D-vine copula based quantile regression
Quantile regression, that is the prediction of conditional quantiles, has steadily gained importance in statistical modeling and financial applications. A new semiparametric quantile regression method is introduced. It is based on sequentially fitting a likelihood optimal D-vine copula to given data...
Saved in:
Published in | Computational statistics & data analysis Vol. 110; pp. 1 - 18 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantile regression, that is the prediction of conditional quantiles, has steadily gained importance in statistical modeling and financial applications. A new semiparametric quantile regression method is introduced. It is based on sequentially fitting a likelihood optimal D-vine copula to given data resulting in highly flexible models with easily extractable conditional quantiles. As a subclass of regular vine copulas, D-vines enable the modeling of multivariate copulas in terms of bivariate building blocks, a so-called pair-copula construction (PCC). The proposed algorithm works fast and accurate even in high dimensions and incorporates an automatic variable selection by maximizing the conditional log-likelihood. Further, typical issues of quantile regression such as quantile crossing or transformations, interactions and collinearity of variables are automatically taken care of. In a simulation study the improved accuracy and reduced computation time of the approach in comparison with established quantile regression methods is highlighted. An extensive financial application to international credit default swap (CDS) data including stress testing and Value-at-Risk (VaR) prediction demonstrates the usefulness of the proposed method. |
---|---|
AbstractList | Quantile regression, that is the prediction of conditional quantiles, has steadily gained importance in statistical modeling and financial applications. A new semiparametric quantile regression method is introduced. It is based on sequentially fitting a likelihood optimal D-vine copula to given data resulting in highly flexible models with easily extractable conditional quantiles. As a subclass of regular vine copulas, D-vines enable the modeling of multivariate copulas in terms of bivariate building blocks, a so-called pair-copula construction (PCC). The proposed algorithm works fast and accurate even in high dimensions and incorporates an automatic variable selection by maximizing the conditional log-likelihood. Further, typical issues of quantile regression such as quantile crossing or transformations, interactions and collinearity of variables are automatically taken care of. In a simulation study the improved accuracy and reduced computation time of the approach in comparison with established quantile regression methods is highlighted. An extensive financial application to international credit default swap (CDS) data including stress testing and Value-at-Risk (VaR) prediction demonstrates the usefulness of the proposed method. |
Author | Czado, Claudia Kraus, Daniel |
Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0002-6791-8225 surname: Kraus fullname: Kraus, Daniel email: daniel.kraus@tum.de – sequence: 2 givenname: Claudia surname: Czado fullname: Czado, Claudia |
BookMark | eNp9kD1PwzAQhi0EEm3hDzBlgyXBX4kTiQWVT6kSC8yWY1-Qq9RubacS_x5XZWLodHe69zm9987RufMOELohuCKYNPfrSkejKpr7itAK4-4MzUgraClYTc_RLC9E2XHBLtE8xjXGmHLRztDtU7m3Dgrtt9Ooil5FMMVuUi7ZEYoA3wFitN5doYtBjRGu_-oCfb08fy7fytXH6_vycVVqxlgqa82xGqAZiOlZw0xjeJ8nziCb6RjuBckSyEZ4Z7ThIEjLhOg4YKjbnrMFujve3Qa_myAmubFRwzgqB36KktKa0Rbjus7S9ijVwccYYJDaJpWy2RSUHSXB8pCNXMtDNvKQjSRU5mwySv-h22A3Kvychh6OEOT_9xaCjNqC02BsAJ2k8fYU_gtzfn4j |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2018_10_025 crossref_primary_10_1111_risa_13758 crossref_primary_10_1016_j_procs_2022_01_038 crossref_primary_10_1016_j_csda_2019_04_015 crossref_primary_10_1007_s11222_017_9733_y crossref_primary_10_1080_01621459_2023_2177545 crossref_primary_10_2139_ssrn_3176951 crossref_primary_10_12677_SA_2019_85087 crossref_primary_10_1029_2023WR034786 crossref_primary_10_1007_s12145_020_00487_0 crossref_primary_10_3390_axioms11110619 crossref_primary_10_3390_math8111856 crossref_primary_10_1080_15567249_2022_2160523 crossref_primary_10_3390_w17030332 crossref_primary_10_1016_j_iref_2024_103707 crossref_primary_10_2139_ssrn_3864131 crossref_primary_10_1016_j_irfa_2018_12_011 crossref_primary_10_1080_02331888_2024_2364688 crossref_primary_10_1016_j_jmva_2021_104755 crossref_primary_10_5194_essd_15_2635_2023 crossref_primary_10_1016_j_cam_2024_115841 crossref_primary_10_1016_j_eneco_2022_105957 crossref_primary_10_5194_hess_25_4319_2021 crossref_primary_10_1049_itr2_12288 crossref_primary_10_1111_biom_13355 crossref_primary_10_1016_j_jhydrol_2020_124612 crossref_primary_10_1080_00949655_2024_2409387 crossref_primary_10_2139_ssrn_3754672 crossref_primary_10_1109_ACCESS_2022_3168322 crossref_primary_10_1007_s00180_019_00934_7 crossref_primary_10_2139_ssrn_3270839 crossref_primary_10_1007_s11009_017_9544_9 crossref_primary_10_1016_j_frl_2024_106284 crossref_primary_10_1080_10941665_2023_2250019 crossref_primary_10_3389_fevo_2023_1193163 crossref_primary_10_2139_ssrn_3255918 crossref_primary_10_1007_s10462_023_10698_8 crossref_primary_10_1016_j_trc_2019_06_015 crossref_primary_10_1016_j_enbuild_2025_115432 crossref_primary_10_1111_anzs_12182 crossref_primary_10_1002_cjs_11468 crossref_primary_10_1007_s11269_024_03813_z crossref_primary_10_1016_j_irfa_2022_102025 crossref_primary_10_1007_s11749_021_00785_9 crossref_primary_10_3390_forecast4030037 crossref_primary_10_1175_JHM_D_18_0017_1 crossref_primary_10_1016_j_eja_2018_05_006 crossref_primary_10_1080_01621459_2020_1870984 crossref_primary_10_1109_ACCESS_2024_3451719 crossref_primary_10_3390_math10122000 crossref_primary_10_3390_math12223525 crossref_primary_10_1002_wics_1557 crossref_primary_10_1016_j_ocecoaman_2022_106295 crossref_primary_10_1016_j_ejrh_2022_101259 crossref_primary_10_1016_j_jtice_2022_104483 crossref_primary_10_1007_s00181_021_02073_9 crossref_primary_10_3390_risks5030038 crossref_primary_10_1016_j_jmva_2020_104669 crossref_primary_10_1111_biom_12867 crossref_primary_10_1016_j_eneco_2018_10_012 crossref_primary_10_1016_j_eneco_2020_104774 crossref_primary_10_1146_annurev_statistics_040220_101153 crossref_primary_10_1093_jrsssc_qlaf011 crossref_primary_10_1109_TII_2020_2972813 crossref_primary_10_1016_j_renene_2020_06_091 crossref_primary_10_1016_j_spasta_2021_100586 crossref_primary_10_1080_00036846_2018_1494812 crossref_primary_10_1016_j_jmva_2020_104654 crossref_primary_10_1080_03610918_2024_2449402 crossref_primary_10_1093_jjfinec_nbab016 crossref_primary_10_3390_su13094627 crossref_primary_10_1016_j_najef_2020_101210 crossref_primary_10_1515_demo_2019_0008 crossref_primary_10_1016_j_ecolind_2025_113132 crossref_primary_10_1016_j_cam_2018_08_001 crossref_primary_10_1016_j_irfa_2018_11_007 crossref_primary_10_1016_j_jbankfin_2021_106248 crossref_primary_10_1016_j_rse_2021_112283 crossref_primary_10_1093_biomtc_ujad042 crossref_primary_10_1016_j_ejor_2023_05_016 crossref_primary_10_1007_s13201_024_02211_5 crossref_primary_10_1007_s00362_022_01330_y crossref_primary_10_1016_j_csda_2022_107546 crossref_primary_10_1111_risa_13695 crossref_primary_10_1016_j_csda_2024_108076 crossref_primary_10_1016_j_irfa_2023_102538 crossref_primary_10_1111_sjos_12566 crossref_primary_10_1063_1674_0068_cjcp2210154 crossref_primary_10_1016_j_jmva_2019_03_007 crossref_primary_10_1016_j_ribaf_2025_102790 crossref_primary_10_1016_j_trgeo_2023_100987 crossref_primary_10_1007_s00362_024_01633_2 crossref_primary_10_1016_j_bspc_2019_101686 crossref_primary_10_1515_demo_2022_0100 crossref_primary_10_1016_j_eneco_2023_106853 crossref_primary_10_3390_w13070964 crossref_primary_10_1016_j_ces_2020_116210 crossref_primary_10_1016_j_compchemeng_2022_107788 crossref_primary_10_5194_hess_28_1147_2024 crossref_primary_10_1007_s12561_023_09396_4 crossref_primary_10_1007_s12599_021_00691_2 crossref_primary_10_1002_qj_4521 crossref_primary_10_1007_s00477_019_01662_6 crossref_primary_10_1007_s10182_019_00353_5 crossref_primary_10_1016_j_csda_2020_107091 crossref_primary_10_1088_1757_899X_964_1_012031 crossref_primary_10_1111_biom_13014 crossref_primary_10_1111_biom_13652 crossref_primary_10_29220_CSAM_2021_28_1_059 crossref_primary_10_3390_w15142641 crossref_primary_10_2139_ssrn_3416573 crossref_primary_10_1080_10106049_2021_2017015 crossref_primary_10_1002_cjce_23968 crossref_primary_10_1016_j_ecosta_2019_03_003 crossref_primary_10_1016_j_jbef_2021_100498 crossref_primary_10_1016_j_spl_2017_04_014 |
Cites_doi | 10.1214/aos/1031689016 10.1017/S0266466608080304 10.1198/jasa.2011.ap09272 10.1080/01621459.2013.783842 10.1016/j.insmatheco.2007.02.001 10.1080/07350015.2014.926171 10.1016/j.jspi.2013.03.008 10.2139/ssrn.2695063 10.1016/j.jmva.2015.01.011 10.1080/01621459.2014.916577 10.2307/1913643 10.1111/j.1368-423X.2008.00274.x 10.18637/jss.v027.i05 10.1016/j.insmatheco.2013.09.009 10.32614/CRAN.package.kdecopula 10.5089/9781451945591.011 10.1080/13518470902853491 10.1214/aoms/1177704472 10.1016/j.jmva.2009.12.001 10.1080/07350015.2012.738955 10.1016/B978-0-444-62731-5.00017-8 10.1016/j.jmva.2016.07.003 10.1198/jasa.2009.tm09170 10.1016/j.jmva.2013.04.014 10.1061/(ASCE)1084-0699(2007)12:4(347) 10.1007/s11222-017-9733-y 10.1093/rfs/hhw060 10.1016/j.jkss.2015.06.002 10.1214/10-BJPS131 10.1016/j.jmva.2010.02.003 10.1257/aer.20120555 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.csda.2016.12.009 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-7352 |
EndPage | 18 |
ExternalDocumentID | 10_1016_j_csda_2016_12_009 S0167947316303073 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c333t-5c40afe6f1db363d6d4be6f43e187930b715c4e94749dcd4e71837794e0e58b43 |
IEDL.DBID | .~1 |
ISSN | 0167-9473 |
IngestDate | Tue Aug 05 09:14:21 EDT 2025 Tue Jul 01 02:24:32 EDT 2025 Thu Apr 24 23:08:27 EDT 2025 Fri Feb 23 02:23:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Conditional copula quantile Stress testing Conditional distribution Quantile regression Vine copula |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-5c40afe6f1db363d6d4be6f43e187930b715c4e94749dcd4e71837794e0e58b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6791-8225 |
PQID | 2253280055 |
PQPubID | 24069 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2253280055 crossref_citationtrail_10_1016_j_csda_2016_12_009 crossref_primary_10_1016_j_csda_2016_12_009 elsevier_sciencedirect_doi_10_1016_j_csda_2016_12_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2017 2017-06-00 20170601 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
PublicationDecade | 2010 |
PublicationTitle | Computational statistics & data analysis |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Aas, Czado, Frigessi, Bakken (br000005) 2009; 44 Genest, Favre (br000085) 2007; 12 R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna, Austria. URL Xiao, Koenker (br000245) 2009; 104 Dette, Van Hecke, Volgushev (br000065) 2014; 109 Azzalini, Capitanio (br000015) 2014 Kotz, Nadarajah (br000165) 2004 version 2.5-0. version 2.0.5. Killiches, M., Kraus, D., Czado, C., 2016c. Using model distances to investigate the simplifying assumption, goodness-of-fit and truncation levels for vine copulas. arXiv preprint Bernard, Czado (br000025) 2015; 138 Noh, Ghouch, Van Keilegom (br000200) 2015; 33 Cooke, R.M., Joe, H., Chang, B., 2015. Vine regression. Resources for the Future Discussion Paper 15–52. Available at SSRN Schepsmeier, U., Stöber, J., Brechmann, E.C., Graeler, B., Nagler, T., Erhardt, T., 2016. VineCopula: Statistical Inference of Vine Copulas. URL Noh, Ghouch, Bouezmarni (br000195) 2013; 108 Duong, T., 2015. ks: Kernel Smoothing. URL Killiches, Kraus, Czado (br000125) 2016 Spokoiny, Wang, Härdle (br000225) 2013; 143 . Li, Lin, Racine (br000170) 2013; 31 Koenker, Bassett (br000155) 1978; 46 Nelsen (br000190) 2007 Brachinger, Fahrmeir, Hamerle, Tutz (br000035) 1996 version 5.05. Bedford, Cooke (br000020) 2002; 30 Hayfield, Racine (br000095) 2008; 27 Hansen (br000090) 2008; 24 Nagler, T., 2016. kdecopula: Kernel Smoothing for Bivariate Copula Densities. URL Adrian, Brunnermeier (br000010) 2016; 106 Brechmann, Hendrich, Czado (br000040) 2013; 53 Sklar (br000220) 1959; 8 Bouyé, Salmon (br000030) 2009; 15 Joe (br000120) 1997 Chen, Koenker, Xiao (br000050) 2009; 12 Czado (br000060) 2010 Brownlees, C.T., Engle, R.F., 2016. SRISK: A conditional capital shortfall measure of systemic risk. Available at SSRN 1611229. Parzen (br000205) 1962; 33 Venables, Ripley (br000235) 2002 Hobæk Haff, Aas, Frigessi (br000100) 2010; 101 Meinshausen (br000175) 2006; 7 International Monetary Fund, 2009. Global Financial Stability Report. Washington DC. Koenker (br000140) 2005 version 1.9.4. Koenker, R., 2013. quantreg: Quantile Regression. URL Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M., Hofner, B., 2015. mboost: Model-Based Boosting. URL Killiches, M., Kraus, D., Czado, C., 2016b. Model distances for vine copulas in high dimensions. arXiv preprint Hwang, Shim (br000110) 2005 Duong (br000075) 2016; 45 Komunjer (br000160) 2013 version 0.7.0. Fenske, Kneib, Hothorn (br000080) 2012; 106 Koenker (br000145) 2011; 25 Nagler, Czado (br000185) 2016; 151 Stöber, Joe, Czado (br000230) 2013; 119 Wu, Yu, Yu (br000240) 2010; 101 Kotz (10.1016/j.csda.2016.12.009_br000165) 2004 Xiao (10.1016/j.csda.2016.12.009_br000245) 2009; 104 Azzalini (10.1016/j.csda.2016.12.009_br000015) 2014 Duong (10.1016/j.csda.2016.12.009_br000075) 2016; 45 Hansen (10.1016/j.csda.2016.12.009_br000090) 2008; 24 10.1016/j.csda.2016.12.009_br000130 10.1016/j.csda.2016.12.009_br000210 10.1016/j.csda.2016.12.009_br000055 10.1016/j.csda.2016.12.009_br000215 Joe (10.1016/j.csda.2016.12.009_br000120) 1997 10.1016/j.csda.2016.12.009_br000135 Noh (10.1016/j.csda.2016.12.009_br000200) 2015; 33 Parzen (10.1016/j.csda.2016.12.009_br000205) 1962; 33 10.1016/j.csda.2016.12.009_br000180 Bedford (10.1016/j.csda.2016.12.009_br000020) 2002; 30 Noh (10.1016/j.csda.2016.12.009_br000195) 2013; 108 10.1016/j.csda.2016.12.009_br000105 Koenker (10.1016/j.csda.2016.12.009_br000155) 1978; 46 Nagler (10.1016/j.csda.2016.12.009_br000185) 2016; 151 Spokoiny (10.1016/j.csda.2016.12.009_br000225) 2013; 143 Bouyé (10.1016/j.csda.2016.12.009_br000030) 2009; 15 Killiches (10.1016/j.csda.2016.12.009_br000125) 2016 Hwang (10.1016/j.csda.2016.12.009_br000110) 2005 Czado (10.1016/j.csda.2016.12.009_br000060) 2010 Genest (10.1016/j.csda.2016.12.009_br000085) 2007; 12 10.1016/j.csda.2016.12.009_br000070 Hobæk Haff (10.1016/j.csda.2016.12.009_br000100) 2010; 101 Adrian (10.1016/j.csda.2016.12.009_br000010) 2016; 106 Brechmann (10.1016/j.csda.2016.12.009_br000040) 2013; 53 10.1016/j.csda.2016.12.009_br000150 Hayfield (10.1016/j.csda.2016.12.009_br000095) 2008; 27 Koenker (10.1016/j.csda.2016.12.009_br000140) 2005 10.1016/j.csda.2016.12.009_br000115 Sklar (10.1016/j.csda.2016.12.009_br000220) 1959; 8 Bernard (10.1016/j.csda.2016.12.009_br000025) 2015; 138 Fenske (10.1016/j.csda.2016.12.009_br000080) 2012; 106 Venables (10.1016/j.csda.2016.12.009_br000235) 2002 Aas (10.1016/j.csda.2016.12.009_br000005) 2009; 44 Koenker (10.1016/j.csda.2016.12.009_br000145) 2011; 25 Nelsen (10.1016/j.csda.2016.12.009_br000190) 2007 Dette (10.1016/j.csda.2016.12.009_br000065) 2014; 109 Meinshausen (10.1016/j.csda.2016.12.009_br000175) 2006; 7 10.1016/j.csda.2016.12.009_br000045 Wu (10.1016/j.csda.2016.12.009_br000240) 2010; 101 Chen (10.1016/j.csda.2016.12.009_br000050) 2009; 12 Stöber (10.1016/j.csda.2016.12.009_br000230) 2013; 119 Li (10.1016/j.csda.2016.12.009_br000170) 2013; 31 Brachinger (10.1016/j.csda.2016.12.009_br000035) 1996 Komunjer (10.1016/j.csda.2016.12.009_br000160) 2013 |
References_xml | – volume: 151 start-page: 69 year: 2016 end-page: 89 ident: br000185 article-title: Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas publication-title: J. Multivariate Anal. – reference: R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna, Austria. URL: – volume: 101 start-page: 1296 year: 2010 end-page: 1310 ident: br000100 article-title: On the simplified pair-copula construction — simply useful or too simplistic? publication-title: J. Multivariate Anal. – reference: Schepsmeier, U., Stöber, J., Brechmann, E.C., Graeler, B., Nagler, T., Erhardt, T., 2016. VineCopula: Statistical Inference of Vine Copulas. URL: – volume: 138 start-page: 104 year: 2015 end-page: 126 ident: br000025 article-title: Conditional quantiles and tail dependence publication-title: J. Multivariate Anal. – volume: 53 start-page: 722 year: 2013 end-page: 732 ident: br000040 article-title: Conditional copula simulation for systemic risk stress testing publication-title: Insurance Math. Econom. – volume: 46 start-page: 33 year: 1978 end-page: 50 ident: br000155 article-title: Regression quantiles publication-title: Econometrica – year: 2004 ident: br000165 article-title: Multivariate – volume: 8 start-page: 229 year: 1959 end-page: 231 ident: br000220 article-title: Fonctions dé repartition á n dimensions et leurs marges publication-title: Publ. Inst. Statist. Univ. Paris – year: 2014 ident: br000015 publication-title: The Skew-Normal and Related Families – volume: 45 start-page: 33 year: 2016 end-page: 50 ident: br000075 article-title: Non-parametric smoothed estimation of multivariate cumulative distribution and survival functions, and receiver operating characteristic curves publication-title: J. Korean Stat. Soc. – volume: 101 start-page: 1607 year: 2010 end-page: 1621 ident: br000240 article-title: Single-index quantile regression publication-title: J. Multivariate Anal. – volume: 106 start-page: 1705 year: 2016 end-page: 1741 ident: br000010 article-title: CoVaR publication-title: Amer. Econ. Rev. – year: 2007 ident: br000190 article-title: An Introduction to Copulas – reference: version 0.7.0. – volume: 109 start-page: 1319 year: 2014 end-page: 1324 ident: br000065 article-title: Some comments on copula-based regression publication-title: J. Amer. Statist. Assoc. – reference: Duong, T., 2015. ks: Kernel Smoothing. URL: – volume: 33 start-page: 167 year: 2015 end-page: 178 ident: br000200 article-title: Semiparametric conditional quantile estimation through copula-based multivariate models publication-title: J. Bus. Econom. Statist. – volume: 24 start-page: 726 year: 2008 end-page: 748 ident: br000090 article-title: Uniform convergence rates for kernel estimation with dependent data publication-title: Econometric Theory – reference: Cooke, R.M., Joe, H., Chang, B., 2015. Vine regression. Resources for the Future Discussion Paper 15–52. Available at SSRN: – year: 1997 ident: br000120 article-title: Multivariate Models and Multivariate Dependence Concepts – volume: 108 start-page: 676 year: 2013 end-page: 688 ident: br000195 article-title: Copula-based regression estimation and inference publication-title: J. Amer. Statist. Assoc. – reference: version 1.9.4. – reference: version 2.5-0. – reference: Nagler, T., 2016. kdecopula: Kernel Smoothing for Bivariate Copula Densities. URL: – year: 1996 ident: br000035 article-title: Multivariate Statistische Verfahren – reference: version 5.05. – start-page: 767 year: 2013 end-page: 785 ident: br000160 article-title: Quantile prediction publication-title: Handbook of Economic Forecasting – start-page: 93 year: 2010 end-page: 109 ident: br000060 article-title: Pair-copula constructions of multivariate copulas publication-title: Copula Theory and its Applications – volume: 143 start-page: 1109 year: 2013 end-page: 1129 ident: br000225 article-title: Local quantile regression publication-title: J. Statist. Plann. Inference – reference: Brownlees, C.T., Engle, R.F., 2016. SRISK: A conditional capital shortfall measure of systemic risk. Available at SSRN 1611229. – volume: 31 start-page: 57 year: 2013 end-page: 65 ident: br000170 article-title: Optimal bandwidth selection for nonparametric conditional distribution and quantile functions publication-title: J. Bus. Econom. Statist. – reference: Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M., Hofner, B., 2015. mboost: Model-Based Boosting. URL: – reference: Killiches, M., Kraus, D., Czado, C., 2016c. Using model distances to investigate the simplifying assumption, goodness-of-fit and truncation levels for vine copulas. arXiv preprint – year: 2005 ident: br000140 article-title: Quantile Regression – volume: 7 start-page: 983 year: 2006 end-page: 999 ident: br000175 article-title: Quantile regression forests publication-title: J. Mach. Learn. Res. – volume: 12 start-page: 347 year: 2007 end-page: 368 ident: br000085 article-title: Everything you always wanted to know about copula modeling but were afraid to ask publication-title: J. Hydrol. Eng. – year: 2002 ident: br000235 article-title: Modern Applied Statistics with S – reference: version 2.0.5. – volume: 15 start-page: 721 year: 2009 end-page: 750 ident: br000030 article-title: Dynamic copula quantile regressions and tail area dynamic dependence in forex markets publication-title: Eur. J. Finance – year: 2016 ident: br000125 article-title: Examination and visualisation of the simplifying assumption for vine copulas in three dimensions publication-title: Aust. N. Z. J. Stat. – reference: International Monetary Fund, 2009. Global Financial Stability Report. Washington DC. – reference: . – volume: 33 start-page: 1065 year: 1962 end-page: 1076 ident: br000205 article-title: On estimation of a probability density function and mode publication-title: Ann. Math. Statist. – volume: 12 start-page: 50 year: 2009 end-page: 67 ident: br000050 article-title: Copula-based nonlinear quantile autoregression publication-title: Econom. J. – start-page: 512 year: 2005 end-page: 520 ident: br000110 article-title: A simple quantile regression via support vector machine publication-title: Advances in Natural Computation – volume: 25 start-page: 239 year: 2011 end-page: 262 ident: br000145 article-title: Additive models for quantile regression: Model selection and confidence bandaids publication-title: Braz. J. Probab. Stat. – volume: 30 start-page: 1031 year: 2002 end-page: 1068 ident: br000020 article-title: Vines: A new graphical model for dependent random variables publication-title: Ann. Statist. – reference: Killiches, M., Kraus, D., Czado, C., 2016b. Model distances for vine copulas in high dimensions. arXiv preprint – volume: 27 start-page: 1 year: 2008 end-page: 32 ident: br000095 article-title: Nonparametric econometrics: The np package publication-title: J. Stat. Softw. – reference: Koenker, R., 2013. quantreg: Quantile Regression. URL: – volume: 106 start-page: 494 year: 2012 end-page: 510 ident: br000080 article-title: Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression publication-title: J. Amer. Statist. Assoc. – volume: 119 start-page: 101 year: 2013 end-page: 118 ident: br000230 article-title: Simplified pair copula constructions—limitations and extensions publication-title: J. Multivariate Anal. – volume: 44 start-page: 182 year: 2009 end-page: 198 ident: br000005 article-title: Pair-copula constructions of multiple dependence publication-title: Insurance Math. Econom. – volume: 104 start-page: 1696 year: 2009 end-page: 1712 ident: br000245 article-title: Conditional quantile estimation for generalized autoregressive conditional heteroscedasticity models publication-title: J. Amer. Statist. Assoc. – volume: 7 start-page: 983 year: 2006 ident: 10.1016/j.csda.2016.12.009_br000175 article-title: Quantile regression forests publication-title: J. Mach. Learn. Res. – year: 2016 ident: 10.1016/j.csda.2016.12.009_br000125 article-title: Examination and visualisation of the simplifying assumption for vine copulas in three dimensions publication-title: Aust. N. Z. J. Stat. – volume: 30 start-page: 1031 year: 2002 ident: 10.1016/j.csda.2016.12.009_br000020 article-title: Vines: A new graphical model for dependent random variables publication-title: Ann. Statist. doi: 10.1214/aos/1031689016 – volume: 24 start-page: 726 year: 2008 ident: 10.1016/j.csda.2016.12.009_br000090 article-title: Uniform convergence rates for kernel estimation with dependent data publication-title: Econometric Theory doi: 10.1017/S0266466608080304 – volume: 106 start-page: 494 year: 2012 ident: 10.1016/j.csda.2016.12.009_br000080 article-title: Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression publication-title: J. Amer. Statist. Assoc. doi: 10.1198/jasa.2011.ap09272 – volume: 108 start-page: 676 year: 2013 ident: 10.1016/j.csda.2016.12.009_br000195 article-title: Copula-based regression estimation and inference publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.2013.783842 – volume: 44 start-page: 182 year: 2009 ident: 10.1016/j.csda.2016.12.009_br000005 article-title: Pair-copula constructions of multiple dependence publication-title: Insurance Math. Econom. doi: 10.1016/j.insmatheco.2007.02.001 – year: 2014 ident: 10.1016/j.csda.2016.12.009_br000015 – volume: 33 start-page: 167 year: 2015 ident: 10.1016/j.csda.2016.12.009_br000200 article-title: Semiparametric conditional quantile estimation through copula-based multivariate models publication-title: J. Bus. Econom. Statist. doi: 10.1080/07350015.2014.926171 – volume: 143 start-page: 1109 year: 2013 ident: 10.1016/j.csda.2016.12.009_br000225 article-title: Local quantile regression publication-title: J. Statist. Plann. Inference doi: 10.1016/j.jspi.2013.03.008 – ident: 10.1016/j.csda.2016.12.009_br000055 doi: 10.2139/ssrn.2695063 – year: 2002 ident: 10.1016/j.csda.2016.12.009_br000235 – volume: 138 start-page: 104 year: 2015 ident: 10.1016/j.csda.2016.12.009_br000025 article-title: Conditional quantiles and tail dependence publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2015.01.011 – volume: 109 start-page: 1319 year: 2014 ident: 10.1016/j.csda.2016.12.009_br000065 article-title: Some comments on copula-based regression publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.2014.916577 – volume: 46 start-page: 33 year: 1978 ident: 10.1016/j.csda.2016.12.009_br000155 article-title: Regression quantiles publication-title: Econometrica doi: 10.2307/1913643 – volume: 12 start-page: 50 year: 2009 ident: 10.1016/j.csda.2016.12.009_br000050 article-title: Copula-based nonlinear quantile autoregression publication-title: Econom. J. doi: 10.1111/j.1368-423X.2008.00274.x – volume: 27 start-page: 1 year: 2008 ident: 10.1016/j.csda.2016.12.009_br000095 article-title: Nonparametric econometrics: The np package publication-title: J. Stat. Softw. doi: 10.18637/jss.v027.i05 – ident: 10.1016/j.csda.2016.12.009_br000215 – volume: 53 start-page: 722 year: 2013 ident: 10.1016/j.csda.2016.12.009_br000040 article-title: Conditional copula simulation for systemic risk stress testing publication-title: Insurance Math. Econom. doi: 10.1016/j.insmatheco.2013.09.009 – year: 2004 ident: 10.1016/j.csda.2016.12.009_br000165 – ident: 10.1016/j.csda.2016.12.009_br000180 doi: 10.32614/CRAN.package.kdecopula – volume: 8 start-page: 229 year: 1959 ident: 10.1016/j.csda.2016.12.009_br000220 article-title: Fonctions dé repartition á n dimensions et leurs marges publication-title: Publ. Inst. Statist. Univ. Paris – ident: 10.1016/j.csda.2016.12.009_br000150 – ident: 10.1016/j.csda.2016.12.009_br000115 doi: 10.5089/9781451945591.011 – volume: 15 start-page: 721 year: 2009 ident: 10.1016/j.csda.2016.12.009_br000030 article-title: Dynamic copula quantile regressions and tail area dynamic dependence in forex markets publication-title: Eur. J. Finance doi: 10.1080/13518470902853491 – ident: 10.1016/j.csda.2016.12.009_br000070 – ident: 10.1016/j.csda.2016.12.009_br000105 – year: 2007 ident: 10.1016/j.csda.2016.12.009_br000190 – volume: 33 start-page: 1065 year: 1962 ident: 10.1016/j.csda.2016.12.009_br000205 article-title: On estimation of a probability density function and mode publication-title: Ann. Math. Statist. doi: 10.1214/aoms/1177704472 – year: 2005 ident: 10.1016/j.csda.2016.12.009_br000140 – volume: 101 start-page: 1296 year: 2010 ident: 10.1016/j.csda.2016.12.009_br000100 article-title: On the simplified pair-copula construction — simply useful or too simplistic? publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2009.12.001 – volume: 31 start-page: 57 year: 2013 ident: 10.1016/j.csda.2016.12.009_br000170 article-title: Optimal bandwidth selection for nonparametric conditional distribution and quantile functions publication-title: J. Bus. Econom. Statist. doi: 10.1080/07350015.2012.738955 – year: 1996 ident: 10.1016/j.csda.2016.12.009_br000035 – start-page: 767 year: 2013 ident: 10.1016/j.csda.2016.12.009_br000160 article-title: Quantile prediction doi: 10.1016/B978-0-444-62731-5.00017-8 – ident: 10.1016/j.csda.2016.12.009_br000210 – volume: 151 start-page: 69 year: 2016 ident: 10.1016/j.csda.2016.12.009_br000185 article-title: Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2016.07.003 – volume: 104 start-page: 1696 year: 2009 ident: 10.1016/j.csda.2016.12.009_br000245 article-title: Conditional quantile estimation for generalized autoregressive conditional heteroscedasticity models publication-title: J. Amer. Statist. Assoc. doi: 10.1198/jasa.2009.tm09170 – ident: 10.1016/j.csda.2016.12.009_br000135 – volume: 119 start-page: 101 year: 2013 ident: 10.1016/j.csda.2016.12.009_br000230 article-title: Simplified pair copula constructions—limitations and extensions publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2013.04.014 – start-page: 93 year: 2010 ident: 10.1016/j.csda.2016.12.009_br000060 article-title: Pair-copula constructions of multivariate copulas – volume: 12 start-page: 347 year: 2007 ident: 10.1016/j.csda.2016.12.009_br000085 article-title: Everything you always wanted to know about copula modeling but were afraid to ask publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2007)12:4(347) – ident: 10.1016/j.csda.2016.12.009_br000130 doi: 10.1007/s11222-017-9733-y – ident: 10.1016/j.csda.2016.12.009_br000045 doi: 10.1093/rfs/hhw060 – volume: 45 start-page: 33 year: 2016 ident: 10.1016/j.csda.2016.12.009_br000075 article-title: Non-parametric smoothed estimation of multivariate cumulative distribution and survival functions, and receiver operating characteristic curves publication-title: J. Korean Stat. Soc. doi: 10.1016/j.jkss.2015.06.002 – volume: 25 start-page: 239 year: 2011 ident: 10.1016/j.csda.2016.12.009_br000145 article-title: Additive models for quantile regression: Model selection and confidence bandaids publication-title: Braz. J. Probab. Stat. doi: 10.1214/10-BJPS131 – volume: 101 start-page: 1607 year: 2010 ident: 10.1016/j.csda.2016.12.009_br000240 article-title: Single-index quantile regression publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2010.02.003 – year: 1997 ident: 10.1016/j.csda.2016.12.009_br000120 – volume: 106 start-page: 1705 year: 2016 ident: 10.1016/j.csda.2016.12.009_br000010 article-title: CoVaR publication-title: Amer. Econ. Rev. doi: 10.1257/aer.20120555 – start-page: 512 year: 2005 ident: 10.1016/j.csda.2016.12.009_br000110 article-title: A simple quantile regression via support vector machine |
SSID | ssj0002478 |
Score | 2.5435283 |
Snippet | Quantile regression, that is the prediction of conditional quantiles, has steadily gained importance in statistical modeling and financial applications. A new... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | algorithms Conditional copula quantile Conditional distribution credit crossing prediction Quantile regression regression analysis statistical models Stress testing Vine copula |
Title | D-vine copula based quantile regression |
URI | https://dx.doi.org/10.1016/j.csda.2016.12.009 https://www.proquest.com/docview/2253280055 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lAiCB1mbZHeT9FiqpVrag1rsbUn2IRVJax8e_e3O5FFRpAdPIWE3ZGdnv5ndfDNDyEUc2CiMrUfjKLKUa8FobCNBQwWrHNx_1bQYnNwfBN0hvx-JUYW0y1gYpFUW2J9jeobWxZNGIc3GdDxuPCKBvsmx8hLLNBUj2HmIWn79-U3z8HmOxpjfG1sXgTM5x0vNNeYe8oLsSBBJiX8bp18wndmezg7ZLpxGp5V_1y6pmHSPbPVXGVfn--Tyhn6Aw-iorCCXg8ZJO-9LkBsse2dmXnK-a3pAhp3bp3aXFkUQqGKMLahQ3I2tCaynExYwHWiewB1nBuuEMzcJPWhiYGi8qZXmBowNJhHkxjUiSjg7JNV0kpoj4nCmfO1HrvUN47EVkTaJDi0LYIsR-4rViFeOXqoiQzgWqniTJRXsVaLEJEpMer4EidXI1arPNM-Psba1KIUqf8yyBABf2--8nAEJ6o__NOLUTJZzCXDEYEiuEMf_fPcJ2fTRVGcnK6ekupgtzRk4GouknmlSnWy07nrdAV57D8-9L1-o0r8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GOAAHxFOMZ5GQOKCytkna7ogGaMC2C5u0W5TmgYZQN_bgyG_H7mMIhHbg2CqpGsf-7KafbUIuZGjjSFrflXFsXaY5daWNuRspsHII_1XDYnJypxu2-uxxwAcV0ixzYZBWWWB_jukZWhd36oU06-PhsP6MBPoGw85LNNPUFbLKwHyxjcH15zfPI2A5HGOBbxxeZM7kJC811Vh8yA-zM0FkJf7tnX7hdOZ87rfIZhE1Ojf5i22Tikl3yEZnUXJ1uksub90PiBgdlXXkctA7aed9DoIDu3cm5iUnvKZ7pH9_12u23KILgqsopTOXK-ZJa0Lr64SGVIeaJXDFqMFG4dRLIh-GGFgaa2ilmQFvg1UEmfEMjxNG90k1HaXmgDiMqkAHsWcDQ5m0PNYm0ZGlIXxjyEDRGvHL1QtVlAjHThVvouSCvQqUmECJCT8QILEauVrMGecFMpaO5qVQxY9tFoDgS-edlzsgQP_xp4ZMzWg-FYBHFJbkcX74z2efkbVWr9MW7Yfu0xFZD9BvZ8csx6Q6m8zNCUQds-Q006ovxeLSqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D-vine+copula+based+quantile+regression&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Kraus%2C+Daniel&rft.au=Czado%2C+Claudia&rft.date=2017-06-01&rft.pub=Elsevier+B.V&rft.issn=0167-9473&rft.eissn=1872-7352&rft.volume=110&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1016%2Fj.csda.2016.12.009&rft.externalDocID=S0167947316303073 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |