Update: the role of epigenetics in the metabolic memory of diabetic complications
Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increases morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary li...
Saved in:
Published in | American journal of physiology. Renal physiology Vol. 327; no. 3; pp. F327 - F339 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increases morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary lifestyles, and hyperlipidemia can induce epigenetic changes. Working alone or with genetic factors, these epigenetic changes that occur without alterations in the underlying DNA sequence, can alter the expression of pathophysiological genes and impair functions of associated target cells/organs, leading to diabetic complications like DKD. Notably, some hyperglycemia-induced epigenetic changes persist in target cells/tissues even after glucose normalization, leading to sustained complications despite glycemic control, so-called metabolic memory. Emerging evidence from in vitro and in vivo animal models and clinical trials with subjects with diabetes identified clear associations between metabolic memory and epigenetic changes including DNA methylation, histone modifications, chromatin structure, and noncoding RNAs at key loci. Targeting such persistent epigenetic changes and/or molecules regulated by them can serve as valuable opportunities to attenuate, or erase metabolic memory, which is crucial to prevent complication progression. Here, we review these cell/tissue-specific epigenetic changes identified to-date as related to diabetic complications, especially DKD, and the current status on targeting epigenetics to tackle metabolic memory. We also discuss limitations in current studies, including the need for more (epi)genome-wide studies, integrative analysis using multiple epigenetic marks and Omics datasets, and mechanistic evaluation of metabolic memory. Considering the tremendous technological advances in epigenomics, genetics, sequencing, and availability of genomic datasets from clinical cohorts, this field is likely to see considerable progress in the upcoming years. |
---|---|
AbstractList | Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increases morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary lifestyles, and hyperlipidemia can induce epigenetic changes. Working alone or with genetic factors, these epigenetic changes that occur without alterations in the underlying DNA sequence, can alter the expression of pathophysiological genes and impair functions of associated target cells/organs, leading to diabetic complications like DKD. Notably, some hyperglycemia-induced epigenetic changes persist in target cells/tissues even after glucose normalization, leading to sustained complications despite glycemic control, so-called metabolic memory. Emerging evidence from in vitro and in vivo animal models and clinical trials with subjects with diabetes identified clear associations between metabolic memory and epigenetic changes including DNA methylation, histone modifications, chromatin structure, and noncoding RNAs at key loci. Targeting such persistent epigenetic changes and/or molecules regulated by them can serve as valuable opportunities to attenuate, or erase metabolic memory, which is crucial to prevent complication progression. Here, we review these cell/tissue-specific epigenetic changes identified to-date as related to diabetic complications, especially DKD, and the current status on targeting epigenetics to tackle metabolic memory. We also discuss limitations in current studies, including the need for more (epi)genome-wide studies, integrative analysis using multiple epigenetic marks and Omics datasets, and mechanistic evaluation of metabolic memory. Considering the tremendous technological advances in epigenomics, genetics, sequencing, and availability of genomic datasets from clinical cohorts, this field is likely to see considerable progress in the upcoming years. Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increases morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary lifestyles, and hyperlipidemia can induce epigenetic changes. Working alone or with genetic factors, these epigenetic changes that occur without alterations in the underlying DNA sequence, can alter the expression of pathophysiological genes and impair functions of associated target cells/organs, leading to diabetic complications like DKD. Notably, some hyperglycemia-induced epigenetic changes persist in target cells/tissues even after glucose normalization, leading to sustained complications despite glycemic control, so-called metabolic memory. Emerging evidence from in vitro and in vivo animal models and clinical trials with subjects with diabetes identified clear associations between metabolic memory and epigenetic changes including DNA methylation, histone modifications, chromatin structure, and noncoding RNAs at key loci. Targeting such persistent epigenetic changes and/or molecules regulated by them can serve as valuable opportunities to attenuate, or erase metabolic memory, which is crucial to prevent complication progression. Here, we review these cell/tissue-specific epigenetic changes identified to-date as related to diabetic complications, especially DKD, and the current status on targeting epigenetics to tackle metabolic memory. We also discuss limitations in current studies, including the need for more (epi)genome-wide studies, integrative analysis using multiple epigenetic marks and Omics datasets, and mechanistic evaluation of metabolic memory. Considering the tremendous technological advances in epigenomics, genetics, sequencing, and availability of genomic datasets from clinical cohorts, this field is likely to see considerable progress in the upcoming years.Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increases morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary lifestyles, and hyperlipidemia can induce epigenetic changes. Working alone or with genetic factors, these epigenetic changes that occur without alterations in the underlying DNA sequence, can alter the expression of pathophysiological genes and impair functions of associated target cells/organs, leading to diabetic complications like DKD. Notably, some hyperglycemia-induced epigenetic changes persist in target cells/tissues even after glucose normalization, leading to sustained complications despite glycemic control, so-called metabolic memory. Emerging evidence from in vitro and in vivo animal models and clinical trials with subjects with diabetes identified clear associations between metabolic memory and epigenetic changes including DNA methylation, histone modifications, chromatin structure, and noncoding RNAs at key loci. Targeting such persistent epigenetic changes and/or molecules regulated by them can serve as valuable opportunities to attenuate, or erase