The Importance of the Correlation in Crossover Experiments

Context: In empirical software engineering, crossover designs are popular for experiments comparing software engineering techniques that must be undertaken by human participants. However, their value depends on the correlation (<inline-formula><tex-math notation="LaTeX">r</t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on software engineering Vol. 48; no. 8; pp. 2802 - 2813
Main Authors Kitchenham, Barbara, Madeyski, Lech, Scanniello, Giuseppe, Gravino, Carmine
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2022
IEEE Computer Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Context: In empirical software engineering, crossover designs are popular for experiments comparing software engineering techniques that must be undertaken by human participants. However, their value depends on the correlation (<inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq1-3070480.gif"/> </inline-formula>) between the outcome measures on the same participants. Software engineering theory emphasizes the importance of individual skill differences, so we would expect the values of <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq2-3070480.gif"/> </inline-formula> to be relatively high. However, few researchers have reported the values of <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq3-3070480.gif"/> </inline-formula>. Goal: To investigate the values of <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq4-3070480.gif"/> </inline-formula> found in software engineering experiments. Method: We undertook simulation studies to investigate the theoretical and empirical properties of <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq5-3070480.gif"/> </inline-formula>. Then we investigated the values of <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq6-3070480.gif"/> </inline-formula> observed in 35 software engineering crossover experiments. Results: The level of <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq7-3070480.gif"/> </inline-formula> obtained by analysing our 35 crossover experiments was small. Estimates based on means, medians, and random effect analysis disagreed but were all between 0.2 and 0.3. As expected, our analyses found large variability among the individual <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq8-3070480.gif"/> </inline-formula> estimates for small sample sizes, but no indication that <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq9-3070480.gif"/> </inline-formula> estimates were larger for the experiments with larger sample sizes that exhibited smaller variability. Conclusions: Low observed <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq10-3070480.gif"/> </inline-formula> values cast doubts on the validity of crossover designs for software engineering experiments. However, if the cause of low <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq11-3070480.gif"/> </inline-formula> values relates to training limitations or toy tasks, this affects all Software Engineering (SE) experiments involving human participants. For all human-intensive SE experiments, we recommend more intensive training and then tracking the improvement of participants as they practice using specific techniques, before formally testing the effectiveness of the techniques.
AbstractList Context: In empirical software engineering, crossover designs are popular for experiments comparing software engineering techniques that must be undertaken by human participants. However, their value depends on the correlation (<inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq1-3070480.gif"/> </inline-formula>) between the outcome measures on the same participants. Software engineering theory emphasizes the importance of individual skill differences, so we would expect the values of <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq2-3070480.gif"/> </inline-formula> to be relatively high. However, few researchers have reported the values of <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq3-3070480.gif"/> </inline-formula>. Goal: To investigate the values of <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq4-3070480.gif"/> </inline-formula> found in software engineering experiments. Method: We undertook simulation studies to investigate the theoretical and empirical properties of <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq5-3070480.gif"/> </inline-formula>. Then we investigated the values of <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq6-3070480.gif"/> </inline-formula> observed in 35 software engineering crossover experiments. Results: The level of <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq7-3070480.gif"/> </inline-formula> obtained by analysing our 35 crossover experiments was small. Estimates based on means, medians, and random effect analysis disagreed but were all between 0.2 and 0.3. As expected, our analyses found large variability among the individual <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq8-3070480.gif"/> </inline-formula> estimates for small sample sizes, but no indication that <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq9-3070480.gif"/> </inline-formula> estimates were larger for the experiments with larger sample sizes that exhibited smaller variability. Conclusions: Low observed <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq10-3070480.gif"/> </inline-formula> values cast doubts on the validity of crossover designs for software engineering experiments. However, if the cause of low <inline-formula><tex-math notation="LaTeX">r</tex-math> <mml:math><mml:mi>r</mml:mi></mml:math><inline-graphic xlink:href="madeyski-ieq11-3070480.gif"/> </inline-formula> values relates to training limitations or toy tasks, this affects all Software Engineering (SE) experiments involving human participants. For all human-intensive SE experiments, we recommend more intensive training and then tracking the improvement of participants as they practice using specific techniques, before formally testing the effectiveness of the techniques.
Context: In empirical software engineering, crossover designs are popular for experiments comparing software engineering techniques that must be undertaken by human participants. However, their value depends on the correlation ([Formula Omitted]) between the outcome measures on the same participants. Software engineering theory emphasizes the importance of individual skill differences, so we would expect the values of [Formula Omitted] to be relatively high. However, few researchers have reported the values of [Formula Omitted]. Goal: To investigate the values of [Formula Omitted] found in software engineering experiments. Method: We undertook simulation studies to investigate the theoretical and empirical properties of [Formula Omitted]. Then we investigated the values of [Formula Omitted] observed in 35 software engineering crossover experiments. Results: The level of [Formula Omitted] obtained by analysing our 35 crossover experiments was small. Estimates based on means, medians, and random effect analysis disagreed but were all between 0.2 and 0.3. As expected, our analyses found large variability among the individual [Formula Omitted] estimates for small sample sizes, but no indication that [Formula Omitted] estimates were larger for the experiments with larger sample sizes that exhibited smaller variability. Conclusions: Low observed [Formula Omitted] values cast doubts on the validity of crossover designs for software engineering experiments. However, if the cause of low [Formula Omitted] values relates to training limitations or toy tasks, this affects all Software Engineering (SE) experiments involving human participants. For all human-intensive SE experiments, we recommend more intensive training and then tracking the improvement of participants as they practice using specific techniques, before formally testing the effectiveness of the techniques.
Author Madeyski, Lech
Gravino, Carmine
Kitchenham, Barbara
Scanniello, Giuseppe
Author_xml – sequence: 1
  givenname: Barbara
  orcidid: 0000-0002-6134-8460
  surname: Kitchenham
  fullname: Kitchenham, Barbara
  email: b.a.kitchenham@keele.ac.uk
  organization: School of Computing and Mathematics, Keele University, Staffordshire, U.K
– sequence: 2
  givenname: Lech
  orcidid: 0000-0003-3907-3357
  surname: Madeyski
  fullname: Madeyski, Lech
  email: Lech.Madeyski@pwr.edu.pl
  organization: Department of Applied Informatics, Wroclaw University of Science and Technology, Wroclaw, Poland
– sequence: 3
  givenname: Giuseppe
  orcidid: 0000-0003-0024-7508
  surname: Scanniello
  fullname: Scanniello, Giuseppe
  email: giuseppe.scanniello@unibas.it
  organization: Department of Mathematics, Computer Science, and Economics, University of Basilicata, Potenza, Italy
– sequence: 4
  givenname: Carmine
  orcidid: 0000-0002-4394-9035
  surname: Gravino
  fullname: Gravino, Carmine
  email: gravino@unisa.it
  organization: Department of Computer Science, University of Salerno, Fisciano, Italy
BookMark eNp9kEFLAzEQhYNUsFXvgpcFz1snSXeTeJOlaqHgwXoO2ewEt7SbNZuK_ntTWzx48DQwvDfz3jcho853SMgVhSmloG5XL_MpA0anHATMJJyQMVVc5bxgMCJjACXzopDqjEyGYQ0AhRDFmNyt3jBbbHsfouksZt5lMW0qHwJuTGx9l7VdVgU_DP4DQzb_7DG0W-zicEFOndkMeHmc5-T1Yb6qnvLl8-Oiul_mlnMec6GoNTBzFspaouDOWFsrTiWjTjnFRVPWrimtYhKcSKFmddM4ZpoaaS0p8nNyc7jbB_--wyHqtd-FLr3UTAAHpSilSVUeVHafNaDTto0_BWIw7UZT0HtOOnHSe076yCkZ4Y-xTwVN-PrPcn2wtIj4K0-0C8Y4_wZhmXTd
CODEN IESEDJ
CitedBy_id crossref_primary_10_1016_j_jss_2024_111990
crossref_primary_10_1007_s10664_024_10504_1
Cites_doi 10.1037/1082-989X.1.2.170
10.1016/j.jvlc.2017.06.002
10.1007/s10664-016-9437-5
10.1145/3239235.3240496
10.3233/JIFS-169146
10.1145/3319008.3319009
10.1145/2491912
10.1016/j.jvlc.2014.12.004
10.1016/j.jvlc.2014.03.002
10.1109/TSE.2018.2864633
10.1007/978-3-642-04288-1
10.1002/0470854596
10.1007/s10664-019-09747-0
10.1109/32.922713
10.1109/TSE.2009.69
10.1007/s10664-017-9574-5
10.1145/3104029
10.1007/s10270-013-0386-9
10.1037//0033-2909.112.1.155
10.1007/s10664-014-9327-7
10.1016/j.jss.2012.07.043
10.1109/TSE.2012.27
10.1145/2629457
10.1109/TSE.2015.2467378
10.1145/2601248.2601259
ContentType Journal Article
Copyright Copyright IEEE Computer Society 2022
Copyright_xml – notice: Copyright IEEE Computer Society 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
JQ2
K9.
