Insight into the promotional mechanism of Cu modification towards wide-temperature NH3-SCR performance of NbCe catalyst

[Display omitted] A simple strategy of Cu modification was proposed to broaden the operation temperature window for NbCe catalyst. The best catalyst Cu0.010/Nb1Ce3 presented over 90% NO conversion in a wide temperature range of 200–400 °C and exhibited an excellent H2O or/and SO2 resistance at 275 °...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemical engineering Vol. 50; no. 10; pp. 301 - 309
Main Authors An, Dongqi, Yang, Yuyao, Zou, Weixin, Cai, Yandi, Tong, Qing, Sun, Jingfang, Dong, Lin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2022
Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,Nanjing University,Nanjing 210093,China%Center for Nanochemistry,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China%Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Nanjing University,Nanjing 210093,China%Jiangsu Key Laboratory of Vehicle Emissions Control,Center of Modern Analysis,Nanjing University,Nanjing 210093,China%Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Center of Modern Analysis,Nanjing University,Nanjing 210093,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] A simple strategy of Cu modification was proposed to broaden the operation temperature window for NbCe catalyst. The best catalyst Cu0.010/Nb1Ce3 presented over 90% NO conversion in a wide temperature range of 200–400 °C and exhibited an excellent H2O or/and SO2 resistance at 275 °C. To understand the promotional mechanism of Cu modification, the correlation among the “activity-structure–property” were tried to establish systematically. Cu species highly dispersed on NbCe catalyst to serve as the active component. The strong interaction among Cu, Nb and Ce promoted the emergence of NbO4 and induced more Brønsted acid sites. And Cu modification obviously enhanced the redox behavior of the NbCe catalyst. Besides, EPR probed the Cu species exited in the form of monomeric and dimeric Cu2+, the isolated Cu2+ acted as catalytic active sites to promote the reaction: Cu2+–NO3−+NO(g) → Cu2+–NO2−+NO2(g). Then the generated NO2 would accelerate the fast-SCR reaction process and thus facilitated the low-temperature deNOx efficiency. Moreover, surface nitrates became unstable and easy to decompose after Cu modification, thus providing additional adsorption and activation sites for NH3, and ensuring the improvement of catalytic activity at high temperature. Since the NH3-SCR reaction followed by E-R reaction pathway efficaciously over Cu0.010/Nb1Ce3 catalyst, the excellent H2O and SO2 resistance was as expected.
AbstractList [Display omitted] A simple strategy of Cu modification was proposed to broaden the operation temperature window for NbCe catalyst. The best catalyst Cu0.010/Nb1Ce3 presented over 90% NO conversion in a wide temperature range of 200–400 °C and exhibited an excellent H2O or/and SO2 resistance at 275 °C. To understand the promotional mechanism of Cu modification, the correlation among the “activity-structure–property” were tried to establish systematically. Cu species highly dispersed on NbCe catalyst to serve as the active component. The strong interaction among Cu, Nb and Ce promoted the emergence of NbO4 and induced more Brønsted acid sites. And Cu modification obviously enhanced the redox behavior of the NbCe catalyst. Besides, EPR probed the Cu species exited in the form of monomeric and dimeric Cu2+, the isolated Cu2+ acted as catalytic active sites to promote the reaction: Cu2+–NO3−+NO(g) → Cu2+–NO2−+NO2(g). Then the generated NO2 would accelerate the fast-SCR reaction process and thus facilitated the low-temperature deNOx efficiency. Moreover, surface nitrates became unstable and easy to decompose after Cu modification, thus providing additional adsorption and activation sites for NH3, and ensuring the improvement of catalytic activity at high temperature. Since the NH3-SCR reaction followed by E-R reaction pathway efficaciously over Cu0.010/Nb1Ce3 catalyst, the excellent H2O and SO2 resistance was as expected.
A simple strategy of Cu modification was proposed to broaden the operation temperature window for NbCe catalyst.The best catalyst Cu0.010/NbiCe3 presented over 90%NO conversion in a wide temperature range of 200-400℃and exhibited an excellent H2O or/and SO2 resistance at 275℃.To understand the promotional mechanism of Cu modification,the correlation among the"activity-structure-property"were tried to establish systematically.Cu species highly dispersed on NbCe catalyst to serve as the active component.The strong interaction among Cu,Nb and Ce promoted the emergence of NbO4 and induced more Br?nsted acid sites.And Cu modification obviously enhanced the redox behavior of the NbCe cat-alyst.Besides,EPR probed the Cu species exited in the form of monomeric and dimeric Cu2+,the isolated Cu2+acted as catalytic active sites to promote the reaction:Cu2+-NO3+NO(g)→ Cu2+-NO2+NO2(g).Then the generated NO2 would accelerate the fast-SCR reaction process and thus facilitated the low-temperature deNOx efficiency.Moreover,surface nitrates became unstable and easy to decompose after Cu modification,thus providing additional adsorption and activation sites for NH3,and ensuring the improvement of catalytic activity at high temperature.Since the NH3-SCR reaction followed by E-R reac-tion pathway efficaciously over Cuo.oio/Nb1Ce3 catalyst,the excellent H2O and SO2 resistance was as expected.
