Protein oxidation in plant mitochondria as a stress indicator

Plant mitochondria produce reactive oxygen species (ROS) as an unavoidable side product of aerobic metabolism, but they have mechanisms for regulating this production such as the alternative oxidase. Once produced, ROS can be removed by several different enzyme systems. Finally, should the first two...

Full description

Saved in:
Bibliographic Details
Published inPhotochemical & photobiological sciences Vol. 3; no. 8; pp. 730 - 735
Main Authors Møller, Ian M., Kristensen, Brian K.
Format Journal Article
LanguageEnglish
Published England 01.08.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant mitochondria produce reactive oxygen species (ROS) as an unavoidable side product of aerobic metabolism, but they have mechanisms for regulating this production such as the alternative oxidase. Once produced, ROS can be removed by several different enzyme systems. Finally, should the first two strategies fail, the ROS produced can act as a signal to the rest of the cell and/or cause damage to DNA, lipids and proteins. Proteins are modified in a variety of ways by ROS, some direct, others indirect e.g. by conjugation with breakdown products of fatty acid peroxidation. Reversible oxidation of cysteine and methionine side chains is an important mechanism for regulating enzyme activity. Mitochondria from both mammalian and plant tissues contain a number of oxidised proteins, but the relative abundance of these post-translationally modified forms is as yet unknown, as are the consequences of the modification for the properties and turnover time of the proteins. Specific proteins appear to be particularly vulnerable to oxidative carbonylation in the matrix of plant mitochondria; these include several enzymes of the Krebs cycle, glycine decarboxylase, superoxide dismutase and heat shock proteins. Plant mitochondria contain a number of different proteases, but their role in removing oxidatively damaged proteins is, as yet, unclear.
AbstractList Plant mitochondria produce reactive oxygen species (ROS) as an unavoidable side product of aerobic metabolism, but they have mechanisms for regulating this production such as the alternative oxidase. Once produced, ROS can be removed by several different enzyme systems. Finally, should the first two strategies fail, the ROS produced can act as a signal to the rest of the cell and/or cause damage to DNA, lipids and proteins. Proteins are modified in a variety of ways by ROS, some direct, others indirect e.g. by conjugation with breakdown products of fatty acid peroxidation. Reversible oxidation of cysteine and methionine side chains is an important mechanism for regulating enzyme activity. Mitochondria from both mammalian and plant tissues contain a number of oxidised proteins, but the relative abundance of these post-translationally modified forms is as yet unknown, as are the consequences of the modification for the properties and turnover time of the proteins. Specific proteins appear to be particularly vulnerable to oxidative carbonylation in the matrix of plant mitochondria; these include several enzymes of the Krebs cycle, glycine decarboxylase, superoxide dismutase and heat shock proteins. Plant mitochondria contain a number of different proteases, but their role in removing oxidatively damaged proteins is, as yet, unclear.
Plant mitochondria produce reactive oxygen species (ROS) as an unavoidable side product of aerobic metabolism, but they have mechanisms for regulating this production such as the alternative oxidase. Once produced, ROS can be removed by several different enzyme systems. Finally, should the first two strategies fail, the ROS produced can act as a signal to the rest of the cell and/or cause damage to DNA, lipids and proteins. Proteins are modified in a variety of ways by ROS, some direct, others indirect e.g. by conjugation with breakdown products of fatty acid peroxidation. Reversible oxidation of cysteine and methionine side chains is an important mechanism for regulating enzyme activity. Mitochondria from both mammalian and plant tissues contain a number of oxidised proteins, but the relative abundance of these post-translationally modified forms is as yet unknown, as are the consequences of the modification for the properties and turnover time of the proteins. Specific proteins appear to be particularly vulnerable to oxidative carbonylation in the matrix of plant mitochondria; these include several enzymes of the Krebs cycle, glycine decarboxylase, superoxide dismutase and heat shock proteins. Plant mitochondria contain a number of different proteases, but their role in removing oxidatively damaged proteins is, as yet, unclear.Plant mitochondria produce reactive oxygen species (ROS) as an unavoidable side product of aerobic metabolism, but they have mechanisms for regulating this production such as the alternative oxidase. Once produced, ROS can be removed by several different enzyme systems. Finally, should the first two strategies fail, the ROS produced can act as a signal to the rest of the cell and/or cause damage to DNA, lipids and proteins. Proteins are modified in a variety of ways by ROS, some direct, others indirect e.g. by conjugation with breakdown products of fatty acid peroxidation. Reversible oxidation of cysteine and methionine side chains is an important mechanism for regulating enzyme activity. Mitochondria from both mammalian and plant tissues contain a number of oxidised proteins, but the relative abundance of these post-translationally modified forms is as yet unknown, as are the consequences of the modification for the properties and turnover time of the proteins. Specific proteins appear to be particularly vulnerable to oxidative carbonylation in the matrix of plant mitochondria; these include several enzymes of the Krebs cycle, glycine decarboxylase, superoxide dismutase and heat shock proteins. Plant mitochondria contain a number of different proteases, but their role in removing oxidatively damaged proteins is, as yet, unclear.
Author Møller, Ian M.
Kristensen, Brian K.
Author_xml – sequence: 1
  givenname: Ian M.
  surname: Møller
  fullname: Møller, Ian M.
– sequence: 2
  givenname: Brian K.
  surname: Kristensen
  fullname: Kristensen, Brian K.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15295627$$D View this record in MEDLINE/PubMed
BookMark eNpl0EtLAzEQB_AgFftQ8BPInsTL1mTz2OzBgxRfUNCDgrdlNkk1srupSQr12xttq6CHkAR-M8z8x2jQu94gdEzwlGBanTeUcC7Iyx4aEVayvMJVMfh58-chGofwhjHhTJQHaEh4UXFRlCN08eBdNLbP3NpqiNb1WfosW-hj1tno1KvrtbeQQcggC9GbEJLQVkF0_hDtL6AN5mh7T9DT9dXj7Daf39_czS7nuaKUxlyUimIQnPOG6UUhSENUOo1kEiQYhRsMmEsuuAGJpVSFFEKAZroEBsDoBJ1u-i69e1-ZEOvOBmXaNKZxq1ALUQrJMU7wZAtXTWd0vfS2A_9R7xZO4GwDlHcheLP4Jbj-yrLeZZno9A9VNn5HFD3Y9n_BJ_Y6dJI
CitedBy_id crossref_primary_10_1111_j_1399_3054_2006_00777_x
crossref_primary_10_3390_ijms20071568
crossref_primary_10_1146_annurev_arplant_042110_103857
crossref_primary_10_1111_j_1365_313X_2006_02923_x
crossref_primary_10_1155_2010_162084
crossref_primary_10_1007_s13562_023_00865_x
crossref_primary_10_1016_j_arr_2022_101601
crossref_primary_10_1016_j_indcrop_2023_116826
crossref_primary_10_1111_ppl_12801
crossref_primary_10_1111_nph_12319
crossref_primary_10_3389_fpls_2016_00470
crossref_primary_10_1021_tx500484m
crossref_primary_10_1080_11263500802633626
crossref_primary_10_1016_j_plaphy_2021_11_037
crossref_primary_10_1146_annurev_arplant_58_032806_103946
crossref_primary_10_1021_acs_jproteome_5b00729
crossref_primary_10_1038_s41598_023_40694_5
crossref_primary_10_1186_s40529_015_0098_2
crossref_primary_10_3390_plants13152071
crossref_primary_10_1089_ars_2008_2177
crossref_primary_10_1111_raq_12479
crossref_primary_10_1016_j_envpol_2021_117332
crossref_primary_10_3390_plants12010041
crossref_primary_10_1016_j_chemosphere_2022_136466
crossref_primary_10_3390_ijms12106894
crossref_primary_10_1080_17429145_2022_2056250
crossref_primary_10_1021_pr100782h
crossref_primary_10_1155_2012_217037
crossref_primary_10_1007_s00128_022_03659_4
crossref_primary_10_1016_j_ygeno_2021_08_019
crossref_primary_10_1186_s11658_021_00300_w
crossref_primary_10_1111_j_1365_313X_2012_05100_x
Cites_doi 10.1042/bj3240001
10.1016/S1567-1356(03)00071-0
10.1016/0005-2728(96)00068-0
10.1016/0304-4157(85)90002-4
10.1105/tpc.009464
10.1016/0005-2760(80)90168-X
10.1074/jbc.M210826200
10.1016/S0021-9258(18)34818-X
10.1105/tpc.12.3.419
10.1074/jbc.M210539200
10.1016/0014-5793(95)01059-N
10.1126/science.1080418
10.1016/S0176-1617(96)80128-3
10.1104/pp.125.4.1912
10.1002/pmic.200300435
10.1105/tpc.9.6.957
10.1016/S0167-4889(02)00267-7
10.1016/S0021-9258(17)31926-9
10.1074/jbc.272.33.20313
10.1021/ja015953r
10.1074/jbc.M006231200
10.1042/bj1910421
10.1038/7939
10.1074/jbc.273.23.14085