DOI 10.1109/TSE.2021.3070480
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1939-3520
EndPage 2813
ExternalDocumentID 10_1109_TSE_2021_3070480
9395223
Genre orig-research
GroupedDBID --Z
-DZ
-~X
.DC
0R~
29I
4.4
5GY
6IK
85S
8R4
8R5
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABPPZ
ABQJQ
ABVLG
ACGFO
ACGOD
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
EBS
EDO
EJD
ESBDL
HZ~
I-F
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
Q2X
RIA
RIE
RNS
RXW
S10
TAE
TN5
TWZ
UHB
UPT
WH7
YZZ
AAYXX
ALIPV
CITATION
JQ2
K9.
ID FETCH-LOGICAL-c333t-791ca04fc06b8e73faccb931821f9f937d6bfd6c9280f77754bddf2adbe1b81e3
IEDL.DBID RIE
ISSN 0098-5589
IngestDate Mon Jun 30 08:54:51 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Tue Jul 01 01:53:19 EDT 2025
Wed Aug 27 02:02:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-791ca04fc06b8e73faccb931821f9f937d6bfd6c9280f77754bddf2adbe1b81e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4394-9035
0000-0003-3907-3357
0000-0002-6134-8460
0000-0003-0024-7508
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9395223
PQID 2703099111
PQPubID 21418
PageCount 12
ParticipantIDs proquest_journals_2703099111
ieee_primary_9395223
crossref_citationtrail_10_1109_TSE_2021_3070480
crossref_primary_10_1109_TSE_2021_3070480
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on software engineering
PublicationTitleAbbrev TSE
PublicationYear 2022
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref13
ref12
ref15
ref14
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Madeyski (ref11) 2020
Boehm (ref7) 2000
ref24
ref23
ref26
Rosnow (ref28) 1997
ref25
ref20
ref22
ref21
Kitchenham (ref8) 2020
ref27
ref29
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref5
  doi: 10.1037/1082-989X.1.2.170
– ident: ref18
  doi: 10.1016/j.jvlc.2017.06.002
– ident: ref29
  doi: 10.1007/s10664-016-9437-5
– ident: ref25
  doi: 10.1145/3239235.3240496
– volume-title: People Studying People Artifacts and Ethics in Behavioural Research
  year: 1997
  ident: ref28
– ident: ref26
  doi: 10.3233/JIFS-169146
– ident: ref3
  doi: 10.1145/3319008.3319009
– ident: ref16
  doi: 10.1145/2491912
– volume-title: Software Cost Estimation with COCOMO II
  year: 2000
  ident: ref7
– ident: ref20
  doi: 10.1016/j.jvlc.2014.12.004
– ident: ref14
  doi: 10.1016/j.jvlc.2014.03.002
– year: 2020
  ident: ref11
  article-title: Reproducer: Reproduce statistical analyses and meta-analyses
– ident: ref27
  doi: 10.1109/TSE.2018.2864633
– ident: ref23
  doi: 10.1007/978-3-642-04288-1
– ident: ref10
  doi: 10.1002/0470854596
– ident: ref6
  doi: 10.1007/s10664-019-09747-0
– ident: ref4
  doi: 10.1109/32.922713
– ident: ref12
  doi: 10.1109/TSE.2009.69
– ident: ref2
  doi: 10.1007/s10664-017-9574-5
– ident: ref24
  doi: 10.1145/3104029
– ident: ref22
  doi: 10.1007/s10270-013-0386-9
– ident: ref9
  doi: 10.1037//0033-2909.112.1.155
– ident: ref15
  doi: 10.1007/s10664-014-9327-7
– ident: ref13
  doi: 10.1016/j.jss.2012.07.043
– ident: ref17
  doi: 10.1109/TSE.2012.27
– volume-title: The Importance of the Correlation in Crossover Experiments
  year: 2020
  ident: ref8
  article-title: Supplementary material to the paper
– ident: ref21
  doi: 10.1145/2629457
– ident: ref1
  doi: 10.1109/TSE.2015.2467378
– ident: ref19
  doi: 10.1145/2601248.2601259
SSID ssj0005775
ssib053395008
Score 2.398284
Snippet Context: In empirical software engineering, crossover designs are popular for experiments comparing software engineering techniques that must be undertaken by...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2802
SubjectTerms Atmospheric measurements
Correlation
crossover design
crossover experiments
Empirical analysis
Empirical software engineering
Estimates
Experiments
Mathematical model
Particle measurements
repeated measures correlation
Size measurement
Software engineering
Time measurement
Training
Within-subjects design
Title The Importance of the Correlation in Crossover Experiments
URI https://ieeexplore.ieee.org/document/9395223
https://www.proquest.com/docview/2703099111
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qT16sWsVqlRy8CO52N9lXvElpqYJebKG3ZfMCUbditxd_vZl9KSribVkSyGYmyTebb74BOLcgV1OlModKhSk5KnQynxsnZoLzkGUouIJsi_totghul-GyA5dtLozWuiSfaRcfy7t8tZIb_FU24oxbuMC2YMsGblWu1iedI47DRh8zDBPeXEl6fDR_mNhAkPou-neAApBfjqCypsqPjbg8XaY9uGvGVZFKntxNIVz5_k2y8b8D34WdGmaS68ov9qCj833oNSUcSL2i-3Bl3YTcvJQg3L4gK0MsIiRjrNlRseTIY07G-B3I9SSTtiDA-gAW08l8PHPqcgqOZIwVKEwpMy8w0otEomNmMikFt2ua-oYbC1NUJIyKJKeJZ2JUxhNKGZopoX2R-JodQjdf5foISMikBQZJGOsoCez5xv1M0IxZuOBJG3_xAYyaGU5lrTWOJS-e0zLm8HhqbZKiTdLaJgO4aHu8Vjobf7Tt4xS37erZHcCwMWJaL8R1SnFH47ijH__e6wS2KWY0lJy-IXSLt40-tTijEGelg30AcszNLQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGWDhjSgU8MCCRNLErpOYDVVF5dWFVmKL4peEgBZBuvDr8eUFAoTYosiWHN_Z9zn-7juAYwdyDdU686jSmJKjuZeFwnoxk0JwlqHgCrItRtFw0ru65_cLcNrkwhhjCvKZ8fGxuMvXMzXHX2VdwYSDC2wRllzc52GZrfVJ6IhjXitkcp6I-lIyEN3x3cAdBWnoo4f3UALySxAqqqr82IqL-HKxBrf1yEpayaM_z6Wv3r-JNv536OuwWgFNcl56xgYsmOkmrNVFHEi1prfgzDkKuXwuYLh7QWaWOExI-li1o-TJkYcp6eN3INuTDJqSAG_bMLkYjPtDryqo4CnGWI7SlCoLelYFkUxMzGymlBRuVdPQCuuAio6k1ZESNAlsjNp4UmtLMy1NKJPQsB1oTWdTswuEM-WgQcJjEyU9F-FEmEmaMQcYAuVOYKIN3XqGU1WpjWPRi6e0OHUEInU2SdEmaWWTNpw0PV5KpY0_2m7hFDftqtltQ6c2YlotxbeU4p4mcE_f-73XESwPx7c36c3l6HofVijmNxQMvw608te5OXCoI5eHhbN9AFSA0HY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Importance+of+the+Correlation+in+Crossover+Experiments&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Kitchenham%2C+Barbara&rft.au=Madeyski%2C+Lech&rft.au=Scanniello%2C+Giuseppe&rft.au=Gravino%2C+Carmine&rft.date=2022-08-01&rft.pub=IEEE&rft.issn=0098-5589&rft.volume=48&rft.issue=8&rft.spage=2802&rft.epage=2813&rft_id=info:doi/10.1109%2FTSE.2021.3070480&rft.externalDocID=9395223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon