D-vine copula based quantile regression

Quantile regression, that is the prediction of conditional quantiles, has steadily gained importance in statistical modeling and financial applications. A new semiparametric quantile regression method is introduced. It is based on sequentially fitting a likelihood optimal D-vine copula to given data...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 110; pp. 1 - 18
Main Authors Kraus, Daniel, Czado, Claudia
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantile regression, that is the prediction of conditional quantiles, has steadily gained importance in statistical modeling and financial applications. A new semiparametric quantile regression method is introduced. It is based on sequentially fitting a likelihood optimal D-vine copula to given data resulting in highly flexible models with easily extractable conditional quantiles. As a subclass of regular vine copulas, D-vines enable the modeling of multivariate copulas in terms of bivariate building blocks, a so-called pair-copula construction (PCC). The proposed algorithm works fast and accurate even in high dimensions and incorporates an automatic variable selection by maximizing the conditional log-likelihood. Further, typical issues of quantile regression such as quantile crossing or transformations, interactions and collinearity of variables are automatically taken care of. In a simulation study the improved accuracy and reduced computation time of the approach in comparison with established quantile regression methods is highlighted. An extensive financial application to international credit default swap (CDS) data including stress testing and Value-at-Risk (VaR) prediction demonstrates the usefulness of the proposed method.
AbstractList Quantile regression, that is the prediction of conditional quantiles, has steadily gained importance in statistical modeling and financial applications. A new semiparametric quantile regression method is introduced. It is based on sequentially fitting a likelihood optimal D-vine copula to given data resulting in highly flexible models with easily extractable conditional quantiles. As a subclass of regular vine copulas, D-vines enable the modeling of multivariate copulas in terms of bivariate building blocks, a so-called pair-copula construction (PCC). The proposed algorithm works fast and accurate even in high dimensions and incorporates an automatic variable selection by maximizing the conditional log-likelihood. Further, typical issues of quantile regression such as quantile crossing or transformations, interactions and collinearity of variables are automatically taken care of. In a simulation study the improved accuracy and reduced computation time of the approach in comparison with established quantile regression methods is highlighted. An extensive financial application to international credit default swap (CDS) data including stress testing and Value-at-Risk (VaR) prediction demonstrates the usefulness of the proposed method.
Author Czado, Claudia
Kraus, Daniel
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0002-6791-8225
  surname: Kraus
  fullname: Kraus, Daniel
  email: daniel.kraus@tum.de
– sequence: 2
  givenname: Claudia
  surname: Czado
  fullname: Czado, Claudia
BookMark eNp9kD1PwzAQhi0EEm3hDzBlgyXBX4kTiQWVT6kSC8yWY1-Qq9RubacS_x5XZWLodHe69zm9987RufMOELohuCKYNPfrSkejKpr7itAK4-4MzUgraClYTc_RLC9E2XHBLtE8xjXGmHLRztDtU7m3Dgrtt9Ooil5FMMVuUi7ZEYoA3wFitN5doYtBjRGu_-oCfb08fy7fytXH6_vycVVqxlgqa82xGqAZiOlZw0xjeJ8nziCb6RjuBckSyEZ4Z7ThIEjLhOg4YKjbnrMFujve3Qa_myAmubFRwzgqB36KktKa0Rbjus7S9ijVwccYYJDaJpWy2RSUHSXB8pCNXMtDNvKQjSRU5mwySv-h22A3Kvychh6OEOT_9xaCjNqC02BsAJ2k8fYU_gtzfn4j
CitedBy_id crossref_primary_10_1016_j_apenergy_2018_10_025
crossref_primary_10_1111_risa_13758
crossref_primary_10_1016_j_procs_2022_01_038
crossref_primary_10_1016_j_csda_2019_04_015
crossref_primary_10_1007_s11222_017_9733_y
crossref_primary_10_1080_01621459_2023_2177545
crossref_primary_10_2139_ssrn_3176951
crossref_primary_10_12677_SA_2019_85087
crossref_primary_10_1029_2023WR034786
crossref_primary_10_1007_s12145_020_00487_0
crossref_primary_10_3390_axioms11110619
crossref_primary_10_3390_math8111856