metabolic memory, which is crucial to prevent complication progression. Here, we review these cell/tissue-specific epigenetic changes identified to-date as related to diabetic complications, especially DKD, and the current status on targeting epigenetics to tackle metabolic memory. We also discuss limitations in current studies, including the need for more (epi)genome-wide studies, integrative analysis using multiple epigenetic marks and Omics datasets, and mechanistic evaluation of metabolic memory. Considering the tremendous technological advances in epigenomics, genetics, sequencing, and availability of genomic datasets from clinical cohorts, this field is likely to see considerable progress in the upcoming years. |
Author | Malek, Vajir Natarajan, Rama Chen, Zhuo |
Author_xml | – sequence: 1 givenname: Zhuo orcidid: 0000-0002-3522-9660 surname: Chen fullname: Chen, Zhuo organization: Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, California – sequence: 2 givenname: Vajir surname: Malek fullname: Malek, Vajir organization: Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, California – sequence: 3 givenname: Rama orcidid: 0000-0003-4494-1788 surname: Natarajan fullname: Natarajan, Rama organization: Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38961840$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9r3DAQxUVJ6CZpP0GhGHLJxVv9tazeQkibwEIINNCbkK1Rq8W2XEl7yLevvNm97CGnmeH93sDMu0RnU5gAoS8ErwkR9JvZzhEmM6wxLvOaYso_oIui0JrwpjkrvWKkboX8vUKXKW3xAlLyEa1YqxrScnyBnl9mazJ8r_JfqGIYoAqugtn_gQmy71Plp700QjZdGHxfujHE1wWz3nQLVPVhnItksg9T-oTOnRkSfD7UK_Ty4_7X3UO9efr5eHe7qXvGWK5lw50DZo2hGDNsO2iodZJwalsllHMtZw43XcdFRxSxncRSKnBWAAgDDbtCN2975xj-7SBlPfrUwzCYCcIuaYalkJg2Qhb0-gTdhl0srysUwVQJzltVqK8HateNYPUc_Wjiqz4-qwDqDehjSCmC073P-6NzNH7QBOslGH0MRu-D0UswxctOvMf177n-Ax97k24 |
CitedBy_id | crossref_primary_10_1007_s00125_024_06284_4 |
Cites_doi | 10.1016/j.cell.2013.06.044 10.1038/nature11247 10.2337/db10-0208 10.1016/j.exer.2010.02.006 10.1111/dom.13262 10.1038/ncomms12864 10.1038/nrg2905 10.1016/j.cell.2018.03.006 10.1093/eurheartj/ehv599 10.2215/CJN.16751020 10.1038/s41586-019-1411-0 10.1038/s41588-022-01097-w 10.1161/CIRCRESAHA.110.223545 10.1016/j.kint.2019.02.020 10.1038/s41556-020-0487-y 10.1074/jbc.M802800200 10.1210/en.2015-1063 10.2337/db11-0588 10.1073/pnas.1603712113 10.2337/db17-0294 10.1038/s41574-022-00671-w 10.1681/ASN.2014070665 10.1073/pnas.2005905117 10.2337/db08-1666 10.2337/db19-0514 10.1155/2013/635284 10.1074/jbc.RA119.007575 10.1681/ASN.2011050485 10.1038/nrdp.2015.18 10.1007/s00125-021-05397-4 10.1038/s41467-020-18957-w 10.3389/fendo.2012.00170 10.1038/nature11082 10.2337/diabetes.52.3.818 10.3389/fendo.2021.665811 10.15386/mpr-2187 10.1016/S2213-8587(14)70155-X 10.1152/ajpcell.00201.2022 10.1681/ASN.2014050528 10.1038/nature05913 10.2337/db20-0382 10.1161/CIRCRESAHA.116.306819 10.1152/physrev.00045.2011 10.1126/science.abj8894 10.1056/NEJM199309303291401 10.1136/bmjdrc-2022-003068 10.1084/jem.20081188 10.3389/fphys.2021.637480 10.1016/j.cmet.2020.07.002 10.1016/j.cmet.2012.11.012 10.1056/NEJMoa0706245 10.1093/cvr/cvab013 10.1016/j.bbrc.2013.02.064 10.2337/db06-0164 10.1038/s41467-022-32477-9 10.1073/pnas.87.1.404 10.3389/fendo.2020.598012 10.1161/CIRCRESAHA.112.266593 10.2337/dc13-2112 10.1016/j.ajpath.2011.01.044 10.3791/50232 10.1016/j.bbrc.2017.09.028 10.1074/jbc.M609446200 10.1126/science.adg3053 10.1038/srep29302 10.1681/ASN.2013050461 10.1016/j.cell.2022.12.047 10.1016/j.cell.2007.02.005 10.2337/db16-0254 10.1074/jbc.M311786200 10.2337/db13-1251 10.3389/fmolb.2023.1204124 10.1161/01.HYP.0000102971.85504.7c 10.1371/journal.pone.0134654 10.1038/emm.2017.10 10.1038/s42255-020-0231-8 10.1038/nrg3230 10.1056/NEJMoa0806470 10.1016/j.kint.2015.12.018 10.1093/eurheartj/eht149 10.1016/j.mce.2013.04.019 10.1007/s00125-014-3462-y 10.4172/2155-9570.1000287 10.2337/diab.36.7.808 10.1038/s41581-020-0298-1 10.1038/s41581-019-0135-6 10.3389/fphys.2021.649587 10.3389/fmed.2023.1153805 10.1007/s00109-009-0499-3 10.1007/s11892-019-1214-6 10.1126/scitranslmed.adj3385 10.1073/pnas.0611192104 10.1186/s13059-021-02347-6 10.2147/vhrm.s1991 10.1159/000520311 10.1038/s41580-020-00315-9 10.1038/nrneph.2015.37 10.1007/s00125-009-1470-0 10.1038/s42003-018-0108-5 10.3389/fendo.2023.1163001 10.1038/nbt.1685 10.2337/dbi18-0010 10.1016/j.jdiacomp.2004.03.002 10.1038/s41419-021-03930-2 10.1902/jop.2008.080246 10.1073/pnas.0803623105 10.1074/jbc.M511425200 |
ContentType | Journal Article |
Copyright | Copyright American Physiological Society Sep 2024 |
Copyright_xml | – notice: Copyright American Physiological Society Sep 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1152/ajprenal.00115.2024 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1466 |
EndPage | F339 |
ExternalDocumentID | 38961840 10_1152_ajprenal_00115_2024 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: DiaComp pilot & Feasibility grant – fundername: the Schaeffer Foundation – fundername: Anon SS – fundername: the Wanek Family Project for Cure of Type 1 Diabetes at City of Hope – fundername: NIDDK NIH HHS grantid: R01 DK065073 – fundername: NHLBI NIH HHS grantid: R01 HL106089 – fundername: NIDDK NIH HHS grantid: R01 DK081705 |
GroupedDBID | --- 23M 39C 4.4 53G 5GY 5VS 6J9 AAFWJ AAYXX ACPRK ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION E3Z EBS EMOBN F5P GX1 H13 ITBOX KQ8 OK1 P2P PQQKQ RAP RHI RPL RPRKH TR2 WOQ XSW CGR CUY CVF ECM EIF NPM K9. 7X8 |
ID | FETCH-LOGICAL-c333t-764ffe3daa20030dbe62df7142d8959ff843f06bb45b191db70779efd5ee5ae63 |
ISSN | 1931-857X 1522-1466 |
IngestDate | Fri Jul 11 01:51:40 EDT 2025 Mon Jun 30 07:53:32 EDT 2025 Mon Jul 21 06:02:25 EDT 2025 Tue Jul 01 02:06:38 EDT 2025 Thu Apr 24 23:05:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | diabetic complications diabetic kidney disease epigenetic modifications metabolic memory epigenetics |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c333t-764ffe3daa20030dbe62df7142d8959ff843f06bb45b191db70779efd5ee5ae63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4494-1788 0000-0002-3522-9660 |
PMID | 38961840 |
PQID | 3102954489 |
PQPubID | 48265 |
ParticipantIDs | proquest_miscellaneous_3075702657 proquest_journals_3102954489 pubmed_primary_38961840 crossref_citationtrail_10_1152_ajprenal_00115_2024 crossref_primary_10_1152_ajprenal_00115_2024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | American journal of physiology. Renal physiology |
PublicationTitleAlternate | Am J Physiol Renal Physiol |
PublicationYear | 2024 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 B23 B24 B25 B26 B27 B29 Russo V (B28) 1996 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58 B59 B109 B107 B108 B105 B106 B103 B104 B101 B102 B100 B60 B61 B62 B63 B64 B65 B66 B67 B68 B69 B70 B71 B72 B73 B74 B75 B76 B77 B78 B79 B80 B81 B82 B83 B84 B85 B86 B87 B88 B89 B90 B91 B92 B93 B94 B95 B96 B97 B10 B98 B11 B99 B12 B13 B14 B15 B16 B17 B18 B19 |
