The Pauli-Poisson equation and its semiclassical limit
The Pauli-Poisson equation is a semi-relativistic model for charged spin-1∕2-par-ticles in a strong external magnetic field and a self-consistent electric potential computed from the Poisson equation in three space dimensions. It is a system of two magnetic Schrödinger equations for the two componen...
Saved in:
Published in | Communications in partial differential equations Vol. 50; no. 1-2; pp. 130 - 161 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
01.02.2025
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0360-5302 1532-4133 |
DOI | 10.1080/03605302.2024.2439358 |
Cover
Abstract | The Pauli-Poisson equation is a semi-relativistic model for charged spin-1∕2-par-ticles in a strong external magnetic field and a self-consistent electric potential computed from the Poisson equation in three space dimensions. It is a system of two magnetic Schrödinger equations for the two components of the Pauli 2-spinor, representing the two spin states of a fermion, coupled by the additional Stern-Gerlach term representing the interaction of magnetic field and spin. We study the global well-posedness in the energy space and the semiclassical limit of the Pauli-Poisson to the magnetic Vlasov-Poisson equation with Lorentz force and the semiclassical limit of the linear Pauli equation to the magnetic Vlasov equation with Lorentz force. We use Wigner transforms and a density matrix formulation for mixed states, extending the work of P. L. Lions & T. Paul as well as P. Markowich & N.J. Mauser on the semiclassical limit of the non-relativistic Schrödinger-Poisson equation. |
---|---|
AbstractList | The Pauli-Poisson equation is a semi-relativistic model for charged spin-1∕2-par-ticles in a strong external magnetic field and a self-consistent electric potential computed from the Poisson equation in three space dimensions. It is a system of two magnetic Schrödinger equations for the two components of the Pauli 2-spinor, representing the two spin states of a fermion, coupled by the additional Stern-Gerlach term representing the interaction of magnetic field and spin. We study the global well-posedness in the energy space and the semiclassical limit of the Pauli-Poisson to the magnetic Vlasov-Poisson equation with Lorentz force and the semiclassical limit of the linear Pauli equation to the magnetic Vlasov equation with Lorentz force. We use Wigner transforms and a density matrix formulation for mixed states, extending the work of P. L. Lions & T. Paul as well as P. Markowich & N.J. Mauser on the semiclassical limit of the non-relativistic Schrödinger-Poisson equation. |
Author | Möller, Jakob |
Author_xml | – sequence: 1 givenname: Jakob surname: Möller fullname: Möller, Jakob organization: Research Platform MMM "Mathematics-Magnetism-Materials" c/o Fak. Mathematik, Universität Wien |
BookMark | eNp9kEtrwzAQhEVJoUnan1Aw9OxUD-vhW0voCwLNIT0LRZKpgiwlkk3Jv6-N02tPu4dvZnZnAWYhBgvAPYIrBAV8hIRBSiBeYYirFa5ITai4AnNECS4rRMgMzEemHKEbsMj5ACESuK7mgO2-bbFVvXflNrqcYyjsqVedGxYVTOG6XGTbOu1Vzk4rX3jXuu4WXDfKZ3t3mUvw9fqyW7-Xm8-3j_XzptSEkK7kWBuKa2SE4VqoPTXDBRbhSnBGRIUg3NccImKZqVljBUTcME4NF0LjvUJkCR4m32OKp97mTh5in8IQKQli478Ii4GiE6VTzDnZRh6Ta1U6SwTlWJH8q0iOEnmpaNA9TToXmpha9ROTN7JTZx9Tk1TQboz51-IXxvdspw |
Cites_doi | 10.1088/0951-7715/28/8/2743 10.1142/S0218202597000530 10.1007/s10958-016-3152-z 10.1155/S107379280320310X 10.1080/03605300600635046 10.1002/mma.1670140103 10.1007/s002200050181 10.1007/BF01258900 10.1137/S0036141001393407 10.1090/S0002-9939-98-04164-1 10.1090/cln/017 10.4171/rmi/143 10.1080/03605302.2023.2175218 10.1080/03605309108820822 10.1063/1.3687024 10.1016/0022-0396(92)90033-J 10.1002/mma.1670170504 10.48550/arXiv.2304.06660 10.1006/jdeq.1998.3473 10.1016/j.jde.2006.10.003 10.1006/aphy.2000.6039 10.1119/1.19149 10.1006/jfan.2000.3670 10.1142/S0218202593000072 10.1007/s006050170055 10.1515/cmam-2023-0101 10.1051/mmnp/201712102 10.1007/s002200050457 10.1002/cpa.3017 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C 10.1016/S0021-7824(99)00021-5 10.1007/s00033-018-0938-5 10.1137/20M1369749 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2025 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2025 – notice: 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