10.1104/pp.103.026591
10.1096/fj.03-0159hyp
10.1104/pp.124.3.1239
10.1023/A:1025015811141
10.1016/S0176-1617(00)80283-7
10.1023/A:1010787004053
10.1042/bj2940103
10.1074/jbc.C300135200
10.1074/jbc.M207152200
10.1034/j.1399-3054.1998.1040306.x
10.1016/0014-5793(95)00904-N
10.1016/S0014-5793(98)00161-6
10.1146/annurev.arplant.52.1.561
10.1023/A:1024603530043
10.1074/jbc.273.35.22188
10.1074/jbc.M207356200
10.1016/S0014-5793(00)01576-3
10.1034/j.1399-3054.2003.00223.x
10.1016/S0166-6851(02)00139-1
10.1016/S0076-6879(94)33040-9
10.1002/j.1460-2075.1991.tb07696.x
10.1046/j.1365-313X.2002.01474.x
10.1016/S1360-1385(01)01898-2
10.1002/pmic.200300432
10.1016/S0098-8472(02)00072-2
10.1002/1615-9861(200208)2:8<947::AID-PROT947>3.0.CO;2-J
10.1081/DMR-100102336
10.1042/bj3640275
10.1007/s002940050145
10.1016/S0014-5793(02)03638-4
10.1023/A:1010677220323
10.1073/pnas.96.14.8271
10.1105/tpc.005603
10.1046/j.1365-313X.2002.029005545.x
10.1002/bies.10175
10.1046/j.1432-1033.2003.03598.x
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1039/b315561g
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1474-9092
EndPage 735
ExternalDocumentID 15295627
10_1039_b315561g
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
0-7
0R~
0UZ
123
1TJ
29O
4.4
406
53G
705
70~
71~
7~J
8UJ
AACDK
AAEMU
AAHNG
AAIWI
AAJAE
AAJBT
AAMEH
AANOJ
AASML
AATNV
AAWGC
AAXPP
AAYXX
ABAKF
ABBRH
ABDBE
ABDVN
ABECU
ABEMK
ABFSG
ABJNI
ABMQK
ABRYZ
ABTEG
ABTKH
ABTMW
ABXOH
ACAOD
ACDTI
ACGFS
ACHDF
ACHSB
ACIWK
ACLDK
ACMFV
ACPIV
ACPRK
ACRPL
ACSTC
ACZOJ
ADMRA
ADNMO
ADSRN
ADTPH
AEFDR
AEFQL
AEMSY
AENEX
AESAV
AESKC
AEZWR
AFBBN
AFDZB
AFFNX
AFHIU
AFLYV
AFOHR
AFRAH
AFVBQ
AGKEF
AGMZJ
AGQEE
AGQPQ
AHGCF
AHGXI
AHPBZ
AHWEU
AIGIU
AIXLP
ALMA_UNASSIGNED_HOLDINGS
ALSGL
AMTXH
AMXSW
AMYLF
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
ATHPR
AUDPV
AVWKF
AYFIA
AZFZN
BBWZM
BSQNT
C6K
CAG
CITATION
COF
CS3
DPUIP
EBLON
EBS
EE0
EEHRC
EF-
EJD
F5P
FEDTE
FIGPU
GNO
H13
HVGLF
HZ~
H~N
IDY
IDZ
IKXTQ
IWAJR
J3G
J3H
J3I
JZLTJ
L-8
LLZTM
M4U
N9A
NDZJH
NPVJJ
NQJWS
O9-
P2P
R56
R7B
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RSCEA
RSV
SJYHP
SKA
SLH
SNE
SOJ
SRMVM
SSLCW
VH6
ZY4
-JG
.UV
ABTAH
AGSTE
CGR
CUY
CVF
ECM
EIF
NPM
OK1
7X8
ID FETCH-LOGICAL-c333t-67c30a6555b4df261b1c1b1b848a8aec0b0a058565ea8088c28666ad4d7a4aa43
IEDL.DBID RRA
ISSN 1474-905X
IngestDate Thu Jul 10 20:45:29 EDT 2025
Wed Feb 19 01:54:43 EST 2025
Tue Jul 01 01:59:50 EDT 2025
Thu Apr 24 23:05:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-67c30a6555b4df261b1c1b1b848a8aec0b0a058565ea8088c28666ad4d7a4aa43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1039/b315561g.pdf
PMID 15295627
PQID 66768500
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_66768500
pubmed_primary_15295627