References_xml | – ident: B99 doi: 10.1016/j.cell.2013.06.044 – ident: B32 doi: 10.1038/nature11247 – ident: B65 doi: 10.2337/db10-0208 – ident: B25 doi: 10.1016/j.exer.2010.02.006 – ident: B94 doi: 10.1111/dom.13262 – volume-title: Epigenetic Mechanisms of Gene Regulation year: 1996 ident: B28 – ident: B56 doi: 10.1038/ncomms12864 – ident: B34 doi: 10.1038/nrg2905 – ident: B36 doi: 10.1016/j.cell.2018.03.006 – ident: B97 doi: 10.1093/eurheartj/ehv599 – ident: B98 doi: 10.2215/CJN.16751020 – ident: B27 doi: 10.1038/s41586-019-1411-0 – ident: B106 doi: 10.1038/s41588-022-01097-w – ident: B9 doi: 10.1161/CIRCRESAHA.110.223545 – ident: B92 doi: 10.1016/j.kint.2019.02.020 – ident: B50 doi: 10.1038/s41556-020-0487-y – ident: B81 doi: 10.1074/jbc.M802800200 – ident: B63 doi: 10.1210/en.2015-1063 – ident: B49 doi: 10.2337/db11-0588 – ident: B70 doi: 10.1073/pnas.1603712113 – ident: B67 doi: 10.2337/db17-0294 – ident: B42 doi: 10.1038/s41574-022-00671-w – ident: B51 doi: 10.1681/ASN.2014070665 – ident: B105 doi: 10.1073/pnas.2005905117 – ident: B59 doi: 10.2337/db08-1666 – ident: B20 doi: 10.2337/db19-0514 – ident: B43 doi: 10.1155/2013/635284 – ident: B55 doi: 10.1074/jbc.RA119.007575 – ident: B101 doi: 10.1681/ASN.2011050485 – ident: B5 doi: 10.1038/nrdp.2015.18 – ident: B16 doi: 10.1007/s00125-021-05397-4 – ident: B74 doi: 10.1038/s41467-020-18957-w – ident: B11 doi: 10.3389/fendo.2012.00170 – ident: B30 doi: 10.1038/nature11082 – ident: B24 doi: 10.2337/diabetes.52.3.818 – ident: B37 doi: 10.3389/fendo.2021.665811 – ident: B102 doi: 10.15386/mpr-2187 – ident: B15 doi: 10.1016/S2213-8587(14)70155-X – ident: B45 doi: 10.1152/ajpcell.00201.2022 – ident: B84 doi: 10.1681/ASN.2014050528 – ident: B29 doi: 10.1038/nature05913 – ident: B52 doi: 10.2337/db20-0382 – ident: B44 doi: 10.1161/CIRCRESAHA.116.306819 – ident: B2 doi: 10.1152/physrev.00045.2011 – ident: B83 doi: 10.1126/science.abj8894 – ident: B13 doi: 10.1056/NEJM199309303291401 – ident: B107 doi: 10.1136/bmjdrc-2022-003068 – ident: B58 doi: 10.1084/jem.20081188 – ident: B78 doi: 10.3389/fphys.2021.637480 – ident: B103 doi: 10.1016/j.cmet.2020.07.002 – ident: B3 doi: 10.1016/j.cmet.2012.11.012 – ident: B18 doi: 10.1056/NEJMoa0706245 – ident: B62 doi: 10.1093/cvr/cvab013 – ident: B61 doi: 10.1016/j.bbrc.2013.02.064 – ident: B75 doi: 10.2337/db06-0164 – ident: B53 doi: 10.1038/s41467-022-32477-9 – ident: B23 doi: 10.1073/pnas.87.1.404 – ident: B91 doi: 10.3389/fendo.2020.598012 – ident: B60 doi: 10.1161/CIRCRESAHA.112.266593 – ident: B14 doi: 10.2337/dc13-2112 – ident: B90 doi: 10.1016/j.ajpath.2011.01.044 – ident: B22 doi: 10.3791/50232 – ident: B87 doi: 10.1016/j.bbrc.2017.09.028 – ident: B80 doi: 10.1074/jbc.M609446200 – ident: B108 doi: 10.1126/science.adg3053 – ident: B82 doi: 10.1038/srep29302 – ident: B46 doi: 10.1681/ASN.2013050461 – ident: B100 doi: 10.1016/j.cell.2022.12.047 – ident: B33 doi: 10.1016/j.cell.2007.02.005 – ident: B54 doi: 10.2337/db16-0254 – ident: B79 doi: 10.1074/jbc.M311786200 – ident: B69 doi: 10.2337/db13-1251 – ident: B57 doi: 10.3389/fmolb.2023.1204124 – ident: B4 doi: 10.1161/01.HYP.0000102971.85504.7c – ident: B68 doi: 10.1371/journal.pone.0134654 – ident: B48 doi: 10.1038/emm.2017.10 – ident: B71 doi: 10.1038/s42255-020-0231-8 – ident: B35 doi: 10.1038/nrg3230 – ident: B17 doi: 10.1056/NEJMoa0806470 – ident: B88 doi: 10.1016/j.kint.2015.12.018 – ident: B6 doi: 10.1093/eurheartj/eht149 – ident: B96 doi: 10.1016/j.mce.2013.04.019 – ident: B7 doi: 10.1007/s00125-014-3462-y – ident: B86 doi: 10.4172/2155-9570.1000287 – ident: B21 doi: 10.2337/diab.36.7.808 – ident: B41 doi: 10.1038/s41581-020-0298-1 – ident: B8 doi: 10.1038/s41581-019-0135-6 – ident: B77 doi: 10.3389/fphys.2021.649587 – ident: B85 doi: 10.3389/fmed.2023.1153805 – ident: B73 doi: 10.1007/s00109-009-0499-3 – ident: B47 doi: 10.1007/s11892-019-1214-6 – ident: B109 doi: 10.1126/scitranslmed.adj3385 – ident: B95 doi: 10.1073/pnas.0611192104 – ident: B104 doi: 10.1186/s13059-021-02347-6 – ident: B12 doi: 10.2147/vhrm.s1991 – ident: B93 doi: 10.1159/000520311 – ident: B38 doi: 10.1038/s41580-020-00315-9 – ident: B40 doi: 10.1038/nrneph.2015.37 – ident: B19 doi: 10.1007/s00125-009-1470-0 – ident: B66 doi: 10.1038/s42003-018-0108-5 – ident: B39 doi: 10.3389/fendo.2023.1163001 – ident: B31 doi: 10.1038/nbt.1685 – ident: B72 doi: 10.2337/dbi18-0010 – ident: B26 doi: 10.1016/j.jdiacomp.2004.03.002 – ident: B89 doi: 10.1038/s41419-021-03930-2 – ident: B10 doi: 10.1902/jop.2008.080246 – ident: B64 doi: 10.1073/pnas.0803623105 – ident: B76 doi: 10.1074/jbc.M511425200 |
SSID | ssj0001121 |
Score | 2.4729018 |
SecondaryResourceType | review_article |
Snippet | Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | F327 |
SubjectTerms | Animal models Animals Chromatin Clinical trials Diabetes Diabetes Complications - genetics Diabetes Complications - metabolism Diabetes mellitus Diabetic Nephropathies - genetics Diabetic Nephropathies - metabolism DNA Methylation DNA structure Environmental factors Epigenesis, Genetic Epigenetics Genetic factors Genomic analysis Histones Humans Hyperglycemia Hyperlipidemia Kidney diseases Metabolism Morbidity Nucleotide sequence Overnutrition |
Title | Update: the role of epigenetics in the metabolic memory of diabetic complications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38961840 https://www.proquest.com/docview/3102954489 https://www.proquest.com/docview/3075702657 |
Volume | 327 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSFUvCFo-FgoyEuJElmz8kYRbhagqUCsqdVHFJbITW-2qm6xK9gC_nhnHcbKiRcAlWtneWPKbjN_Yz2NCXmcV8t6yjKxVPOJSz6LclDZKlKzKMsYcS3g4-fhEHs35p3NxPhwhcKdLWj0tf954ruR_UIUywBVPyf4DsuGlUAC_AV94AsLw_CuM5yuM13tpRi8UNCvMsGlc_mWvYlyaFsDGfNZLVNa6XfVu1RWKNlTlY7IadnNG6SXcSohbip8CNFg4lAxSgc6XfbtYN8OK95VxjverWlwGQfCJatW1Wvi9KOXnCL8IkfCgsoI5xDtOCGrB68qxZ2XdsX9vQmzkJw991e8OXGBCWLXAhJ4QfDjGOsUex61hXFdLhynQLbyxJh5ms6Ax7KvuknsJhBB4u8Xn0yGTPPDMmc9CBX2-u6HHHbLdv2OTtNwSiThGcvaA3PehBD3o7OIhuWPqXbJ3UKu2Wf6gb-iXAMwu2T72Goo9ctpZzXsKhkHRZmhj6chm6GXtqoLN0M5msFlvM3TDZh6R-eHHsw9Hkb9YIyoZY22USm6tYZVSKE2MK21kUtl0xpMqy0VubcaZjaXWXGiI5yudxmmaG1sJY4Qykj0mW3VTm6eECi5jZYAj6koAH5JAd3OmEmZ0nHHD2YQk_cgVpc86j5efXBUu-hRJ0Y-8U1eKAkd-Qt6GP626pCt_br7fQ1L4D-J7AWELbmHzLJ-QV6EafCduiKnaNGtoA3w5jRMp0gl50kEZ-uuhf3ZrzXOyM3wK-2SrvV6bF8BQW_3SmdovU22SNA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Update%3A+the+role+of+epigenetics+in+the+metabolic+memory+of+diabetic+complications&rft.jtitle=American+journal+of+physiology.+Renal+physiology&rft.au=Chen%2C+Zhuo&rft.au=Malek%2C+Vajir&rft.au=Natarajan%2C+Rama&rft.date=2024-09-01&rft.eissn=1522-1466&rft.volume=327&rft.issue=3&rft.spage=F327&rft_id=info:doi/10.1152%2Fajprenal.00115.2024&rft_id=info%3Apmid%2F38961840&rft.externalDocID=38961840 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-857X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-857X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-857X&client=summon |