Investigations on flow and growth properties of a cavity-actuated supersonic planar mixing layer downstream a thick splitter plate

•A cavity is applied as an actuator to improve mixing in supersonic planar mixing layer.•The coherent structures is strongly locked to frequencies from self-sustaining oscillation of supersonic cavity flow.•The normalized growth rate of cavity-actuated supersonic mixing layer is much larger than the...

Full description

Saved in:
Bibliographic Details
Published inThe International journal of heat and fluid flow Vol. 74; pp. 209 - 220
Main Authors Li, Hao, Tan, Jianguo, Zhang, Dongdong, Hou, Juwei
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A cavity is applied as an actuator to improve mixing in supersonic planar mixing layer.•The coherent structures is strongly locked to frequencies from self-sustaining oscillation of supersonic cavity flow.•The normalized growth rate of cavity-actuated supersonic mixing layer is much larger than the typical result of free shear layer.•Curvature shocklets are firstly observed at the low convective Mach number of 0.22. Mixing enhancement is vital to combustion efficiency in a rocket-based combined cycle engine. Presently, we propose a cavity as an actuator and investigate the cavity-actuated supersonic mixing layer experimentally using particle image velocimetry (PIV) and nanoparticle-based planar laser scattering (NPLS). Large eddy simulation (LES) is conducted to obtain the detailed flow structures and pressure spectra of the supersonic mixing layer. Results indicate that the vortex evolution of the supersonic mixing layer is locked strongly to the excitation frequencies from the self-sustaining oscillation of supersonic cavity flow in both the near and far flowfields. Multiple coherent structures of different sizes coexist in the initial flowfields, and then only large ones survive downstream. Pressure spectra can reflect the vortex evolution entirely. The third mode of the pressure spectrum gradually becomes dominant due to having the highest energy content. Curvature shocklets are observed in this case at the low convective Mach number of 0.22. The growth rate in the linear process is slightly larger than that of the case without a cavity while the velocity thickness is 3.34 times as large as that. The normalized growth rate sees a massive increase and is 8.95 times as large as the typical result of a free supersonic shear layer.
AbstractList •A cavity is applied as an actuator to improve mixing in supersonic planar mixing layer.•The coherent structures is strongly locked to frequencies from self-sustaining oscillation of supersonic cavity flow.•The normalized growth rate of cavity-actuated supersonic mixing layer is much larger than the typical result of free shear layer.•Curvature shocklets are firstly observed at the low convective Mach number of 0.22. Mixing enhancement is vital to combustion efficiency in a rocket-based combined cycle engine. Presently, we propose a cavity as an actuator and investigate the cavity-actuated supersonic mixing layer experimentally using particle image velocimetry (PIV) and nanoparticle-based planar laser scattering (NPLS). Large eddy simulation (LES) is conducted to obtain the detailed flow structures and pressure spectra of the supersonic mixing layer. Results indicate that the vortex evolution of the supersonic mixing layer is locked strongly to the excitation frequencies from the self-sustaining oscillation of supersonic cavity flow in both the near and far flowfields. Multiple coherent structures of different sizes coexist in the initial flowfields, and then only large ones survive downstream. Pressure spectra can reflect the vortex evolution entirely. The third mode of the pressure spectrum gradually becomes dominant due to having the highest energy content. Curvature shocklets are observed in this case at the low convective Mach number of 0.22. The growth rate in the linear process is slightly larger than that of the case without a cavity while the velocity thickness is 3.34 times as large as that. The normalized growth rate sees a massive increase and is 8.95 times as large as the typical result of a free supersonic shear layer.
Author Hou, Juwei
Zhang, Dongdong
Tan, Jianguo
Li, Hao
Author_xml – sequence: 1
  givenname: Hao
  surname: Li
  fullname: Li, Hao
– sequence: 2
  givenname: Jianguo
  surname: Tan
  fullname: Tan, Jianguo
  email: jianguotan@nudt.edu.cn
– sequence: 3
  givenname: Dongdong
  surname: Zhang
  fullname: Zhang, Dongdong
– sequence: 4
  givenname: Juwei
  surname: Hou
  fullname: Hou, Juwei
BookMark eNqNkDFv2zAQhYkiBeok_Q9cOsohRdmihg6F0SYGAnRpgWwCRR7tc2VSIM92vPaXl046Zcp0w3fvA967ZlchBmDsixRzKeTybjfH3RYM-fGAzo_xNK-F1IXNhWg-sJnUbVfVdauv2EzIpq7aun36xK5z3gkhlqJpZ-zvOhwhE24MYQyZx8AvJm6C45sUT7TlU4oTJEIo1HPDrTkinStj6WAIHM-HgnMMaPk0mmAS3-Mzhg0fzRkSd_EUMiUw-5KlLdo_PE8jEhVW_glu2Udvxgyf_98b9vvH91-rh-rx5_169e2xskopqtpF12irB6cW1nTDwkrn5SCVWfpaNxoG5QV46XS3GJQEKaDtfN06BVItdSPVDVu9em2KOSfwvUV6qU3J4NhL0V9m7Xf9m1n7y6wXXGYtlq9vLFPCvUnnd-fvX_NQqh4RUp8tQrDgMIGl3kV8p-kfcOymjQ
CitedBy_id crossref_primary_10_1063_5_0086492
crossref_primary_10_1016_j_actaastro_2019_11_007
crossref_primary_10_1016_j_actaastro_2023_10_005
crossref_primary_10_2514_1_J061399
crossref_primary_10_1063_1_5145276
crossref_primary_10_1016_j_actaastro_2020_04_044
crossref_primary_10_1063_5_0062145
crossref_primary_10_1016_j_actaastro_2023_05_036
crossref_primary_10_1063_5_0019299
crossref_primary_10_1016_j_ast_2020_106150
crossref_primary_10_1016_j_ast_2021_106888
Cites_doi 10.1017/S0022112088002356
10.1088/1464-4258/4/6/371
10.1088/0957-0233/14/1/304
10.1017/S0022112007009925
10.1016/0010-2180(94)90134-1
10.1146/annurev.fl.16.010184.000303
10.1007/s11433-009-0301-0
10.1007/s00348-015-1924-8
10.1017/S0022112001004827
10.1016/j.ast.2018.01.009
10.1017/CBO9780511627019
10.2514/1.14879
10.1063/1.1522379
10.1007/s11431-009-0281-3
10.1017/S0022112092001733
10.1063/1.868460
10.1007/s12650-015-0321-y
10.1007/s10494-012-9434-8
10.1007/s00348-014-1711-y
10.1017/S0022112000001634
10.1016/j.compfluid.2015.09.006
10.1016/j.actaastro.2015.09.001
10.1016/j.actaastro.2016.06.019
10.2514/1.38211
10.1017/S0022112007008919
10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
10.1007/s003480200005
10.2514/3.9525
10.2514/3.10617
10.1007/s11433-009-0180-4
10.2514/3.12524
10.1146/annurev.fl.27.010195.002111
10.2514/2.5433
10.1016/j.actaastro.2015.12.040
10.1063/1.868621
10.1016/j.actaastro.2017.12.010
10.1016/j.ijhydene.2013.02.100
10.1007/s11433-008-0097-3
10.1017/S0022112007007884
10.1017/S0022112000001622
10.1146/annurev.fl.16.010184.002053
10.1063/1.4922021
10.1088/1468-5248/3/1/009
10.1007/BF00187228
10.1017/jfm.2012.400
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ijheatfluidflow.2018.10.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2278
EndPage 220
ExternalDocumentID 10_1016_j_ijheatfluidflow_2018_10_004
S0142727X18304478
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADHUB
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
UHS
VH1
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c333t-75948c8bd35ca9b5c1df1b13a6f2848eb3f0ef1d895b31e10e79f27d3e1368413
IEDL.DBID .~1
ISSN 0142-727X
IngestDate Thu Apr 24 22:54:50 EDT 2025
Tue Jul 01 01:32:23 EDT 2025
Fri Feb 23 02:26:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Supersonic mixing layer
Cavity
Growth rate
Curvature shocklets
Mixing enhancement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-75948c8bd35ca9b5c1df1b13a6f2848eb3f0ef1d895b31e10e79f27d3e1368413
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_ijheatfluidflow_2018_10_004
crossref_primary_10_1016_j_ijheatfluidflow_2018_10_004
elsevier_sciencedirect_doi_10_1016_j_ijheatfluidflow_2018_10_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationTitle The International journal of heat and fluid flow
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Giuliani, Bozzipietra, Donati (bib0013) 2003; 14
Tan, Zhang, Lv (bib0035) 2015
Bres, Colonius (bib0004) 2008; 599
Wagner, Casper, Beresh, Hunter, Spillers, Henfling, Mayes (bib0040) 2015; 27
Zhou, He, Shen (bib0056) 2012; 711
Yu, Schadow (bib0046) 1994; 99
Tan, Zhang, Li, Hou (bib0034) 2018; 144
Weisbrot, Wygnanski (bib0044) 1988; 195
Wang, Wang, Sun, Qin (bib0042) 2013; 38
Geobel, Dutton (bib0007) 1991; 29
Ho, Huerre (bib0020) 1984; 16
Smagorinsky (bib0033) 1963; 91
Zhang, Tan, Li (bib0048) 2017; 111
Zhao, Liang, Zhao (bib0051) 2016; 121
Dimotakis (bib0005) 1986; 24
Kit, Wygnanski, Friedman, Krivonosova, Zhilenko (bib0022) 2007; 589
Li, Tan, Hou, Zhang (bib0025) 2018; 74
Dimotakis (bib0006) 1991
Heller, Bliss (bib0019) 1975
Zhao, Tian, Yi, He, Cheng (bib0053) 2008; 51
Yi, He, Zhao, Tian, Cheng (bib0045) 2009; 52
Goebel, Dutton, Krier, Renie (bib0015) 1990; 8
Lai, Yue, Platzer (bib0023) 2002; 32
Segal, 2009. The scramjet engine: processes and characteristics. Cambridge University Press.
Handa, Nakano, Tanigawa, Fujita (bib0018) 2014; 55
Hsu, Crafton (bib0021) 2000
Wang, Sun, Qin, Wu, Wang (bib1002) 2013; 90
Sato, Imamura, Shiba, Takahashi, Tsue, Kono (bib0031) 1999; 15
Feng (bib0009) 2016
Mahle, Foysi, Sarkar, Friedrich (bib0026) 2007; 593
Wang, Sun, Qin, Wu, Wang (bib0041) 2013; 90
Arunajatesan, Kannepalli, Sinha, Sheehan, Alvi, Shumway, Ukeiley (bib0001) 2009; 47
Guo, Liu, Zhang, Zhang (bib0017) 2017; 66
Rossiter (bib0030) 1964
Rossmann, Mungal, Hanson (bib0029) 2002; 3
Papamoschou (bib0027) 1995; 7
Germano (bib0012) 1992; 238
Giuliani, Norgia, Donati, Bosch (bib0014) 2002; 4
Vreman, Kuerten, Geurts (bib0038) 1995; 7
Gutmark, Schadow, Yu (bib0008) 1995; 27
Freund, Lele, Moin (bib0010) 2000; 421
Freund, Moin, Lele (bib0011) 2000; 421
Zhang, Tan, Lv, Wang (bib0050) 2016; 19
Zhang, Tan, Lv (bib0049) 2015; 117
Larchevêque, Sagaut, Mary, Labbé, Comte (bib0024) 2002; 15
Zhou, Wygnanski (bib0055) 2001; 441
Wagner, Casper, Beresh, Henfling, Spillers, Pruett (bib0039) 2015; 56
Wang, Wei, Zhang, Zhang, Xue (bib0003) 2015; 123
Wang, Wang, Sun, Qin (bib1003) 2013; 38
Tian, Yi, Zhao, He, Cheng (bib0036) 2009; 52
Wang, Wang, Lei, Feng (bib0043) 2013; 103
Zhao, Liang, Zhao (bib0052) 2016; 128
Zhuang, Alvi, Alkislar, Shih (bib0057) 2006; 44
Grimshaw (bib0016) 1984
Quick, King, Gruber, Carter, Hsu (bib0028) 2005
Zang, Tempel, Yu (bib0047) 2005
Baurle, Tam, Dasgupta (bib0002) 2000
Vandsburger, Ding (bib0037) 1995; 33
Zhao, Yi, Tian, He, Cheng (bib0054) 2009; 52
Papamoschou (10.1016/j.ijheatfluidflow.2018.10.004_bib0027) 1995; 7
Bres (10.1016/j.ijheatfluidflow.2018.10.004_bib0004) 2008; 599
Lai (10.1016/j.ijheatfluidflow.2018.10.004_bib0023) 2002; 32
Yi (10.1016/j.ijheatfluidflow.2018.10.004_bib0045) 2009; 52
Rossmann (10.1016/j.ijheatfluidflow.2018.10.004_bib0029) 2002; 3
Giuliani (10.1016/j.ijheatfluidflow.2018.10.004_bib0013) 2003; 14
Yu (10.1016/j.ijheatfluidflow.2018.10.004_bib0046) 1994; 99
Grimshaw (10.1016/j.ijheatfluidflow.2018.10.004_bib0016) 1984
Goebel (10.1016/j.ijheatfluidflow.2018.10.004_bib0015) 1990; 8
Zhao (10.1016/j.ijheatfluidflow.2018.10.004_bib0053) 2008; 51
Germano (10.1016/j.ijheatfluidflow.2018.10.004_bib0012) 1992; 238
Zhao (10.1016/j.ijheatfluidflow.2018.10.004_bib0051) 2016; 121
Wang (10.1016/j.ijheatfluidflow.2018.10.004_bib0003) 2015; 123
Zhuang (10.1016/j.ijheatfluidflow.2018.10.004_bib0057) 2006; 44
Wagner (10.1016/j.ijheatfluidflow.2018.10.004_bib0039) 2015; 56
Gutmark (10.1016/j.ijheatfluidflow.2018.10.004_bib0008) 1995; 27
Larchevêque (10.1016/j.ijheatfluidflow.2018.10.004_bib0024) 2002; 15
Wang (10.1016/j.ijheatfluidflow.2018.10.004_bib1002) 2013; 90
Arunajatesan (10.1016/j.ijheatfluidflow.2018.10.004_bib0001) 2009; 47
Wang (10.1016/j.ijheatfluidflow.2018.10.004_bib0042) 2013; 38
Baurle (10.1016/j.ijheatfluidflow.2018.10.004_bib0002) 2000
Zhao (10.1016/j.ijheatfluidflow.2018.10.004_bib0054) 2009; 52
Mahle (10.1016/j.ijheatfluidflow.2018.10.004_bib0026) 2007; 593
Zhang (10.1016/j.ijheatfluidflow.2018.10.004_bib0049) 2015; 117
Guo (10.1016/j.ijheatfluidflow.2018.10.004_bib0017) 2017; 66
Zhou (10.1016/j.ijheatfluidflow.2018.10.004_bib0056) 2012; 711
Kit (10.1016/j.ijheatfluidflow.2018.10.004_bib0022) 2007; 589
Zhou (10.1016/j.ijheatfluidflow.2018.10.004_bib0055) 2001; 441
Zhang (10.1016/j.ijheatfluidflow.2018.10.004_bib0050) 2016; 19
Sato (10.1016/j.ijheatfluidflow.2018.10.004_bib0031) 1999; 15
Handa (10.1016/j.ijheatfluidflow.2018.10.004_bib0018) 2014; 55
Quick (10.1016/j.ijheatfluidflow.2018.10.004_bib0028) 2005
Zhang (10.1016/j.ijheatfluidflow.2018.10.004_bib0048) 2017; 111
Weisbrot (10.1016/j.ijheatfluidflow.2018.10.004_bib0044) 1988; 195
Wang (10.1016/j.ijheatfluidflow.2018.10.004_bib0041) 2013; 90
Giuliani (10.1016/j.ijheatfluidflow.2018.10.004_bib0014) 2002; 4
Zhao (10.1016/j.ijheatfluidflow.2018.10.004_bib0052) 2016; 128
Li (10.1016/j.ijheatfluidflow.2018.10.004_bib0025) 2018; 74
Zang (10.1016/j.ijheatfluidflow.2018.10.004_bib0047) 2005
Hsu (10.1016/j.ijheatfluidflow.2018.10.004_bib0021) 2000
Wang (10.1016/j.ijheatfluidflow.2018.10.004_bib1003) 2013; 38
10.1016/j.ijheatfluidflow.2018.10.004_bib0032
Tan (10.1016/j.ijheatfluidflow.2018.10.004_bib0034) 2018; 144
Heller (10.1016/j.ijheatfluidflow.2018.10.004_bib0019) 1975
Freund (10.1016/j.ijheatfluidflow.2018.10.004_bib0011) 2000; 421
Ho (10.1016/j.ijheatfluidflow.2018.10.004_bib0020) 1984; 16
Rossiter (10.1016/j.ijheatfluidflow.2018.10.004_bib0030) 1964
Vreman (10.1016/j.ijheatfluidflow.2018.10.004_bib0038) 1995; 7
Dimotakis (10.1016/j.ijheatfluidflow.2018.10.004_bib0006) 1991
Freund (10.1016/j.ijheatfluidflow.2018.10.004_bib0010) 2000; 421
Tian (10.1016/j.ijheatfluidflow.2018.10.004_bib0036) 2009; 52
Smagorinsky (10.1016/j.ijheatfluidflow.2018.10.004_bib0033) 1963; 91
Wagner (10.1016/j.ijheatfluidflow.2018.10.004_bib0040) 2015; 27
Dimotakis (10.1016/j.ijheatfluidflow.2018.10.004_bib0005) 1986; 24
Geobel (10.1016/j.ijheatfluidflow.2018.10.004_bib0007) 1991; 29
Feng (10.1016/j.ijheatfluidflow.2018.10.004_bib0009) 2016
Wang (10.1016/j.ijheatfluidflow.2018.10.004_bib0043) 2013; 103
Vandsburger (10.1016/j.ijheatfluidflow.2018.10.004_bib0037) 1995; 33
Tan (10.1016/j.ijheatfluidflow.2018.10.004_bib0035) 2015
References_xml – volume: 421
  start-page: 229
  year: 2000
  end-page: 267
  ident: bib0010
  article-title: Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate
  publication-title: J. Fluid Mech.
– volume: 38
  start-page: 5918
  year: 2013
  end-page: 5927
  ident: bib1003
  article-title: Large-eddy/Reynolds-averaged Navier-Stokes simulation of combustion oscillations in a cavity-based supersonic combustor
  publication-title: Int. J. Hydrogen Energy
– year: 1964
  ident: bib0030
  article-title: Wind-Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds
– start-page: 2000
  year: 2000
  end-page: 3585
  ident: bib0021
  article-title: Fuel distribution about cavity flameholder in supersonic flow
  publication-title: AIAA
– volume: 52
  start-page: 2001
  year: 2009
  end-page: 2006
  ident: bib0045
  article-title: A flow control study of a supersonic mixing layer via NPLS
  publication-title: Sci. China Ser. G
– volume: 421
  start-page: 269
  year: 2000
  end-page: 292
  ident: bib0011
  article-title: Compressibility effects in a turbulent annular mixing layer. Part 2. Mixing of a passive scalar
  publication-title: J. Fluid Mech.
– volume: 14
  start-page: 24
  year: 2003
  end-page: 32
  ident: bib0013
  article-title: Self-mixing laser diode vibrometer
  publication-title: Meas. Sci. Technol.
– volume: 123
  start-page: 32
  year: 2015
  end-page: 43
  ident: bib0003
  article-title: Passive scalar mixing in Mc<1 planar shear layer flows
  publication-title: Comput. Fluids
– volume: 33
  start-page: 1032
  year: 1995
  end-page: 1037
  ident: bib0037
  article-title: Self-excited wire method for the control of turbulent mixing layers
  publication-title: AIAA J.
– volume: 51
  start-page: 1134
  year: 2008
  end-page: 1143
  ident: bib0053
  article-title: The fractal measurement of experimental images of supersonic turbulent mixing layer
  publication-title: Sci. China Ser. G
– year: 1975
  ident: bib0019
  article-title: physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression
  publication-title: AIAA 2nd Aero-Acoustics Conference
– volume: 74
  start-page: 120
  year: 2018
  end-page: 131
  ident: bib0025
  article-title: Investigations of self-excited vibration in splitter plate with a cavity in the supersonic mixing layer
  publication-title: Aerosp. Sci. Technol.
– volume: 195
  start-page: 137
  year: 1988
  end-page: 159
  ident: bib0044
  article-title: On coherent structures in a highly excited mixing layer
  publication-title: J. Fluid Mech.
– volume: 47
  start-page: 1132
  year: 2009
  end-page: 1144
  ident: bib0001
  article-title: Suppression of cavity loads using leading-edge blowing
  publication-title: AIAA J.
– volume: 128
  start-page: 140
  year: 2016
  end-page: 146
  ident: bib0052
  article-title: Vortex structure and breakup mechanism of gaseous jet in supersonic crossflow with laminar boundary layer
  publication-title: Acta Astronaut.
– volume: 111
  year: 2017
  ident: bib0048
  article-title: Structural characteristics of supersonic mixing enhanced by introducing streamwise vortices
  publication-title: Appl. Phys. Lett.
– volume: 52
  start-page: 1357
  year: 2009
  end-page: 1363
  ident: bib0036
  article-title: Study of density field measurement based on NPLS technique in supersonic flow
  publication-title: Sci. China Phys. Mech. Astron.
– start-page: 2005
  year: 2005
  end-page: 3709
  ident: bib0028
  article-title: Upstream mixing cavity coupled with a downstream flameholding cavity behavior in supersonic flow
  publication-title: AIAA
– volume: 238
  start-page: 325
  year: 1992
  end-page: 336
  ident: bib0012
  article-title: Turbulence:the filtering approach
  publication-title: J. Fluid Mech.
– year: 2015
  ident: bib0035
  article-title: characteristics of supersonic mixing layer under forced vibration
  publication-title: AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, Scotland
– volume: 29
  start-page: 538
  year: 1991
  end-page: 546
  ident: bib0007
  article-title: Experimental study of compressible turbulent mixing layers
  publication-title: AIAA J.
– volume: 32
  start-page: 44
  year: 2002
  end-page: 54
  ident: bib0023
  article-title: Control of backward-facing step flow using a flapping foil
  publication-title: Exp. Fluids
– volume: 15
  start-page: 193
  year: 2002
  end-page: 210
  ident: bib0024
  article-title: Large-eddy simulation of a compressible flow past a deep cavity
  publication-title: Phys. Fluids
– year: 2005
  ident: bib0047
  article-title: Experimental characterization of cavity-augmented supersonic mixing
  publication-title: AIAA Paper 2005-1423
– volume: 90
  start-page: 121
  year: 2013
  end-page: 142
  ident: bib1002
  article-title: Characteristics of oscillations in supersonic open cavity flows
  publication-title: Flow Turbul. Combust.
– volume: 91
  start-page: 99
  year: 1963
  end-page: 164
  ident: bib0033
  article-title: General circulation experiments with the primitive equations, I. The basic experiment
  publication-title: Month Weather Rev.
– volume: 441
  start-page: 139
  year: 2001
  end-page: 168
  ident: bib0055
  article-title: The response of a mixing layer formed between parallel streams to a concomitant excitation at two frequencies
  publication-title: J. Fluid Mech.
– start-page: 91
  year: 1991
  end-page: 1724
  ident: bib0006
  article-title: On the convection velocity of turbulent structures in supersonic shear layers
  publication-title: AIAA Paper
– volume: 55
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib0018
  article-title: Supersonic mixing enhanced by cavity-induced three-dimensional oscillatory flow
  publication-title: Exp. Fluids
– volume: 7
  start-page: 2105
  year: 1995
  end-page: 2107
  ident: bib0038
  article-title: Shocks in direct numerical simulation of the confined three-dimensional mixing layer
  publication-title: Phys. Fluids
– volume: 90
  start-page: 121
  year: 2013
  end-page: 142
  ident: bib0041
  article-title: Characteristics of oscillations in supersonic open cavity flows
  publication-title: Flow Turbul. Combust.
– year: 2016
  ident: bib0009
  article-title: Study On Growth Characteristics and Mixing Enhancement Mechanisms of Supersonic Mixing Layers (in Chinese)
– volume: 593
  start-page: 171
  year: 2007
  end-page: 180
  ident: bib0026
  article-title: On the turbulence structure in inert and reacting compressible mixing layers
  publication-title: J. Fluid Mech.
– volume: 103
  start-page: 453
  year: 2013
  end-page: 477
  ident: bib0043
  article-title: Characteristics of mixing enhanced by streamwise vortices in supersonic flow
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 1
  year: 2002
  end-page: 19
  ident: bib0029
  article-title: Evolution and growth of large-scale structures in high compressibility mixing layers
  publication-title: J. Turbul.
– volume: 4
  start-page: S283
  year: 2002
  end-page: S294
  ident: bib0014
  article-title: Laser diode self-mixing technique for sensing applications
  publication-title: J. Opt. A Pure Appl. Opt.
– volume: 711
  start-page: 437
  year: 2012
  end-page: 468
  ident: bib0056
  article-title: Direct numerical simulation of a spatially developing compressible plane mixing layer:flow structures and mean flow properties
  publication-title: J. Fluid Mech.
– volume: 8
  start-page: 263
  year: 1990
  end-page: 272
  ident: bib0015
  article-title: Mean and turbulent velocity measurements of supersonic mixing layers,
  publication-title: Exp. Fluids
– volume: 15
  start-page: 358
  year: 1999
  end-page: 360
  ident: bib0031
  article-title: Advanced mixing control in supersonic airstream with a wall-mounted cavity
  publication-title: J. Propul. Power
– volume: 599
  start-page: 309
  year: 2008
  end-page: 339
  ident: bib0004
  article-title: Three-dimensional instabilities of compressible flow over open cavities
  publication-title: J. Fluid Mech.
– volume: 19
  start-page: 179
  year: 2016
  end-page: 182
  ident: bib0050
  article-title: Visualization of flow structures and mixing characteristics induced by forced vibration in supersonic mixing layer
  publication-title: J. Visualization
– volume: 52
  start-page: 3640
  year: 2009
  end-page: 3648
  ident: bib0054
  article-title: Supersonic flow imaging via nanoparticles
  publication-title: Sci. China Ser. E Technol. Sci.
– volume: 589
  start-page: 479
  year: 2007
  end-page: 507
  ident: bib0022
  article-title: On the periodically excited plane turbulent mixing layer, emanating from a jagged partition
  publication-title: J. Fluid Mech.
– volume: 56
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib0039
  article-title: Mitigation of wind tunnel wall interactions in subsonic cavity flows
  publication-title: Exp. Fluids
– volume: 7
  start-page: 233
  year: 1995
  end-page: 235
  ident: bib0027
  article-title: Evidence of shocklets in a counterflow supersonic shear layer
  publication-title: Phys. Fluids
– volume: 24
  start-page: 1791
  year: 1986
  end-page: 1796
  ident: bib0005
  article-title: Two-dimensional shear-layer entrainment
  publication-title: AIAA J.
– volume: 27
  start-page: 375
  year: 1995
  end-page: 417
  ident: bib0008
  article-title: Mixing enhancement in supersonic free shear flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 117
  start-page: 440
  year: 2015
  end-page: 449
  ident: bib0049
  article-title: Investigation on flow and mixing characteristics of supersonic mixing layer induced by forced vibration of cantilever
  publication-title: Acta Astronaut.
– volume: 44
  start-page: 2118
  year: 2006
  end-page: 2128
  ident: bib0057
  article-title: Supersonic cavity flows and their control
  publication-title: AIAA J.
– start-page: 11
  year: 1984
  end-page: 44
  ident: bib0016
  article-title: Wave action and wave-mean flow interaction, with application to stratified shear flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 66
  start-page: 11
  year: 2017
  ident: bib0017
  article-title: Evolution mechanism of vortices in a supersonic mixing layer controlled by the pulsed forcing
  publication-title: Acta Phys. Sin.
– volume: 38
  start-page: 5918
  year: 2013
  end-page: 5927
  ident: bib0042
  article-title: Large-Eddy/Reynolds-averaged Navier–Stokes simulation of combustion oscillations in a cavity-based supersonic combustor
  publication-title: Int. J. Hydrogen Energy
– volume: 99
  start-page: 295
  year: 1994
  end-page: 301
  ident: bib0046
  article-title: Cavity-actuated supersonic mixing and combustion control
  publication-title: Combust. Flame
– volume: 121
  start-page: 282
  year: 2016
  end-page: 291
  ident: bib0051
  article-title: Non-reacting flow visualization of supersonic combustor based on cavity and cavity–strut flameholder
  publication-title: Acta Astronaut.
– volume: 16
  start-page: 365
  year: 1984
  end-page: 424
  ident: bib0020
  article-title: Perturbed free shear layers
  publication-title: Annu. Rev. Fluid Mech.
– volume: 27
  start-page: 152
  year: 2015
  end-page: 165
  ident: bib0040
  article-title: Fluid-structure interactions in compressible cavity flows
  publication-title: Phys. Fluids
– reference: Segal, 2009. The scramjet engine: processes and characteristics. Cambridge University Press.
– year: 2000
  ident: bib0002
  article-title: Analysis of unsteady cavity flows for scramjet applications
  publication-title: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL
– volume: 144
  start-page: 30
  year: 2018
  end-page: 38
  ident: bib0034
  article-title: Detailed experimental investigations on flow behaviors and velocity field properties of a supersonic mixing layer
  publication-title: Acta Astronaut.
– volume: 195
  start-page: 137
  year: 1988
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0044
  article-title: On coherent structures in a highly excited mixing layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112088002356
– volume: 4
  start-page: S283
  year: 2002
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0014
  article-title: Laser diode self-mixing technique for sensing applications
  publication-title: J. Opt. A Pure Appl. Opt.
  doi: 10.1088/1464-4258/4/6/371
– start-page: 2000
  year: 2000
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0021
  article-title: Fuel distribution about cavity flameholder in supersonic flow
  publication-title: AIAA
– year: 2015
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0035
  article-title: characteristics of supersonic mixing layer under forced vibration
– start-page: 91
  year: 1991
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0006
  article-title: On the convection velocity of turbulent structures in supersonic shear layers
– year: 1964
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0030
– volume: 14
  start-page: 24
  year: 2003
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0013
  article-title: Self-mixing laser diode vibrometer
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/14/1/304
– volume: 599
  start-page: 309
  year: 2008
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0004
  article-title: Three-dimensional instabilities of compressible flow over open cavities
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112007009925
– volume: 103
  start-page: 453
  year: 2013
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0043
  article-title: Characteristics of mixing enhanced by streamwise vortices in supersonic flow
  publication-title: Appl. Phys. Lett.
– volume: 99
  start-page: 295
  year: 1994
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0046
  article-title: Cavity-actuated supersonic mixing and combustion control
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(94)90134-1
– start-page: 11
  year: 1984
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0016
  article-title: Wave action and wave-mean flow interaction, with application to stratified shear flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.16.010184.000303
– year: 1975
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0019
  article-title: physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression
– volume: 52
  start-page: 2001
  year: 2009
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0045
  article-title: A flow control study of a supersonic mixing layer via NPLS
  publication-title: Sci. China Ser. G
  doi: 10.1007/s11433-009-0301-0
– volume: 56
  start-page: 1
  year: 2015
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0039
  article-title: Mitigation of wind tunnel wall interactions in subsonic cavity flows
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-015-1924-8
– volume: 441
  start-page: 139
  year: 2001
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0055
  article-title: The response of a mixing layer formed between parallel streams to a concomitant excitation at two frequencies
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112001004827
– volume: 74
  start-page: 120
  year: 2018
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0025
  article-title: Investigations of self-excited vibration in splitter plate with a cavity in the supersonic mixing layer
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2018.01.009
– ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0032
  doi: 10.1017/CBO9780511627019
– volume: 44
  start-page: 2118
  year: 2006
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0057
  article-title: Supersonic cavity flows and their control
  publication-title: AIAA J.
  doi: 10.2514/1.14879
– volume: 15
  start-page: 193
  year: 2002
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0024
  article-title: Large-eddy simulation of a compressible flow past a deep cavity
  publication-title: Phys. Fluids
  doi: 10.1063/1.1522379
– volume: 52
  start-page: 3640
  issue: 12
  year: 2009
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0054
  article-title: Supersonic flow imaging via nanoparticles
  publication-title: Sci. China Ser. E Technol. Sci.
  doi: 10.1007/s11431-009-0281-3
– volume: 238
  start-page: 325
  year: 1992
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0012
  article-title: Turbulence:the filtering approach
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112092001733
– volume: 7
  start-page: 2105
  year: 1995
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0038
  article-title: Shocks in direct numerical simulation of the confined three-dimensional mixing layer
  publication-title: Phys. Fluids
  doi: 10.1063/1.868460
– volume: 19
  start-page: 179
  year: 2016
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0050
  article-title: Visualization of flow structures and mixing characteristics induced by forced vibration in supersonic mixing layer
  publication-title: J. Visualization
  doi: 10.1007/s12650-015-0321-y
– volume: 90
  start-page: 121
  year: 2013
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0041
  article-title: Characteristics of oscillations in supersonic open cavity flows
  publication-title: Flow Turbul. Combust.
  doi: 10.1007/s10494-012-9434-8
– volume: 55
  start-page: 1
  year: 2014
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0018
  article-title: Supersonic mixing enhanced by cavity-induced three-dimensional oscillatory flow
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-014-1711-y
– volume: 421
  start-page: 269
  year: 2000
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0011
  article-title: Compressibility effects in a turbulent annular mixing layer. Part 2. Mixing of a passive scalar
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112000001634
– volume: 123
  start-page: 32
  year: 2015
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0003
  article-title: Passive scalar mixing in Mc<1 planar shear layer flows
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2015.09.006
– volume: 117
  start-page: 440
  year: 2015
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0049
  article-title: Investigation on flow and mixing characteristics of supersonic mixing layer induced by forced vibration of cantilever
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2015.09.001
– volume: 128
  start-page: 140
  year: 2016
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0052
  article-title: Vortex structure and breakup mechanism of gaseous jet in supersonic crossflow with laminar boundary layer
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2016.06.019
– volume: 111
  year: 2017
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0048
  article-title: Structural characteristics of supersonic mixing enhanced by introducing streamwise vortices
  publication-title: Appl. Phys. Lett.
– year: 2000
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0002
  article-title: Analysis of unsteady cavity flows for scramjet applications
– volume: 47
  start-page: 1132
  year: 2009
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0001
  article-title: Suppression of cavity loads using leading-edge blowing
  publication-title: AIAA J.
  doi: 10.2514/1.38211
– volume: 593
  start-page: 171
  year: 2007
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0026
  article-title: On the turbulence structure in inert and reacting compressible mixing layers
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112007008919
– volume: 91
  start-page: 99
  year: 1963
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0033
  article-title: General circulation experiments with the primitive equations, I. The basic experiment
  publication-title: Month Weather Rev.
  doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
– volume: 32
  start-page: 44
  year: 2002
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0023
  article-title: Control of backward-facing step flow using a flapping foil
  publication-title: Exp. Fluids
  doi: 10.1007/s003480200005
– volume: 24
  start-page: 1791
  year: 1986
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0005
  article-title: Two-dimensional shear-layer entrainment
  publication-title: AIAA J.
  doi: 10.2514/3.9525
– volume: 90
  start-page: 121
  year: 2013
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib1002
  article-title: Characteristics of oscillations in supersonic open cavity flows
  publication-title: Flow Turbul. Combust.
  doi: 10.1007/s10494-012-9434-8
– volume: 29
  start-page: 538
  year: 1991
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0007
  article-title: Experimental study of compressible turbulent mixing layers
  publication-title: AIAA J.
  doi: 10.2514/3.10617
– volume: 52
  start-page: 1357
  year: 2009
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0036
  article-title: Study of density field measurement based on NPLS technique in supersonic flow
  publication-title: Sci. China Phys. Mech. Astron.
  doi: 10.1007/s11433-009-0180-4
– volume: 33
  start-page: 1032
  year: 1995
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0037
  article-title: Self-excited wire method for the control of turbulent mixing layers
  publication-title: AIAA J.
  doi: 10.2514/3.12524
– volume: 27
  start-page: 375
  year: 1995
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0008
  article-title: Mixing enhancement in supersonic free shear flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.27.010195.002111
– volume: 15
  start-page: 358
  year: 1999
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0031
  article-title: Advanced mixing control in supersonic airstream with a wall-mounted cavity
  publication-title: J. Propul. Power
  doi: 10.2514/2.5433
– year: 2016
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0009
– volume: 121
  start-page: 282
  year: 2016
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0051
  article-title: Non-reacting flow visualization of supersonic combustor based on cavity and cavity–strut flameholder
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2015.12.040
– volume: 7
  start-page: 233
  year: 1995
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0027
  article-title: Evidence of shocklets in a counterflow supersonic shear layer
  publication-title: Phys. Fluids
  doi: 10.1063/1.868621
– volume: 144
  start-page: 30
  year: 2018
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0034
  article-title: Detailed experimental investigations on flow behaviors and velocity field properties of a supersonic mixing layer
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2017.12.010
– volume: 38
  start-page: 5918
  year: 2013
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib1003
  article-title: Large-eddy/Reynolds-averaged Navier-Stokes simulation of combustion oscillations in a cavity-based supersonic combustor
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.02.100
– volume: 51
  start-page: 1134
  year: 2008
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0053
  article-title: The fractal measurement of experimental images of supersonic turbulent mixing layer
  publication-title: Sci. China Ser. G
  doi: 10.1007/s11433-008-0097-3
– volume: 589
  start-page: 479
  year: 2007
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0022
  article-title: On the periodically excited plane turbulent mixing layer, emanating from a jagged partition
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112007007884
– year: 2005
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0047
  article-title: Experimental characterization of cavity-augmented supersonic mixing
– volume: 421
  start-page: 229
  year: 2000
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0010
  article-title: Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112000001622
– volume: 66
  start-page: 11
  year: 2017
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0017
  article-title: Evolution mechanism of vortices in a supersonic mixing layer controlled by the pulsed forcing
  publication-title: Acta Phys. Sin.
– start-page: 2005
  year: 2005
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0028
  article-title: Upstream mixing cavity coupled with a downstream flameholding cavity behavior in supersonic flow
  publication-title: AIAA
– volume: 16
  start-page: 365
  year: 1984
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0020
  article-title: Perturbed free shear layers
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.16.010184.002053
– volume: 27
  start-page: 152
  year: 2015
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0040
  article-title: Fluid-structure interactions in compressible cavity flows
  publication-title: Phys. Fluids
  doi: 10.1063/1.4922021
– volume: 3
  start-page: 1
  year: 2002
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0029
  article-title: Evolution and growth of large-scale structures in high compressibility mixing layers
  publication-title: J. Turbul.
  doi: 10.1088/1468-5248/3/1/009
– volume: 8
  start-page: 263
  year: 1990
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0015
  article-title: Mean and turbulent velocity measurements of supersonic mixing layers,
  publication-title: Exp. Fluids
  doi: 10.1007/BF00187228
– volume: 711
  start-page: 437
  year: 2012
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0056
  article-title: Direct numerical simulation of a spatially developing compressible plane mixing layer:flow structures and mean flow properties
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.400
– volume: 38
  start-page: 5918
  year: 2013
  ident: 10.1016/j.ijheatfluidflow.2018.10.004_bib0042
  article-title: Large-Eddy/Reynolds-averaged Navier–Stokes simulation of combustion oscillations in a cavity-based supersonic combustor
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.02.100
SSID ssj0006047
Score 2.2979333
Snippet •A cavity is applied as an actuator to improve mixing in supersonic planar mixing layer.•The coherent structures is strongly locked to frequencies from...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 209
SubjectTerms Cavity
Curvature shocklets
Growth rate
Mixing enhancement
Supersonic mixing layer
Title Investigations on flow and growth properties of a cavity-actuated supersonic planar mixing layer downstream a thick splitter plate
URI https://dx.doi.org/10.1016/j.ijheatfluidflow.2018.10.004
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5VRUJwgFJAlEc1Bzi6sb3rl8SBqqIKRPSAqMjN2ie4uI6VOKKnHvrLOxM7bUAcKnFa2d6XdsYz366-mQV4q21h4tTkgQh1FkgX5YFSmjNhakILBBCc5aOBLyfp-FR-nibTLThax8IwrXKw_b1NX1nr4c1oWM1RW1UjpiXF5H2npJShlBkH_FLBWn5weUvzSEPZh0xLQpJU-z68u-V4VWds8Xy9rKyvZ7-Z6ZUfrMhe8t9-asP3HO_AowE04mE_ryew5ZpdeDwASBx-z8UuPNzILvgUrjZyaJBu4axBHh5VY_EH7b67n9jyUfycc6rizKNCo_gqiUBxVAlBUVws2xUirwy2tWrUHM-rC-oca0VQHS0fTTNV_ZzaMnH-Fy5oThwgxPU79wxOjz9-OxoHw5ULgRFCdEHG2VtMrq1IjCp0YiLrIx0JlXryYzntvH3ofGTzItEiclHossLHmRUuEmlODvE5bDezxr0AdHlsnIkVWQwpjSyUT1zitY8J8mWZCvfg_XqBSzPkI-drMepyTTw7K_-ST8ny4c8knz1Ib5q3fWKOuzb8sJZm-YemleRE7tbFy__v4hU84KeeGPMatrv50r0heNPp_ZX-7sO9w0-T8QmXk6_fJ9fLYwN_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrcTjwKOAKE8f4Bg2iZ3EkThQVVRb2u6plfYW-QkpaTbazQrO_HJmNt6yIA6VuMYZx_JMZj5bnz8DvNW2NGluZMRjXUTCJTJSSpMSpka0gADBWdoaOJvmkwvxeZbNduBwcxaGaJUh9w85fZ2tw5NxmM1xV9djoiWlWH1nGJSxEIW8BbukTpWNYPfg-GQyvU7IeSyGU9MCwSQa3IZ3v2le9SUlPd-sauub-Xcie8n3a76X-Hep2io_Rw_hfsCN7GAY2iPYce0ePAgYkoU_dLkH97YEBh_Dzy0ZDQwvNm8ZfZ6p1rIvuADvv7KOduMXJKvK5p4pZhTdJhEpOliCaJQtV90alNeGdY1q1YJd1T-wc9YoROvM0u40sdWv0Ja489_YEsdEZ4To_d49gYujT-eHkyjcuhAZznkfFSTgYqS2PDOq1JlJrE90wlXusZRJXHz72PnEyjLTPHFJ7IrSp4XlLuG5xJr4FEbtvHXPgDmZGmdShUlDCCNK5TOXee1TRH1FoeJ9-LCZ4MoESXK6GaOpNtyzy-ov_1TkH2pG_-xDfm3eDdocNzX8uPFm9UewVVhHbtbF8__v4g3cmZyfnVanx9OTF3CXWgaezEsY9YuVe4Vop9evQzT_AnSdBI0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigations+on+flow+and+growth+properties+of+a+cavity-actuated+supersonic+planar+mixing+layer+downstream+a+thick+splitter+plate&rft.jtitle=The+International+journal+of+heat+and+fluid+flow&rft.au=Li%2C+Hao&rft.au=Tan%2C+Jianguo&rft.au=Zhang%2C+Dongdong&rft.au=Hou%2C+Juwei&rft.date=2018-12-01&rft.pub=Elsevier+Inc&rft.issn=0142-727X&rft.eissn=1879-2278&rft.volume=74&rft.spage=209&rft.epage=220&rft_id=info:doi/10.1016%2Fj.ijheatfluidflow.2018.10.004&rft.externalDocID=S0142727X18304478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-727X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-727X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-727X&client=summon