crossref_primary_10_1039_b315561g
crossref_citationtrail_10_1039_b315561g
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-Aug
PublicationDateYYYYMMDD 2004-08-01
PublicationDate_xml – month: 08
  year: 2004
  text: 2004-Aug
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Photochemical & photobiological sciences
PublicationTitleAlternate Photochem Photobiol Sci
PublicationYear 2004
References O Ostersetzer (30804_CR66) 2003; 9
P Ghezzi (30804_CR35) 2003; 3
J R Cherry (30804_CR51) 1999; 17
G Paradies (30804_CR55) 1998; 424
R Rakhit (30804_CR33) 2002; 277
O V Karpova (30804_CR44) 2002; 14
A M P Melo (30804_CR14) 1996; 1276
Z Adam (30804_CR62) 2001; 125
F Yamakura (30804_CR50) 1998; 273
F Corpas (30804_CR1) 2003; 6
V Bunik (30804_CR38) 1995; 371
G Daum (30804_CR52) 1985; 822
T Kurahashi (30804_CR48) 2001; 123
D Lloyd (30804_CR29) 2003; 3
S W Taylor (30804_CR42) 2003; 278
T H Roberts (30804_CR16) 1995; 373
R Levine (30804_CR41) 1994; 233
J Sakai (30804_CR46) 2003; 3
H Düssmann (30804_CR5) 2003; 278
M Lindahl (30804_CR65) 2000; 12
B S Berlett (30804_CR40) 1997; 272
J F Turrens (30804_CR11) 1980; 191
C Dutilleul (30804_CR18) 2003; 15
F A Hoeberichts (30804_CR4) 2003; 25
S C Agius (30804_CR15) 1998; 104
H Aguilaniu (30804_CR30) 2003; 299
P Moberg (30804_CR68) 2003
G K Agrawal (30804_CR20) 2002; 2
M Rep (30804_CR59) 1996; 30
J F Hare (30804_CR57) 1982; 257
D P Maxwell (30804_CR3) 1999; 96
V Casolo (30804_CR8) 2000; 474
K Takubo (30804_CR25) 2003; 52
E Shacter (30804_CR34) 2000; 32
M Brandalise (30804_CR9) 2003; 35
T Halperin (30804_CR63) 2001; 45
O Caiveau (30804_CR54) 2001; 276
J Fang (30804_CR10) 2002; 123
M Kim (30804_CR6) 2003; 278
J F Hare (30804_CR58) 1982; 257
M Sabar (30804_CR17) 2000; 124
N Gustavsson (30804_CR39) 2002; 29
R Bligny (30804_CR53) 1980; 617
W Huth (30804_CR60) 2002; 364
A Konrad (30804_CR36) 1996; 149
C H Foyer (30804_CR2) 2003; 119
C Bowler (30804_CR22) 1991; 10
B Halliwell (30804_CR26) 1998
R Sarria (30804_CR64) 2003; 10
K Röttgers (30804_CR61) 2002; 277
R Rakwal (30804_CR21) 2003; 49
A Majander (30804_CR13) 1994; 269
W Vancamp (30804_CR23) 1994; 12
H Bakala (30804_CR28) 2003; 270
L J Sweetlove (30804_CR45) 2002; 32
V O’Donnell (30804_CR12) 2003; 48
M Banze (30804_CR37) 2000; 156
B K Kristensen (30804_CR43) 2004
F Courtois-Verniquet (30804_CR47) 1993; 294
D A Bota (30804_CR31) 2002; 532
M Whittaker (30804_CR49) 1998; 273
I Arnold (30804_CR67) 2002; 1592
R T Dean (30804_CR32) 1997; 324
T Yagi (30804_CR19) 2001; 33
S Pasqualini (30804_CR24) 2003; 133
F Goglia (30804_CR56) 2003; 17
V N Luzikov (30804_CR27) 1984
I M Møller (30804_CR7) 2001; 52
References_xml – volume: 324
  start-page: 1
  year: 1997
  ident: 30804_CR32
  publication-title: Biochem. J.
  doi: 10.1042/bj3240001
– volume: 3
  start-page: 333
  year: 2003
  ident: 30804_CR29
  publication-title: FEMS Yeast Res.
  doi: 10.1016/S1567-1356(03)00071-0
– volume: 1276
  start-page: 133
  year: 1996
  ident: 30804_CR14
  publication-title: Biochim. Biophys. Acta-Bioenerg.
  doi: 10.1016/0005-2728(96)00068-0
– volume: 822
  start-page: 1
  year: 1985
  ident: 30804_CR52
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4157(85)90002-4
– volume: 15
  start-page: 1212
  year: 2003
  ident: 30804_CR18
  publication-title: Plant Cell
  doi: 10.1105/tpc.009464
– volume: 617
  start-page: 254
  year: 1980
  ident: 30804_CR53
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2760(80)90168-X
– volume: 278
  start-page: 12645
  year: 2003
  ident: 30804_CR5
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M210826200
– volume: 257
  start-page: 3575
  year: 1982
  ident: 30804_CR58
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)34818-X
– volume: 12
  start-page: 419
  year: 2000
  ident: 30804_CR65
  publication-title: Plant Cell
  doi: 10.1105/tpc.12.3.419
– volume: 278
  start-page: 19406
  year: 2003
  ident: 30804_CR6
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M210539200
– volume: 373
  start-page: 307
  year: 1995
  ident: 30804_CR16
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(95)01059-N
– volume: 299
  start-page: 1751
  year: 2003
  ident: 30804_CR30
  publication-title: Science
  doi: 10.1126/science.1080418
– volume: 149
  start-page: 317
  year: 1996
  ident: 30804_CR36
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(96)80128-3
– volume: 125
  start-page: 1912
  year: 2001
  ident: 30804_CR62
  publication-title: Plant Physiol.
  doi: 10.1104/pp.125.4.1912
– volume: 257
  start-page: 2950
  year: 1982
  ident: 30804_CR57
  publication-title: J. Biol. Chem.
– volume: 3
  start-page: 1145
  year: 2003
  ident: 30804_CR35
  publication-title: Proteomics
  doi: 10.1002/pmic.200300435
– volume: 9
  start-page: 957
  year: 2003
  ident: 30804_CR66
  publication-title: Plant Cell
  doi: 10.1105/tpc.9.6.957
– volume: 1592
  start-page: 89
  year: 2002
  ident: 30804_CR67
  publication-title: Biochim. Biophys. Acta-Mol. Cell Res.
  doi: 10.1016/S0167-4889(02)00267-7
– volume: 269
  start-page: 21037
  year: 1994
  ident: 30804_CR13
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)31926-9
– volume: 272
  start-page: 20313
  year: 1997
  ident: 30804_CR40
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.33.20313
– volume: 123
  start-page: 9268
  year: 2001
  ident: 30804_CR48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja015953r
– volume: 276
  start-page: 5788
  year: 2001
  ident: 30804_CR54
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M006231200
– volume-title: Free Radicals in Biology and Medicine
  year: 1998
  ident: 30804_CR26
– volume: 191
  start-page: 421
  year: 1980
  ident: 30804_CR11
  publication-title: Biochem. J.
  doi: 10.1042/bj1910421
– volume: 17
  start-page: 379
  year: 1999
  ident: 30804_CR51
  publication-title: Nature Biotechnol.
  doi: 10.1038/7939
– volume: 273
  start-page: 14085
  year: 1998
  ident: 30804_CR50
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.23.14085
– volume: 133
  start-page: 1122
  year: 2003
  ident: 30804_CR24
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.026591
– volume: 17
  start-page: 1585
  year: 2003
  ident: 30804_CR56
  publication-title: FASEB J.
  doi: 10.1096/fj.03-0159hyp
– volume: 124
  start-page: 1239
  year: 2000
  ident: 30804_CR17
  publication-title: Plant Physiol.
  doi: 10.1104/pp.124.3.1239
– volume: 52
  start-page: 817
  year: 2003
  ident: 30804_CR25
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1025015811141
– volume: 156
  start-page: 126
  year: 2000
  ident: 30804_CR37
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(00)80283-7
– volume: 10
  start-page: 1217
  year: 2003
  ident: 30804_CR64
  publication-title: Plant Cell
– volume-title: Identification of oxidised mitochondrial proteins by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry
  year: 2004
  ident: 30804_CR43
– volume: 33
  start-page: 233
  year: 2001
  ident: 30804_CR19
  publication-title: J. Bioenerg. Biomembr.
  doi: 10.1023/A:1010787004053
– volume: 294
  start-page: 103
  year: 1993
  ident: 30804_CR47
  publication-title: Biochem. J.
  doi: 10.1042/bj2940103
– volume: 278
  start-page: 19587
  year: 2003
  ident: 30804_CR42
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C300135200
– volume: 277
  start-page: 45829
  year: 2002
  ident: 30804_CR61
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M207152200
– volume: 104
  start-page: 329
  year: 1998
  ident: 30804_CR15
  publication-title: Physiol. Plant.
  doi: 10.1034/j.1399-3054.1998.1040306.x
– volume: 371
  start-page: 167
  year: 1995
  ident: 30804_CR38
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(95)00904-N
– volume: 424
  start-page: 155
  year: 1998
  ident: 30804_CR55
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(98)00161-6
– volume: 52
  start-page: 561
  year: 2001
  ident: 30804_CR7
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
  doi: 10.1146/annurev.arplant.52.1.561
– volume: 35
  start-page: 203
  year: 2003
  ident: 30804_CR9
  publication-title: J. Bioenerg. Biomembr.
  doi: 10.1023/A:1024603530043
– volume: 273
  start-page: 22188
  year: 1998
  ident: 30804_CR49
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.35.22188
– volume: 277
  start-page: 47551
  year: 2002
  ident: 30804_CR33
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M207356200
– volume: 474
  start-page: 53
  year: 2000
  ident: 30804_CR8
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(00)01576-3
– volume: 119
  start-page: 355
  year: 2003
  ident: 30804_CR2
  publication-title: Physiol. Plant.
  doi: 10.1034/j.1399-3054.2003.00223.x
– volume: 123
  start-page: 135
  year: 2002
  ident: 30804_CR10
  publication-title: Mol. Biochem. Parasitol.
  doi: 10.1016/S0166-6851(02)00139-1
– start-page: 1
  volume-title: Mitochondrial Biog. Breakdown
  year: 1984
  ident: 30804_CR27
– volume: 233
  start-page: 346
  year: 1994
  ident: 30804_CR41
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(94)33040-9
– volume: 48
  start-page: 778
  year: 2003
  ident: 30804_CR12
  publication-title: Mol. Pharmacol.
– volume: 10
  start-page: 1723
  year: 1991
  ident: 30804_CR22
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1991.tb07696.x
– volume: 32
  start-page: 891
  year: 2002
  ident: 30804_CR45
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2002.01474.x
– volume: 6
  start-page: 145
  year: 2003
  ident: 30804_CR1
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(01)01898-2
– volume: 3
  start-page: 1318
  year: 2003
  ident: 30804_CR46
  publication-title: Proteomics
  doi: 10.1002/pmic.200300432
– volume: 49
  start-page: 223
  year: 2003
  ident: 30804_CR21
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/S0098-8472(02)00072-2
– start-page: 1
  volume-title: Mol. Stud. Mitochondrial Targeting Pept.
  year: 2003
  ident: 30804_CR68
– volume: 2
  start-page: 947
  year: 2002
  ident: 30804_CR20
  publication-title: Proteomics
  doi: 10.1002/1615-9861(200208)2:8<947::AID-PROT947>3.0.CO;2-J
– volume: 32
  start-page: 307
  year: 2000
  ident: 30804_CR34
  publication-title: Drug Metab. Rev.
  doi: 10.1081/DMR-100102336
– volume: 364
  start-page: 275
  year: 2002
  ident: 30804_CR60
  publication-title: Biochem. J.
  doi: 10.1042/bj3640275
– volume: 30
  start-page: 367
  year: 1996
  ident: 30804_CR59
  publication-title: Curr. Genet.
  doi: 10.1007/s002940050145
– volume: 532
  start-page: 103
  year: 2002
  ident: 30804_CR31
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(02)03638-4
– volume: 45
  start-page: 461
  year: 2001
  ident: 30804_CR63
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1010677220323
– volume: 96
  start-page: 8271
  year: 1999
  ident: 30804_CR3
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.14.8271
– volume: 14
  start-page: 3271
  year: 2002
  ident: 30804_CR44
  publication-title: Plant Cell
  doi: 10.1105/tpc.005603
– volume: 29
  start-page: 545
  year: 2002
  ident: 30804_CR39
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2002.029005545.x
– volume: 25
  start-page: 47
  year: 2003
  ident: 30804_CR4
  publication-title: Bioessays
  doi: 10.1002/bies.10175
– volume: 270
  start-page: 2295
  year: 2003
  ident: 30804_CR28
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1033.2003.03598.x
– volume: 12
  start-page: 165
  year: 1994
  ident: 30804_CR23
  publication-title: Bio-Technol.
SSID ssj0015467
Score 2.0679777
SecondaryResourceType review_article
Snippet Plant mitochondria produce reactive oxygen species (ROS) as an unavoidable side product of aerobic metabolism, but they have mechanisms for regulating this...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 730
SubjectTerms Mitochondrial Proteins - metabolism
Oxidation-Reduction
Oxidative Stress
Plant Proteins - metabolism
Reactive Oxygen Species - metabolism
Title Protein oxidation in plant mitochondria as a stress indicator
URI https://www.ncbi.nlm.nih.gov/pubmed/15295627
https://www.proquest.com/docview/66768500
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5KQfTio77qM4rgaWt2k-zjWIpSBD2Ihd6WJJuKWLfFbkH99U423apoxcMeFpKwzGQn8zGT7wM4y0wgVBIZL4hlSapNPSVC6fkyCCydlcm4ve98cxt2e_y6L_o1OF1QwWfJhWK-lXB8sGEWcxULyO_a80KB4KVIrM8j7iVU9Ct-2S8Tv584C9LI8ji5WoNOdSnHdZE8taaFaun3nxyNf3zpOqzOsknSdu7fgJrJG7Dk9CXfGrDcqeTcNsHy4ltlSzJ6fXQ6SgRfxkO0LHnG3xrDYJ7hbiRyQiRxV0iILWhrC8u3oHd1ed_pejPtBE8zxgovjDSjMhRCKJ4NECYpX-OjYh7LWBpNFZUUoUIojIwx0uggRiAj0TOR5FJytg31fJSbXSDoRAyZmJkNLJZTGqdHLMoGNKEyGIRhE84r-6Z6Rixu9S2GaVngZklaGaYJJ_ORY0em8cuY48pFKVrIli9kbkbTSWq7cWNBaRN2nOc-17DVyjCI9v6x_j6suOYb28N3APXiZWoOMa8o1FG5sz4Adb7Glg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+oxidation+in+plant+mitochondria+as+a+stress+indicator&rft.jtitle=Photochemical+%26+photobiological+sciences&rft.au=Moller%2C+Ian+M&rft.au=Kristensen%2C+Brian+K&rft.date=2004-08-01&rft.issn=1474-905X&rft.volume=3&rft.issue=8&rft.spage=730&rft_id=info:doi/10.1039%2Fb315561g&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-905X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-905X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-905X&client=summon