Protein oxidation in plant mitochondria as a stress indicator
Plant mitochondria produce reactive oxygen species (ROS) as an unavoidable side product of aerobic metabolism, but they have mechanisms for regulating this production such as the alternative oxidase. Once produced, ROS can be removed by several different enzyme systems. Finally, should the first two...
Saved in:
Published in | Photochemical & photobiological sciences Vol. 3; no. 8; pp. 730 - 735 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
01.08.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant mitochondria produce reactive oxygen species (ROS) as an unavoidable side product of aerobic metabolism, but they have mechanisms for regulating this production such as the alternative oxidase. Once produced, ROS can be removed by several different enzyme systems. Finally, should the first two strategies fail, the ROS produced can act as a signal to the rest of the cell and/or cause damage to DNA, lipids and proteins. Proteins are modified in a variety of ways by ROS, some direct, others indirect e.g. by conjugation with breakdown products of fatty acid peroxidation. Reversible oxidation of cysteine and methionine side chains is an important mechanism for regulating enzyme activity. Mitochondria from both mammalian and plant tissues contain a number of oxidised proteins, but the relative abundance of these post-translationally modified forms is as yet unknown, as are the consequences of the modification for the properties and turnover time of the proteins. Specific proteins appear to be particularly vulnerable to oxidative carbonylation in the matrix of plant mitochondria; these include several enzymes of the Krebs cycle, glycine decarboxylase, superoxide dismutase and heat shock proteins. Plant mitochondria contain a number of different proteases, but their role in removing oxidatively damaged proteins is, as yet, unclear. |
---|---|
AbstractList | Plant mitochondria produce reactive oxygen species (ROS) as an unavoidable side product of aerobic metabolism, but they have mechanisms for regulating this production such as the alternative oxidase. Once produced, ROS can be removed by several different enzyme systems. Finally, should the first two strategies fail, the ROS produced can act as a signal to the rest of the cell and/or cause damage to DNA, lipids and proteins. Proteins are modified in a variety of ways by ROS, some direct, others indirect e.g. by conjugation with breakdown products of fatty acid peroxidation. Reversible oxidation of cysteine and methionine side chains is an important mechanism for regulating enzyme activity. Mitochondria from both mammalian and plant tissues contain a number of oxidised proteins, but the relative abundance of these post-translationally modified forms is as yet unknown, as are the consequences of the modification for the properties and turnover time of the proteins. Specific proteins appear to be particularly vulnerable to oxidative carbonylation in the matrix of plant mitochondria; these include several enzymes of the Krebs cycle, glycine decarboxylase, superoxide dismutase and heat shock proteins. Plant mitochondria contain a number of different proteases, but their role in removing oxidatively damaged proteins is, as yet, unclear. Plant mitochondria produce reactive oxygen species (ROS) as an unavoidable side product of aerobic metabolism, but they have mechanisms for regulating this production such as the alternative oxidase. Once produced, ROS can be removed by several different enzyme systems. Finally, should the first two strategies fail, the ROS produced can act as a signal to the rest of the cell and/or cause damage to DNA, lipids and proteins. Proteins are modified in a variety of ways by ROS, some direct, others indirect e.g. by conjugation with breakdown products of fatty acid peroxidation. Reversible oxidation of cysteine and methionine side chains is an important mechanism for regulating enzyme activity. Mitochondria from both mammalian and plant tissues contain a number of oxidised proteins, but the relative abundance of these post-translationally modified forms is as yet unknown, as are the consequences of the modification for the properties and turnover time of the proteins. Specific proteins appear to be particularly vulnerable to oxidative carbonylation in the matrix of plant mitochondria; these include several enzymes of the Krebs cycle, glycine decarboxylase, superoxide dismutase and heat shock proteins. Plant mitochondria contain a number of different proteases, but their role in removing oxidatively damaged proteins is, as yet, unclear.Plant mitochondria produce reactive oxygen species (ROS) as an unavoidable side product of aerobic metabolism, but they have mechanisms for regulating this production such as the alternative oxidase. Once produced, ROS can be removed by several different enzyme systems. Finally, should the first two strategies fail, the ROS produced can act as a signal to the rest of the cell and/or cause damage to DNA, lipids and proteins. Proteins are modified in a variety of ways by ROS, some direct, others indirect e.g. by conjugation with breakdown products of fatty acid peroxidation. Reversible oxidation of cysteine and methionine side chains is an important mechanism for regulating enzyme activity. Mitochondria from both mammalian and plant tissues contain a number of oxidised proteins, but the relative abundance of these post-translationally modified forms is as yet unknown, as are the consequences of the modification for the properties and turnover time of the proteins. Specific proteins appear to be particularly vulnerable to oxidative carbonylation in the matrix of plant mitochondria; these include several enzymes of the Krebs cycle, glycine decarboxylase, superoxide dismutase and heat shock proteins. Plant mitochondria contain a number of different proteases, but their role in removing oxidatively damaged proteins is, as yet, unclear. |
Author | Møller, Ian M. Kristensen, Brian K. |
Author_xml | – sequence: 1 givenname: Ian M. surname: Møller fullname: Møller, Ian M. – sequence: 2 givenname: Brian K. surname: Kristensen fullname: Kristensen, Brian K. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15295627$$D View this record in MEDLINE/PubMed |
BookMark | eNpl0EtLAzEQB_AgFftQ8BPInsTL1mTz2OzBgxRfUNCDgrdlNkk1srupSQr12xttq6CHkAR-M8z8x2jQu94gdEzwlGBanTeUcC7Iyx4aEVayvMJVMfh58-chGofwhjHhTJQHaEh4UXFRlCN08eBdNLbP3NpqiNb1WfosW-hj1tno1KvrtbeQQcggC9GbEJLQVkF0_hDtL6AN5mh7T9DT9dXj7Daf39_czS7nuaKUxlyUimIQnPOG6UUhSENUOo1kEiQYhRsMmEsuuAGJpVSFFEKAZroEBsDoBJ1u-i69e1-ZEOvOBmXaNKZxq1ALUQrJMU7wZAtXTWd0vfS2A_9R7xZO4GwDlHcheLP4Jbj-yrLeZZno9A9VNn5HFD3Y9n_BJ_Y6dJI |
CitedBy_id | crossref_primary_10_1111_j_1399_3054_2006_00777_x crossref_primary_10_3390_ijms20071568 crossref_primary_10_1146_annurev_arplant_042110_103857 crossref_primary_10_1111_j_1365_313X_2006_02923_x crossref_primary_10_1155_2010_162084 crossref_primary_10_1007_s13562_023_00865_x crossref_primary_10_1016_j_arr_2022_101601 crossref_primary_10_1016_j_indcrop_2023_116826 crossref_primary_10_1111_ppl_12801 crossref_primary_10_1111_nph_12319 crossref_primary_10_3389_fpls_2016_00470 crossref_primary_10_1021_tx500484m crossref_primary_10_1080_11263500802633626 crossref_primary_10_1016_j_plaphy_2021_11_037 crossref_primary_10_1146_annurev_arplant_58_032806_103946 crossref_primary_10_1021_acs_jproteome_5b00729 crossref_primary_10_1038_s41598_023_40694_5 crossref_primary_10_1186_s40529_015_0098_2 crossref_primary_10_3390_plants13152071 crossref_primary_10_1089_ars_2008_2177 crossref_primary_10_1111_raq_12479 crossref_primary_10_1016_j_envpol_2021_117332 crossref_primary_10_3390_plants12010041 crossref_primary_10_1016_j_chemosphere_2022_136466 crossref_primary_10_3390_ijms12106894 crossref_primary_10_1080_17429145_2022_2056250 crossref_primary_10_1021_pr100782h crossref_primary_10_1155_2012_217037 crossref_primary_10_1007_s00128_022_03659_4 crossref_primary_10_1016_j_ygeno_2021_08_019 crossref_primary_10_1186_s11658_021_00300_w crossref_primary_10_1111_j_1365_313X_2012_05100_x |
Cites_doi | 10.1042/bj3240001 10.1016/S1567-1356(03)00071-0 10.1016/0005-2728(96)00068-0 10.1016/0304-4157(85)90002-4 10.1105/tpc.009464 10.1016/0005-2760(80)90168-X 10.1074/jbc.M210826200 10.1016/S0021-9258(18)34818-X 10.1105/tpc.12.3.419 10.1074/jbc.M210539200 10.1016/0014-5793(95)01059-N 10.1126/science.1080418 10.1016/S0176-1617(96)80128-3 10.1104/pp.125.4.1912 10.1002/pmic.200300435 10.1105/tpc.9.6.957 10.1016/S0167-4889(02)00267-7 10.1016/S0021-9258(17)31926-9 10.1074/jbc.272.33.20313 10.1021/ja015953r 10.1074/jbc.M006231200 10.1042/bj1910421 10.1038/7939 10.1074/jbc.273.23.14085 10.1104/pp.103.026591 10.1096/fj.03-0159hyp 10.1104/pp.124.3.1239 10.1023/A:1025015811141 10.1016/S0176-1617(00)80283-7 10.1023/A:1010787004053 10.1042/bj2940103 10.1074/jbc.C300135200 10.1074/jbc.M207152200 10.1034/j.1399-3054.1998.1040306.x 10.1016/0014-5793(95)00904-N 10.1016/S0014-5793(98)00161-6 10.1146/annurev.arplant.52.1.561 10.1023/A:1024603530043 10.1074/jbc.273.35.22188 10.1074/jbc.M207356200 10.1016/S0014-5793(00)01576-3 10.1034/j.1399-3054.2003.00223.x 10.1016/S0166-6851(02)00139-1 10.1016/S0076-6879(94)33040-9 10.1002/j.1460-2075.1991.tb07696.x 10.1046/j.1365-313X.2002.01474.x 10.1016/S1360-1385(01)01898-2 10.1002/pmic.200300432 10.1016/S0098-8472(02)00072-2 10.1002/1615-9861(200208)2:8<947::AID-PROT947>3.0.CO;2-J 10.1081/DMR-100102336 10.1042/bj3640275 10.1007/s002940050145 10.1016/S0014-5793(02)03638-4 10.1023/A:1010677220323 10.1073/pnas.96.14.8271 10.1105/tpc.005603 10.1046/j.1365-313X.2002.029005545.x 10.1002/bies.10175 10.1046/j.1432-1033.2003.03598.x |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1039/b315561g |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1474-9092 |
EndPage | 735 |
ExternalDocumentID | 15295627 10_1039_b315561g |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- 0-7 0R~ 0UZ 123 1TJ 29O 4.4 406 53G 705 70~ 71~ 7~J 8UJ AACDK AAEMU AAHNG AAIWI AAJAE AAJBT AAMEH AANOJ AASML AATNV AAWGC AAXPP AAYXX ABAKF ABBRH ABDBE ABDVN ABECU ABEMK ABFSG ABJNI ABMQK ABRYZ ABTEG ABTKH ABTMW ABXOH ACAOD ACDTI ACGFS ACHDF ACHSB ACIWK ACLDK ACMFV ACPIV ACPRK ACRPL ACSTC ACZOJ ADMRA ADNMO ADSRN ADTPH AEFDR AEFQL AEMSY AENEX AESAV AESKC AEZWR AFBBN AFDZB AFFNX AFHIU AFLYV AFOHR AFRAH AFVBQ AGKEF AGMZJ AGQEE AGQPQ AHGCF AHGXI AHPBZ AHWEU AIGIU AIXLP ALMA_UNASSIGNED_HOLDINGS ALSGL AMTXH AMXSW AMYLF ANBJS ANLMG ANUXI APEMP ASKNT ASPBG ATHPR AUDPV AVWKF AYFIA AZFZN BBWZM BSQNT C6K CAG CITATION COF CS3 DPUIP EBLON EBS EE0 EEHRC EF- EJD F5P FEDTE FIGPU GNO H13 HVGLF HZ~ H~N IDY IDZ IKXTQ IWAJR J3G J3H J3I JZLTJ L-8 LLZTM M4U N9A NDZJH NPVJJ NQJWS O9- P2P R56 R7B RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RSCEA RSV SJYHP SKA SLH SNE SOJ SRMVM SSLCW VH6 ZY4 -JG .UV ABTAH AGSTE CGR CUY CVF ECM EIF NPM OK1 7X8 |
ID | FETCH-LOGICAL-c333t-67c30a6555b4df261b1c1b1b848a8aec0b0a058565ea8088c28666ad4d7a4aa43 |
IEDL.DBID | RRA |
ISSN | 1474-905X |
IngestDate | Thu Jul 10 20:45:29 EDT 2025 Wed Feb 19 01:54:43 EST 2025 Tue Jul 01 01:59:50 EDT 2025 Thu Apr 24 23:05:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-67c30a6555b4df261b1c1b1b848a8aec0b0a058565ea8088c28666ad4d7a4aa43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1039/b315561g.pdf |
PMID | 15295627 |
PQID | 66768500 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_66768500 pubmed_primary_15295627 crossref_primary_10_1039_b315561g crossref_citationtrail_10_1039_b315561g |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-Aug |
PublicationDateYYYYMMDD | 2004-08-01 |
PublicationDate_xml | – month: 08 year: 2004 text: 2004-Aug |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Photochemical & photobiological sciences |
PublicationTitleAlternate | Photochem Photobiol Sci |
PublicationYear | 2004 |
References | O Ostersetzer (30804_CR66) 2003; 9 P Ghezzi (30804_CR35) 2003; 3 J R Cherry (30804_CR51) 1999; 17 G Paradies (30804_CR55) 1998; 424 R Rakhit (30804_CR33) 2002; 277 O V Karpova (30804_CR44) 2002; 14 A M P Melo (30804_CR14) 1996; 1276 Z Adam (30804_CR62) 2001; 125 F Yamakura (30804_CR50) 1998; 273 F Corpas (30804_CR1) 2003; 6 V Bunik (30804_CR38) 1995; 371 G Daum (30804_CR52) 1985; 822 T Kurahashi (30804_CR48) 2001; 123 D Lloyd (30804_CR29) 2003; 3 S W Taylor (30804_CR42) 2003; 278 T H Roberts (30804_CR16) 1995; 373 R Levine (30804_CR41) 1994; 233 J Sakai (30804_CR46) 2003; 3 H Düssmann (30804_CR5) 2003; 278 M Lindahl (30804_CR65) 2000; 12 B S Berlett (30804_CR40) 1997; 272 J F Turrens (30804_CR11) 1980; 191 C Dutilleul (30804_CR18) 2003; 15 F A Hoeberichts (30804_CR4) 2003; 25 S C Agius (30804_CR15) 1998; 104 H Aguilaniu (30804_CR30) 2003; 299 P Moberg (30804_CR68) 2003 G K Agrawal (30804_CR20) 2002; 2 M Rep (30804_CR59) 1996; 30 J F Hare (30804_CR57) 1982; 257 D P Maxwell (30804_CR3) 1999; 96 V Casolo (30804_CR8) 2000; 474 K Takubo (30804_CR25) 2003; 52 E Shacter (30804_CR34) 2000; 32 M Brandalise (30804_CR9) 2003; 35 T Halperin (30804_CR63) 2001; 45 O Caiveau (30804_CR54) 2001; 276 J Fang (30804_CR10) 2002; 123 M Kim (30804_CR6) 2003; 278 J F Hare (30804_CR58) 1982; 257 M Sabar (30804_CR17) 2000; 124 N Gustavsson (30804_CR39) 2002; 29 R Bligny (30804_CR53) 1980; 617 W Huth (30804_CR60) 2002; 364 A Konrad (30804_CR36) 1996; 149 C H Foyer (30804_CR2) 2003; 119 C Bowler (30804_CR22) 1991; 10 B Halliwell (30804_CR26) 1998 R Sarria (30804_CR64) 2003; 10 K Röttgers (30804_CR61) 2002; 277 R Rakwal (30804_CR21) 2003; 49 A Majander (30804_CR13) 1994; 269 W Vancamp (30804_CR23) 1994; 12 H Bakala (30804_CR28) 2003; 270 L J Sweetlove (30804_CR45) 2002; 32 V O’Donnell (30804_CR12) 2003; 48 M Banze (30804_CR37) 2000; 156 B K Kristensen (30804_CR43) 2004 F Courtois-Verniquet (30804_CR47) 1993; 294 D A Bota (30804_CR31) 2002; 532 M Whittaker (30804_CR49) 1998; 273 I Arnold (30804_CR67) 2002; 1592 R T Dean (30804_CR32) 1997; 324 T Yagi (30804_CR19) 2001; 33 S Pasqualini (30804_CR24) 2003; 133 F Goglia (30804_CR56) 2003; 17 V N Luzikov (30804_CR27) 1984 I M Møller (30804_CR7) 2001; 52 |
References_xml | – volume: 324 start-page: 1 year: 1997 ident: 30804_CR32 publication-title: Biochem. J. doi: 10.1042/bj3240001 – volume: 3 start-page: 333 year: 2003 ident: 30804_CR29 publication-title: FEMS Yeast Res. doi: 10.1016/S1567-1356(03)00071-0 – volume: 1276 start-page: 133 year: 1996 ident: 30804_CR14 publication-title: Biochim. Biophys. Acta-Bioenerg. doi: 10.1016/0005-2728(96)00068-0 – volume: 822 start-page: 1 year: 1985 ident: 30804_CR52 publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4157(85)90002-4 – volume: 15 start-page: 1212 year: 2003 ident: 30804_CR18 publication-title: Plant Cell doi: 10.1105/tpc.009464 – volume: 617 start-page: 254 year: 1980 ident: 30804_CR53 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2760(80)90168-X – volume: 278 start-page: 12645 year: 2003 ident: 30804_CR5 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210826200 – volume: 257 start-page: 3575 year: 1982 ident: 30804_CR58 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)34818-X – volume: 12 start-page: 419 year: 2000 ident: 30804_CR65 publication-title: Plant Cell doi: 10.1105/tpc.12.3.419 – volume: 278 start-page: 19406 year: 2003 ident: 30804_CR6 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210539200 – volume: 373 start-page: 307 year: 1995 ident: 30804_CR16 publication-title: FEBS Lett. doi: 10.1016/0014-5793(95)01059-N – volume: 299 start-page: 1751 year: 2003 ident: 30804_CR30 publication-title: Science doi: 10.1126/science.1080418 – volume: 149 start-page: 317 year: 1996 ident: 30804_CR36 publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(96)80128-3 – volume: 125 start-page: 1912 year: 2001 ident: 30804_CR62 publication-title: Plant Physiol. doi: 10.1104/pp.125.4.1912 – volume: 257 start-page: 2950 year: 1982 ident: 30804_CR57 publication-title: J. Biol. Chem. – volume: 3 start-page: 1145 year: 2003 ident: 30804_CR35 publication-title: Proteomics doi: 10.1002/pmic.200300435 – volume: 9 start-page: 957 year: 2003 ident: 30804_CR66 publication-title: Plant Cell doi: 10.1105/tpc.9.6.957 – volume: 1592 start-page: 89 year: 2002 ident: 30804_CR67 publication-title: Biochim. Biophys. Acta-Mol. Cell Res. doi: 10.1016/S0167-4889(02)00267-7 – volume: 269 start-page: 21037 year: 1994 ident: 30804_CR13 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)31926-9 – volume: 272 start-page: 20313 year: 1997 ident: 30804_CR40 publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.33.20313 – volume: 123 start-page: 9268 year: 2001 ident: 30804_CR48 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja015953r – volume: 276 start-page: 5788 year: 2001 ident: 30804_CR54 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M006231200 – volume-title: Free Radicals in Biology and Medicine year: 1998 ident: 30804_CR26 – volume: 191 start-page: 421 year: 1980 ident: 30804_CR11 publication-title: Biochem. J. doi: 10.1042/bj1910421 – volume: 17 start-page: 379 year: 1999 ident: 30804_CR51 publication-title: Nature Biotechnol. doi: 10.1038/7939 – volume: 273 start-page: 14085 year: 1998 ident: 30804_CR50 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.23.14085 – volume: 133 start-page: 1122 year: 2003 ident: 30804_CR24 publication-title: Plant Physiol. doi: 10.1104/pp.103.026591 – volume: 17 start-page: 1585 year: 2003 ident: 30804_CR56 publication-title: FASEB J. doi: 10.1096/fj.03-0159hyp – volume: 124 start-page: 1239 year: 2000 ident: 30804_CR17 publication-title: Plant Physiol. doi: 10.1104/pp.124.3.1239 – volume: 52 start-page: 817 year: 2003 ident: 30804_CR25 publication-title: Plant Mol. Biol. doi: 10.1023/A:1025015811141 – volume: 156 start-page: 126 year: 2000 ident: 30804_CR37 publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(00)80283-7 – volume: 10 start-page: 1217 year: 2003 ident: 30804_CR64 publication-title: Plant Cell – volume-title: Identification of oxidised mitochondrial proteins by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry year: 2004 ident: 30804_CR43 – volume: 33 start-page: 233 year: 2001 ident: 30804_CR19 publication-title: J. Bioenerg. Biomembr. doi: 10.1023/A:1010787004053 – volume: 294 start-page: 103 year: 1993 ident: 30804_CR47 publication-title: Biochem. J. doi: 10.1042/bj2940103 – volume: 278 start-page: 19587 year: 2003 ident: 30804_CR42 publication-title: J. Biol. Chem. doi: 10.1074/jbc.C300135200 – volume: 277 start-page: 45829 year: 2002 ident: 30804_CR61 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M207152200 – volume: 104 start-page: 329 year: 1998 ident: 30804_CR15 publication-title: Physiol. Plant. doi: 10.1034/j.1399-3054.1998.1040306.x – volume: 371 start-page: 167 year: 1995 ident: 30804_CR38 publication-title: FEBS Lett. doi: 10.1016/0014-5793(95)00904-N – volume: 424 start-page: 155 year: 1998 ident: 30804_CR55 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(98)00161-6 – volume: 52 start-page: 561 year: 2001 ident: 30804_CR7 publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. doi: 10.1146/annurev.arplant.52.1.561 – volume: 35 start-page: 203 year: 2003 ident: 30804_CR9 publication-title: J. Bioenerg. Biomembr. doi: 10.1023/A:1024603530043 – volume: 273 start-page: 22188 year: 1998 ident: 30804_CR49 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.35.22188 – volume: 277 start-page: 47551 year: 2002 ident: 30804_CR33 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M207356200 – volume: 474 start-page: 53 year: 2000 ident: 30804_CR8 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(00)01576-3 – volume: 119 start-page: 355 year: 2003 ident: 30804_CR2 publication-title: Physiol. Plant. doi: 10.1034/j.1399-3054.2003.00223.x – volume: 123 start-page: 135 year: 2002 ident: 30804_CR10 publication-title: Mol. Biochem. Parasitol. doi: 10.1016/S0166-6851(02)00139-1 – start-page: 1 volume-title: Mitochondrial Biog. Breakdown year: 1984 ident: 30804_CR27 – volume: 233 start-page: 346 year: 1994 ident: 30804_CR41 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(94)33040-9 – volume: 48 start-page: 778 year: 2003 ident: 30804_CR12 publication-title: Mol. Pharmacol. – volume: 10 start-page: 1723 year: 1991 ident: 30804_CR22 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1991.tb07696.x – volume: 32 start-page: 891 year: 2002 ident: 30804_CR45 publication-title: Plant J. doi: 10.1046/j.1365-313X.2002.01474.x – volume: 6 start-page: 145 year: 2003 ident: 30804_CR1 publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(01)01898-2 – volume: 3 start-page: 1318 year: 2003 ident: 30804_CR46 publication-title: Proteomics doi: 10.1002/pmic.200300432 – volume: 49 start-page: 223 year: 2003 ident: 30804_CR21 publication-title: Environ. Exp. Bot. doi: 10.1016/S0098-8472(02)00072-2 – start-page: 1 volume-title: Mol. Stud. Mitochondrial Targeting Pept. year: 2003 ident: 30804_CR68 – volume: 2 start-page: 947 year: 2002 ident: 30804_CR20 publication-title: Proteomics doi: 10.1002/1615-9861(200208)2:8<947::AID-PROT947>3.0.CO;2-J – volume: 32 start-page: 307 year: 2000 ident: 30804_CR34 publication-title: Drug Metab. Rev. doi: 10.1081/DMR-100102336 – volume: 364 start-page: 275 year: 2002 ident: 30804_CR60 publication-title: Biochem. J. doi: 10.1042/bj3640275 – volume: 30 start-page: 367 year: 1996 ident: 30804_CR59 publication-title: Curr. Genet. doi: 10.1007/s002940050145 – volume: 532 start-page: 103 year: 2002 ident: 30804_CR31 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(02)03638-4 – volume: 45 start-page: 461 year: 2001 ident: 30804_CR63 publication-title: Plant Mol. Biol. doi: 10.1023/A:1010677220323 – volume: 96 start-page: 8271 year: 1999 ident: 30804_CR3 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.14.8271 – volume: 14 start-page: 3271 year: 2002 ident: 30804_CR44 publication-title: Plant Cell doi: 10.1105/tpc.005603 – volume: 29 start-page: 545 year: 2002 ident: 30804_CR39 publication-title: Plant J. doi: 10.1046/j.1365-313X.2002.029005545.x – volume: 25 start-page: 47 year: 2003 ident: 30804_CR4 publication-title: Bioessays doi: 10.1002/bies.10175 – volume: 270 start-page: 2295 year: 2003 ident: 30804_CR28 publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1033.2003.03598.x – volume: 12 start-page: 165 year: 1994 ident: 30804_CR23 publication-title: Bio-Technol. |
SSID | ssj0015467 |
Score | 2.0679777 |
SecondaryResourceType | review_article |
Snippet | Plant mitochondria produce reactive oxygen species (ROS) as an unavoidable side product of aerobic metabolism, but they have mechanisms for regulating this... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 730 |
SubjectTerms | Mitochondrial Proteins - metabolism Oxidation-Reduction Oxidative Stress Plant Proteins - metabolism Reactive Oxygen Species - metabolism |
Title | Protein oxidation in plant mitochondria as a stress indicator |
URI | https://www.ncbi.nlm.nih.gov/pubmed/15295627 https://www.proquest.com/docview/66768500 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5KQfTio77qM4rgaWt2k-zjWIpSBD2Ihd6WJJuKWLfFbkH99U423apoxcMeFpKwzGQn8zGT7wM4y0wgVBIZL4hlSapNPSVC6fkyCCydlcm4ve98cxt2e_y6L_o1OF1QwWfJhWK-lXB8sGEWcxULyO_a80KB4KVIrM8j7iVU9Ct-2S8Tv584C9LI8ji5WoNOdSnHdZE8taaFaun3nxyNf3zpOqzOsknSdu7fgJrJG7Dk9CXfGrDcqeTcNsHy4ltlSzJ6fXQ6SgRfxkO0LHnG3xrDYJ7hbiRyQiRxV0iILWhrC8u3oHd1ed_pejPtBE8zxgovjDSjMhRCKJ4NECYpX-OjYh7LWBpNFZUUoUIojIwx0uggRiAj0TOR5FJytg31fJSbXSDoRAyZmJkNLJZTGqdHLMoGNKEyGIRhE84r-6Z6Rixu9S2GaVngZklaGaYJJ_ORY0em8cuY48pFKVrIli9kbkbTSWq7cWNBaRN2nOc-17DVyjCI9v6x_j6suOYb28N3APXiZWoOMa8o1FG5sz4Adb7Glg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+oxidation+in+plant+mitochondria+as+a+stress+indicator&rft.jtitle=Photochemical+%26+photobiological+sciences&rft.au=Moller%2C+Ian+M&rft.au=Kristensen%2C+Brian+K&rft.date=2004-08-01&rft.issn=1474-905X&rft.volume=3&rft.issue=8&rft.spage=730&rft_id=info:doi/10.1039%2Fb315561g&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-905X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-905X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-905X&client=summon |