DOI | 10.1080/03605302.2024.2439358 |
DatabaseName | Taylor & Francis Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-4133 |
EndPage | 161 |
ExternalDocumentID | 10_1080_03605302_2024_2439358 2439358 |
Genre | Research Article |
GrantInformation_xml | – fundername: Vienna Science and Technology Fund grantid: MA16-066 "SEQUEX" – fundername: Campus France – fundername: Austrian Science Fund grantid: SFB F65; W1245; 10.55776/J4840 |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 0YH 29F 2DF 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z N9A NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~S~ 07G 1TA AAGDL AAHIA AAIKQ AAKBW AAYXX ABEFU ACAGQ ACGEE ADYSH AEUMN AFRVT AGCQS AGLEN AGROQ AHMOU AI. AIYEW ALCKM AMEWO AMPGV AMVHM AMXXU BCCOT BPLKW C06 CAG CITATION COF CRFIH DMQIW DWIFK EJD H13 IVXBP NUSFT QCRFL TAQ TFMCV TOXWX UB9 UU8 V3K V4Q VH1 ZY4 7SC 8FD H8D JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c333t-72cd5291d8d7c8ab5d302e124876384100b97013e6d96fe8017d675d788c2ba13 |
IEDL.DBID | 0YH |
ISSN | 0360-5302 |
IngestDate | Wed Aug 13 06:38:21 EDT 2025 Tue Jul 01 03:00:54 EDT 2025 Sat Feb 01 04:42:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-72cd5291d8d7c8ab5d302e124876384100b97013e6d96fe8017d675d788c2ba13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/03605302.2024.2439358 |
PQID | 3162024128 |
PQPubID | 186205 |
PageCount | 32 |
ParticipantIDs | crossref_primary_10_1080_03605302_2024_2439358 proquest_journals_3162024128 informaworld_taylorfrancis_310_1080_03605302_2024_2439358 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in partial differential equations |
PublicationYear | 2025 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_3_30_1 Frénod E. (e_1_3_3_28_1) 1998; 18 e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_19_1 Gérard P. (e_1_3_3_21_1) 1991; 16 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_34_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_25_1 e_1_3_3_27_1 e_1_3_3_26_1 e_1_3_3_3_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_4_1 e_1_3_3_22_1 Aiba D. (e_1_3_3_24_1) 2013; 25 |
References_xml | – ident: e_1_3_3_8_1 doi: 10.1088/0951-7715/28/8/2743 – ident: e_1_3_3_15_1 doi: 10.1142/S0218202597000530 – ident: e_1_3_3_3_1 doi: 10.1007/s10958-016-3152-z – ident: e_1_3_3_9_1 doi: 10.1155/S107379280320310X – ident: e_1_3_3_19_1 doi: 10.1080/03605300600635046 – ident: e_1_3_3_13_1 doi: 10.1002/mma.1670140103 – ident: e_1_3_3_16_1 doi: 10.1007/s002200050181 – ident: e_1_3_3_37_1 doi: 10.1007/BF01258900 – ident: e_1_3_3_31_1 doi: 10.1137/S0036141001393407 – ident: e_1_3_3_33_1 doi: 10.1090/S0002-9939-98-04164-1 – ident: e_1_3_3_32_1 doi: 10.1090/cln/017 – ident: e_1_3_3_10_1 doi: 10.4171/rmi/143 – ident: e_1_3_3_29_1 doi: 10.1080/03605302.2023.2175218 – ident: e_1_3_3_22_1 doi: 10.1080/03605309108820822 – ident: e_1_3_3_7_1 doi: 10.1063/1.3687024 – volume: 25 start-page: 37 issue: 2 year: 2013 ident: e_1_3_3_24_1 article-title: Schrödinger equations with time-dependent strong magnetic fields publication-title: Algebra i Analiz – volume: 18 start-page: 193 issue: 3 year: 1998 ident: e_1_3_3_28_1 article-title: Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field publication-title: Asympt. Anal – ident: e_1_3_3_18_1 – ident: e_1_3_3_26_1 doi: 10.1016/0022-0396(92)90033-J – ident: e_1_3_3_14_1 doi: 10.1002/mma.1670170504 – ident: e_1_3_3_35_1 doi: 10.48550/arXiv.2304.06660 – ident: e_1_3_3_23_1 doi: 10.1006/jdeq.1998.3473 – ident: e_1_3_3_30_1 doi: 10.1016/j.jde.2006.10.003 – ident: e_1_3_3_36_1 doi: 10.1006/aphy.2000.6039 – ident: e_1_3_3_5_1 doi: 10.1119/1.19149 – ident: e_1_3_3_38_1 doi: 10.1006/jfan.2000.3670 – ident: e_1_3_3_11_1 doi: 10.1142/S0218202593000072 – ident: e_1_3_3_17_1 doi: 10.1007/s006050170055 – ident: e_1_3_3_2_1 doi: 10.1515/cmam-2023-0101 – ident: e_1_3_3_4_1 doi: 10.1051/mmnp/201712102 – ident: e_1_3_3_6_1 doi: 10.1007/s002200050457 – ident: e_1_3_3_12_1 doi: 10.1002/cpa.3017 – volume: 16 start-page: 1 year: 1991 ident: e_1_3_3_21_1 article-title: Mesures semi-classiques et ondes de Bloch publication-title: Sém. Eq. Dér. Part – ident: e_1_3_3_20_1 doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C – ident: e_1_3_3_27_1 doi: 10.1016/S0021-7824(99)00021-5 – ident: e_1_3_3_25_1 doi: 10.1007/s00033-018-0938-5 – ident: e_1_3_3_34_1 doi: 10.1137/20M1369749 |
SSID | ssj0018294 |
Score | 2.40256 |
Snippet | The Pauli-Poisson equation is a semi-relativistic model for charged spin-1∕2-par-ticles in a strong external magnetic field and a self-consistent electric... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 130 |
SubjectTerms | Asymptotic Analysis Fermions Lorentz force Magnetic fields magnetic Schrödinger equation Pauli equation Poisson equation Relativistic effects Schrodinger equation Vlasov equations Vlasov-Poisson equation Wigner measures |
Title | The Pauli-Poisson equation and its semiclassical limit |
URI | https://www.tandfonline.com/doi/abs/10.1080/03605302.2024.2439358 https://www.proquest.com/docview/3162024128 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagXWBAPEWhVB5YXWIncZyxAqoIqYiBiscSxY9IlVBaSPj_3OVRUSHEwB5b8uec787-7jtCLm0mMh3GhvlhFrDAyJApnkeMZ1wrrQIdGSwUnt3LZB7cPYcdm7BsaZWYQ-eNUER9VqNxZ7rsGHFXcOh62OwGsjsRjEVQi3htk76AQBFZfd5Lsn5IUCJuFaQ8hmO6Ip7fptlwTxvipT8O69oDTffJXhs60kmz1wdkyxWHZHe21l0tj4iEXadI9luwhyVAuiyoe2_EvCksly6qkpZIh8eYGbeHvmGB0zGZT28frxPWdkZgxvf9ikXC2FDE3CobGQVgW1iHA1eN-nIq4J6n4wgvOKWNZe7AC0UWMgML-a4ROuP-CekVy8KdEiqk9R03aIcSHFWmLHcOrBq8W46V8gMy7gBJV40ARso7XdEWwRQRTFsEByT-Dlta1TcPedMmJPX_GDvsME5bW8IhEr8BR3r2j6nPyY7A1r014XpIetXHp7uAeKLSo_qPGZH-JLl5ffoCHqm-Xw |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgDMCA-BSFAh5YXWIncZwRIaoAbcXQSmWyEtuRKqEUaPj_3OUDtUKIgT225GffPZ9z946Qa5uKNAtjw_wwDVhgZMgUzyPGU56pTAVZZLBQeDSWyTR4nIWzlVoYTKvEGDqvhSIqX43GjY_RbUrcDXhdD7vdQHgngr4IKhWvTbIVKogm4Ex7L8n3nwQl4kZCymM4pq3i-W2aNX5aUy_94a0rChrsk73m7khv680-IBuuOCS7o2_h1eURkbDtFLP95ux5AZguCureazVvCuul83JJl5gPj5dm3B_6ihVOx2Q6uJ_cJaxpjcCM7_sli4SxoYi5VTYyCtC2sA4HXI0CcyrgnpfFEb5wShvL3AENRRZCAwsBrxFZyv0T0ikWhTslVEjrO27QECUwVaosdw7MGugtx1L5Lum3gOi3WgFD81ZYtEFQI4K6QbBL4lXYdFk9PeR1nxDt_zG212KsG2PCIRK_ASY9-8fUV2Q7mYyGevgwfjonOwL7-FbZ1z3SKT8-3QVcLsrssjo9X4A7wCk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgG3ohCgQysLrGdOMmIgKo8WnWgElsUPyIhUFpIuvDrucujoiDE0D12nLvzPZzvPhNyYRKeKD_SVPiJRz0tfRqyNKAsYSpUoacCjY3Cg6Hsj737Z79BE-Y1rBJr6LQiiih9NW7uqUkbRNwlOF0XL7uB6o57Xe6VJF6rZE1CeoKoPuEO5z8SQh7VDFIuxTFNE89f0yyEpwXy0l_OuoxAvW2imrVXwJPX7qxQXf35g9ZxqY_bIVt1fupcVQa1S1Zstkc2B3Ny13yfSDAtBxGFL3Q0Ab1NMse-V4zhDrzWeSlyJ0fMPSbmaAPOG3ZRHZBx7_bpuk_r6xeoFkIUNODa-DxiJjSBDkGjBpZlIR9AErvQY66rogBPUaWJZGoh1AUGyg8DRbXmKmHikLSySWaPiMOlEZZp3OwSomESGmYtuA4IoSm247dJt5F6PK1YNmLWkJfWAolRIHEtkDaJvusmLsrjjbS6iyQW_4ztNIqM6w2LQyQ-A9H6eImpz8n66KYXP94NH07IBsergkuAd4e0io-ZPYX8pVBnpYV-Aaat3s4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Pauli-Poisson+equation+and+its+semiclassical+limit&rft.jtitle=Communications+in+partial+differential+equations&rft.au=M%C3%B6ller%2C+Jakob&rft.date=2025-02-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0360-5302&rft.eissn=1532-4133&rft.volume=50&rft.issue=1-2&rft.spage=130&rft.epage=161&rft_id=info:doi/10.1080%2F03605302.2024.2439358&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5302&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5302&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5302&client=summon |