Deep Reinforcement Learning-Based Hierarchical Time Division Duplexing Control for Dense Wireless and Mobile Networks
Future wireless and mobile network services must accommodate highly dynamic downlink and uplink traffic asymmetry. To fulfill this requirement, the third-generation partnership project (3GPP) introduced the enhanced interference mitigation and traffic adaptation strategy in addition to dynamic time...
Saved in:
Published in | IEEE transactions on wireless communications Vol. 20; no. 11; pp. 7135 - 7150 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Future wireless and mobile network services must accommodate highly dynamic downlink and uplink traffic asymmetry. To fulfill this requirement, the third-generation partnership project (3GPP) introduced the enhanced interference mitigation and traffic adaptation strategy in addition to dynamic time division duplexing (TDD). In this study, we develop a reinforcement learning (RL)-based dynamic TDD framework that effectively controls interference and serves various traffic demands. First, we introduce an interference-penalty model that evaluates interference indirectly based on the duplexing policy. This can significantly reduce overhead for measuring and exchanging channel information in a dense network. Second, we design a new mixed-reward model that consists of the achievable data rate and the implicit interference penalty. Third, we implement deep RL algorithms that base station (BSs) use to train their radio frame configurations (RFCs). The training process at each BS takes into account the traffic demand and the RFCs of the surrounding BSs. The BSs are coordinated in a single-leader multi-follower Stackelberg game, which achieves a global RFC setup that maximizes the data rate and minimizes the interference. Extensive simulations show that the proposed framework stably converges in various environments and provides near-optimal performance equivalent to 95% or more of the full-search-based optimal performance, which is 48.84%, 41.92%, and 62.11% higher than the currently utilized random RFC, fixed RFC, and traffic-matched RFC approaches. |
---|---|
AbstractList | Future wireless and mobile network services must accommodate highly dynamic downlink and uplink traffic asymmetry. To fulfill this requirement, the third-generation partnership project (3GPP) introduced the enhanced interference mitigation and traffic adaptation strategy in addition to dynamic time division duplexing (TDD). In this study, we develop a reinforcement learning (RL)-based dynamic TDD framework that effectively controls interference and serves various traffic demands. First, we introduce an interference-penalty model that evaluates interference indirectly based on the duplexing policy. This can significantly reduce overhead for measuring and exchanging channel information in a dense network. Second, we design a new mixed-reward model that consists of the achievable data rate and the implicit interference penalty. Third, we implement deep RL algorithms that base station (BSs) use to train their radio frame configurations (RFCs). The training process at each BS takes into account the traffic demand and the RFCs of the surrounding BSs. The BSs are coordinated in a single-leader multi-follower Stackelberg game, which achieves a global RFC setup that maximizes the data rate and minimizes the interference. Extensive simulations show that the proposed framework stably converges in various environments and provides near-optimal performance equivalent to 95% or more of the full-search-based optimal performance, which is 48.84%, 41.92%, and 62.11% higher than the currently utilized random RFC, fixed RFC, and traffic-matched RFC approaches. |
Author | Noh, Wonjong Tuong, Van Dat Dao, Nhu-Ngoc Cho, Sungrae |
Author_xml | – sequence: 1 givenname: Van Dat orcidid: 0000-0002-7178-088X surname: Tuong fullname: Tuong, Van Dat organization: School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea – sequence: 2 givenname: Nhu-Ngoc orcidid: 0000-0003-1565-4376 surname: Dao fullname: Dao, Nhu-Ngoc email: nndao@sejong.ac.kr organization: Department of Computer Science and Engineering, Sejong University, Seoul, South Korea – sequence: 3 givenname: Wonjong orcidid: 0000-0001-5668-0453 surname: Noh fullname: Noh, Wonjong email: wonjong.noh@hallym.ac.kr organization: School of Software, Hallym University, Chuncheon, Republic of Korea – sequence: 4 givenname: Sungrae orcidid: 0000-0003-1879-688X surname: Cho fullname: Cho, Sungrae email: srcho@cau.ac.kr organization: School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea |
BookMark | eNo9kE1LAzEQhoNUsK3eBS8Bz1uTTdJsjtqqFaqCVHpctsmspm6TNdn68e9NafE0w_C878AzQD3nHSB0TsmIUqKuFsvJKCc5HTFSEKXIEepTIYosz3nR2-1snNFcjk_QIMY1IVSOheij7RSgxS9gXe2Dhg24Ds-hCs66t-ymimDwzEKogn63umrwwm4AT-2XjdY7PN22DfwkFE-864JvcGrBU3AR8NIGaCBGXDmDH_3KNoCfoPv24SOeouO6aiKcHeYQvd7dLiazbP58_zC5nmeaMdZlUq20AEU5V0aZcQ1UQ2GAa1asjGSCKCGNICAUKQRNB84l1ZxDwaQUxrAhutz3tsF_biF25dpvg0svy1ykcBKm8kSRPaWDjzFAXbbBbqrwW1JS7uSWSW65k1se5KbIxT5iAeAfV5ypgiv2B6ccd5w |
CODEN | ITWCAX |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3371169 crossref_primary_10_1109_TII_2021_3117968 crossref_primary_10_1109_TWC_2023_3252621 crossref_primary_10_3390_s22051746 |
Cites_doi | 10.1109/INFOCOM.2018.8486280 10.1155/2017/8182150 10.1109/CompComm.2017.8322686 10.1109/LWC.2018.2825330 10.1109/VTCFall.2019.8891402 10.1109/TVT.2018.2864704 10.1109/VTCSpring.2016.7504204 10.1109/LWC.2017.2702747 10.1109/JSAC.2017.2726218 10.1109/VTCSpring.2019.8746715 10.1109/GLOCOMW.2012.6477639 10.1109/PIMRC.2013.6666413 10.1109/ICCW.2017.7962728 10.1155/2017/8198017 10.2200/S00014ED1V01Y200508COM001 10.1038/nature14236 10.1109/JSAC.2019.2933973 10.1017/S0962492913000032 10.1109/ICCChina.2014.7008242 10.1201/9781315381619 10.1109/VTCSpring.2015.7145843 10.1109/ICCW.2019.8756987 10.1109/GLOCOMW.2015.7414146 10.1007/BF00992698 10.1109/WCNC.2018.8377314 10.1002/9781119307600 10.1109/TWC.2013.060513.120959 10.1109/JSAC.2015.2417013 10.1007/s11276-019-01941-8 10.1109/MCOM.2012.6353682 10.1109/ISWCS.2014.6933488 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TWC.2021.3080990 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2248 |
EndPage | 7150 |
ExternalDocumentID | 10_1109_TWC_2021_3080990 9439849 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) Grant through the Korean Government Ministry of Science and ICT (MSIT) grantid: NRF-2020R1F1A1069119 funderid: 10.13039/501100003725 – fundername: Institute for Information and Communications Technology Promotion (IITP) Grant through the Korean Government by the Ministry of Science and ICT (MSIT) (A study on core technology of 5G mobile communication using millimeter wave band) grantid: 2018-0-00889 funderid: 10.13039/501100014188 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ ABQJQ ACGFO ACGFS ACIWK AENEX AETIX AIBXA AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c333t-79bc5e91449d9d6fe1ce8de4c38bd7350957d50e5908517354471c44e83775dd3 |
IEDL.DBID | RIE |
ISSN | 1536-1276 |
IngestDate | Thu Oct 10 18:01:12 EDT 2024 Fri Aug 23 02:52:24 EDT 2024 Mon Nov 04 11:47:56 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-79bc5e91449d9d6fe1ce8de4c38bd7350957d50e5908517354471c44e83775dd3 |
ORCID | 0000-0001-5668-0453 0000-0002-7178-088X 0000-0003-1879-688X 0000-0003-1565-4376 |
OpenAccessLink | https://doi.org/10.1109/twc.2021.3080990 |
PQID | 2595720292 |
PQPubID | 105736 |
PageCount | 16 |
ParticipantIDs | ieee_primary_9439849 proquest_journals_2595720292 crossref_primary_10_1109_TWC_2021_3080990 |
PublicationCentury | 2000 |
PublicationDate | 2021-Nov. 2021-11-00 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-Nov. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on wireless communications |
PublicationTitleAbbrev | TWC |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref11 ref10 hausknecht (ref40) 2015 (ref3) 2012 ref2 (ref29) 2017 ref39 ref17 ref16 ref19 yi ong (ref38) 2015 ref18 (ref31) 2017 (ref46) 2010 mnih (ref42) 2013 (ref4) 2017 sutton (ref27) 2018 fudenberg (ref32) 1991; 393 ref24 ref45 ref23 ref26 ref47 ref25 (ref33) 2017 ref20 ref22 ref44 ref21 gu (ref41) 2016 (ref1) 2019 (ref30) 2019 (ref28) 2017 (ref48) 2019 ref8 ref7 ref9 ref6 hasselt (ref43) 2016 ref5 |
References_xml | – ident: ref14 doi: 10.1109/INFOCOM.2018.8486280 – ident: ref17 doi: 10.1155/2017/8182150 – ident: ref5 doi: 10.1109/CompComm.2017.8322686 – year: 2019 ident: ref48 publication-title: Study of enablers for network automation for 5G – year: 2017 ident: ref4 publication-title: NR and NG-RAN Overall Description – ident: ref6 doi: 10.1109/LWC.2018.2825330 – year: 2018 ident: ref27 publication-title: Reinforcement Learning An Introduction contributor: fullname: sutton – year: 2019 ident: ref1 publication-title: Cisco Visual Networking Index Global Mobile Data Traffic Forecast Update – ident: ref7 doi: 10.1109/VTCFall.2019.8891402 – ident: ref10 doi: 10.1109/TVT.2018.2864704 – ident: ref12 doi: 10.1109/VTCSpring.2016.7504204 – year: 2017 ident: ref28 publication-title: Overview of Duplexing and Cross-Link Interference Mitigation – ident: ref35 doi: 10.1109/LWC.2017.2702747 – ident: ref15 doi: 10.1109/JSAC.2017.2726218 – year: 2017 ident: ref29 publication-title: Discussion on Dynamic TDD and Cross-Link Interference Mitigation Schemes – ident: ref20 doi: 10.1109/VTCSpring.2019.8746715 – ident: ref18 doi: 10.1109/GLOCOMW.2012.6477639 – ident: ref13 doi: 10.1109/PIMRC.2013.6666413 – start-page: 2829 year: 2016 ident: ref41 article-title: Continuous deep Q-learning with model-based acceleration publication-title: Proc 33rd Int Conf Mach Learn contributor: fullname: gu – ident: ref16 doi: 10.1109/ICCW.2017.7962728 – year: 2010 ident: ref46 publication-title: Further Advancements for E-UTRA Physical Layer Aspects – ident: ref22 doi: 10.1155/2017/8198017 – volume: 393 year: 1991 ident: ref32 publication-title: Game Theory contributor: fullname: fudenberg – ident: ref45 doi: 10.2200/S00014ED1V01Y200508COM001 – ident: ref39 doi: 10.1038/nature14236 – ident: ref36 doi: 10.1109/JSAC.2019.2933973 – year: 2013 ident: ref42 article-title: Playing atari with deep reinforcement learning publication-title: arXiv 1312 5602 contributor: fullname: mnih – ident: ref37 doi: 10.1017/S0962492913000032 – year: 2017 ident: ref33 publication-title: Study on new radio access technology physical layer aspects – year: 2012 ident: ref3 – ident: ref23 doi: 10.1109/ICCChina.2014.7008242 – year: 2019 ident: ref30 publication-title: Cross Link Interference (CLI) handling and Remote Interference Management (RIM) for NR – ident: ref34 doi: 10.1201/9781315381619 – ident: ref9 doi: 10.1109/VTCSpring.2015.7145843 – ident: ref21 doi: 10.1109/ICCW.2019.8756987 – ident: ref26 doi: 10.1109/GLOCOMW.2015.7414146 – year: 2015 ident: ref38 article-title: Distributed deep Q-learning publication-title: arXiv 1508 04186 contributor: fullname: yi ong – year: 2015 ident: ref40 article-title: Deep reinforcement learning in parameterized action space publication-title: arXiv 1511 04143 contributor: fullname: hausknecht – start-page: 2094 year: 2016 ident: ref43 article-title: Deep reinforcement learning with double Q-learning publication-title: Proc 30th AAAI Conf Artif Intell contributor: fullname: hasselt – ident: ref44 doi: 10.1007/BF00992698 – ident: ref2 doi: 10.1109/WCNC.2018.8377314 – year: 2017 ident: ref31 publication-title: Cross-Link Interference Management Based on Coordinated Beamforming – ident: ref47 doi: 10.1002/9781119307600 – ident: ref25 doi: 10.1109/TWC.2013.060513.120959 – ident: ref19 doi: 10.1109/JSAC.2015.2417013 – ident: ref24 doi: 10.1007/s11276-019-01941-8 – ident: ref11 doi: 10.1109/MCOM.2012.6353682 – ident: ref8 doi: 10.1109/ISWCS.2014.6933488 |
SSID | ssj0017655 |
Score | 2.4536393 |
Snippet | Future wireless and mobile network services must accommodate highly dynamic downlink and uplink traffic asymmetry. To fulfill this requirement, the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 7135 |
SubjectTerms | 5G mobile communication Algorithms Deep learning Deep Q-learning duplexing control Game theory Heuristic algorithms intercell interference Interference Machine learning Optimization Radio equipment radio frame configuration reinforcement learning Resource management stackelberg game Switches Time division Wireless communication Wireless networks |
Title | Deep Reinforcement Learning-Based Hierarchical Time Division Duplexing Control for Dense Wireless and Mobile Networks |
URI | https://ieeexplore.ieee.org/document/9439849 https://www.proquest.com/docview/2595720292 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxh4I8pLHliQSEliO45HaKkqpDIgEGxRbV8RokoraBZ-PWcnrRAwsEWRfbJ89j18990BnMkcuZBORS5ObCRcPI5GickiZ2yax5ar1Hlw8vAuGzyK22f5vAIXSywMIobkM-z4zxDLd1Nb-aeyS03aMxd6FVaV1jVWaxkxUFnocEoX2PeVUcuQZKwvH5665AimSYeTeRSk7zcVFHqq_BLEQbv0N2G4WFedVPLWqeamYz9_lGz878K3YKMxM9lVfS62YQXLHVj_VnxwF6oe4ozdYyidasMrIWuqrb5E16TcHBu8enhy6JYyYR4swnqvNRid9aqZL6VZvrBunezOiArrkVOMzGfUTkiCslHp2HBqSPCwuzrd_GMPHvs3D91B1DRhiCznfB4pbaxETX6XdtplY0ws5g6F5blxipO9IZWTMfre6TKhH4LUnRUCyfNV0jm-D61yWuIBMDRZnqIYkVlghTSxHjsiQ8NTLdORytpwvuBLMatrbRTBR4l1QTwsPA-Lhodt2PXbvBzX7HAbjheMLJrL-FGQhycVTdbp4d-zjmDN064hhsfQmr9XeEK2xtychkP2BVjQ0T8 |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xcNjlwBttea0Pe0HalCS24_gILagstIdV0XKLantaoUVpBc2FX8_YSSu0cOAWWbZjeex5eOabAfgpc-RCOhW5OLGRcPE4GiUmi5yxaR5brlLnwcn9Qda7E7_v5f0K_FpiYRAxBJ9h238GX76b2so_lZ1pkp650F9gjfTqPKvRWkufgcpCjVO6wr6yjFo6JWN9NvzbIVMwTdqcFKTAf98IoVBV5R0rDvLlahP6i5XVYSX_2tXctO3Lf0kbP7v0LdhoFE12Xp-MbVjBcgfW36Qf3IWqizhjfzAkT7XhnZA1-VYn0QWJN8d6Dx6gHOqlPDIPF2HdhxqOzrrVzCfTLCesU4e7M5qFdcksRuZjah-Jh7JR6Vh_aoj1sEEdcP68B3dXl8NOL2rKMESWcz6PlDZWoibLSzvtsjEmFnOHwvLcOMVJ45DKyRh99XSZUIMggWeFQLJ9lXSO78NqOS3xOzA0WZ6iGJFiYIU0sR47moa6p1qmI5W14HRBl2JWZ9sogpUS64JoWHgaFg0NW7Drt3nZr9nhFhwtCFk01_G5IBtPKhqs04OPR_2Ar71h_7a4vR7cHMI3_58acHgEq_OnCo9J85ibk3DgXgFzL9SK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning-Based+Hierarchical+Time+Division+Duplexing+Control+for+Dense+Wireless+and+Mobile+Networks&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Tuong%2C+Van+Dat&rft.au=Dao%2C+Nhu-Ngoc&rft.au=Noh%2C+Wonjong&rft.au=Cho%2C+Sungrae&rft.date=2021-11-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=20&rft.issue=11&rft.spage=7135&rft.epage=7150&rft_id=info:doi/10.1109%2FTWC.2021.3080990&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2021_3080990 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |