Insight into the promotional mechanism of Cu modification towards wide-temperature NH3-SCR performance of NbCe catalyst
[Display omitted] A simple strategy of Cu modification was proposed to broaden the operation temperature window for NbCe catalyst. The best catalyst Cu0.010/Nb1Ce3 presented over 90% NO conversion in a wide temperature range of 200–400 °C and exhibited an excellent H2O or/and SO2 resistance at 275 °...
Saved in:
Cover
Loading…
Abstract | [Display omitted]
A simple strategy of Cu modification was proposed to broaden the operation temperature window for NbCe catalyst. The best catalyst Cu0.010/Nb1Ce3 presented over 90% NO conversion in a wide temperature range of 200–400 °C and exhibited an excellent H2O or/and SO2 resistance at 275 °C. To understand the promotional mechanism of Cu modification, the correlation among the “activity-structure–property” were tried to establish systematically. Cu species highly dispersed on NbCe catalyst to serve as the active component. The strong interaction among Cu, Nb and Ce promoted the emergence of NbO4 and induced more Brønsted acid sites. And Cu modification obviously enhanced the redox behavior of the NbCe catalyst. Besides, EPR probed the Cu species exited in the form of monomeric and dimeric Cu2+, the isolated Cu2+ acted as catalytic active sites to promote the reaction: Cu2+–NO3−+NO(g) → Cu2+–NO2−+NO2(g). Then the generated NO2 would accelerate the fast-SCR reaction process and thus facilitated the low-temperature deNOx efficiency. Moreover, surface nitrates became unstable and easy to decompose after Cu modification, thus providing additional adsorption and activation sites for NH3, and ensuring the improvement of catalytic activity at high temperature. Since the NH3-SCR reaction followed by E-R reaction pathway efficaciously over Cu0.010/Nb1Ce3 catalyst, the excellent H2O and SO2 resistance was as expected. |
---|---|
AbstractList | [Display omitted]
A simple strategy of Cu modification was proposed to broaden the operation temperature window for NbCe catalyst. The best catalyst Cu0.010/Nb1Ce3 presented over 90% NO conversion in a wide temperature range of 200–400 °C and exhibited an excellent H2O or/and SO2 resistance at 275 °C. To understand the promotional mechanism of Cu modification, the correlation among the “activity-structure–property” were tried to establish systematically. Cu species highly dispersed on NbCe catalyst to serve as the active component. The strong interaction among Cu, Nb and Ce promoted the emergence of NbO4 and induced more Brønsted acid sites. And Cu modification obviously enhanced the redox behavior of the NbCe catalyst. Besides, EPR probed the Cu species exited in the form of monomeric and dimeric Cu2+, the isolated Cu2+ acted as catalytic active sites to promote the reaction: Cu2+–NO3−+NO(g) → Cu2+–NO2−+NO2(g). Then the generated NO2 would accelerate the fast-SCR reaction process and thus facilitated the low-temperature deNOx efficiency. Moreover, surface nitrates became unstable and easy to decompose after Cu modification, thus providing additional adsorption and activation sites for NH3, and ensuring the improvement of catalytic activity at high temperature. Since the NH3-SCR reaction followed by E-R reaction pathway efficaciously over Cu0.010/Nb1Ce3 catalyst, the excellent H2O and SO2 resistance was as expected. A simple strategy of Cu modification was proposed to broaden the operation temperature window for NbCe catalyst.The best catalyst Cu0.010/NbiCe3 presented over 90%NO conversion in a wide temperature range of 200-400℃and exhibited an excellent H2O or/and SO2 resistance at 275℃.To understand the promotional mechanism of Cu modification,the correlation among the"activity-structure-property"were tried to establish systematically.Cu species highly dispersed on NbCe catalyst to serve as the active component.The strong interaction among Cu,Nb and Ce promoted the emergence of NbO4 and induced more Br?nsted acid sites.And Cu modification obviously enhanced the redox behavior of the NbCe cat-alyst.Besides,EPR probed the Cu species exited in the form of monomeric and dimeric Cu2+,the isolated Cu2+acted as catalytic active sites to promote the reaction:Cu2+-NO3+NO(g)→ Cu2+-NO2+NO2(g).Then the generated NO2 would accelerate the fast-SCR reaction process and thus facilitated the low-temperature deNOx efficiency.Moreover,surface nitrates became unstable and easy to decompose after Cu modification,thus providing additional adsorption and activation sites for NH3,and ensuring the improvement of catalytic activity at high temperature.Since the NH3-SCR reaction followed by E-R reac-tion pathway efficaciously over Cuo.oio/Nb1Ce3 catalyst,the excellent H2O and SO2 resistance was as expected. |
Author | Zou, Weixin Dong, Lin Yang, Yuyao An, Dongqi Cai, Yandi Tong, Qing Sun, Jingfang |
AuthorAffiliation | Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,Nanjing University,Nanjing 210093,China%Center for Nanochemistry,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China%Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Nanjing University,Nanjing 210093,China%Jiangsu Key Laboratory of Vehicle Emissions Control,Center of Modern Analysis,Nanjing University,Nanjing 210093,China%Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Center of Modern Analysis,Nanjing University,Nanjing 210093,China |
AuthorAffiliation_xml | – name: Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,Nanjing University,Nanjing 210093,China%Center for Nanochemistry,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China%Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Nanjing University,Nanjing 210093,China%Jiangsu Key Laboratory of Vehicle Emissions Control,Center of Modern Analysis,Nanjing University,Nanjing 210093,China%Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Center of Modern Analysis,Nanjing University,Nanjing 210093,China |
Author_xml | – sequence: 1 givenname: Dongqi surname: An fullname: An, Dongqi organization: Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210093, China – sequence: 2 givenname: Yuyao surname: Yang fullname: Yang, Yuyao organization: Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China – sequence: 3 givenname: Weixin surname: Zou fullname: Zou, Weixin organization: Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210093, China – sequence: 4 givenname: Yandi surname: Cai fullname: Cai, Yandi organization: Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210093, China – sequence: 5 givenname: Qing surname: Tong fullname: Tong, Qing organization: Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, China – sequence: 6 givenname: Jingfang surname: Sun fullname: Sun, Jingfang email: sunjf@nju.edu.cn organization: Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, China – sequence: 7 givenname: Lin surname: Dong fullname: Dong, Lin email: donglin@nju.edu.cn organization: Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, China |
BookMark | eNqFkE1vEzEQhi1UJNLCL-DiC8ddxnac7h44oBW0laoi8SFxs5zxbONV1o5sh6j_Hm_DiQOcZjQzz0jvc8kuQgzE2FsBrQCxeT-1OOGOWglStqBbkN0LtpJSQKOk-HnBVgJg3fR6LV6xy5wnAAmd6FbsdBeyf9wV7kOJvOyIH1KcY_Ex2D2fCXc2-DzzOPLhyOfo_OjRLmte4skml_nJO2oKzQdKthwT8Ydb1XwbvvI6GGOabUBa-IftQLyydv-Uy2v2crT7TG_-1Cv24_On78Ntc__l5m74eN-gUqo0GkXvAIj09QavhbBau21XG4GqBzcqi2u9GbV1dgN9h7LbdtXIWiEqW_OrK_bu_Pdkw2jDo5niMdVo2VRjtPiqZhTUu_58hynmnGg06MtzzpKs3xsBZjFtJvNs2iykAW2q6cqqv9hD8rNNT_-hPpwpqvF_eUomo6fqyvlEWIyL_p_8b8B9m3o |
CitedBy_id | crossref_primary_10_1016_j_chphi_2023_100205 crossref_primary_10_1016_j_mcat_2024_114347 crossref_primary_10_1016_j_cjche_2024_09_024 crossref_primary_10_1016_j_surfin_2024_105229 crossref_primary_10_1016_j_cej_2023_146889 crossref_primary_10_1016_j_fuel_2024_133634 crossref_primary_10_1016_j_fuel_2022_125390 crossref_primary_10_1016_j_seppur_2023_125212 crossref_primary_10_1016_j_apsusc_2024_159571 crossref_primary_10_1016_j_apcatb_2023_123254 crossref_primary_10_1002_slct_202401052 crossref_primary_10_1016_j_cej_2024_158002 |
Cites_doi | 10.1016/j.apcatb.2015.06.055 10.1016/j.apcatb.2012.09.003 10.1021/am5004969 10.1016/j.cnsns.2018.02.008 10.1016/j.apcatb.2018.05.075 10.1126/science.265.5176.1217 10.1021/acs.est.0c02840 10.1016/j.apcatb.2013.12.007 10.1021/cs3002463 10.1016/j.apcatb.2007.09.029 10.1016/j.apcatb.2015.04.023 10.1016/j.jhazmat.2021.125826 10.1016/j.cattod.2021.05.007 10.1016/S0926-3373(98)00040-X 10.1021/acscatal.1c05661 10.1016/j.apcatb.2017.02.060 10.1039/C5CY01487E 10.1016/j.apcatb.2017.02.041 10.1021/acs.jpcc.6b03464 10.1016/j.jhazmat.2019.121729 10.1016/j.apenergy.2009.03.022 10.1016/j.apcatb.2017.08.015 10.1039/C7CP03735J 10.1016/j.apcatb.2015.05.038 10.1016/j.cej.2022.136530 10.1016/j.apcatb.2017.08.021 10.1039/D1CY01194D 10.1016/j.apcatb.2012.04.012 10.1016/j.apcatb.2018.05.014 10.1016/j.apcatb.2013.05.035 10.1021/acscatal.6b03234 10.1021/jp992796y 10.1016/j.apcatb.2013.01.029 10.1006/jcat.1998.2213 10.1016/j.cattod.2010.01.062 10.1016/j.apcatb.2012.02.029 10.1016/S0926-3373(98)00060-5 10.1021/es301661r 10.1021/cm00023a008 10.1016/j.apcatb.2009.09.029 10.1016/j.molcata.2016.06.023 10.1021/acscatal.9b03503 |
ContentType | Journal Article |
Copyright | 2022 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2022 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/j.cjche.2022.05.028 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2210-321X |
EndPage | 309 |
ExternalDocumentID | cjce202210030 10_1016_j_cjche_2022_05_028 S1004954122002476 |
GroupedDBID | --K --M .~1 0R~ 188 1B1 1~. 1~5 29B 2B. 2C0 4.4 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 8RM 92H 92I 92R 93N AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CCEZO CDRFL CHBEP CS3 CW9 DU5 EBS EFJIC EFLBG EJD ENUVR EO9 EP2 EP3 FA0 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL SDC SDF SDG SDH SES SPC SPCBC SSG SSZ T5K TCJ TGT UGNYK ~G- -SB -S~ AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CAJEB CITATION Q-- SSH U1G U5L 4A8 PSX |
ID | FETCH-LOGICAL-c333t-5c19d00ee576c711a55db87111c390df3ac456f5ada6098c28b810143cc3a2213 |
IEDL.DBID | .~1 |
ISSN | 1004-9541 |
IngestDate | Thu May 29 04:04:47 EDT 2025 Tue Jul 01 02:57:24 EDT 2025 Thu Apr 24 22:59:23 EDT 2025 Fri Feb 23 02:40:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | NH3-SCR Fast-SCR Cu modification Flue gas NO2 promoting effect NbCe catalyst |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-5c19d00ee576c711a55db87111c390df3ac456f5ada6098c28b810143cc3a2213 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_cjce202210030 crossref_citationtrail_10_1016_j_cjche_2022_05_028 crossref_primary_10_1016_j_cjche_2022_05_028 elsevier_sciencedirect_doi_10_1016_j_cjche_2022_05_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese journal of chemical engineering |
PublicationTitle_FL | Chinese Journal of Chemical Engineering |
PublicationYear | 2022 |
Publisher | Elsevier B.V Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,Nanjing University,Nanjing 210093,China%Center for Nanochemistry,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China%Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Nanjing University,Nanjing 210093,China%Jiangsu Key Laboratory of Vehicle Emissions Control,Center of Modern Analysis,Nanjing University,Nanjing 210093,China%Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Center of Modern Analysis,Nanjing University,Nanjing 210093,China |
Publisher_xml | – name: Elsevier B.V – name: Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,Nanjing University,Nanjing 210093,China%Center for Nanochemistry,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China%Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Nanjing University,Nanjing 210093,China%Jiangsu Key Laboratory of Vehicle Emissions Control,Center of Modern Analysis,Nanjing University,Nanjing 210093,China%Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Center of Modern Analysis,Nanjing University,Nanjing 210093,China |
References | Roy, Hegde, Madras (b0025) 2009; 86 Tan, Wang, Li, Liu, Song, Guo, Luo, Liu, Gao, Dong (b0190) 2020; 388 Irfan, Goo, Kim (b0020) 2008; 78 Chen, Li, Ge, Zhu (b0205) 2010; 153 Ma, Wu, Härelind, Weng, Wang, Si (b0010) 2016; 423 Xie, Tan, Li, Ma, Ehrlich, Deng, Xu, Gao, Dong, Liu (b0130) 2022; 12 Lin, Liu, Xu, Xu, Pei, Yao, Xu, Dan, Chen (b0200) 2021; 11 Barreau, Tarot, Duprez, Courtois, Can (b0005) 2018; 220 Qi, Yu, Dai, Tang, Liu, Zhang, Gao, Dong, Chen (b0105) 2012; 119–120 Kundakovic, Flytzani-Stephanopoulos (b0115) 1998; 179 Wang, Qu, Quan, Li, Wang, Fan (b0110) 2013; 134–135 Tan, Wang, Yu, Li, Xie, Gao, Dong, Liu (b0160) 2021; 416 Busca, Lietti, Ramis, Berti (b0050) 1998; 18 Liu, Yao, Pei, Lin, Xu, Wang, Xu, Chen (b0090) 2021; 8 Li, Deng, Song, Liu, Zhao, Gao, Wei, Zhao (b0185) 2016; 120 Aboukais, Bennani, Aissi, Guelton, Vedrine (b0175) 1992; 4 Zhang, Yan (b0150) 2018; 62 Gu, Jin, Liu, Liu, Weng, Wu (b0210) 2013; 129 Topsøe (b0075) 1994; 265 Zhang, Qu, Su, Li (b0015) 2015; 176–177 Wang, Yu, Du, Xu, Jin, Si, Ma, Shi, Jia, Yan (b0195) 2017; 7 Ding, Liu, Shi, He (b0030) 2016; 180 Li, Xin, Li, Wang, Zhang, Zheng (b0045) 2012; 46 Wang, Shi, Li, Li (b0125) 2018; 220 Liu, Yao, Lin, Xu, Pei, Wang, Xu, Chen (b0085) 2021; 382 Ji, Tang, Han, Ran, Song, Cai, Tan, Sun, Tang, Dong (b0060) 2022 Chen, Si, Wu, Weng (b0065) 2014; 6 Tan, Wang, Yu, Li, Xie, Gao, Dong, Liu (b0100) 2021; 416 Martínez-Arias, Fernández-García, Salamanca, Valenzuela, Conesa, Soria (b0145) 2000; 104 Kwak, Tonkyn, Tran, Mei, Szanyi (b0155) 2015; 2 Tang, Zhang, Dong (b0070) 2016; 6 Yao, Zhao, Chen, Du, Tao, Yang, Dong (b0220) 2017; 208 Ali, Chen, Li, Zhang, Li, Bakhtiar, Leng, Yuan, Niu, Zhu (b0120) 2018; 236 Xiong, Li, Zhang, Cao, Yu, Tang, Dong (b0180) 2017; 19 Qu, Gao, Cen, Li (b0095) 2013; 142 Xu, Liu, Zhang, Liu, Lin, Wang, Dai, Chen (b0080) 2019; 9 Yao, Zhang, Li, Liu, Cao, Dong, Gao, Deng, Tang, Chen, Dong, Chen (b0140) 2014; 150–151 Chen, Fan, Pang, Ming, Liu, Li (b0170) 2018; 237 Li, Zhang, Ma, Zou, Cao, Xiong, Tang, Dong (b0215) 2017; 207 Stanciulescu, Caravaggio, Dobri, Moir, Burich, Charland, Bulsink (b0055) 2012; 123–124 Ma, Wu, Si, Weng, Ma (b0165) 2015; 179 Liu, He, Ding, Zhang (b0035) 2009; 93 Wang, Yi, Yu, Zeng, Chang (b0135) 2020; 54 Dunn, Koppula, Stenger, Wachs (b0040) 1998; 19 Ali (10.1016/j.cjche.2022.05.028_b0120) 2018; 236 Li (10.1016/j.cjche.2022.05.028_b0185) 2016; 120 Zhang (10.1016/j.cjche.2022.05.028_b0015) 2015; 176–177 Li (10.1016/j.cjche.2022.05.028_b0215) 2017; 207 Yao (10.1016/j.cjche.2022.05.028_b0140) 2014; 150–151 Tan (10.1016/j.cjche.2022.05.028_b0190) 2020; 388 Lin (10.1016/j.cjche.2022.05.028_b0200) 2021; 11 Liu (10.1016/j.cjche.2022.05.028_b0090) 2021; 8 Aboukais (10.1016/j.cjche.2022.05.028_b0175) 1992; 4 Ji (10.1016/j.cjche.2022.05.028_b0060) 2022 Xu (10.1016/j.cjche.2022.05.028_b0080) 2019; 9 Tang (10.1016/j.cjche.2022.05.028_b0070) 2016; 6 Chen (10.1016/j.cjche.2022.05.028_b0170) 2018; 237 Roy (10.1016/j.cjche.2022.05.028_b0025) 2009; 86 Ding (10.1016/j.cjche.2022.05.028_b0030) 2016; 180 Chen (10.1016/j.cjche.2022.05.028_b0205) 2010; 153 Busca (10.1016/j.cjche.2022.05.028_b0050) 1998; 18 Liu (10.1016/j.cjche.2022.05.028_b0035) 2009; 93 Tan (10.1016/j.cjche.2022.05.028_b0100) 2021; 416 Zhang (10.1016/j.cjche.2022.05.028_b0150) 2018; 62 Wang (10.1016/j.cjche.2022.05.028_b0195) 2017; 7 Wang (10.1016/j.cjche.2022.05.028_b0110) 2013; 134–135 Kundakovic (10.1016/j.cjche.2022.05.028_b0115) 1998; 179 Li (10.1016/j.cjche.2022.05.028_b0045) 2012; 46 Gu (10.1016/j.cjche.2022.05.028_b0210) 2013; 129 Qi (10.1016/j.cjche.2022.05.028_b0105) 2012; 119–120 Chen (10.1016/j.cjche.2022.05.028_b0065) 2014; 6 Xiong (10.1016/j.cjche.2022.05.028_b0180) 2017; 19 Dunn (10.1016/j.cjche.2022.05.028_b0040) 1998; 19 Ma (10.1016/j.cjche.2022.05.028_b0165) 2015; 179 Wang (10.1016/j.cjche.2022.05.028_b0125) 2018; 220 Kwak (10.1016/j.cjche.2022.05.028_b0155) 2015; 2 Stanciulescu (10.1016/j.cjche.2022.05.028_b0055) 2012; 123–124 Ma (10.1016/j.cjche.2022.05.028_b0010) 2016; 423 Martínez-Arias (10.1016/j.cjche.2022.05.028_b0145) 2000; 104 Barreau (10.1016/j.cjche.2022.05.028_b0005) 2018; 220 Tan (10.1016/j.cjche.2022.05.028_b0160) 2021; 416 Yao (10.1016/j.cjche.2022.05.028_b0220) 2017; 208 Topsøe (10.1016/j.cjche.2022.05.028_b0075) 1994; 265 Xie (10.1016/j.cjche.2022.05.028_b0130) 2022; 12 Liu (10.1016/j.cjche.2022.05.028_b0085) 2021; 382 Qu (10.1016/j.cjche.2022.05.028_b0095) 2013; 142 Wang (10.1016/j.cjche.2022.05.028_b0135) 2020; 54 Irfan (10.1016/j.cjche.2022.05.028_b0020) 2008; 78 |
References_xml | – volume: 179 start-page: 380 year: 2015 end-page: 394 ident: b0165 article-title: Impacts of niobia loading on active sites and surface acidity in NbO publication-title: Appl. Catal. B: Environ. – start-page: 136530 year: 2022 ident: b0060 article-title: Cerium manganese oxides coupled with ZSM-5: A novel SCR catalyst with superior K resistance publication-title: Chem. Eng. J. – volume: 62 start-page: 117 year: 2018 end-page: 133 ident: b0150 article-title: Three-component nonlinear Schrödinger equations: Modulational instability, Nth-order vector rational and semi-rational rogue waves, and dynamics publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 7 start-page: 1313 year: 2017 end-page: 1329 ident: b0195 article-title: Crystal plane effect of ceria on supported copper oxide cluster catalyst for CO oxidation: Importance of metal-support interaction publication-title: ACS Catal. – volume: 220 start-page: 234 year: 2018 end-page: 250 ident: b0125 article-title: Promotional synergistic effect of Cu and Nb doping on a novel Cu/Ti-Nb ternary oxide catalyst for the selective catalytic reduction of NO publication-title: Appl. Catal. B: Environ. – volume: 382 start-page: 34 year: 2021 end-page: 41 ident: b0085 article-title: Optimizing acid promoters of Ce-based NH publication-title: Catal. Today. – volume: 8 start-page: 2988 year: 2021 end-page: 3000 ident: b0090 article-title: Significant differences of NH publication-title: Environ. Sci.: Nano. – volume: 237 start-page: 116 year: 2018 end-page: 127 ident: b0170 article-title: The influence of phosphorus on the catalytic properties, durability, sulfur resistance and kinetics of Cu-SSZ-13 for NO publication-title: Appl. Catal. B: Environ. – volume: 208 start-page: 82 year: 2017 end-page: 93 ident: b0220 article-title: Selective catalytic reduction of NO publication-title: Appl. Catal. B: Environ. – volume: 265 start-page: 1217 year: 1994 end-page: 1219 ident: b0075 article-title: Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by publication-title: Science – volume: 11 start-page: 7640 year: 2021 end-page: 7651 ident: b0200 article-title: Comprehensive effect of tuning Cu/SAPO-34 crystals using PEG on the enhanced hydrothermal stability for NH publication-title: Catal. Sci. Technol. – volume: 6 start-page: 1248 year: 2016 end-page: 1264 ident: b0070 article-title: Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH publication-title: Catal. Sci. & Technol. – volume: 388 start-page: 121729 year: 2020 ident: b0190 article-title: Gas phase sulfation of ceria-zirconia solid solutions for generating highly efficient and SO publication-title: J. Hazard. Mater. – volume: 4 start-page: 977 year: 1992 end-page: 979 ident: b0175 article-title: Microwave frequency behavior of the EPR copper(II) ion pairs spectrum formed in CuCe oxide publication-title: Chem. Mater. – volume: 176–177 start-page: 338 year: 2015 end-page: 346 ident: b0015 article-title: A novel Ce-Ta mixed oxide catalyst for the selective catalytic reduction of NO publication-title: Appl. Catal. B: Environ. – volume: 46 start-page: 9600 year: 2012 end-page: 9605 ident: b0045 article-title: Ce-Ti amorphous oxides for selective catalytic reduction of NO with NH publication-title: Environ. Sci. Technol. – volume: 19 start-page: 21840 year: 2017 end-page: 21847 ident: b0180 article-title: Migration of copper species in Ce publication-title: Phys. Chem. Chem. Phys. – volume: 19 start-page: 103 year: 1998 end-page: 117 ident: b0040 article-title: Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts publication-title: Appl. Catal. B: Environ. – volume: 150–151 start-page: 315 year: 2014 end-page: 329 ident: b0140 article-title: Investigation of the structure, acidity, and catalytic performance of CuO/Ti publication-title: Appl. Catal. B: Environ. – volume: 9 start-page: 11557 year: 2019 end-page: 11562 ident: b0080 article-title: Design and synthesis of highly-dispersed WO publication-title: ACS Catal. – volume: 54 start-page: 12612 year: 2020 end-page: 12620 ident: b0135 article-title: Novel methods for assessing the SO publication-title: Environ. Sci. & Technol. – volume: 236 start-page: 25 year: 2018 end-page: 35 ident: b0120 article-title: Cu publication-title: Appl. Catal. B: Environ. – volume: 179 start-page: 203 year: 1998 end-page: 221 ident: b0115 article-title: Cu- and Ag-modified cerium oxide catalysts for methane oxidation publication-title: J. Catal. – volume: 416 start-page: 125826 year: 2021 ident: b0100 article-title: Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NO publication-title: J. Hazard. Mater. – volume: 120 start-page: 14669 year: 2016 end-page: 14680 ident: b0185 article-title: Nature of Cu species in Cu-SAPO-18 catalyst for NH publication-title: J. Phys. Chem. C – volume: 153 start-page: 77 year: 2010 end-page: 83 ident: b0205 article-title: Enhanced activity of tungsten modified CeO publication-title: Catal. Today – volume: 93 start-page: 194 year: 2009 end-page: 204 ident: b0035 article-title: Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH publication-title: Appl. Catal. B: Environ. – volume: 134–135 start-page: 153 year: 2013 end-page: 166 ident: b0110 article-title: Selective catalytic oxidation of ammonia to nitrogen over CuO-CeO publication-title: Appl. Catal. B: Environ. – volume: 129 start-page: 30 year: 2013 end-page: 38 ident: b0210 article-title: Promoting effect of calcium doping on the performances of MnO publication-title: Appl. Catal. B: Environ. – volume: 18 start-page: 1 year: 1998 end-page: 36 ident: b0050 article-title: Chemical and mechanistic aspects of the selective catalytic reduction of NO publication-title: Appl. Catal. B: Environ. – volume: 207 start-page: 366 year: 2017 end-page: 375 ident: b0215 article-title: Ultra-low loading of copper modified TiO publication-title: Appl. Catal. B: Environ. – volume: 86 start-page: 2283 year: 2009 end-page: 2297 ident: b0025 article-title: Catalysis for NO publication-title: Appl. Energy – volume: 142 start-page: 290 year: 2013 end-page: 297 ident: b0095 article-title: Relationship between structure and performance of a novel cerium-niobium binary oxide catalyst for selective catalytic reduction of NO with NH publication-title: Appl. Catal. B: Environ. – volume: 6 start-page: 8134 year: 2014 end-page: 8145 ident: b0065 article-title: DRIFT study of CuO-CeO publication-title: ACS Appl. Mater. & Inter. – volume: 423 start-page: 172 year: 2016 end-page: 180 ident: b0010 article-title: NH publication-title: J. Mol. Catal. A: Chem. – volume: 104 start-page: 4038 year: 2000 end-page: 4046 ident: b0145 article-title: Structural and redox properties of ceria in alumina-supported ceria catalyst supports publication-title: J. Phys. Chem. B – volume: 12 start-page: 2441 year: 2022 end-page: 2453 ident: b0130 article-title: Copper single atom-triggered niobia-ceria catalyst for efficient low-temperature reduction of nitrogen oxides publication-title: ACS Catal. – volume: 119–120 start-page: 308 year: 2012 end-page: 320 ident: b0105 article-title: Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO publication-title: Appl. Catal. B: Environ. – volume: 180 start-page: 766 year: 2016 end-page: 774 ident: b0030 article-title: Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NO publication-title: Appl. Catal. B: Environ. – volume: 123–124 start-page: 229 year: 2012 end-page: 240 ident: b0055 article-title: Low-temperature selective catalytic reduction of NO publication-title: Appl. Catal. B: Environ. – volume: 416 year: 2021 ident: b0160 article-title: Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NO removal by NH publication-title: J. Hazard. Mater. – volume: 220 start-page: 19 year: 2018 end-page: 30 ident: b0005 article-title: Remarkable enhancement of the selective catalytic reduction of NO at low temperature by collaborative effect of ethanol and NH publication-title: Appl. Catal. B: Environ. – volume: 78 start-page: 267 year: 2008 end-page: 274 ident: b0020 article-title: Co publication-title: Appl. Catal. B: Environ. – volume: 2 start-page: 1432 year: 2015 end-page: 1440 ident: b0155 article-title: Size-dependent catalytic performance of CuO on gamma-Al publication-title: ACS Catal. – volume: 180 start-page: 766 year: 2016 ident: 10.1016/j.cjche.2022.05.028_b0030 article-title: Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NOx with NH3 over CeZrOx catalyst publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2015.06.055 – volume: 129 start-page: 30 year: 2013 ident: 10.1016/j.cjche.2022.05.028_b0210 article-title: Promoting effect of calcium doping on the performances of MnOx/TiO2 catalysts for NO reduction with NH3 at low temperature publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2012.09.003 – volume: 6 start-page: 8134 year: 2014 ident: 10.1016/j.cjche.2022.05.028_b0065 article-title: DRIFT study of CuO-CeO2-TiO2 mixed oxides for NOx reduction with NH3 at low temperatures publication-title: ACS Appl. Mater. & Inter. doi: 10.1021/am5004969 – volume: 62 start-page: 117 year: 2018 ident: 10.1016/j.cjche.2022.05.028_b0150 article-title: Three-component nonlinear Schrödinger equations: Modulational instability, Nth-order vector rational and semi-rational rogue waves, and dynamics publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2018.02.008 – volume: 237 start-page: 116 year: 2018 ident: 10.1016/j.cjche.2022.05.028_b0170 article-title: The influence of phosphorus on the catalytic properties, durability, sulfur resistance and kinetics of Cu-SSZ-13 for NOx reduction by NH3-SCR publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.05.075 – volume: 265 start-page: 1217 year: 1994 ident: 10.1016/j.cjche.2022.05.028_b0075 article-title: Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy publication-title: Science doi: 10.1126/science.265.5176.1217 – volume: 54 start-page: 12612 year: 2020 ident: 10.1016/j.cjche.2022.05.028_b0135 article-title: Novel methods for assessing the SO2 poisoning effect and thermal regeneration possibility of MOx-WO3/TiO2 (M = Fe, Mn, Cu, and V) catalysts for NH3-SCR publication-title: Environ. Sci. & Technol. doi: 10.1021/acs.est.0c02840 – volume: 150–151 start-page: 315 year: 2014 ident: 10.1016/j.cjche.2022.05.028_b0140 article-title: Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2013.12.007 – volume: 2 start-page: 1432 year: 2015 ident: 10.1016/j.cjche.2022.05.028_b0155 article-title: Size-dependent catalytic performance of CuO on gamma-Al2O3: NO reduction versus NH3 oxidation publication-title: ACS Catal. doi: 10.1021/cs3002463 – volume: 78 start-page: 267 year: 2008 ident: 10.1016/j.cjche.2022.05.028_b0020 article-title: Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2007.09.029 – volume: 8 start-page: 2988 year: 2021 ident: 10.1016/j.cjche.2022.05.028_b0090 article-title: Significant differences of NH3-SCR performances between monoclinic and hexagonal WO3 on Ce-based catalysts publication-title: Environ. Sci.: Nano. – volume: 176–177 start-page: 338 year: 2015 ident: 10.1016/j.cjche.2022.05.028_b0015 article-title: A novel Ce-Ta mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2015.04.023 – volume: 416 start-page: 125826 year: 2021 ident: 10.1016/j.cjche.2022.05.028_b0100 article-title: Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NOx removal by NH3-SCR publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125826 – volume: 382 start-page: 34 year: 2021 ident: 10.1016/j.cjche.2022.05.028_b0085 article-title: Optimizing acid promoters of Ce-based NH3-SCR catalysts for reducing NOx emissions publication-title: Catal. Today. doi: 10.1016/j.cattod.2021.05.007 – volume: 18 start-page: 1 year: 1998 ident: 10.1016/j.cjche.2022.05.028_b0050 article-title: Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review publication-title: Appl. Catal. B: Environ. doi: 10.1016/S0926-3373(98)00040-X – volume: 12 start-page: 2441 year: 2022 ident: 10.1016/j.cjche.2022.05.028_b0130 article-title: Copper single atom-triggered niobia-ceria catalyst for efficient low-temperature reduction of nitrogen oxides publication-title: ACS Catal. doi: 10.1021/acscatal.1c05661 – volume: 208 start-page: 82 year: 2017 ident: 10.1016/j.cjche.2022.05.028_b0220 article-title: Selective catalytic reduction of NOx by NH3 over CeO2 supported on TiO2: Comparison of anatase, brookite, and rutile publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.02.060 – volume: 6 start-page: 1248 year: 2016 ident: 10.1016/j.cjche.2022.05.028_b0070 article-title: Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3 publication-title: Catal. Sci. & Technol. doi: 10.1039/C5CY01487E – volume: 207 start-page: 366 year: 2017 ident: 10.1016/j.cjche.2022.05.028_b0215 article-title: Ultra-low loading of copper modified TiO2/CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.02.041 – volume: 120 start-page: 14669 year: 2016 ident: 10.1016/j.cjche.2022.05.028_b0185 article-title: Nature of Cu species in Cu-SAPO-18 catalyst for NH3-SCR: Combination of experiments and DFT calculations publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b03464 – volume: 388 start-page: 121729 year: 2020 ident: 10.1016/j.cjche.2022.05.028_b0190 article-title: Gas phase sulfation of ceria-zirconia solid solutions for generating highly efficient and SO2 resistant NH3-SCR catalysts for NO removal publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121729 – volume: 86 start-page: 2283 year: 2009 ident: 10.1016/j.cjche.2022.05.028_b0025 article-title: Catalysis for NOx abatement publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.03.022 – volume: 416 year: 2021 ident: 10.1016/j.cjche.2022.05.028_b0160 article-title: Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NO removal by NH3-SCR publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125826 – volume: 220 start-page: 19 year: 2018 ident: 10.1016/j.cjche.2022.05.028_b0005 article-title: Remarkable enhancement of the selective catalytic reduction of NO at low temperature by collaborative effect of ethanol and NH3 over silver supported catalyst publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.08.015 – volume: 19 start-page: 21840 year: 2017 ident: 10.1016/j.cjche.2022.05.028_b0180 article-title: Migration of copper species in CexCu1-xO2 catalyst driven by thermal treatment and the effect on CO oxidation publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP03735J – volume: 179 start-page: 380 year: 2015 ident: 10.1016/j.cjche.2022.05.028_b0165 article-title: Impacts of niobia loading on active sites and surface acidity in NbOx/CeO2-ZrO2 NH3-SCR catalysts publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2015.05.038 – start-page: 136530 year: 2022 ident: 10.1016/j.cjche.2022.05.028_b0060 article-title: Cerium manganese oxides coupled with ZSM-5: A novel SCR catalyst with superior K resistance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136530 – volume: 220 start-page: 234 year: 2018 ident: 10.1016/j.cjche.2022.05.028_b0125 article-title: Promotional synergistic effect of Cu and Nb doping on a novel Cu/Ti-Nb ternary oxide catalyst for the selective catalytic reduction of NOx with NH3 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.08.021 – volume: 11 start-page: 7640 year: 2021 ident: 10.1016/j.cjche.2022.05.028_b0200 article-title: Comprehensive effect of tuning Cu/SAPO-34 crystals using PEG on the enhanced hydrothermal stability for NH3-SCR publication-title: Catal. Sci. Technol. doi: 10.1039/D1CY01194D – volume: 123–124 start-page: 229 year: 2012 ident: 10.1016/j.cjche.2022.05.028_b0055 article-title: Low-temperature selective catalytic reduction of NOx with NH3 over Mn-containing catalysts publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2012.04.012 – volume: 236 start-page: 25 year: 2018 ident: 10.1016/j.cjche.2022.05.028_b0120 article-title: Cux-Nb1.1-x (x= 0.45, 0.35, 0.25, 0.15) bimetal oxides catalysts for the low temperature selective catalytic reduction of NO with NH3 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.05.014 – volume: 142 start-page: 290 year: 2013 ident: 10.1016/j.cjche.2022.05.028_b0095 article-title: Relationship between structure and performance of a novel cerium-niobium binary oxide catalyst for selective catalytic reduction of NO with NH3 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2013.05.035 – volume: 7 start-page: 1313 year: 2017 ident: 10.1016/j.cjche.2022.05.028_b0195 article-title: Crystal plane effect of ceria on supported copper oxide cluster catalyst for CO oxidation: Importance of metal-support interaction publication-title: ACS Catal. doi: 10.1021/acscatal.6b03234 – volume: 104 start-page: 4038 year: 2000 ident: 10.1016/j.cjche.2022.05.028_b0145 article-title: Structural and redox properties of ceria in alumina-supported ceria catalyst supports publication-title: J. Phys. Chem. B doi: 10.1021/jp992796y – volume: 134–135 start-page: 153 year: 2013 ident: 10.1016/j.cjche.2022.05.028_b0110 article-title: Selective catalytic oxidation of ammonia to nitrogen over CuO-CeO2 mixed oxides prepared by surfactant-templated method publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2013.01.029 – volume: 179 start-page: 203 year: 1998 ident: 10.1016/j.cjche.2022.05.028_b0115 article-title: Cu- and Ag-modified cerium oxide catalysts for methane oxidation publication-title: J. Catal. doi: 10.1006/jcat.1998.2213 – volume: 153 start-page: 77 year: 2010 ident: 10.1016/j.cjche.2022.05.028_b0205 article-title: Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia publication-title: Catal. Today doi: 10.1016/j.cattod.2010.01.062 – volume: 119–120 start-page: 308 year: 2012 ident: 10.1016/j.cjche.2022.05.028_b0105 article-title: Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2012.02.029 – volume: 19 start-page: 103 year: 1998 ident: 10.1016/j.cjche.2022.05.028_b0040 article-title: Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts publication-title: Appl. Catal. B: Environ. doi: 10.1016/S0926-3373(98)00060-5 – volume: 46 start-page: 9600 year: 2012 ident: 10.1016/j.cjche.2022.05.028_b0045 article-title: Ce-Ti amorphous oxides for selective catalytic reduction of NO with NH3: Confirmation of Ce-O-Ti active sites publication-title: Environ. Sci. Technol. doi: 10.1021/es301661r – volume: 4 start-page: 977 year: 1992 ident: 10.1016/j.cjche.2022.05.028_b0175 article-title: Microwave frequency behavior of the EPR copper(II) ion pairs spectrum formed in CuCe oxide publication-title: Chem. Mater. doi: 10.1021/cm00023a008 – volume: 93 start-page: 194 year: 2009 ident: 10.1016/j.cjche.2022.05.028_b0035 article-title: Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2009.09.029 – volume: 423 start-page: 172 year: 2016 ident: 10.1016/j.cjche.2022.05.028_b0010 article-title: NH3-SCR reaction mechanisms of NbOx/Ce0.75Zr0.25O2 catalyst: DRIFTS and kinetics studies publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2016.06.023 – volume: 9 start-page: 11557 year: 2019 ident: 10.1016/j.cjche.2022.05.028_b0080 article-title: Design and synthesis of highly-dispersed WO3 catalyst with highly effective NH3-SCR activity for NOx abatement publication-title: ACS Catal. doi: 10.1021/acscatal.9b03503 |
SSID | ssj0020818 |
Score | 2.3607905 |
Snippet | [Display omitted]
A simple strategy of Cu modification was proposed to broaden the operation temperature window for NbCe catalyst. The best catalyst... A simple strategy of Cu modification was proposed to broaden the operation temperature window for NbCe catalyst.The best catalyst Cu0.010/NbiCe3 presented over... |
SourceID | wanfang crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 301 |
SubjectTerms | Cu modification Fast-SCR Flue gas NbCe catalyst NH3-SCR NO2 promoting effect |
Title | Insight into the promotional mechanism of Cu modification towards wide-temperature NH3-SCR performance of NbCe catalyst |
URI | https://dx.doi.org/10.1016/j.cjche.2022.05.028 https://d.wanfangdata.com.cn/periodical/cjce202210030 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZLSqE9lKZpaNpm0aHHKquXvdYxmIZNQvbQNJCb0MpScOh6l9hh6aW_vRpZzgPCHnoyNiNjZkbzkD99Quib4m4qTM5JSHUFkWECkcKLjNhKUUW9s8LB0sDFPJ9dybPr7HqEymEvDMAqU-zvY3qM1unJJGlzsq7rySVwnalMMg44AzkF2m0ZLsGnj_4-wDw4ULbFP55UEpAemIcixsveBs2EJpHzSN8JR7K_nJ1eb0zjTXPzJPecvEfvUtGIj_vv2kUj13xAb59QCe6hzWnTQp-N66Zb4VDV4XUPtINKGy8dbPCt2yVeeVze4-WqAohQtAruInK2xZs6qBCoqhLPMp7PBLksf-L14-YCGD9flA7HZZ8_bfcRXZ38-FXOSDpUgVghREcyy1RFqXOh0bBTxkyWVYvQNTFmhaKVF8aGmspnpjI5VYXlxQI4wKSwVhjOmdhHO82qcZ8QpjlX0gcX8LKQ3IZXMaNMkTsok3xVHCA-KFPbxDgOB1_81gO07FZHC2iwgKaZDhY4QN8fBq17wo3t4vlgJf3Mb3RICdsHjpNNdZq1LQg5EGEQ-j7_75u_oDdw1yP-vqKd7u7eHYbKpVuMo2uO0avj0_PZ_B-zTu0o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEaIcEE-1PIoPcMOsX8nGhx6qhWqXtnugrdSb8To2StXNrppUq174U_xBPI5TioR6QOo1sa1oZjwP5_M3CL1X3A2FyTkJoa4gMmwgUniREVsqqqh3Vjg4Gjic5uMT-fU0O11Dv_q7MACrTL6_8-nRW6cngyTNwbKqBkfAdaYyyTjgDOQwT8jKfXe1CnVbszP5HJT8gfO9L8ejMUmtBYgVQrQks0yVlDoX0m07ZMxkWTkLtQNjVihaemFsyCx8ZkqTU1VYXsyACUsKa4XhnImw7j10XwZ3AW0TPv28xpVw4IiLv1ipJPB5PdVRBJXZs6CKUJVyHvlCoQf8v8Phg5Wpval_3Ah2e0_Q45Sl4t1OEE_RmqufoUc3uAufo9WkbqCwx1XdLnBII_GyQ_ZBao_nDm4UV80cLzweXeL5ogRMUjQD3EaoboNXVdAZcGMlYmc8HQtyNPqGl39uM8D86WzkcDxnumraF-jkTkT9Eq3Xi9ptIkxzrqQPNudlIbkNSzGjTJE7yMt8WWwh3gtT20RxDp02znWPZTvTUQMaNKBppoMGttDH60nLjuHj9uF5ryX9l6HqEINun7iddKqTm2hgkIMhDHztq_9d-R16OD4-PNAHk-n-a7QBbzq44Ru03l5curchbWpn29FMMfp-1_viN_QZJ5s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+the+promotional+mechanism+of+Cu+modification+towards+wide-temperature+NH3-SCR+performance+of+NbCe+catalyst&rft.jtitle=Chinese+journal+of+chemical+engineering&rft.au=An%2C+Dongqi&rft.au=Yang%2C+Yuyao&rft.au=Zou%2C+Weixin&rft.au=Cai%2C+Yandi&rft.date=2022-10-01&rft.pub=Elsevier+B.V&rft.issn=1004-9541&rft.eissn=2210-321X&rft.volume=50&rft.spage=301&rft.epage=309&rft_id=info:doi/10.1016%2Fj.cjche.2022.05.028&rft.externalDocID=S1004954122002476 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fcjce%2Fcjce.jpg |