Investigation of a 3D-Magnetic Flux PMSM With High Torque Density for Electric Vehicles
This paper presentsan investigation of a 3D-magnetic flux permanent magnet synchronous motor (3D-MF PMSM) used for electric vehicle applications. The investigated 3D-MF PMSM consists of an integrated radial-flux and axial-flux structure. It has two radial-flux air-gaps and two axial-flux air-gaps, a...
Saved in:
Published in | IEEE transactions on energy conversion Vol. 37; no. 2; pp. 1442 - 1454 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presentsan investigation of a 3D-magnetic flux permanent magnet synchronous motor (3D-MF PMSM) used for electric vehicle applications. The investigated 3D-MF PMSM consists of an integrated radial-flux and axial-flux structure. It has two radial-flux air-gaps and two axial-flux air-gaps, as well as a toroidal winding wound stator. The integrated structure helps to concentrate all the flux within the motor to maximize torque production. Moreover, there are no end-windings in this motor and all the stator windings effectively are used in torque production. A comprehensive performance evaluation, in terms of the back-electromotive force, average output torque, cogging torque, torque ripple, flux-weakening capability, etc., of the investigated 3D-MF PMSM is conducted. An interior PMSM is purposely included as a benchmark for comparison. The results show that compared to the benchmark interior PMSM, the original 3D-MF PMSM exhibits significantly improved torque density, higher power factor, and higher efficiency, but suffers from serious cogging torque and torque ripple. Accordingly, a skewed arrangement is introduced to the 3D-MF PMSM. As a result, the cogging torque and torque ripple are significantly reduced. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0885-8969 1558-0059 |
DOI: | 10.1109/TEC.2021.3137803 |