Update: the role of epigenetics in the metabolic memory of diabetic complications

Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increases morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary li...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Renal physiology Vol. 327; no. 3; pp. F327 - F339
Main Authors Chen, Zhuo, Malek, Vajir, Natarajan, Rama
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increases morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary lifestyles, and hyperlipidemia can induce epigenetic changes. Working alone or with genetic factors, these epigenetic changes that occur without alterations in the underlying DNA sequence, can alter the expression of pathophysiological genes and impair functions of associated target cells/organs, leading to diabetic complications like DKD. Notably, some hyperglycemia-induced epigenetic changes persist in target cells/tissues even after glucose normalization, leading to sustained complications despite glycemic control, so-called metabolic memory. Emerging evidence from in vitro and in vivo animal models and clinical trials with subjects with diabetes identified clear associations between metabolic memory and epigenetic changes including DNA methylation, histone modifications, chromatin structure, and noncoding RNAs at key loci. Targeting such persistent epigenetic changes and/or molecules regulated by them can serve as valuable opportunities to attenuate, or erase metabolic memory, which is crucial to prevent complication progression. Here, we review these cell/tissue-specific epigenetic changes identified to-date as related to diabetic complications, especially DKD, and the current status on targeting epigenetics to tackle metabolic memory. We also discuss limitations in current studies, including the need for more (epi)genome-wide studies, integrative analysis using multiple epigenetic marks and Omics datasets, and mechanistic evaluation of metabolic memory. Considering the tremendous technological advances in epigenomics, genetics, sequencing, and availability of genomic datasets from clinical cohorts, this field is likely to see considerable progress in the upcoming years.
AbstractList Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increases morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary lifestyles, and hyperlipidemia can induce epigenetic changes. Working alone or with genetic factors, these epigenetic changes that occur without alterations in the underlying DNA sequence, can alter the expression of pathophysiological genes and impair functions of associated target cells/organs, leading to diabetic complications like DKD. Notably, some hyperglycemia-induced epigenetic changes persist in target cells/tissues even after glucose normalization, leading to sustained complications despite glycemic control, so-called metabolic memory. Emerging evidence from in vitro and in vivo animal models and clinical trials with subjects with diabetes identified clear associations between metabolic memory and epigenetic changes including DNA methylation, histone modifications, chromatin structure, and noncoding RNAs at key loci. Targeting such persistent epigenetic changes and/or molecules regulated by them can serve as valuable opportunities to attenuate, or erase metabolic memory, which is crucial to prevent complication progression. Here, we review these cell/tissue-specific epigenetic changes identified to-date as related to diabetic complications, especially DKD, and the current status on targeting epigenetics to tackle metabolic memory. We also discuss limitations in current studies, including the need for more (epi)genome-wide studies, integrative analysis using multiple epigenetic marks and Omics datasets, and mechanistic evaluation of metabolic memory. Considering the tremendous technological advances in epigenomics, genetics, sequencing, and availability of genomic datasets from clinical cohorts, this field is likely to see considerable progress in the upcoming years.
Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increases morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary lifestyles, and hyperlipidemia can induce epigenetic changes. Working alone or with genetic factors, these epigenetic changes that occur without alterations in the underlying DNA sequence, can alter the expression of pathophysiological genes and impair functions of associated target cells/organs, leading to diabetic complications like DKD. Notably, some hyperglycemia-induced epigenetic changes persist in target cells/tissues even after glucose normalization, leading to sustained complications despite glycemic control, so-called metabolic memory. Emerging evidence from in vitro and in vivo animal models and clinical trials with subjects with diabetes identified clear associations between metabolic memory and epigenetic changes including DNA methylation, histone modifications, chromatin structure, and noncoding RNAs at key loci. Targeting such persistent epigenetic changes and/or molecules regulated by them can serve as valuable opportunities to attenuate, or erase metabolic memory, which is crucial to prevent complication progression. Here, we review these cell/tissue-specific epigenetic changes identified to-date as related to diabetic complications, especially DKD, and the current status on targeting epigenetics to tackle metabolic memory. We also discuss limitations in current studies, including the need for more (epi)genome-wide studies, integrative analysis using multiple epigenetic marks and Omics datasets, and mechanistic evaluation of metabolic memory. Considering the tremendous technological advances in epigenomics, genetics, sequencing, and availability of genomic datasets from clinical cohorts, this field is likely to see considerable progress in the upcoming years.Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increases morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary lifestyles, and hyperlipidemia can induce epigenetic changes. Working alone or with genetic factors, these epigenetic changes that occur without alterations in the underlying DNA sequence, can alter the expression of pathophysiological genes and impair functions of associated target cells/organs, leading to diabetic complications like DKD. Notably, some hyperglycemia-induced epigenetic changes persist in target cells/tissues even after glucose normalization, leading to sustained complications despite glycemic control, so-called metabolic memory. Emerging evidence from in vitro and in vivo animal models and clinical trials with subjects with diabetes identified clear associations between metabolic memory and epigenetic changes including DNA methylation, histone modifications, chromatin structure, and noncoding RNAs at key loci. Targeting such persistent epigenetic changes and/or molecules regulated by them can serve as valuable opportunities to attenuate, or erase metabolic memory, which is crucial to prevent complication progression. Here, we review these cell/tissue-specific epigenetic changes identified to-date as related to diabetic complications, especially DKD, and the current status on targeting epigenetics to tackle metabolic memory. We also discuss limitations in current studies, including the need for more (epi)genome-wide studies, integrative analysis using multiple epigenetic marks and Omics datasets, and mechanistic evaluation of metabolic memory. Considering the tremendous technological advances in epigenomics, genetics, sequencing, and availability of genomic datasets from clinical cohorts, this field is likely to see considerable progress in the upcoming years.
Author Malek, Vajir
Natarajan, Rama
Chen, Zhuo
Author_xml – sequence: 1
  givenname: Zhuo
  orcidid: 0000-0002-3522-9660
  surname: Chen
  fullname: Chen, Zhuo
  organization: Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
– sequence: 2
  givenname: Vajir
  surname: Malek
  fullname: Malek, Vajir
  organization: Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
– sequence: 3
  givenname: Rama
  orcidid: 0000-0003-4494-1788
  surname: Natarajan
  fullname: Natarajan, Rama
  organization: Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38961840$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9r3DAQxUVJ6CZpP0GhGHLJxVv9tazeQkibwEIINNCbkK1Rq8W2XEl7yLevvNm97CGnmeH93sDMu0RnU5gAoS8ErwkR9JvZzhEmM6wxLvOaYso_oIui0JrwpjkrvWKkboX8vUKXKW3xAlLyEa1YqxrScnyBnl9mazJ8r_JfqGIYoAqugtn_gQmy71Plp700QjZdGHxfujHE1wWz3nQLVPVhnItksg9T-oTOnRkSfD7UK_Ty4_7X3UO9efr5eHe7qXvGWK5lw50DZo2hGDNsO2iodZJwalsllHMtZw43XcdFRxSxncRSKnBWAAgDDbtCN2975xj-7SBlPfrUwzCYCcIuaYalkJg2Qhb0-gTdhl0srysUwVQJzltVqK8HateNYPUc_Wjiqz4-qwDqDehjSCmC073P-6NzNH7QBOslGH0MRu-D0UswxctOvMf177n-Ax97k24
CitedBy_id crossref_primary_10_1007_s00125_024_06284_4
Cites_doi 10.1016/j.cell.2013.06.044
10.1038/nature11247
10.2337/db10-0208
10.1016/j.exer.2010.02.006
10.1111/dom.13262
10.1038/ncomms12864
10.1038/nrg2905
10.1016/j.cell.2018.03.006
10.1093/eurheartj/ehv599
10.2215/CJN.16751020
10.1038/s41586-019-1411-0
10.1038/s41588-022-01097-w
10.1161/CIRCRESAHA.110.223545
10.1016/j.kint.2019.02.020
10.1038/s41556-020-0487-y
10.1074/jbc.M802800200
10.1210/en.2015-1063
10.2337/db11-0588
10.1073/pnas.1603712113
10.2337/db17-0294
10.1038/s41574-022-00671-w
10.1681/ASN.2014070665
10.1073/pnas.2005905117
10.2337/db08-1666
10.2337/db19-0514
10.1155/2013/635284
10.1074/jbc.RA119.007575
10.1681/ASN.2011050485
10.1038/nrdp.2015.18
10.1007/s00125-021-05397-4
10.1038/s41467-020-18957-w
10.3389/fendo.2012.00170
10.1038/nature11082
10.2337/diabetes.52.3.818
10.3389/fendo.2021.665811
10.15386/mpr-2187
10.1016/S2213-8587(14)70155-X
10.1152/ajpcell.00201.2022
10.1681/ASN.2014050528
10.1038/nature05913
10.2337/db20-0382
10.1161/CIRCRESAHA.116.306819
10.1152/physrev.00045.2011
10.1126/science.abj8894
10.1056/NEJM199309303291401
10.1136/bmjdrc-2022-003068
10.1084/jem.20081188
10.3389/fphys.2021.637480
10.1016/j.cmet.2020.07.002
10.1016/j.cmet.2012.11.012
10.1056/NEJMoa0706245
10.1093/cvr/cvab013
10.1016/j.bbrc.2013.02.064
10.2337/db06-0164
10.1038/s41467-022-32477-9
10.1073/pnas.87.1.404
10.3389/fendo.2020.598012
10.1161/CIRCRESAHA.112.266593
10.2337/dc13-2112
10.1016/j.ajpath.2011.01.044
10.3791/50232
10.1016/j.bbrc.2017.09.028
10.1074/jbc.M609446200
10.1126/science.adg3053
10.1038/srep29302
10.1681/ASN.2013050461
10.1016/j.cell.2022.12.047
10.1016/j.cell.2007.02.005
10.2337/db16-0254
10.1074/jbc.M311786200
10.2337/db13-1251
10.3389/fmolb.2023.1204124
10.1161/01.HYP.0000102971.85504.7c
10.1371/journal.pone.0134654
10.1038/emm.2017.10
10.1038/s42255-020-0231-8
10.1038/nrg3230
10.1056/NEJMoa0806470
10.1016/j.kint.2015.12.018
10.1093/eurheartj/eht149
10.1016/j.mce.2013.04.019
10.1007/s00125-014-3462-y
10.4172/2155-9570.1000287
10.2337/diab.36.7.808
10.1038/s41581-020-0298-1
10.1038/s41581-019-0135-6
10.3389/fphys.2021.649587
10.3389/fmed.2023.1153805
10.1007/s00109-009-0499-3
10.1007/s11892-019-1214-6
10.1126/scitranslmed.adj3385
10.1073/pnas.0611192104
10.1186/s13059-021-02347-6
10.2147/vhrm.s1991
10.1159/000520311
10.1038/s41580-020-00315-9
10.1038/nrneph.2015.37
10.1007/s00125-009-1470-0
10.1038/s42003-018-0108-5
10.3389/fendo.2023.1163001
10.1038/nbt.1685
10.2337/dbi18-0010
10.1016/j.jdiacomp.2004.03.002
10.1038/s41419-021-03930-2
10.1902/jop.2008.080246
10.1073/pnas.0803623105
10.1074/jbc.M511425200
ContentType Journal Article
Copyright Copyright American Physiological Society Sep 2024
Copyright_xml – notice: Copyright American Physiological Society Sep 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1152/ajprenal.00115.2024
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1466
EndPage F339
ExternalDocumentID 38961840
10_1152_ajprenal_00115_2024
Genre Journal Article
Review
GrantInformation_xml – fundername: DiaComp pilot & Feasibility grant
– fundername: the Schaeffer Foundation
– fundername: Anon SS
– fundername: the Wanek Family Project for Cure of Type 1 Diabetes at City of Hope
– fundername: NIDDK NIH HHS
  grantid: R01 DK065073
– fundername: NHLBI NIH HHS
  grantid: R01 HL106089
– fundername: NIDDK NIH HHS
  grantid: R01 DK081705
GroupedDBID ---
23M
39C
4.4
53G
5GY
5VS
6J9
AAFWJ
AAYXX
ACPRK
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
E3Z
EBS
EMOBN
F5P
GX1
H13
ITBOX
KQ8
OK1
P2P
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
WOQ
XSW
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c333t-764ffe3daa20030dbe62df7142d8959ff843f06bb45b191db70779efd5ee5ae63
ISSN 1931-857X
1522-1466
IngestDate Fri Jul 11 01:51:40 EDT 2025
Mon Jun 30 07:53:32 EDT 2025
Mon Jul 21 06:02:25 EDT 2025
Tue Jul 01 02:06:38 EDT 2025
Thu Apr 24 23:05:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords diabetic complications
diabetic kidney disease
epigenetic modifications
metabolic memory
epigenetics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-764ffe3daa20030dbe62df7142d8959ff843f06bb45b191db70779efd5ee5ae63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4494-1788
0000-0002-3522-9660
PMID 38961840
PQID 3102954489
PQPubID 48265
ParticipantIDs proquest_miscellaneous_3075702657
proquest_journals_3102954489
pubmed_primary_38961840
crossref_citationtrail_10_1152_ajprenal_00115_2024
crossref_primary_10_1152_ajprenal_00115_2024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle American journal of physiology. Renal physiology
PublicationTitleAlternate Am J Physiol Renal Physiol
PublicationYear 2024
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B24
B25
B26
B27
B29
Russo V (B28) 1996
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B54
B55
B56
B57
B58
B59
B109
B107
B108
B105
B106
B103
B104
B101
B102
B100
B60
B61
B62
B63
B64
B65
B66
B67
B68
B69
B70
B71
B72
B73
B74
B75
B76
B77
B78
B79
B80
B81
B82
B83
B84
B85
B86
B87
B88
B89
B90
B91
B92
B93
B94
B95
B96
B97
B10
B98
B11
B99
B12
B13
B14
B15
B16
B17
B18
B19
References_xml – ident: B99
  doi: 10.1016/j.cell.2013.06.044
– ident: B32
  doi: 10.1038/nature11247
– ident: B65
  doi: 10.2337/db10-0208
– ident: B25
  doi: 10.1016/j.exer.2010.02.006
– ident: B94
  doi: 10.1111/dom.13262
– volume-title: Epigenetic Mechanisms of Gene Regulation
  year: 1996
  ident: B28
– ident: B56
  doi: 10.1038/ncomms12864