crossref_primary_10_1080_15567249_2022_2160523
crossref_primary_10_3390_w17030332
crossref_primary_10_1016_j_iref_2024_103707
crossref_primary_10_2139_ssrn_3864131
crossref_primary_10_1016_j_irfa_2018_12_011
crossref_primary_10_1080_02331888_2024_2364688
crossref_primary_10_1016_j_jmva_2021_104755
crossref_primary_10_5194_essd_15_2635_2023
crossref_primary_10_1016_j_cam_2024_115841
crossref_primary_10_1016_j_eneco_2022_105957
crossref_primary_10_5194_hess_25_4319_2021
crossref_primary_10_1049_itr2_12288
crossref_primary_10_1111_biom_13355
crossref_primary_10_1016_j_jhydrol_2020_124612
crossref_primary_10_1080_00949655_2024_2409387
crossref_primary_10_2139_ssrn_3754672
crossref_primary_10_1109_ACCESS_2022_3168322
crossref_primary_10_1007_s00180_019_00934_7
crossref_primary_10_2139_ssrn_3270839
crossref_primary_10_1007_s11009_017_9544_9
crossref_primary_10_1016_j_frl_2024_106284
crossref_primary_10_1080_10941665_2023_2250019
crossref_primary_10_3389_fevo_2023_1193163
crossref_primary_10_2139_ssrn_3255918
crossref_primary_10_1007_s10462_023_10698_8
crossref_primary_10_1016_j_trc_2019_06_015
crossref_primary_10_1016_j_enbuild_2025_115432
crossref_primary_10_1111_anzs_12182
crossref_primary_10_1002_cjs_11468
crossref_primary_10_1007_s11269_024_03813_z
crossref_primary_10_1016_j_irfa_2022_102025
crossref_primary_10_1007_s11749_021_00785_9
crossref_primary_10_3390_forecast4030037
crossref_primary_10_1175_JHM_D_18_0017_1
crossref_primary_10_1016_j_eja_2018_05_006
crossref_primary_10_1080_01621459_2020_1870984
crossref_primary_10_1109_ACCESS_2024_3451719
crossref_primary_10_3390_math10122000
crossref_primary_10_3390_math12223525
crossref_primary_10_1002_wics_1557
crossref_primary_10_1016_j_ocecoaman_2022_106295
crossref_primary_10_1016_j_ejrh_2022_101259
crossref_primary_10_1016_j_jtice_2022_104483
crossref_primary_10_1007_s00181_021_02073_9
crossref_primary_10_3390_risks5030038
crossref_primary_10_1016_j_jmva_2020_104669
crossref_primary_10_1111_biom_12867
crossref_primary_10_1016_j_eneco_2018_10_012
crossref_primary_10_1016_j_eneco_2020_104774
crossref_primary_10_1146_annurev_statistics_040220_101153
crossref_primary_10_1093_jrsssc_qlaf011
crossref_primary_10_1109_TII_2020_2972813
crossref_primary_10_1016_j_renene_2020_06_091
crossref_primary_10_1016_j_spasta_2021_100586
crossref_primary_10_1080_00036846_2018_1494812
crossref_primary_10_1016_j_jmva_2020_104654
crossref_primary_10_1080_03610918_2024_2449402
crossref_primary_10_1093_jjfinec_nbab016
crossref_primary_10_3390_su13094627
crossref_primary_10_1016_j_najef_2020_101210
crossref_primary_10_1515_demo_2019_0008
crossref_primary_10_1016_j_ecolind_2025_113132
crossref_primary_10_1016_j_cam_2018_08_001
crossref_primary_10_1016_j_irfa_2018_11_007
crossref_primary_10_1016_j_jbankfin_2021_106248
crossref_primary_10_1016_j_rse_2021_112283
crossref_primary_10_1093_biomtc_ujad042
crossref_primary_10_1016_j_ejor_2023_05_016
crossref_primary_10_1007_s13201_024_02211_5
crossref_primary_10_1007_s00362_022_01330_y
crossref_primary_10_1016_j_csda_2022_107546
crossref_primary_10_1111_risa_13695
crossref_primary_10_1016_j_csda_2024_108076
crossref_primary_10_1016_j_irfa_2023_102538
crossref_primary_10_1111_sjos_12566
crossref_primary_10_1063_1674_0068_cjcp2210154
crossref_primary_10_1016_j_jmva_2019_03_007
crossref_primary_10_1016_j_ribaf_2025_102790
crossref_primary_10_1016_j_trgeo_2023_100987
crossref_primary_10_1007_s00362_024_01633_2
crossref_primary_10_1016_j_bspc_2019_101686
crossref_primary_10_1515_demo_2022_0100
crossref_primary_10_1016_j_eneco_2023_106853
crossref_primary_10_3390_w13070964
crossref_primary_10_1016_j_ces_2020_116210
crossref_primary_10_1016_j_compchemeng_2022_107788
crossref_primary_10_5194_hess_28_1147_2024
crossref_primary_10_1007_s12561_023_09396_4
crossref_primary_10_1007_s12599_021_00691_2
crossref_primary_10_1002_qj_4521
crossref_primary_10_1007_s00477_019_01662_6
crossref_primary_10_1007_s10182_019_00353_5
crossref_primary_10_1016_j_csda_2020_107091
crossref_primary_10_1088_1757_899X_964_1_012031
crossref_primary_10_1111_biom_13014
crossref_primary_10_1111_biom_13652
crossref_primary_10_29220_CSAM_2021_28_1_059
crossref_primary_10_3390_w15142641
crossref_primary_10_2139_ssrn_3416573
crossref_primary_10_1080_10106049_2021_2017015
crossref_primary_10_1002_cjce_23968
crossref_primary_10_1016_j_ecosta_2019_03_003
crossref_primary_10_1016_j_jbef_2021_100498
crossref_primary_10_1016_j_spl_2017_04_014
Cites_doi 10.1214/aos/1031689016
10.1017/S0266466608080304
10.1198/jasa.2011.ap09272
10.1080/01621459.2013.783842
10.1016/j.insmatheco.2007.02.001
10.1080/07350015.2014.926171
10.1016/j.jspi.2013.03.008
10.2139/ssrn.2695063
10.1016/j.jmva.2015.01.011
10.1080/01621459.2014.916577
10.2307/1913643
10.1111/j.1368-423X.2008.00274.x
10.18637/jss.v027.i05
10.1016/j.insmatheco.2013.09.009
10.32614/CRAN.package.kdecopula
10.5089/9781451945591.011
10.1080/13518470902853491
10.1214/aoms/1177704472
10.1016/j.jmva.2009.12.001
10.1080/07350015.2012.738955
10.1016/B978-0-444-62731-5.00017-8
10.1016/j.jmva.2016.07.003
10.1198/jasa.2009.tm09170
10.1016/j.jmva.2013.04.014
10.1061/(ASCE)1084-0699(2007)12:4(347)
10.1007/s11222-017-9733-y
10.1093/rfs/hhw060
10.1016/j.jkss.2015.06.002
10.1214/10-BJPS131
10.1016/j.jmva.2010.02.003
10.1257/aer.20120555
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.csda.2016.12.009
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-7352
EndPage 18
ExternalDocumentID 10_1016_j_csda_2016_12_009
S0167947316303073
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c333t-5c40afe6f1db363d6d4be6f43e187930b715c4e94749dcd4e71837794e0e58b43
IEDL.DBID .~1
ISSN 0167-9473
IngestDate Tue Aug 05 09:14:21 EDT 2025
Tue Jul 01 02:24:32 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Fri Feb 23 02:23:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Conditional copula quantile
Stress testing
Conditional distribution
Quantile regression
Vine copula
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-5c40afe6f1db363d6d4be6f43e187930b715c4e94749dcd4e71837794e0e58b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6791-8225
PQID 2253280055
PQPubID 24069
PageCount 18
ParticipantIDs proquest_miscellaneous_2253280055
crossref_citationtrail_10_1016_j_csda_2016_12_009
crossref_primary_10_1016_j_csda_2016_12_009
elsevier_sciencedirect_doi_10_1016_j_csda_2016_12_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2017
2017-06-00
20170601
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: June 2017
PublicationDecade 2010
PublicationTitle Computational statistics & data analysis
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Aas, Czado, Frigessi, Bakken (br000005) 2009; 44
Genest, Favre (br000085) 2007; 12
R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna, Austria. URL
Xiao, Koenker (br000245) 2009; 104
Dette, Van Hecke, Volgushev (br000065) 2014; 109
Azzalini, Capitanio (br000015) 2014
Kotz, Nadarajah (br000165) 2004
version 2.5-0.
version 2.0.5.
Killiches, M., Kraus, D., Czado, C., 2016c. Using model distances to investigate the simplifying assumption, goodness-of-fit and truncation levels for vine copulas. arXiv preprint
Bernard, Czado (br000025) 2015; 138
Noh, Ghouch, Van Keilegom (br000200) 2015; 33
Cooke, R.M., Joe, H., Chang, B., 2015. Vine regression. Resources for the Future Discussion Paper 15–52. Available at SSRN
Schepsmeier, U., Stöber, J., Brechmann, E.C., Graeler, B., Nagler, T., Erhardt, T., 2016. VineCopula: Statistical Inference of Vine Copulas. URL
Noh, Ghouch, Bouezmarni (br000195) 2013; 108
Duong, T., 2015. ks: Kernel Smoothing. URL
Killiches, Kraus, Czado (br000125) 2016
Spokoiny, Wang, Härdle (br000225) 2013; 143
.
Li, Lin, Racine (br000170) 2013; 31
Koenker, Bassett (br000155) 1978; 46
Nelsen (br000190) 2007
Brachinger, Fahrmeir, Hamerle, Tutz (br000035) 1996
version 5.05.
Bedford, Cooke (br000020) 2002; 30
Hayfield, Racine (br000095) 2008; 27
Hansen (br000090) 2008; 24
Nagler, T., 2016. kdecopula: Kernel Smoothing for Bivariate Copula Densities. URL
Adrian, Brunnermeier (br000010) 2016; 106
Brechmann, Hendrich, Czado (br000040) 2013; 53
Sklar (br000220) 1959; 8
Bouyé, Salmon (br000030) 2009; 15
Joe (br000120) 1997
Chen, Koenker, Xiao (br000050) 2009; 12
Czado (br000060) 2010
Brownlees, C.T., Engle, R.F., 2016. SRISK: A conditional capital shortfall measure of systemic risk. Available at SSRN 1611229.
Parzen (br000205) 1962; 33
Venables, Ripley (br000235) 2002
Hobæk Haff, Aas, Frigessi (br000100) 2010; 101
Meinshausen (br000175) 2006; 7
International Monetary Fund, 2009. Global Financial Stability Report. Washington DC.
Koenker (br000140) 2005
version 1.9.4.
Koenker, R., 2013. quantreg: Quantile Regression. URL
Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M., Hofner, B., 2015. mboost: Model-Based Boosting. URL
Killiches, M., Kraus, D., Czado, C., 2016b. Model distances for vine copulas in high dimensions. arXiv preprint
Hwang, Shim (br000110) 2005
Duong (br000075) 2016; 45
Komunjer (br000160) 2013
version 0.7.0.
Fenske, Kneib, Hothorn (br000080) 2012; 106
Koenker (br000145) 2011; 25
Nagler, Czado (br000185) 2016; 151
Stöber, Joe, Czado (br000230) 2013; 119
Wu, Yu, Yu (br000240) 2010; 101
Kotz (10.1016/j.csda.2016.12.009_br000165) 2004
Xiao (10.1016/j.csda.2016.12.009_br000245) 2009; 104
Azzalini (10.1016/j.csda.2016.12.009_br000015) 2014
Duong (10.1016/j.csda.2016.12.009_br000075) 2016; 45
Hansen (10.1016/j.csda.2016.12.009_br000090) 2008; 24
10.1016/j.csda.2016.12.009_br000130
10.1016/j.csda.2016.12.009_br000210
10.1016/j.csda.2016.12.009_br000055
10.1016/j.csda.2016.12.009_br000215
Joe (10.1016/j.csda.2016.12.009_br000120) 1997
10.1016/j.csda.2016.12.009_br000135
Noh (10.1016/j.csda.2016.12.009_br000200) 2015; 33
Parzen (10.1016/j.csda.2016.12.009_br000205) 1962; 33
10.1016/j.csda.2016.12.009_br000180
Bedford (10.1016/j.csda.2016.12.009_br000020) 2002; 30
Noh (10.1016/j.csda.2016.12.009_br000195) 2013; 108
10.1016/j.csda.2016.12.009_br000105
Koenker (10.1016/j.csda.2016.12.009_br000155) 1978; 46
Nagler (10.1016/j.csda.2016.12.009_br000185) 2016; 151
Spokoiny (10.1016/j.csda.2016.12.009_br000225) 2013; 143
Bouyé (10.1016/j.csda.2016.12.009_br000030) 2009; 15
Killiches (10.1016/j.csda.2016.12.009_br000125) 2016
Hwang (10.1016/j.csda.2016.12.009_br000110) 2005
Czado (10.1016/j.csda.2016.12.009_br000060) 2010
Genest (10.1016/j.csda.2016.12.009_br000085) 2007; 12
10.1016/j.csda.2016.12.009_br000070
Hobæk Haff (10.1016/j.csda.2016.12.009_br000100) 2010; 101
Adrian (10.1016/j.csda.2016.12.009_br000010) 2016; 106
Brechmann (10.1016/j.csda.2016.12.009_br000040) 2013; 53
10.1016/j.csda.2016.12.009_br000150
Hayfield (10.1016/j.csda.2016.12.009_br000095) 2008; 27
Koenker (10.1016/j.csda.2016.12.009_br000140) 2005
10.1016/j.csda.2016.12.009_br000115
Sklar (10.1016/j.csda.2016.12.009_br000220) 1959; 8
Bernard (10.1016/j.csda.2016.12.009_br000025) 2015; 138
Fenske (10.1016/j.csda.2016.12.009_br000080) 2012; 106
Venables (10.1016/j.csda.2016.12.009_br000235) 2002
Aas (10.1016/j.csda.2016.12.009_br000005) 2009; 44
Koenker (10.1016/j.csda.2016.12.009_br000145) 2011; 25
Nelsen (10.1016/j.csda.2016.12.009_br000190) 2007
Dette (10.1016/j.csda.2016.12.009_br000065) 2014; 109
Meinshausen (10.1016/j.csda.2016.12.009_br000175) 2006; 7
10.1016/j.csda.2016.12.009_br000045
Wu (10.1016/j.csda.2016.12.009_br000240) 2010; 101
Chen (10.1016/j.csda.2016.12.009_br000050) 2009; 12
Stöber (10.1016/j.csda.2016.12.009_br000230) 2013; 119
Li (10.1016/j.csda.2016.12.009_br000170) 2013; 31
Brachinger (10.1016/j.csda.2016.12.009_br000035) 1996
Komunjer (10.1016/j.csda.2016.12.009_br000160) 2013
References_xml – volume: 151
  start-page: 69
  year: 2016
  end-page: 89
  ident: br000185
  article-title: Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas
  publication-title: J. Multivariate Anal.
– reference: R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna, Austria. URL:
– volume: 101
  start-page: 1296
  year: 2010
  end-page: 1310
  ident: br000100
  article-title: On the simplified pair-copula construction — simply useful or too simplistic?
  publication-title: J. Multivariate Anal.
– reference: Schepsmeier, U., Stöber, J., Brechmann, E.C., Graeler, B., Nagler, T., Erhardt, T., 2016. VineCopula: Statistical Inference of Vine Copulas. URL:
– volume: 138
  start-page: 104
  year: 2015
  end-page: 126
  ident: br000025
  article-title: Conditional quantiles and tail dependence
  publication-title: J. Multivariate Anal.
– volume: 53
  start-page: 722
  year: 2013
  end-page: 732
  ident: br000040
  article-title: Conditional copula simulation for systemic risk stress testing
  publication-title: Insurance Math. Econom.
– volume: 46
  start-page: 33
  year: 1978
  end-page: 50
  ident: br000155
  article-title: Regression quantiles
  publication-title: Econometrica
– year: 2004
  ident: br000165
  article-title: Multivariate
– volume: 8
  start-page: 229
  year: 1959
  end-page: 231
  ident: br000220
  article-title: Fonctions dé repartition á n dimensions et leurs marges
  publication-title: Publ. Inst. Statist. Univ. Paris
– year: 2014
  ident: br000015
  publication-title: The Skew-Normal and Related Families
– volume: 45
  start-page: 33
  year: 2016
  end-page: 50
  ident: br000075
  article-title: Non-parametric smoothed estimation of multivariate cumulative distribution and survival functions, and receiver operating characteristic curves
  publication-title: J. Korean Stat. Soc.
– volume: 101
  start-page: 1607
  year: 2010
  end-page: 1621
  ident: br000240
  article-title: Single-index quantile regression
  publication-title: J. Multivariate Anal.
– volume: 106
  start-page: 1705
  year: 2016
  end-page: 1741
  ident: br000010
  article-title: CoVaR
  publication-title: Amer. Econ. Rev.
– year: 2007
  ident: br000190
  article-title: An Introduction to Copulas
– reference:  version 0.7.0.
– volume: 109
  start-page: 1319
  year: 2014
  end-page: 1324
  ident: br000065
  article-title: Some comments on copula-based regression
  publication-title: J. Amer. Statist. Assoc.
– reference: Duong, T., 2015. ks: Kernel Smoothing. URL:
– volume: 33
  start-page: 167
  year: 2015
  end-page: 178
  ident: br000200
  article-title: Semiparametric conditional quantile estimation through copula-based multivariate models
  publication-title: J. Bus. Econom. Statist.
– volume: 24
  start-page: 726
  year: 2008
  end-page: 748
  ident: br000090
  article-title: Uniform convergence rates for kernel estimation with dependent data
  publication-title: Econometric Theory
– reference: Cooke, R.M., Joe, H., Chang, B., 2015. Vine regression. Resources for the Future Discussion Paper 15–52. Available at SSRN:
– year: 1997
  ident: br000120
  article-title: Multivariate Models and Multivariate Dependence Concepts
– volume: 108
  start-page: 676
  year: 2013
  end-page: 688
  ident: br000195
  article-title: Copula-based regression estimation and inference
  publication-title: J. Amer. Statist. Assoc.
– reference:  version 1.9.4.
– reference:  version 2.5-0.
– reference: Nagler, T., 2016. kdecopula: Kernel Smoothing for Bivariate Copula Densities. URL:
– year: 1996
  ident: br000035
  article-title: Multivariate Statistische Verfahren
– reference:  version 5.05.
– start-page: 767
  year: 2013
  end-page: 785
  ident: br000160
  article-title: Quantile prediction
  publication-title: Handbook of Economic Forecasting
– start-page: 93
  year: 2010
  end-page: 109
  ident: br000060
  article-title: Pair-copula constructions of multivariate copulas
  publication-title: Copula Theory and its Applications
– volume: 143
  start-page: 1109
  year: 2013
  end-page: 1129
  ident: br000225
  article-title: Local quantile regression
  publication-title: J. Statist. Plann. Inference
– reference: Brownlees, C.T., Engle, R.F., 2016. SRISK: A conditional capital shortfall measure of systemic risk. Available at SSRN 1611229.
– volume: 31
  start-page: 57
  year: 2013
  end-page: 65
  ident: br000170
  article-title: Optimal bandwidth selection for nonparametric conditional distribution and quantile functions
  publication-title: J. Bus. Econom. Statist.
– reference: Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M., Hofner, B., 2015. mboost: Model-Based Boosting. URL:
– reference: Killiches, M., Kraus, D., Czado, C., 2016c. Using model distances to investigate the simplifying assumption, goodness-of-fit and truncation levels for vine copulas. arXiv preprint
– year: 2005
  ident: br000140
  article-title: Quantile Regression
– volume: 7
  start-page: 983
  year: 2006
  end-page: 999
  ident: br000175
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– volume: 12
  start-page: 347
  year: 2007
  end-page: 368
  ident: br000085
  article-title: Everything you always wanted to know about copula modeling but were afraid to ask
  publication-title: J. Hydrol. Eng.
– year: 2002
  ident: br000235
  article-title: Modern Applied Statistics with S
– reference:  version 2.0.5.
– volume: 15
  start-page: 721
  year: 2009
  end-page: 750
  ident: br000030
  article-title: Dynamic copula quantile regressions and tail area dynamic dependence in forex markets
  publication-title: Eur. J. Finance
– year: 2016
  ident: br000125
  article-title: Examination and visualisation of the simplifying assumption for vine copulas in three dimensions
  publication-title: Aust. N. Z. J. Stat.
– reference: International Monetary Fund, 2009. Global Financial Stability Report. Washington DC.
– reference: .
– volume: 33
  start-page: 1065
  year: 1962
  end-page: 1076
  ident: br000205
  article-title: On estimation of a probability density function and mode
  publication-title: Ann. Math. Statist.
– volume: 12
  start-page: 50
  year: 2009
  end-page: 67
  ident: br000050
  article-title: Copula-based nonlinear quantile autoregression
  publication-title: Econom. J.
– start-page: 512
  year: 2005
  end-page: 520
  ident: br000110
  article-title: A simple quantile regression via support vector machine
  publication-title: Advances in Natural Computation
– volume: 25
  start-page: 239
  year: 2011
  end-page: 262
  ident: br000145
  article-title: Additive models for quantile regression: Model selection and confidence bandaids
  publication-title: Braz. J. Probab. Stat.
– volume: 30
  start-page: 1031
  year: 2002
  end-page: 1068
  ident: br000020
  article-title: Vines: A new graphical model for dependent random variables
  publication-title: Ann. Statist.
– reference: Killiches, M., Kraus, D., Czado, C., 2016b. Model distances for vine copulas in high dimensions. arXiv preprint
– volume: 27
  start-page: 1
  year: 2008
  end-page: 32
  ident: br000095
  article-title: Nonparametric econometrics: The np package
  publication-title: J. Stat. Softw.
– reference: Koenker, R., 2013. quantreg: Quantile Regression. URL:
– volume: 106
  start-page: 494
  year: 2012
  end-page: 510
  ident: br000080
  article-title: Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression
  publication-title: J. Amer. Statist. Assoc.
– volume: 119
  start-page: 101
  year: 2013
  end-page: 118
  ident: br000230
  article-title: Simplified pair copula constructions—limitations and extensions
  publication-title: J. Multivariate Anal.
– volume: 44
  start-page: 182
  year: 2009
  end-page: 198
  ident: br000005
  article-title: Pair-copula constructions of multiple dependence
  publication-title: Insurance Math. Econom.
– volume: 104
  start-page: 1696
  year: 2009
  end-page: 1712
  ident: br000245
  article-title: Conditional quantile estimation for generalized autoregressive conditional heteroscedasticity models
  publication-title: J. Amer. Statist. Assoc.
– volume: 7
  start-page: 983
  year: 2006
  ident: 10.1016/j.csda.2016.12.009_br000175
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– year: 2016
  ident: 10.1016/j.csda.2016.12.009_br000125
  article-title: Examination and visualisation of the simplifying assumption for vine copulas in three dimensions
  publication-title: Aust. N. Z. J. Stat.
– volume: 30
  start-page: 1031
  year: 2002
  ident: 10.1016/j.csda.2016.12.009_br000020
  article-title: Vines: A new graphical model for dependent random variables
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1031689016
– volume: 24
  start-page: 726
  year: 2008
  ident: 10.1016/j.csda.2016.12.009_br000090
  article-title: Uniform convergence rates for kernel estimation with dependent data
  publication-title: Econometric Theory
  doi: 10.1017/S0266466608080304
– volume: 106
  start-page: 494
  year: 2012
  ident: 10.1016/j.csda.2016.12.009_br000080
  article-title: Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/jasa.2011.ap09272
– volume: 108
  start-page: 676
  year: 2013
  ident: 10.1016/j.csda.2016.12.009_br000195
  article-title: Copula-based regression estimation and inference
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2013.783842
– volume: 44
  start-page: 182
  year: 2009
  ident: 10.1016/j.csda.2016.12.009_br000005
  article-title: Pair-copula constructions of multiple dependence
  publication-title: Insurance Math. Econom.
  doi: 10.1016/j.insmatheco.2007.02.001
– year: 2014
  ident: 10.1016/j.csda.2016.12.009_br000015
– volume: 33
  start-page: 167
  year: 2015
  ident: 10.1016/j.csda.2016.12.009_br000200
  article-title: Semiparametric conditional quantile estimation through copula-based multivariate models
  publication-title: J. Bus. Econom. Statist.
  doi: 10.1080/07350015.2014.926171
– volume: 143
  start-page: 1109
  year: 2013
  ident: 10.1016/j.csda.2016.12.009_br000225
  article-title: Local quantile regression
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/j.jspi.2013.03.008
– ident: 10.1016/j.csda.2016.12.009_br000055
  doi: 10.2139/ssrn.2695063
– year: 2002
  ident: 10.1016/j.csda.2016.12.009_br000235
– volume: 138
  start-page: 104
  year: 2015
  ident: 10.1016/j.csda.2016.12.009_br000025
  article-title: Conditional quantiles and tail dependence
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2015.01.011
– volume: 109
  start-page: 1319
  year: 2014
  ident: 10.1016/j.csda.2016.12.009_br000065
  article-title: Some comments on copula-based regression
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2014.916577
– volume: 46
  start-page: 33
  year: 1978
  ident: 10.1016/j.csda.2016.12.009_br000155
  article-title: Regression quantiles
  publication-title: Econometrica
  doi: 10.2307/1913643
– volume: 12
  start-page: 50
  year: 2009
  ident: 10.1016/j.csda.2016.12.009_br000050
  article-title: Copula-based nonlinear quantile autoregression
  publication-title: Econom. J.
  doi: 10.1111/j.1368-423X.2008.00274.x
– volume: 27
  start-page: 1
  year: 2008
  ident: 10.1016/j.csda.2016.12.009_br000095
  article-title: Nonparametric econometrics: The np package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v027.i05
– ident: 10.1016/j.csda.2016.12.009_br000215
– volume: 53
  start-page: 722
  year: 2013
  ident: 10.1016/j.csda.2016.12.009_br000040
  article-title: Conditional copula simulation for systemic risk stress testing
  publication-title: Insurance Math. Econom.
  doi: 10.1016/j.insmatheco.2013.09.009
– year: 2004
  ident: 10.1016/j.csda.2016.12.009_br000165
– ident: 10.1016/j.csda.2016.12.009_br000180
  doi: 10.32614/CRAN.package.kdecopula
– volume: 8
  start-page: 229
  year: 1959
  ident: 10.1016/j.csda.2016.12.009_br000220
  article-title: Fonctions dé repartition á n dimensions et leurs marges
  publication-title: Publ. Inst. Statist. Univ. Paris
– ident: 10.1016/j.csda.2016.12.009_br000150
– ident: 10.1016/j.csda.2016.12.009_br000115
  doi: 10.5089/9781451945591.011
– volume: 15
  start-page: 721
  year: 2009
  ident: 10.1016/j.csda.2016.12.009_br000030
  article-title: Dynamic copula quantile regressions and tail area dynamic dependence in forex markets
  publication-title: Eur. J. Finance
  doi: 10.1080/13518470902853491
– ident: 10.1016/j.csda.2016.12.009_br000070
– ident: 10.1016/j.csda.2016.12.009_br000105
– year: 2007
  ident: 10.1016/j.csda.2016.12.009_br000190
– volume: 33
  start-page: 1065
  year: 1962
  ident: 10.1016/j.csda.2016.12.009_br000205
  article-title: On estimation of a probability density function and mode
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177704472
– year: 2005
  ident: 10.1016/j.csda.2016.12.009_br000140
– volume: 101
  start-page: 1296
  year: 2010
  ident: 10.1016/j.csda.2016.12.009_br000100
  article-title: On the simplified pair-copula construction — simply useful or too simplistic?
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2009.12.001
– volume: 31
  start-page: 57
  year: 2013
  ident: 10.1016/j.csda.2016.12.009_br000170
  article-title: Optimal bandwidth selection for nonparametric conditional distribution and quantile functions
  publication-title: J. Bus. Econom. Statist.
  doi: 10.1080/07350015.2012.738955
– year: 1996
  ident: 10.1016/j.csda.2016.12.009_br000035
– start-page: 767
  year: 2013
  ident: 10.1016/j.csda.2016.12.009_br000160
  article-title: Quantile prediction
  doi: 10.1016/B978-0-444-62731-5.00017-8
– ident: 10.1016/j.csda.2016.12.009_br000210
– volume: 151
  start-page: 69
  year: 2016
  ident: 10.1016/j.csda.2016.12.009_br000185
  article-title: Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2016.07.003
– volume: 104
  start-page: 1696
  year: 2009
  ident: 10.1016/j.csda.2016.12.009_br000245
  article-title: Conditional quantile estimation for generalized autoregressive conditional heteroscedasticity models
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/jasa.2009.tm09170
– ident: 10.1016/j.csda.2016.12.009_br000135
– volume: 119
  start-page: 101
  year: 2013
  ident: 10.1016/j.csda.2016.12.009_br000230
  article-title: Simplified pair copula constructions—limitations and extensions
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2013.04.014
– start-page: 93
  year: 2010
  ident: 10.1016/j.csda.2016.12.009_br000060
  article-title: Pair-copula constructions of multivariate copulas
– volume: 12
  start-page: 347
  year: 2007
  ident: 10.1016/j.csda.2016.12.009_br000085
  article-title: Everything you always wanted to know about copula modeling but were afraid to ask
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2007)12:4(347)
– ident: 10.1016/j.csda.2016.12.009_br000130
  doi: 10.1007/s11222-017-9733-y
– ident: 10.1016/j.csda.2016.12.009_br000045
  doi: 10.1093/rfs/hhw060
– volume: 45
  start-page: 33
  year: 2016
  ident: 10.1016/j.csda.2016.12.009_br000075
  article-title: Non-parametric smoothed estimation of multivariate cumulative distribution and survival functions, and receiver operating characteristic curves
  publication-title: J. Korean Stat. Soc.
