Investigations on flow and growth properties of a cavity-actuated supersonic planar mixing layer downstream a thick splitter plate
•A cavity is applied as an actuator to improve mixing in supersonic planar mixing layer.•The coherent structures is strongly locked to frequencies from self-sustaining oscillation of supersonic cavity flow.•The normalized growth rate of cavity-actuated supersonic mixing layer is much larger than the...
Saved in:
Published in | The International journal of heat and fluid flow Vol. 74; pp. 209 - 220 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A cavity is applied as an actuator to improve mixing in supersonic planar mixing layer.•The coherent structures is strongly locked to frequencies from self-sustaining oscillation of supersonic cavity flow.•The normalized growth rate of cavity-actuated supersonic mixing layer is much larger than the typical result of free shear layer.•Curvature shocklets are firstly observed at the low convective Mach number of 0.22.
Mixing enhancement is vital to combustion efficiency in a rocket-based combined cycle engine. Presently, we propose a cavity as an actuator and investigate the cavity-actuated supersonic mixing layer experimentally using particle image velocimetry (PIV) and nanoparticle-based planar laser scattering (NPLS). Large eddy simulation (LES) is conducted to obtain the detailed flow structures and pressure spectra of the supersonic mixing layer. Results indicate that the vortex evolution of the supersonic mixing layer is locked strongly to the excitation frequencies from the self-sustaining oscillation of supersonic cavity flow in both the near and far flowfields. Multiple coherent structures of different sizes coexist in the initial flowfields, and then only large ones survive downstream. Pressure spectra can reflect the vortex evolution entirely. The third mode of the pressure spectrum gradually becomes dominant due to having the highest energy content. Curvature shocklets are observed in this case at the low convective Mach number of 0.22. The growth rate in the linear process is slightly larger than that of the case without a cavity while the velocity thickness is 3.34 times as large as that. The normalized growth rate sees a massive increase and is 8.95 times as large as the typical result of a free supersonic shear layer. |
---|---|
AbstractList | •A cavity is applied as an actuator to improve mixing in supersonic planar mixing layer.•The coherent structures is strongly locked to frequencies from self-sustaining oscillation of supersonic cavity flow.•The normalized growth rate of cavity-actuated supersonic mixing layer is much larger than the typical result of free shear layer.•Curvature shocklets are firstly observed at the low convective Mach number of 0.22.
Mixing enhancement is vital to combustion efficiency in a rocket-based combined cycle engine. Presently, we propose a cavity as an actuator and investigate the cavity-actuated supersonic mixing layer experimentally using particle image velocimetry (PIV) and nanoparticle-based planar laser scattering (NPLS). Large eddy simulation (LES) is conducted to obtain the detailed flow structures and pressure spectra of the supersonic mixing layer. Results indicate that the vortex evolution of the supersonic mixing layer is locked strongly to the excitation frequencies from the self-sustaining oscillation of supersonic cavity flow in both the near and far flowfields. Multiple coherent structures of different sizes coexist in the initial flowfields, and then only large ones survive downstream. Pressure spectra can reflect the vortex evolution entirely. The third mode of the pressure spectrum gradually becomes dominant due to having the highest energy content. Curvature shocklets are observed in this case at the low convective Mach number of 0.22. The growth rate in the linear process is slightly larger than that of the case without a cavity while the velocity thickness is 3.34 times as large as that. The normalized growth rate sees a massive increase and is 8.95 times as large as the typical result of a free supersonic shear layer. |
Author | Hou, Juwei Zhang, Dongdong Tan, Jianguo Li, Hao |
Author_xml | – sequence: 1 givenname: Hao surname: Li fullname: Li, Hao – sequence: 2 givenname: Jianguo surname: Tan fullname: Tan, Jianguo email: jianguotan@nudt.edu.cn – sequence: 3 givenname: Dongdong surname: Zhang fullname: Zhang, Dongdong – sequence: 4 givenname: Juwei surname: Hou fullname: Hou, Juwei |
BookMark | eNqNkDFv2zAQhYkiBeok_Q9cOsohRdmihg6F0SYGAnRpgWwCRR7tc2VSIM92vPaXl046Zcp0w3fvA967ZlchBmDsixRzKeTybjfH3RYM-fGAzo_xNK-F1IXNhWg-sJnUbVfVdauv2EzIpq7aun36xK5z3gkhlqJpZ-zvOhwhE24MYQyZx8AvJm6C45sUT7TlU4oTJEIo1HPDrTkinStj6WAIHM-HgnMMaPk0mmAS3-Mzhg0fzRkSd_EUMiUw-5KlLdo_PE8jEhVW_glu2Udvxgyf_98b9vvH91-rh-rx5_169e2xskopqtpF12irB6cW1nTDwkrn5SCVWfpaNxoG5QV46XS3GJQEKaDtfN06BVItdSPVDVu9em2KOSfwvUV6qU3J4NhL0V9m7Xf9m1n7y6wXXGYtlq9vLFPCvUnnd-fvX_NQqh4RUp8tQrDgMIGl3kV8p-kfcOymjQ |
CitedBy_id | crossref_primary_10_1063_5_0086492 crossref_primary_10_1016_j_actaastro_2019_11_007 crossref_primary_10_1016_j_actaastro_2023_10_005 crossref_primary_10_2514_1_J061399 crossref_primary_10_1063_1_5145276 crossref_primary_10_1016_j_actaastro_2020_04_044 crossref_primary_10_1063_5_0062145 crossref_primary_10_1016_j_actaastro_2023_05_036 crossref_primary_10_1063_5_0019299 crossref_primary_10_1016_j_ast_2020_106150 crossref_primary_10_1016_j_ast_2021_106888 |
Cites_doi | 10.1017/S0022112088002356 10.1088/1464-4258/4/6/371 10.1088/0957-0233/14/1/304 10.1017/S0022112007009925 10.1016/0010-2180(94)90134-1 10.1146/annurev.fl.16.010184.000303 10.1007/s11433-009-0301-0 10.1007/s00348-015-1924-8 10.1017/S0022112001004827 10.1016/j.ast.2018.01.009 10.1017/CBO9780511627019 10.2514/1.14879 10.1063/1.1522379 10.1007/s11431-009-0281-3 10.1017/S0022112092001733 10.1063/1.868460 10.1007/s12650-015-0321-y 10.1007/s10494-012-9434-8 10.1007/s00348-014-1711-y 10.1017/S0022112000001634 10.1016/j.compfluid.2015.09.006 10.1016/j.actaastro.2015.09.001 10.1016/j.actaastro.2016.06.019 10.2514/1.38211 10.1017/S0022112007008919 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 10.1007/s003480200005 10.2514/3.9525 10.2514/3.10617 10.1007/s11433-009-0180-4 10.2514/3.12524 10.1146/annurev.fl.27.010195.002111 10.2514/2.5433 10.1016/j.actaastro.2015.12.040 10.1063/1.868621 10.1016/j.actaastro.2017.12.010 10.1016/j.ijhydene.2013.02.100 10.1007/s11433-008-0097-3 10.1017/S0022112007007884 10.1017/S0022112000001622 10.1146/annurev.fl.16.010184.002053 10.1063/1.4922021 10.1088/1468-5248/3/1/009 10.1007/BF00187228 10.1017/jfm.2012.400 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. |
Copyright_xml | – notice: 2018 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijheatfluidflow.2018.10.004 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-2278 |
EndPage | 220 |
ExternalDocumentID | 10_1016_j_ijheatfluidflow_2018_10_004 S0142727X18304478 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADHUB ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 UHS VH1 VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c333t-75948c8bd35ca9b5c1df1b13a6f2848eb3f0ef1d895b31e10e79f27d3e1368413 |
IEDL.DBID | .~1 |
ISSN | 0142-727X |
IngestDate | Thu Apr 24 22:54:50 EDT 2025 Tue Jul 01 01:32:23 EDT 2025 Fri Feb 23 02:26:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Supersonic mixing layer Cavity Growth rate Curvature shocklets Mixing enhancement |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-75948c8bd35ca9b5c1df1b13a6f2848eb3f0ef1d895b31e10e79f27d3e1368413 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ijheatfluidflow_2018_10_004 crossref_primary_10_1016_j_ijheatfluidflow_2018_10_004 elsevier_sciencedirect_doi_10_1016_j_ijheatfluidflow_2018_10_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 2018-12-00 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationTitle | The International journal of heat and fluid flow |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Giuliani, Bozzipietra, Donati (bib0013) 2003; 14 Tan, Zhang, Lv (bib0035) 2015 Bres, Colonius (bib0004) 2008; 599 Wagner, Casper, Beresh, Hunter, Spillers, Henfling, Mayes (bib0040) 2015; 27 Zhou, He, Shen (bib0056) 2012; 711 Yu, Schadow (bib0046) 1994; 99 Tan, Zhang, Li, Hou (bib0034) 2018; 144 Weisbrot, Wygnanski (bib0044) 1988; 195 Wang, Wang, Sun, Qin (bib0042) 2013; 38 Geobel, Dutton (bib0007) 1991; 29 Ho, Huerre (bib0020) 1984; 16 Smagorinsky (bib0033) 1963; 91 Zhang, Tan, Li (bib0048) 2017; 111 Zhao, Liang, Zhao (bib0051) 2016; 121 Dimotakis (bib0005) 1986; 24 Kit, Wygnanski, Friedman, Krivonosova, Zhilenko (bib0022) 2007; 589 Li, Tan, Hou, Zhang (bib0025) 2018; 74 Dimotakis (bib0006) 1991 Heller, Bliss (bib0019) 1975 Zhao, Tian, Yi, He, Cheng (bib0053) 2008; 51 Yi, He, Zhao, Tian, Cheng (bib0045) 2009; 52 Goebel, Dutton, Krier, Renie (bib0015) 1990; 8 Lai, Yue, Platzer (bib0023) 2002; 32 Segal, 2009. The scramjet engine: processes and characteristics. Cambridge University Press. Handa, Nakano, Tanigawa, Fujita (bib0018) 2014; 55 Hsu, Crafton (bib0021) 2000 Wang, Sun, Qin, Wu, Wang (bib1002) 2013; 90 Sato, Imamura, Shiba, Takahashi, Tsue, Kono (bib0031) 1999; 15 Feng (bib0009) 2016 Mahle, Foysi, Sarkar, Friedrich (bib0026) 2007; 593 Wang, Sun, Qin, Wu, Wang (bib0041) 2013; 90 Arunajatesan, Kannepalli, Sinha, Sheehan, Alvi, Shumway, Ukeiley (bib0001) 2009; 47 Guo, Liu, Zhang, Zhang (bib0017) 2017; 66 Rossiter (bib0030) 1964 Rossmann, Mungal, Hanson (bib0029) 2002; 3 Papamoschou (bib0027) 1995; 7 Germano (bib0012) 1992; 238 Giuliani, Norgia, Donati, Bosch (bib0014) 2002; 4 Vreman, Kuerten, Geurts (bib0038) 1995; 7 Gutmark, Schadow, Yu (bib0008) 1995; 27 Freund, Lele, Moin (bib0010) 2000; 421 Freund, Moin, Lele (bib0011) 2000; 421 Zhang, Tan, Lv, Wang (bib0050) 2016; 19 Zhang, Tan, Lv (bib0049) 2015; 117 Larchevêque, Sagaut, Mary, Labbé, Comte (bib0024) 2002; 15 Zhou, Wygnanski (bib0055) 2001; 441 Wagner, Casper, Beresh, Henfling, Spillers, Pruett (bib0039) 2015; 56 Wang, Wei, Zhang, Zhang, Xue (bib0003) 2015; 123 Wang, Wang, Sun, Qin (bib1003) 2013; 38 Tian, Yi, Zhao, He, Cheng (bib0036) 2009; 52 Wang, Wang, Lei, Feng (bib0043) 2013; 103 Zhao, Liang, Zhao (bib0052) 2016; 128 Zhuang, Alvi, Alkislar, Shih (bib0057) 2006; 44 Grimshaw (bib0016) 1984 Quick, King, Gruber, Carter, Hsu (bib0028) 2005 Zang, Tempel, Yu (bib0047) 2005 Baurle, Tam, Dasgupta (bib0002) 2000 Vandsburger, Ding (bib0037) 1995; 33 Zhao, Yi, Tian, He, Cheng (bib0054) 2009; 52 Papamoschou (10.1016/j.ijheatfluidflow.2018.10.004_bib0027) 1995; 7 Bres (10.1016/j.ijheatfluidflow.2018.10.004_bib0004) 2008; 599 Lai (10.1016/j.ijheatfluidflow.2018.10.004_bib0023) 2002; 32 Yi (10.1016/j.ijheatfluidflow.2018.10.004_bib0045) 2009; 52 Rossmann (10.1016/j.ijheatfluidflow.2018.10.004_bib0029) 2002; 3 Giuliani (10.1016/j.ijheatfluidflow.2018.10.004_bib0013) 2003; 14 Yu (10.1016/j.ijheatfluidflow.2018.10.004_bib0046) 1994; 99 Grimshaw (10.1016/j.ijheatfluidflow.2018.10.004_bib0016) 1984 Goebel (10.1016/j.ijheatfluidflow.2018.10.004_bib0015) 1990; 8 Zhao (10.1016/j.ijheatfluidflow.2018.10.004_bib0053) 2008; 51 Germano (10.1016/j.ijheatfluidflow.2018.10.004_bib0012) 1992; 238 Zhao (10.1016/j.ijheatfluidflow.2018.10.004_bib0051) 2016; 121 Wang (10.1016/j.ijheatfluidflow.2018.10.004_bib0003) 2015; 123 Zhuang (10.1016/j.ijheatfluidflow.2018.10.004_bib0057) 2006; 44 Wagner (10.1016/j.ijheatfluidflow.2018.10.004_bib0039) 2015; 56 Gutmark (10.1016/j.ijheatfluidflow.2018.10.004_bib0008) 1995; 27 Larchevêque (10.1016/j.ijheatfluidflow.2018.10.004_bib0024) 2002; 15 Wang (10.1016/j.ijheatfluidflow.2018.10.004_bib1002) 2013; 90 Arunajatesan (10.1016/j.ijheatfluidflow.2018.10.004_bib0001) 2009; 47 Wang (10.1016/j.ijheatfluidflow.2018.10.004_bib0042) 2013; 38 Baurle (10.1016/j.ijheatfluidflow.2018.10.004_bib0002) 2000 Zhao (10.1016/j.ijheatfluidflow.2018.10.004_bib0054) 2009; 52 Mahle (10.1016/j.ijheatfluidflow.2018.10.004_bib0026) 2007; 593 Zhang (10.1016/j.ijheatfluidflow.2018.10.004_bib0049) 2015; 117 Guo (10.1016/j.ijheatfluidflow.2018.10.004_bib0017) 2017; 66 Zhou (10.1016/j.ijheatfluidflow.2018.10.004_bib0056) 2012; 711 Kit (10.1016/j.ijheatfluidflow.2018.10.004_bib0022) 2007; 589 Zhou (10.1016/j.ijheatfluidflow.2018.10.004_bib0055) 2001; 441 Zhang (10.1016/j.ijheatfluidflow.2018.10.004_bib0050) 2016; 19 Sato (10.1016/j.ijheatfluidflow.2018.10.004_bib0031) 1999; 15 Handa (10.1016/j.ijheatfluidflow.2018.10.004_bib0018) 2014; 55 Quick (10.1016/j.ijheatfluidflow.2018.10.004_bib0028) 2005 Zhang (10.1016/j.ijheatfluidflow.2018.10.004_bib0048) 2017; 111 Weisbrot (10.1016/j.ijheatfluidflow.2018.10.004_bib0044) 1988; 195 Wang (10.1016/j.ijheatfluidflow.2018.10.004_bib0041) 2013; 90 Giuliani (10.1016/j.ijheatfluidflow.2018.10.004_bib0014) 2002; 4 Zhao (10.1016/j.ijheatfluidflow.2018.10.004_bib0052) 2016; 128 Li (10.1016/j.ijheatfluidflow.2018.10.004_bib0025) 2018; 74 Zang (10.1016/j.ijheatfluidflow.2018.10.004_bib0047) 2005 Hsu (10.1016/j.ijheatfluidflow.2018.10.004_bib0021) 2000 Wang (10.1016/j.ijheatfluidflow.2018.10.004_bib1003) 2013; 38 10.1016/j.ijheatfluidflow.2018.10.004_bib0032 Tan (10.1016/j.ijheatfluidflow.2018.10.004_bib0034) 2018; 144 Heller (10.1016/j.ijheatfluidflow.2018.10.004_bib0019) 1975 Freund (10.1016/j.ijheatfluidflow.2018.10.004_bib0011) 2000; 421 Ho (10.1016/j.ijheatfluidflow.2018.10.004_bib0020) 1984; 16 Rossiter (10.1016/j.ijheatfluidflow.2018.10.004_bib0030) 1964 Vreman (10.1016/j.ijheatfluidflow.2018.10.004_bib0038) 1995; 7 Dimotakis (10.1016/j.ijheatfluidflow.2018.10.004_bib0006) 1991 Freund (10.1016/j.ijheatfluidflow.2018.10.004_bib0010) 2000; 421 Tian (10.1016/j.ijheatfluidflow.2018.10.004_bib0036) 2009; 52 Smagorinsky (10.1016/j.ijheatfluidflow.2018.10.004_bib0033) 1963; 91 Wagner (10.1016/j.ijheatfluidflow.2018.10.004_bib0040) 2015; 27 Dimotakis (10.1016/j.ijheatfluidflow.2018.10.004_bib0005) 1986; 24 Geobel (10.1016/j.ijheatfluidflow.2018.10.004_bib0007) 1991; 29 Feng (10.1016/j.ijheatfluidflow.2018.10.004_bib0009) 2016 Wang (10.1016/j.ijheatfluidflow.2018.10.004_bib0043) 2013; 103 Vandsburger (10.1016/j.ijheatfluidflow.2018.10.004_bib0037) 1995; 33 Tan (10.1016/j.ijheatfluidflow.2018.10.004_bib0035) 2015 |
References_xml | – volume: 421 start-page: 229 year: 2000 end-page: 267 ident: bib0010 article-title: Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate publication-title: J. Fluid Mech. – volume: 38 start-page: 5918 year: 2013 end-page: 5927 ident: bib1003 article-title: Large-eddy/Reynolds-averaged Navier-Stokes simulation of combustion oscillations in a cavity-based supersonic combustor publication-title: Int. J. Hydrogen Energy – year: 1964 ident: bib0030 article-title: Wind-Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds – start-page: 2000 year: 2000 end-page: 3585 ident: bib0021 article-title: Fuel distribution about cavity flameholder in supersonic flow publication-title: AIAA – volume: 52 start-page: 2001 year: 2009 end-page: 2006 ident: bib0045 article-title: A flow control study of a supersonic mixing layer via NPLS publication-title: Sci. China Ser. G – volume: 421 start-page: 269 year: 2000 end-page: 292 ident: bib0011 article-title: Compressibility effects in a turbulent annular mixing layer. Part 2. Mixing of a passive scalar publication-title: J. Fluid Mech. – volume: 14 start-page: 24 year: 2003 end-page: 32 ident: bib0013 article-title: Self-mixing laser diode vibrometer publication-title: Meas. Sci. Technol. – volume: 123 start-page: 32 year: 2015 end-page: 43 ident: bib0003 article-title: Passive scalar mixing in Mc<1 planar shear layer flows publication-title: Comput. Fluids – volume: 33 start-page: 1032 year: 1995 end-page: 1037 ident: bib0037 article-title: Self-excited wire method for the control of turbulent mixing layers publication-title: AIAA J. – volume: 51 start-page: 1134 year: 2008 end-page: 1143 ident: bib0053 article-title: The fractal measurement of experimental images of supersonic turbulent mixing layer publication-title: Sci. China Ser. G – year: 1975 ident: bib0019 article-title: physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression publication-title: AIAA 2nd Aero-Acoustics Conference – volume: 74 start-page: 120 year: 2018 end-page: 131 ident: bib0025 article-title: Investigations of self-excited vibration in splitter plate with a cavity in the supersonic mixing layer publication-title: Aerosp. Sci. Technol. – volume: 195 start-page: 137 year: 1988 end-page: 159 ident: bib0044 article-title: On coherent structures in a highly excited mixing layer publication-title: J. Fluid Mech. – volume: 47 start-page: 1132 year: 2009 end-page: 1144 ident: bib0001 article-title: Suppression of cavity loads using leading-edge blowing publication-title: AIAA J. – volume: 128 start-page: 140 year: 2016 end-page: 146 ident: bib0052 article-title: Vortex structure and breakup mechanism of gaseous jet in supersonic crossflow with laminar boundary layer publication-title: Acta Astronaut. – volume: 111 year: 2017 ident: bib0048 article-title: Structural characteristics of supersonic mixing enhanced by introducing streamwise vortices publication-title: Appl. Phys. Lett. – volume: 52 start-page: 1357 year: 2009 end-page: 1363 ident: bib0036 article-title: Study of density field measurement based on NPLS technique in supersonic flow publication-title: Sci. China Phys. Mech. Astron. – start-page: 2005 year: 2005 end-page: 3709 ident: bib0028 article-title: Upstream mixing cavity coupled with a downstream flameholding cavity behavior in supersonic flow publication-title: AIAA – volume: 238 start-page: 325 year: 1992 end-page: 336 ident: bib0012 article-title: Turbulence:the filtering approach publication-title: J. Fluid Mech. – year: 2015 ident: bib0035 article-title: characteristics of supersonic mixing layer under forced vibration publication-title: AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, Scotland – volume: 29 start-page: 538 year: 1991 end-page: 546 ident: bib0007 article-title: Experimental study of compressible turbulent mixing layers publication-title: AIAA J. – volume: 32 start-page: 44 year: 2002 end-page: 54 ident: bib0023 article-title: Control of backward-facing step flow using a flapping foil publication-title: Exp. Fluids – volume: 15 start-page: 193 year: 2002 end-page: 210 ident: bib0024 article-title: Large-eddy simulation of a compressible flow past a deep cavity publication-title: Phys. Fluids – year: 2005 ident: bib0047 article-title: Experimental characterization of cavity-augmented supersonic mixing publication-title: AIAA Paper 2005-1423 – volume: 90 start-page: 121 year: 2013 end-page: 142 ident: bib1002 article-title: Characteristics of oscillations in supersonic open cavity flows publication-title: Flow Turbul. Combust. – volume: 91 start-page: 99 year: 1963 end-page: 164 ident: bib0033 article-title: General circulation experiments with the primitive equations, I. The basic experiment publication-title: Month Weather Rev. – volume: 441 start-page: 139 year: 2001 end-page: 168 ident: bib0055 article-title: The response of a mixing layer formed between parallel streams to a concomitant excitation at two frequencies publication-title: J. Fluid Mech. – start-page: 91 year: 1991 end-page: 1724 ident: bib0006 article-title: On the convection velocity of turbulent structures in supersonic shear layers publication-title: AIAA Paper – volume: 55 start-page: 1 year: 2014 end-page: 10 ident: bib0018 article-title: Supersonic mixing enhanced by cavity-induced three-dimensional oscillatory flow publication-title: Exp. Fluids – volume: 7 start-page: 2105 year: 1995 end-page: 2107 ident: bib0038 article-title: Shocks in direct numerical simulation of the confined three-dimensional mixing layer publication-title: Phys. Fluids – volume: 90 start-page: 121 year: 2013 end-page: 142 ident: bib0041 article-title: Characteristics of oscillations in supersonic open cavity flows publication-title: Flow Turbul. Combust. – year: 2016 ident: bib0009 article-title: Study On Growth Characteristics and Mixing Enhancement Mechanisms of Supersonic Mixing Layers (in Chinese) – volume: 593 start-page: 171 year: 2007 end-page: 180 ident: bib0026 article-title: On the turbulence structure in inert and reacting compressible mixing layers publication-title: J. Fluid Mech. – volume: 103 start-page: 453 year: 2013 end-page: 477 ident: bib0043 article-title: Characteristics of mixing enhanced by streamwise vortices in supersonic flow publication-title: Appl. Phys. Lett. – volume: 3 start-page: 1 year: 2002 end-page: 19 ident: bib0029 article-title: Evolution and growth of large-scale structures in high compressibility mixing layers publication-title: J. Turbul. – volume: 4 start-page: S283 year: 2002 end-page: S294 ident: bib0014 article-title: Laser diode self-mixing technique for sensing applications publication-title: J. Opt. A Pure Appl. Opt. – volume: 711 start-page: 437 year: 2012 end-page: 468 ident: bib0056 article-title: Direct numerical simulation of a spatially developing compressible plane mixing layer:flow structures and mean flow properties publication-title: J. Fluid Mech. – volume: 8 start-page: 263 year: 1990 end-page: 272 ident: bib0015 article-title: Mean and turbulent velocity measurements of supersonic mixing layers, publication-title: Exp. Fluids – volume: 15 start-page: 358 year: 1999 end-page: 360 ident: bib0031 article-title: Advanced mixing control in supersonic airstream with a wall-mounted cavity publication-title: J. Propul. Power – volume: 599 start-page: 309 year: 2008 end-page: 339 ident: bib0004 article-title: Three-dimensional instabilities of compressible flow over open cavities publication-title: J. Fluid Mech. – volume: 19 start-page: 179 year: 2016 end-page: 182 ident: bib0050 article-title: Visualization of flow structures and mixing characteristics induced by forced vibration in supersonic mixing layer publication-title: J. Visualization – volume: 52 start-page: 3640 year: 2009 end-page: 3648 ident: bib0054 article-title: Supersonic flow imaging via nanoparticles publication-title: Sci. China Ser. E Technol. Sci. – volume: 589 start-page: 479 year: 2007 end-page: 507 ident: bib0022 article-title: On the periodically excited plane turbulent mixing layer, emanating from a jagged partition publication-title: J. Fluid Mech. – volume: 56 start-page: 1 year: 2015 end-page: 12 ident: bib0039 article-title: Mitigation of wind tunnel wall interactions in subsonic cavity flows publication-title: Exp. Fluids – volume: 7 start-page: 233 year: 1995 end-page: 235 ident: bib0027 article-title: Evidence of shocklets in a counterflow supersonic shear layer publication-title: Phys. Fluids – volume: 24 start-page: 1791 year: 1986 end-page: 1796 ident: bib0005 article-title: Two-dimensional shear-layer entrainment publication-title: AIAA J. – volume: 27 start-page: 375 year: 1995 end-page: 417 ident: bib0008 article-title: Mixing enhancement in supersonic free shear flows publication-title: Annu. Rev. Fluid Mech. – volume: 117 start-page: 440 year: 2015 end-page: 449 ident: bib0049 article-title: Investigation on flow and mixing characteristics of supersonic mixing layer induced by forced vibration of cantilever publication-title: Acta Astronaut. – volume: 44 start-page: 2118 year: 2006 end-page: 2128 ident: bib0057 article-title: Supersonic cavity flows and their control publication-title: AIAA J. – start-page: 11 year: 1984 end-page: 44 ident: bib0016 article-title: Wave action and wave-mean flow interaction, with application to stratified shear flows publication-title: Annu. Rev. Fluid Mech. – volume: 66 start-page: 11 year: 2017 ident: bib0017 article-title: Evolution mechanism of vortices in a supersonic mixing layer controlled by the pulsed forcing publication-title: Acta Phys. Sin. – volume: 38 start-page: 5918 year: 2013 end-page: 5927 ident: bib0042 article-title: Large-Eddy/Reynolds-averaged Navier–Stokes simulation of combustion oscillations in a cavity-based supersonic combustor publication-title: Int. J. Hydrogen Energy – volume: 99 start-page: 295 year: 1994 end-page: 301 ident: bib0046 article-title: Cavity-actuated supersonic mixing and combustion control publication-title: Combust. Flame – volume: 121 start-page: 282 year: 2016 end-page: 291 ident: bib0051 article-title: Non-reacting flow visualization of supersonic combustor based on cavity and cavity–strut flameholder publication-title: Acta Astronaut. – volume: 16 start-page: 365 year: 1984 end-page: 424 ident: bib0020 article-title: Perturbed free shear layers publication-title: Annu. Rev. Fluid Mech. – volume: 27 start-page: 152 year: 2015 end-page: 165 ident: bib0040 article-title: Fluid-structure interactions in compressible cavity flows publication-title: Phys. Fluids – reference: Segal, 2009. The scramjet engine: processes and characteristics. Cambridge University Press. – year: 2000 ident: bib0002 article-title: Analysis of unsteady cavity flows for scramjet applications publication-title: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL – volume: 144 start-page: 30 year: 2018 end-page: 38 ident: bib0034 article-title: Detailed experimental investigations on flow behaviors and velocity field properties of a supersonic mixing layer publication-title: Acta Astronaut. – volume: 195 start-page: 137 year: 1988 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0044 article-title: On coherent structures in a highly excited mixing layer publication-title: J. Fluid Mech. doi: 10.1017/S0022112088002356 – volume: 4 start-page: S283 year: 2002 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0014 article-title: Laser diode self-mixing technique for sensing applications publication-title: J. Opt. A Pure Appl. Opt. doi: 10.1088/1464-4258/4/6/371 – start-page: 2000 year: 2000 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0021 article-title: Fuel distribution about cavity flameholder in supersonic flow publication-title: AIAA – year: 2015 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0035 article-title: characteristics of supersonic mixing layer under forced vibration – start-page: 91 year: 1991 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0006 article-title: On the convection velocity of turbulent structures in supersonic shear layers – year: 1964 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0030 – volume: 14 start-page: 24 year: 2003 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0013 article-title: Self-mixing laser diode vibrometer publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/14/1/304 – volume: 599 start-page: 309 year: 2008 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0004 article-title: Three-dimensional instabilities of compressible flow over open cavities publication-title: J. Fluid Mech. doi: 10.1017/S0022112007009925 – volume: 103 start-page: 453 year: 2013 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0043 article-title: Characteristics of mixing enhanced by streamwise vortices in supersonic flow publication-title: Appl. Phys. Lett. – volume: 99 start-page: 295 year: 1994 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0046 article-title: Cavity-actuated supersonic mixing and combustion control publication-title: Combust. Flame doi: 10.1016/0010-2180(94)90134-1 – start-page: 11 year: 1984 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0016 article-title: Wave action and wave-mean flow interaction, with application to stratified shear flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.16.010184.000303 – year: 1975 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0019 article-title: physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression – volume: 52 start-page: 2001 year: 2009 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0045 article-title: A flow control study of a supersonic mixing layer via NPLS publication-title: Sci. China Ser. G doi: 10.1007/s11433-009-0301-0 – volume: 56 start-page: 1 year: 2015 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0039 article-title: Mitigation of wind tunnel wall interactions in subsonic cavity flows publication-title: Exp. Fluids doi: 10.1007/s00348-015-1924-8 – volume: 441 start-page: 139 year: 2001 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0055 article-title: The response of a mixing layer formed between parallel streams to a concomitant excitation at two frequencies publication-title: J. Fluid Mech. doi: 10.1017/S0022112001004827 – volume: 74 start-page: 120 year: 2018 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0025 article-title: Investigations of self-excited vibration in splitter plate with a cavity in the supersonic mixing layer publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.01.009 – ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0032 doi: 10.1017/CBO9780511627019 – volume: 44 start-page: 2118 year: 2006 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0057 article-title: Supersonic cavity flows and their control publication-title: AIAA J. doi: 10.2514/1.14879 – volume: 15 start-page: 193 year: 2002 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0024 article-title: Large-eddy simulation of a compressible flow past a deep cavity publication-title: Phys. Fluids doi: 10.1063/1.1522379 – volume: 52 start-page: 3640 issue: 12 year: 2009 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0054 article-title: Supersonic flow imaging via nanoparticles publication-title: Sci. China Ser. E Technol. Sci. doi: 10.1007/s11431-009-0281-3 – volume: 238 start-page: 325 year: 1992 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0012 article-title: Turbulence:the filtering approach publication-title: J. Fluid Mech. doi: 10.1017/S0022112092001733 – volume: 7 start-page: 2105 year: 1995 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0038 article-title: Shocks in direct numerical simulation of the confined three-dimensional mixing layer publication-title: Phys. Fluids doi: 10.1063/1.868460 – volume: 19 start-page: 179 year: 2016 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0050 article-title: Visualization of flow structures and mixing characteristics induced by forced vibration in supersonic mixing layer publication-title: J. Visualization doi: 10.1007/s12650-015-0321-y – volume: 90 start-page: 121 year: 2013 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0041 article-title: Characteristics of oscillations in supersonic open cavity flows publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-012-9434-8 – volume: 55 start-page: 1 year: 2014 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0018 article-title: Supersonic mixing enhanced by cavity-induced three-dimensional oscillatory flow publication-title: Exp. Fluids doi: 10.1007/s00348-014-1711-y – volume: 421 start-page: 269 year: 2000 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0011 article-title: Compressibility effects in a turbulent annular mixing layer. Part 2. Mixing of a passive scalar publication-title: J. Fluid Mech. doi: 10.1017/S0022112000001634 – volume: 123 start-page: 32 year: 2015 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0003 article-title: Passive scalar mixing in Mc<1 planar shear layer flows publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2015.09.006 – volume: 117 start-page: 440 year: 2015 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0049 article-title: Investigation on flow and mixing characteristics of supersonic mixing layer induced by forced vibration of cantilever publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2015.09.001 – volume: 128 start-page: 140 year: 2016 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0052 article-title: Vortex structure and breakup mechanism of gaseous jet in supersonic crossflow with laminar boundary layer publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2016.06.019 – volume: 111 year: 2017 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0048 article-title: Structural characteristics of supersonic mixing enhanced by introducing streamwise vortices publication-title: Appl. Phys. Lett. – year: 2000 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0002 article-title: Analysis of unsteady cavity flows for scramjet applications – volume: 47 start-page: 1132 year: 2009 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0001 article-title: Suppression of cavity loads using leading-edge blowing publication-title: AIAA J. doi: 10.2514/1.38211 – volume: 593 start-page: 171 year: 2007 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0026 article-title: On the turbulence structure in inert and reacting compressible mixing layers publication-title: J. Fluid Mech. doi: 10.1017/S0022112007008919 – volume: 91 start-page: 99 year: 1963 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0033 article-title: General circulation experiments with the primitive equations, I. The basic experiment publication-title: Month Weather Rev. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 – volume: 32 start-page: 44 year: 2002 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0023 article-title: Control of backward-facing step flow using a flapping foil publication-title: Exp. Fluids doi: 10.1007/s003480200005 – volume: 24 start-page: 1791 year: 1986 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0005 article-title: Two-dimensional shear-layer entrainment publication-title: AIAA J. doi: 10.2514/3.9525 – volume: 90 start-page: 121 year: 2013 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib1002 article-title: Characteristics of oscillations in supersonic open cavity flows publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-012-9434-8 – volume: 29 start-page: 538 year: 1991 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0007 article-title: Experimental study of compressible turbulent mixing layers publication-title: AIAA J. doi: 10.2514/3.10617 – volume: 52 start-page: 1357 year: 2009 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0036 article-title: Study of density field measurement based on NPLS technique in supersonic flow publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-009-0180-4 – volume: 33 start-page: 1032 year: 1995 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0037 article-title: Self-excited wire method for the control of turbulent mixing layers publication-title: AIAA J. doi: 10.2514/3.12524 – volume: 27 start-page: 375 year: 1995 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0008 article-title: Mixing enhancement in supersonic free shear flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.27.010195.002111 – volume: 15 start-page: 358 year: 1999 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0031 article-title: Advanced mixing control in supersonic airstream with a wall-mounted cavity publication-title: J. Propul. Power doi: 10.2514/2.5433 – year: 2016 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0009 – volume: 121 start-page: 282 year: 2016 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0051 article-title: Non-reacting flow visualization of supersonic combustor based on cavity and cavity–strut flameholder publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2015.12.040 – volume: 7 start-page: 233 year: 1995 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0027 article-title: Evidence of shocklets in a counterflow supersonic shear layer publication-title: Phys. Fluids doi: 10.1063/1.868621 – volume: 144 start-page: 30 year: 2018 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0034 article-title: Detailed experimental investigations on flow behaviors and velocity field properties of a supersonic mixing layer publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2017.12.010 – volume: 38 start-page: 5918 year: 2013 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib1003 article-title: Large-eddy/Reynolds-averaged Navier-Stokes simulation of combustion oscillations in a cavity-based supersonic combustor publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.02.100 – volume: 51 start-page: 1134 year: 2008 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0053 article-title: The fractal measurement of experimental images of supersonic turbulent mixing layer publication-title: Sci. China Ser. G doi: 10.1007/s11433-008-0097-3 – volume: 589 start-page: 479 year: 2007 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0022 article-title: On the periodically excited plane turbulent mixing layer, emanating from a jagged partition publication-title: J. Fluid Mech. doi: 10.1017/S0022112007007884 – year: 2005 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0047 article-title: Experimental characterization of cavity-augmented supersonic mixing – volume: 421 start-page: 229 year: 2000 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0010 article-title: Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate publication-title: J. Fluid Mech. doi: 10.1017/S0022112000001622 – volume: 66 start-page: 11 year: 2017 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0017 article-title: Evolution mechanism of vortices in a supersonic mixing layer controlled by the pulsed forcing publication-title: Acta Phys. Sin. – start-page: 2005 year: 2005 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0028 article-title: Upstream mixing cavity coupled with a downstream flameholding cavity behavior in supersonic flow publication-title: AIAA – volume: 16 start-page: 365 year: 1984 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0020 article-title: Perturbed free shear layers publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.16.010184.002053 – volume: 27 start-page: 152 year: 2015 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0040 article-title: Fluid-structure interactions in compressible cavity flows publication-title: Phys. Fluids doi: 10.1063/1.4922021 – volume: 3 start-page: 1 year: 2002 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0029 article-title: Evolution and growth of large-scale structures in high compressibility mixing layers publication-title: J. Turbul. doi: 10.1088/1468-5248/3/1/009 – volume: 8 start-page: 263 year: 1990 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0015 article-title: Mean and turbulent velocity measurements of supersonic mixing layers, publication-title: Exp. Fluids doi: 10.1007/BF00187228 – volume: 711 start-page: 437 year: 2012 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0056 article-title: Direct numerical simulation of a spatially developing compressible plane mixing layer:flow structures and mean flow properties publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.400 – volume: 38 start-page: 5918 year: 2013 ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0042 article-title: Large-Eddy/Reynolds-averaged Navier–Stokes simulation of combustion oscillations in a cavity-based supersonic combustor publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.02.100 |
SSID | ssj0006047 |
Score | 2.2979333 |
Snippet | •A cavity is applied as an actuator to improve mixing in supersonic planar mixing layer.•The coherent structures is strongly locked to frequencies from... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 209 |
SubjectTerms | Cavity Curvature shocklets Growth rate Mixing enhancement Supersonic mixing layer |
Title | Investigations on flow and growth properties of a cavity-actuated supersonic planar mixing layer downstream a thick splitter plate |
URI | https://dx.doi.org/10.1016/j.ijheatfluidflow.2018.10.004 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5VRUJwgFJAlEc1Bzi6sb3rl8SBqqIKRPSAqMjN2ie4uI6VOKKnHvrLOxM7bUAcKnFa2d6XdsYz366-mQV4q21h4tTkgQh1FkgX5YFSmjNhakILBBCc5aOBLyfp-FR-nibTLThax8IwrXKw_b1NX1nr4c1oWM1RW1UjpiXF5H2npJShlBkH_FLBWn5weUvzSEPZh0xLQpJU-z68u-V4VWds8Xy9rKyvZ7-Z6ZUfrMhe8t9-asP3HO_AowE04mE_ryew5ZpdeDwASBx-z8UuPNzILvgUrjZyaJBu4axBHh5VY_EH7b67n9jyUfycc6rizKNCo_gqiUBxVAlBUVws2xUirwy2tWrUHM-rC-oca0VQHS0fTTNV_ZzaMnH-Fy5oThwgxPU79wxOjz9-OxoHw5ULgRFCdEHG2VtMrq1IjCp0YiLrIx0JlXryYzntvH3ofGTzItEiclHossLHmRUuEmlODvE5bDezxr0AdHlsnIkVWQwpjSyUT1zitY8J8mWZCvfg_XqBSzPkI-drMepyTTw7K_-ST8ny4c8knz1Ib5q3fWKOuzb8sJZm-YemleRE7tbFy__v4hU84KeeGPMatrv50r0heNPp_ZX-7sO9w0-T8QmXk6_fJ9fLYwN_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrcTjwKOAKE8f4Bg2iZ3EkThQVVRb2u6plfYW-QkpaTbazQrO_HJmNt6yIA6VuMYZx_JMZj5bnz8DvNW2NGluZMRjXUTCJTJSSpMSpka0gADBWdoaOJvmkwvxeZbNduBwcxaGaJUh9w85fZ2tw5NxmM1xV9djoiWlWH1nGJSxEIW8BbukTpWNYPfg-GQyvU7IeSyGU9MCwSQa3IZ3v2le9SUlPd-sauub-Xcie8n3a76X-Hep2io_Rw_hfsCN7GAY2iPYce0ePAgYkoU_dLkH97YEBh_Dzy0ZDQwvNm8ZfZ6p1rIvuADvv7KOduMXJKvK5p4pZhTdJhEpOliCaJQtV90alNeGdY1q1YJd1T-wc9YoROvM0u40sdWv0Ja489_YEsdEZ4To_d49gYujT-eHkyjcuhAZznkfFSTgYqS2PDOq1JlJrE90wlXusZRJXHz72PnEyjLTPHFJ7IrSp4XlLuG5xJr4FEbtvHXPgDmZGmdShUlDCCNK5TOXee1TRH1FoeJ9-LCZ4MoESXK6GaOpNtyzy-ov_1TkH2pG_-xDfm3eDdocNzX8uPFm9UewVVhHbtbF8__v4g3cmZyfnVanx9OTF3CXWgaezEsY9YuVe4Vop9evQzT_AnSdBI0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigations+on+flow+and+growth+properties+of+a+cavity-actuated+supersonic+planar+mixing+layer+downstream+a+thick+splitter+plate&rft.jtitle=The+International+journal+of+heat+and+fluid+flow&rft.au=Li%2C+Hao&rft.au=Tan%2C+Jianguo&rft.au=Zhang%2C+Dongdong&rft.au=Hou%2C+Juwei&rft.date=2018-12-01&rft.pub=Elsevier+Inc&rft.issn=0142-727X&rft.eissn=1879-2278&rft.volume=74&rft.spage=209&rft.epage=220&rft_id=info:doi/10.1016%2Fj.ijheatfluidflow.2018.10.004&rft.externalDocID=S0142727X18304478 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-727X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-727X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-727X&client=summon |