– ident: B34
  doi: 10.1038/nrg2905
– ident: B36
  doi: 10.1016/j.cell.2018.03.006
– ident: B97
  doi: 10.1093/eurheartj/ehv599
– ident: B98
  doi: 10.2215/CJN.16751020
– ident: B27
  doi: 10.1038/s41586-019-1411-0
– ident: B106
  doi: 10.1038/s41588-022-01097-w
– ident: B9
  doi: 10.1161/CIRCRESAHA.110.223545
– ident: B92
  doi: 10.1016/j.kint.2019.02.020
– ident: B50
  doi: 10.1038/s41556-020-0487-y
– ident: B81
  doi: 10.1074/jbc.M802800200
– ident: B63
  doi: 10.1210/en.2015-1063
– ident: B49
  doi: 10.2337/db11-0588
– ident: B70
  doi: 10.1073/pnas.1603712113
– ident: B67
  doi: 10.2337/db17-0294
– ident: B42
  doi: 10.1038/s41574-022-00671-w
– ident: B51
  doi: 10.1681/ASN.2014070665
– ident: B105
  doi: 10.1073/pnas.2005905117
– ident: B59
  doi: 10.2337/db08-1666
– ident: B20
  doi: 10.2337/db19-0514
– ident: B43
  doi: 10.1155/2013/635284
– ident: B55
  doi: 10.1074/jbc.RA119.007575
– ident: B101
  doi: 10.1681/ASN.2011050485
– ident: B5
  doi: 10.1038/nrdp.2015.18
– ident: B16
  doi: 10.1007/s00125-021-05397-4
– ident: B74
  doi: 10.1038/s41467-020-18957-w
– ident: B11
  doi: 10.3389/fendo.2012.00170
– ident: B30
  doi: 10.1038/nature11082
– ident: B24
  doi: 10.2337/diabetes.52.3.818
– ident: B37
  doi: 10.3389/fendo.2021.665811
– ident: B102
  doi: 10.15386/mpr-2187
– ident: B15
  doi: 10.1016/S2213-8587(14)70155-X
– ident: B45
  doi: 10.1152/ajpcell.00201.2022
– ident: B84
  doi: 10.1681/ASN.2014050528
– ident: B29
  doi: 10.1038/nature05913
– ident: B52
  doi: 10.2337/db20-0382
– ident: B44
  doi: 10.1161/CIRCRESAHA.116.306819
– ident: B2
  doi: 10.1152/physrev.00045.2011
– ident: B83
  doi: 10.1126/science.abj8894
– ident: B13
  doi: 10.1056/NEJM199309303291401
– ident: B107
  doi: 10.1136/bmjdrc-2022-003068
– ident: B58
  doi: 10.1084/jem.20081188
– ident: B78
  doi: 10.3389/fphys.2021.637480
– ident: B103
  doi: 10.1016/j.cmet.2020.07.002
– ident: B3
  doi: 10.1016/j.cmet.2012.11.012
– ident: B18
  doi: 10.1056/NEJMoa0706245
– ident: B62
  doi: 10.1093/cvr/cvab013
– ident: B61
  doi: 10.1016/j.bbrc.2013.02.064
– ident: B75
  doi: 10.2337/db06-0164
– ident: B53
  doi: 10.1038/s41467-022-32477-9
– ident: B23
  doi: 10.1073/pnas.87.1.404
– ident: B91
  doi: 10.3389/fendo.2020.598012
– ident: B60
  doi: 10.1161/CIRCRESAHA.112.266593
– ident: B14
  doi: 10.2337/dc13-2112
– ident: B90
  doi: 10.1016/j.ajpath.2011.01.044
– ident: B22
  doi: 10.3791/50232
– ident: B87
  doi: 10.1016/j.bbrc.2017.09.028
– ident: B80
  doi: 10.1074/jbc.M609446200
– ident: B108
  doi: 10.1126/science.adg3053
– ident: B82
  doi: 10.1038/srep29302
– ident: B46
  doi: 10.1681/ASN.2013050461
– ident: B100
  doi: 10.1016/j.cell.2022.12.047
– ident: B33
  doi: 10.1016/j.cell.2007.02.005
– ident: B54
  doi: 10.2337/db16-0254
– ident: B79
  doi: 10.1074/jbc.M311786200
– ident: B69
  doi: 10.2337/db13-1251
– ident: B57
  doi: 10.3389/fmolb.2023.1204124
– ident: B4
  doi: 10.1161/01.HYP.0000102971.85504.7c
– ident: B68
  doi: 10.1371/journal.pone.0134654
– ident: B48
  doi: 10.1038/emm.2017.10
– ident: B71
  doi: 10.1038/s42255-020-0231-8
– ident: B35
  doi: 10.1038/nrg3230
– ident: B17
  doi: 10.1056/NEJMoa0806470
– ident: B88
  doi: 10.1016/j.kint.2015.12.018
– ident: B6
  doi: 10.1093/eurheartj/eht149
– ident: B96
  doi: 10.1016/j.mce.2013.04.019
– ident: B7
  doi: 10.1007/s00125-014-3462-y
– ident: B86
  doi: 10.4172/2155-9570.1000287
– ident: B21
  doi: 10.2337/diab.36.7.808
– ident: B41
  doi: 10.1038/s41581-020-0298-1
– ident: B8
  doi: 10.1038/s41581-019-0135-6
– ident: B77
  doi: 10.3389/fphys.2021.649587
– ident: B85
  doi: 10.3389/fmed.2023.1153805
– ident: B73
  doi: 10.1007/s00109-009-0499-3
– ident: B47
  doi: 10.1007/s11892-019-1214-6
– ident: B109
  doi: 10.1126/scitranslmed.adj3385
– ident: B95
  doi: 10.1073/pnas.0611192104
– ident: B104
  doi: 10.1186/s13059-021-02347-6
– ident: B12
  doi: 10.2147/vhrm.s1991
– ident: B93
  doi: 10.1159/000520311
– ident: B38
  doi: 10.1038/s41580-020-00315-9
– ident: B40
  doi: 10.1038/nrneph.2015.37
– ident: B19
  doi: 10.1007/s00125-009-1470-0
– ident: B66
  doi: 10.1038/s42003-018-0108-5
– ident: B39
  doi: 10.3389/fendo.2023.1163001
– ident: B31
  doi: 10.1038/nbt.1685
– ident: B72
  doi: 10.2337/dbi18-0010
– ident: B26
  doi: 10.1016/j.jdiacomp.2004.03.002
– ident: B89
  doi: 10.1038/s41419-021-03930-2
– ident: B10
  doi: 10.1902/jop.2008.080246
– ident: B64
  doi: 10.1073/pnas.0803623105
– ident: B76
  doi: 10.1074/jbc.M511425200
SSID ssj0001121
Score 2.4729018
SecondaryResourceType review_article
Snippet Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage F327
SubjectTerms Animal models
Animals
Chromatin
Clinical trials
Diabetes
Diabetes Complications - genetics
Diabetes Complications - metabolism
Diabetes mellitus
Diabetic Nephropathies - genetics
Diabetic Nephropathies - metabolism
DNA Methylation
DNA structure
Environmental factors
Epigenesis, Genetic
Epigenetics
Genetic factors
Genomic analysis
Histones
Humans
Hyperglycemia
Hyperlipidemia
Kidney diseases
Metabolism
Morbidity
Nucleotide sequence
Overnutrition
Title Update: the role of epigenetics in the metabolic memory of diabetic complications
URI https://www.ncbi.nlm.nih.gov/pubmed/38961840
https://www.proquest.com/docview/3102954489
https://www.proquest.com/docview/3075702657
Volume 327
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSFUvCFo-FgoyEuJElmz8kYRbhagqUCsqdVHFJbITW-2qm6xK9gC_nhnHcbKiRcAlWtneWPKbjN_Yz2NCXmcV8t6yjKxVPOJSz6LclDZKlKzKMsYcS3g4-fhEHs35p3NxPhwhcKdLWj0tf954ruR_UIUywBVPyf4DsuGlUAC_AV94AsLw_CuM5yuM13tpRi8UNCvMsGlc_mWvYlyaFsDGfNZLVNa6XfVu1RWKNlTlY7IadnNG6SXcSohbip8CNFg4lAxSgc6XfbtYN8OK95VxjverWlwGQfCJatW1Wvi9KOXnCL8IkfCgsoI5xDtOCGrB68qxZ2XdsX9vQmzkJw991e8OXGBCWLXAhJ4QfDjGOsUex61hXFdLhynQLbyxJh5ms6Ax7KvuknsJhBB4u8Xn0yGTPPDMmc9CBX2-u6HHHbLdv2OTtNwSiThGcvaA3PehBD3o7OIhuWPqXbJ3UKu2Wf6gb-iXAMwu2T72Goo9ctpZzXsKhkHRZmhj6chm6GXtqoLN0M5msFlvM3TDZh6R-eHHsw9Hkb9YIyoZY22USm6tYZVSKE2MK21kUtl0xpMqy0VubcaZjaXWXGiI5yudxmmaG1sJY4Qykj0mW3VTm6eECi5jZYAj6koAH5JAd3OmEmZ0nHHD2YQk_cgVpc86j5efXBUu-hRJ0Y-8U1eKAkd-Qt6GP626pCt_br7fQ1L4D-J7AWELbmHzLJ-QV6EafCduiKnaNGtoA3w5jRMp0gl50kEZ-uuhf3ZrzXOyM3wK-2SrvV6bF8BQW_3SmdovU22SNA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Update%3A+the+role+of+epigenetics+in+the+metabolic+memory+of+diabetic+complications&rft.jtitle=American+journal+of+physiology.+Renal+physiology&rft.au=Chen%2C+Zhuo&rft.au=Malek%2C+Vajir&rft.au=Natarajan%2C+Rama&rft.date=2024-09-01&rft.eissn=1522-1466&rft.volume=327&rft.issue=3&rft.spage=F327&rft_id=info:doi/10.1152%2Fajprenal.00115.2024&rft_id=info%3Apmid%2F38961840&rft.externalDocID=38961840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-857X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-857X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-857X&client=summon