  doi: 10.1016/j.jkss.2015.06.002
– volume: 25
  start-page: 239
  year: 2011
  ident: 10.1016/j.csda.2016.12.009_br000145
  article-title: Additive models for quantile regression: Model selection and confidence bandaids
  publication-title: Braz. J. Probab. Stat.
  doi: 10.1214/10-BJPS131
– volume: 101
  start-page: 1607
  year: 2010
  ident: 10.1016/j.csda.2016.12.009_br000240
  article-title: Single-index quantile regression
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2010.02.003
– year: 1997
  ident: 10.1016/j.csda.2016.12.009_br000120
– volume: 106
  start-page: 1705
  year: 2016
  ident: 10.1016/j.csda.2016.12.009_br000010
  article-title: CoVaR
  publication-title: Amer. Econ. Rev.
  doi: 10.1257/aer.20120555
– start-page: 512
  year: 2005
  ident: 10.1016/j.csda.2016.12.009_br000110
  article-title: A simple quantile regression via support vector machine
SSID ssj0002478
Score 2.5435283
Snippet Quantile regression, that is the prediction of conditional quantiles, has steadily gained importance in statistical modeling and financial applications. A new...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms algorithms
Conditional copula quantile
Conditional distribution
credit
crossing
prediction
Quantile regression
regression analysis
statistical models
Stress testing
Vine copula
Title D-vine copula based quantile regression
URI https://dx.doi.org/10.1016/j.csda.2016.12.009
https://www.proquest.com/docview/2253280055
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lAiCB1mbZHeT9FiqpVrag1rsbUn2IRVJax8e_e3O5FFRpAdPIWE3ZGdnv5ndfDNDyEUc2CiMrUfjKLKUa8FobCNBQwWrHNx_1bQYnNwfBN0hvx-JUYW0y1gYpFUW2J9jeobWxZNGIc3GdDxuPCKBvsmx8hLLNBUj2HmIWn79-U3z8HmOxpjfG1sXgTM5x0vNNeYe8oLsSBBJiX8bp18wndmezg7ZLpxGp5V_1y6pmHSPbPVXGVfn--Tyhn6Aw-iorCCXg8ZJO-9LkBsse2dmXnK-a3pAhp3bp3aXFkUQqGKMLahQ3I2tCaynExYwHWiewB1nBuuEMzcJPWhiYGi8qZXmBowNJhHkxjUiSjg7JNV0kpoj4nCmfO1HrvUN47EVkTaJDi0LYIsR-4rViFeOXqoiQzgWqniTJRXsVaLEJEpMer4EidXI1arPNM-Psba1KIUqf8yyBABf2--8nAEJ6o__NOLUTJZzCXDEYEiuEMf_fPcJ2fTRVGcnK6ekupgtzRk4GouknmlSnWy07nrdAV57D8-9L1-o0r8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GOAAHxFOMZ5GQOKCytkna7ogGaMC2C5u0W5TmgYZQN_bgyG_H7mMIhHbg2CqpGsf-7KafbUIuZGjjSFrflXFsXaY5daWNuRspsHII_1XDYnJypxu2-uxxwAcV0ixzYZBWWWB_jukZWhd36oU06-PhsP6MBPoGw85LNNPUFbLKwHyxjcH15zfPI2A5HGOBbxxeZM7kJC811Vh8yA-zM0FkJf7tnX7hdOZ87rfIZhE1Ojf5i22Tikl3yEZnUXJ1uksub90PiBgdlXXkctA7aed9DoIDu3cm5iUnvKZ7pH9_12u23KILgqsopTOXK-ZJa0Lr64SGVIeaJXDFqMFG4dRLIh-GGFgaa2ilmQFvg1UEmfEMjxNG90k1HaXmgDiMqkAHsWcDQ5m0PNYm0ZGlIXxjyEDRGvHL1QtVlAjHThVvouSCvQqUmECJCT8QILEauVrMGecFMpaO5qVQxY9tFoDgS-edlzsgQP_xp4ZMzWg-FYBHFJbkcX74z2efkbVWr9MW7Yfu0xFZD9BvZ8csx6Q6m8zNCUQds-Q006ovxeLSqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D-vine+copula+based+quantile+regression&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Kraus%2C+Daniel&rft.au=Czado%2C+Claudia&rft.date=2017-06-01&rft.pub=Elsevier+B.V&rft.issn=0167-9473&rft.eissn=1872-7352&rft.volume=110&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1016%2Fj.csda.2016.12.009&rft.externalDocID=S0167947316303073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon