDvLlahP6i5XVYSX_2tXctO3Lf0kbP7v0LdhoFE12Xp-MbVjBcgfW36Qf3IWqizhjfzAkT7XhnZA1-VYn0QWJN8d6Dx6gHOqlPDIPF2HdhxqOzrrVzCfTLCesU4e7M5qFdcksRuZjah-Jh7JR6Vh_aoj1sEEdcP68B3dXl8NOL2rKMESWcz6PlDZWoibLSzvtsjEmFnOHwvLcOMVJ45DKyRh99XSZUIMggWeFQLJ9lXSO78NqOS3xOzA0WZ6iGJFiYIU0sR47moa6p1qmI5W14HRBl2JWZ9sogpUS64JoWHgaFg0NW7Drt3nZr9nhFhwtCFk01_G5IBtPKhqs04OPR_2Ar71h_7a4vR7cHMI3_58acHgEq_OnCo9J85ibk3DgXgFzL9SK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning-Based+Hierarchical+Time+Division+Duplexing+Control+for+Dense+Wireless+and+Mobile+Networks&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Tuong%2C+Van+Dat&rft.au=Dao%2C+Nhu-Ngoc&rft.au=Noh%2C+Wonjong&rft.au=Cho%2C+Sungrae&rft.date=2021-11-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=20&rft.issue=11&rft.spage=7135&rft.epage=7150&rft_id=info:doi/10.1109%2FTWC.2021.3080990&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2021_3080990
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon