The Pauli-Poisson equation and its semiclassical limit

The Pauli-Poisson equation is a semi-relativistic model for charged spin-1∕2-par-ticles in a strong external magnetic field and a self-consistent electric potential computed from the Poisson equation in three space dimensions. It is a system of two magnetic Schrödinger equations for the two componen...

Full description

Saved in:
Bibliographic Details
Published inCommunications in partial differential equations Vol. 50; no. 1-2; pp. 130 - 161
Main Author Möller, Jakob
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 01.02.2025
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0360-5302
1532-4133
DOI10.1080/03605302.2024.2439358

Cover

Abstract The Pauli-Poisson equation is a semi-relativistic model for charged spin-1∕2-par-ticles in a strong external magnetic field and a self-consistent electric potential computed from the Poisson equation in three space dimensions. It is a system of two magnetic Schrödinger equations for the two components of the Pauli 2-spinor, representing the two spin states of a fermion, coupled by the additional Stern-Gerlach term representing the interaction of magnetic field and spin. We study the global well-posedness in the energy space and the semiclassical limit of the Pauli-Poisson to the magnetic Vlasov-Poisson equation with Lorentz force and the semiclassical limit of the linear Pauli equation to the magnetic Vlasov equation with Lorentz force. We use Wigner transforms and a density matrix formulation for mixed states, extending the work of P. L. Lions & T. Paul as well as P. Markowich & N.J. Mauser on the semiclassical limit of the non-relativistic Schrödinger-Poisson equation.
AbstractList The Pauli-Poisson equation is a semi-relativistic model for charged spin-1∕2-par-ticles in a strong external magnetic field and a self-consistent electric potential computed from the Poisson equation in three space dimensions. It is a system of two magnetic Schrödinger equations for the two components of the Pauli 2-spinor, representing the two spin states of a fermion, coupled by the additional Stern-Gerlach term representing the interaction of magnetic field and spin. We study the global well-posedness in the energy space and the semiclassical limit of the Pauli-Poisson to the magnetic Vlasov-Poisson equation with Lorentz force and the semiclassical limit of the linear Pauli equation to the magnetic Vlasov equation with Lorentz force. We use Wigner transforms and a density matrix formulation for mixed states, extending the work of P. L. Lions & T. Paul as well as P. Markowich & N.J. Mauser on the semiclassical limit of the non-relativistic Schrödinger-Poisson equation.
Author Möller, Jakob
Author_xml – sequence: 1
  givenname: Jakob
  surname: Möller
  fullname: Möller, Jakob
  organization: Research Platform MMM "Mathematics-Magnetism-Materials" c/o Fak. Mathematik, Universität Wien
BookMark eNp9kEtrwzAQhEVJoUnan1Aw9OxUD-vhW0voCwLNIT0LRZKpgiwlkk3Jv6-N02tPu4dvZnZnAWYhBgvAPYIrBAV8hIRBSiBeYYirFa5ITai4AnNECS4rRMgMzEemHKEbsMj5ACESuK7mgO2-bbFVvXflNrqcYyjsqVedGxYVTOG6XGTbOu1Vzk4rX3jXuu4WXDfKZ3t3mUvw9fqyW7-Xm8-3j_XzptSEkK7kWBuKa2SE4VqoPTXDBRbhSnBGRIUg3NccImKZqVljBUTcME4NF0LjvUJkCR4m32OKp97mTh5in8IQKQli478Ii4GiE6VTzDnZRh6Ta1U6SwTlWJH8q0iOEnmpaNA9TToXmpha9ROTN7JTZx9Tk1TQboz51-IXxvdspw
Cites_doi 10.1088/0951-7715/28/8/2743
10.1142/S0218202597000530
10.1007/s10958-016-3152-z
10.1155/S107379280320310X
10.1080/03605300600635046
10.1002/mma.1670140103
10.1007/s002200050181
10.1007/BF01258900
10.1137/S0036141001393407
10.1090/S0002-9939-98-04164-1
10.1090/cln/017
10.4171/rmi/143
10.1080/03605302.2023.2175218
10.1080/03605309108820822
10.1063/1.3687024
10.1016/0022-0396(92)90033-J
10.1002/mma.1670170504
10.48550/arXiv.2304.06660
10.1006/jdeq.1998.3473
10.1016/j.jde.2006.10.003
10.1006/aphy.2000.6039
10.1119/1.19149
10.1006/jfan.2000.3670
10.1142/S0218202593000072
10.1007/s006050170055
10.1515/cmam-2023-0101
10.1051/mmnp/201712102
10.1007/s002200050457
10.1002/cpa.3017
10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C
10.1016/S0021-7824(99)00021-5
10.1007/s00033-018-0938-5
10.1137/20M1369749
ContentType Journal Article
Copyright 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2025
2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2025
– notice: 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/03605302.2024.2439358
DatabaseName Taylor & Francis Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4133
EndPage 161
ExternalDocumentID 10_1080_03605302_2024_2439358
2439358
Genre Research Article
GrantInformation_xml – fundername: Vienna Science and Technology Fund
  grantid: MA16-066 "SEQUEX"
– fundername: Campus France
– fundername: Austrian Science Fund
  grantid: SFB F65; W1245; 10.55776/J4840
GroupedDBID -~X
.7F
.QJ
0BK
0R~
0YH
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
N9A
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~S~
07G
1TA
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ABEFU
ACAGQ
ACGEE
ADYSH
AEUMN
AFRVT
AGCQS
AGLEN
AGROQ
AHMOU
AI.
AIYEW
ALCKM
AMEWO
AMPGV
AMVHM
AMXXU
BCCOT
BPLKW
C06
CAG
CITATION
COF
CRFIH
DMQIW
DWIFK
EJD
H13
IVXBP
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
VH1
ZY4
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c333t-72cd5291d8d7c8ab5d302e124876384100b97013e6d96fe8017d675d788c2ba13
IEDL.DBID 0YH
ISSN 0360-5302
IngestDate Wed Aug 13 06:38:21 EDT 2025
Tue Jul 01 03:00:54 EDT 2025
Sat Feb 01 04:42:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-72cd5291d8d7c8ab5d302e124876384100b97013e6d96fe8017d675d788c2ba13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/03605302.2024.2439358
PQID 3162024128
PQPubID 186205
PageCount 32
ParticipantIDs crossref_primary_10_1080_03605302_2024_2439358
proquest_journals_3162024128
informaworld_taylorfrancis_310_1080_03605302_2024_2439358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in partial differential equations
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_30_1
Frénod E. (e_1_3_3_28_1) 1998; 18
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_19_1
Gérard P. (e_1_3_3_21_1) 1991; 16
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_34_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_25_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_4_1
e_1_3_3_22_1
Aiba D. (e_1_3_3_24_1) 2013; 25
References_xml – ident: e_1_3_3_8_1
  doi: 10.1088/0951-7715/28/8/2743
– ident: e_1_3_3_15_1
  doi: 10.1142/S0218202597000530
– ident: e_1_3_3_3_1
  doi: 10.1007/s10958-016-3152-z
– ident: e_1_3_3_9_1
  doi: 10.1155/S107379280320310X
– ident: e_1_3_3_19_1
  doi: 10.1080/03605300600635046
– ident: e_1_3_3_13_1
  doi: 10.1002/mma.1670140103
– ident: e_1_3_3_16_1
  doi: 10.1007/s002200050181
– ident: e_1_3_3_37_1
  doi: 10.1007/BF01258900
– ident: e_1_3_3_31_1
  doi: 10.1137/S0036141001393407
– ident: e_1_3_3_33_1
  doi: 10.1090/S0002-9939-98-04164-1
– ident: e_1_3_3_32_1
  doi: 10.1090/cln/017
– ident: e_1_3_3_10_1
  doi: 10.4171/rmi/143
– ident: e_1_3_3_29_1
  doi: 10.1080/03605302.2023.2175218
– ident: e_1_3_3_22_1
  doi: 10.1080/03605309108820822
– ident: e_1_3_3_7_1
  doi: 10.1063/1.3687024
– volume: 25
  start-page: 37
  issue: 2
  year: 2013
  ident: e_1_3_3_24_1
  article-title: Schrödinger equations with time-dependent strong magnetic fields
  publication-title: Algebra i Analiz
– volume: 18
  start-page: 193
  issue: 3
  year: 1998
  ident: e_1_3_3_28_1
  article-title: Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field
  publication-title: Asympt. Anal
– ident: e_1_3_3_18_1
– ident: e_1_3_3_26_1
  doi: 10.1016/0022-0396(92)90033-J
– ident: e_1_3_3_14_1
  doi: 10.1002/mma.1670170504
– ident: e_1_3_3_35_1
  doi: 10.48550/arXiv.2304.06660
– ident: e_1_3_3_23_1
  doi: 10.1006/jdeq.1998.3473
– ident: e_1_3_3_30_1
  doi: 10.1016/j.jde.2006.10.003
– ident: e_1_3_3_36_1
  doi: 10.1006/aphy.2000.6039
– ident: e_1_3_3_5_1
  doi: 10.1119/1.19149
– ident: e_1_3_3_38_1
  doi: 10.1006/jfan.2000.3670
– ident: e_1_3_3_11_1
  doi: 10.1142/S0218202593000072
– ident: e_1_3_3_17_1
  doi: 10.1007/s006050170055
– ident: e_1_3_3_2_1
  doi: 10.1515/cmam-2023-0101
– ident: e_1_3_3_4_1
  doi: 10.1051/mmnp/201712102
– ident: e_1_3_3_6_1
  doi: 10.1007/s002200050457
– ident: e_1_3_3_12_1
  doi: 10.1002/cpa.3017
– volume: 16
  start-page: 1
  year: 1991
  ident: e_1_3_3_21_1
  article-title: Mesures semi-classiques et ondes de Bloch
  publication-title: Sém. Eq. Dér. Part
– ident: e_1_3_3_20_1
  doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C
– ident: e_1_3_3_27_1
  doi: 10.1016/S0021-7824(99)00021-5
– ident: e_1_3_3_25_1
  doi: 10.1007/s00033-018-0938-5
– ident: e_1_3_3_34_1
  doi: 10.1137/20M1369749
SSID ssj0018294
Score 2.40256
Snippet The Pauli-Poisson equation is a semi-relativistic model for charged spin-1∕2-par-ticles in a strong external magnetic field and a self-consistent electric...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 130
SubjectTerms Asymptotic Analysis
Fermions
Lorentz force
Magnetic fields
magnetic Schrödinger equation
Pauli equation
Poisson equation
Relativistic effects
Schrodinger equation
Vlasov equations
Vlasov-Poisson equation
Wigner measures
Title The Pauli-Poisson equation and its semiclassical limit
URI https://www.tandfonline.com/doi/abs/10.1080/03605302.2024.2439358
https://www.proquest.com/docview/3162024128
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagXWBAPEWhVB5YXWIncZyxAqoIqYiBiscSxY9IlVBaSPj_3OVRUSHEwB5b8uec787-7jtCLm0mMh3GhvlhFrDAyJApnkeMZ1wrrQIdGSwUnt3LZB7cPYcdm7BsaZWYQ-eNUER9VqNxZ7rsGHFXcOh62OwGsjsRjEVQi3htk76AQBFZfd5Lsn5IUCJuFaQ8hmO6Ip7fptlwTxvipT8O69oDTffJXhs60kmz1wdkyxWHZHe21l0tj4iEXadI9luwhyVAuiyoe2_EvCksly6qkpZIh8eYGbeHvmGB0zGZT28frxPWdkZgxvf9ikXC2FDE3CobGQVgW1iHA1eN-nIq4J6n4wgvOKWNZe7AC0UWMgML-a4ROuP-CekVy8KdEiqk9R03aIcSHFWmLHcOrBq8W46V8gMy7gBJV40ARso7XdEWwRQRTFsEByT-Dlta1TcPedMmJPX_GDvsME5bW8IhEr8BR3r2j6nPyY7A1r014XpIetXHp7uAeKLSo_qPGZH-JLl5ffoCHqm-Xw
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgDMCA-BSFAh5YXWIncZwRIaoAbcXQSmWyEtuRKqEUaPj_3OUDtUKIgT225GffPZ9z946Qa5uKNAtjw_wwDVhgZMgUzyPGU56pTAVZZLBQeDSWyTR4nIWzlVoYTKvEGDqvhSIqX43GjY_RbUrcDXhdD7vdQHgngr4IKhWvTbIVKogm4Ex7L8n3nwQl4kZCymM4pq3i-W2aNX5aUy_94a0rChrsk73m7khv680-IBuuOCS7o2_h1eURkbDtFLP95ux5AZguCureazVvCuul83JJl5gPj5dm3B_6ihVOx2Q6uJ_cJaxpjcCM7_sli4SxoYi5VTYyCtC2sA4HXI0CcyrgnpfFEb5wShvL3AENRRZCAwsBrxFZyv0T0ikWhTslVEjrO27QECUwVaosdw7MGugtx1L5Lum3gOi3WgFD81ZYtEFQI4K6QbBL4lXYdFk9PeR1nxDt_zG212KsG2PCIRK_ASY9-8fUV2Q7mYyGevgwfjonOwL7-FbZ1z3SKT8-3QVcLsrssjo9X4A7wCk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgG3ohCgQysLrGdOMmIgKo8WnWgElsUPyIhUFpIuvDrucujoiDE0D12nLvzPZzvPhNyYRKeKD_SVPiJRz0tfRqyNKAsYSpUoacCjY3Cg6Hsj737Z79BE-Y1rBJr6LQiiih9NW7uqUkbRNwlOF0XL7uB6o57Xe6VJF6rZE1CeoKoPuEO5z8SQh7VDFIuxTFNE89f0yyEpwXy0l_OuoxAvW2imrVXwJPX7qxQXf35g9ZxqY_bIVt1fupcVQa1S1Zstkc2B3Ny13yfSDAtBxGFL3Q0Ab1NMse-V4zhDrzWeSlyJ0fMPSbmaAPOG3ZRHZBx7_bpuk_r6xeoFkIUNODa-DxiJjSBDkGjBpZlIR9AErvQY66rogBPUaWJZGoh1AUGyg8DRbXmKmHikLSySWaPiMOlEZZp3OwSomESGmYtuA4IoSm247dJt5F6PK1YNmLWkJfWAolRIHEtkDaJvusmLsrjjbS6iyQW_4ztNIqM6w2LQyQ-A9H6eImpz8n66KYXP94NH07IBsergkuAd4e0io-ZPYX8pVBnpYV-Aaat3s4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Pauli-Poisson+equation+and+its+semiclassical+limit&rft.jtitle=Communications+in+partial+differential+equations&rft.au=M%C3%B6ller%2C+Jakob&rft.date=2025-02-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0360-5302&rft.eissn=1532-4133&rft.volume=50&rft.issue=1-2&rft.spage=130&rft.epage=161&rft_id=info:doi/10.1080%2F03605302.2024.2439358&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5302&client=summon