Author Zou, Weixin
Dong, Lin
Yang, Yuyao
An, Dongqi
Cai, Yandi
Tong, Qing
Sun, Jingfang
AuthorAffiliation Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,Nanjing University,Nanjing 210093,China%Center for Nanochemistry,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China%Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Nanjing University,Nanjing 210093,China%Jiangsu Key Laboratory of Vehicle Emissions Control,Center of Modern Analysis,Nanjing University,Nanjing 210093,China%Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Center of Modern Analysis,Nanjing University,Nanjing 210093,China
AuthorAffiliation_xml – name: Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,Nanjing University,Nanjing 210093,China%Center for Nanochemistry,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China%Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Nanjing University,Nanjing 210093,China%Jiangsu Key Laboratory of Vehicle Emissions Control,Center of Modern Analysis,Nanjing University,Nanjing 210093,China%Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Center of Modern Analysis,Nanjing University,Nanjing 210093,China
Author_xml – sequence: 1
  givenname: Dongqi
  surname: An
  fullname: An, Dongqi
  organization: Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210093, China
– sequence: 2
  givenname: Yuyao
  surname: Yang
  fullname: Yang, Yuyao
  organization: Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
– sequence: 3
  givenname: Weixin
  surname: Zou
  fullname: Zou, Weixin
  organization: Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210093, China
– sequence: 4
  givenname: Yandi
  surname: Cai
  fullname: Cai, Yandi
  organization: Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210093, China
– sequence: 5
  givenname: Qing
  surname: Tong
  fullname: Tong, Qing
  organization: Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, China
– sequence: 6
  givenname: Jingfang
  surname: Sun
  fullname: Sun, Jingfang
  email: sunjf@nju.edu.cn
  organization: Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, China
– sequence: 7
  givenname: Lin
  surname: Dong
  fullname: Dong, Lin
  email: donglin@nju.edu.cn
  organization: Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, China
BookMark eNqFkE1vEzEQhi1UJNLCL-DiC8ddxnac7h44oBW0laoi8SFxs5zxbONV1o5sh6j_Hm_DiQOcZjQzz0jvc8kuQgzE2FsBrQCxeT-1OOGOWglStqBbkN0LtpJSQKOk-HnBVgJg3fR6LV6xy5wnAAmd6FbsdBeyf9wV7kOJvOyIH1KcY_Ex2D2fCXc2-DzzOPLhyOfo_OjRLmte4skml_nJO2oKzQdKthwT8Ydb1XwbvvI6GGOabUBa-IftQLyydv-Uy2v2crT7TG_-1Cv24_On78Ntc__l5m74eN-gUqo0GkXvAIj09QavhbBau21XG4GqBzcqi2u9GbV1dgN9h7LbdtXIWiEqW_OrK_bu_Pdkw2jDo5niMdVo2VRjtPiqZhTUu_58hynmnGg06MtzzpKs3xsBZjFtJvNs2iykAW2q6cqqv9hD8rNNT_-hPpwpqvF_eUomo6fqyvlEWIyL_p_8b8B9m3o
CitedBy_id crossref_primary_10_1016_j_chphi_2023_100205
crossref_primary_10_1016_j_mcat_2024_114347
crossref_primary_10_1016_j_cjche_2024_09_024
crossref_primary_10_1016_j_surfin_2024_105229
crossref_primary_10_1016_j_cej_2023_146889
crossref_primary_10_1016_j_fuel_2024_133634
crossref_primary_10_1016_j_fuel_2022_125390
crossref_primary_10_1016_j_seppur_2023_125212
crossref_primary_10_1016_j_apsusc_2024_159571
crossref_primary_10_1016_j_apcatb_2023_123254
crossref_primary_10_1002_slct_202401052
crossref_primary_10_1016_j_cej_2024_158002
Cites_doi 10.1016/j.apcatb.2015.06.055
10.1016/j.apcatb.2012.09.003
10.1021/am5004969
10.1016/j.cnsns.2018.02.008
10.1016/j.apcatb.2018.05.075
10.1126/science.265.5176.1217
10.1021/acs.est.0c02840
10.1016/j.apcatb.2013.12.007
10.1021/cs3002463
10.1016/j.apcatb.2007.09.029
10.1016/j.apcatb.2015.04.023
10.1016/j.jhazmat.2021.125826
10.1016/j.cattod.2021.05.007
10.1016/S0926-3373(98)00040-X
10.1021/acscatal.1c05661
10.1016/j.apcatb.2017.02.060
10.1039/C5CY01487E
10.1016/j.apcatb.2017.02.041
10.1021/acs.jpcc.6b03464
10.1016/j.jhazmat.2019.121729
10.1016/j.apenergy.2009.03.022
10.1016/j.apcatb.2017.08.015
10.1039/C7CP03735J
10.1016/j.apcatb.2015.05.038
10.1016/j.cej.2022.136530
10.1016/j.apcatb.2017.08.021
10.1039/D1CY01194D
10.1016/j.apcatb.2012.04.012
10.1016/j.apcatb.2018.05.014
10.1016/j.apcatb.2013.05.035
10.1021/acscatal.6b03234
10.1021/jp992796y
10.1016/j.apcatb.2013.01.029
10.1006/jcat.1998.2213
10.1016/j.cattod.2010.01.062
10.1016/j.apcatb.2012.02.029
10.1016/S0926-3373(98)00060-5
10.1021/es301661r
10.1021/cm00023a008
10.1016/j.apcatb.2009.09.029
10.1016/j.molcata.2016.06.023
10.1021/acscatal.9b03503
ContentType Journal Article
Copyright 2022 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2022 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/j.cjche.2022.05.028
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2210-321X
EndPage 309
ExternalDocumentID cjce202210030
10_1016_j_cjche_2022_05_028
S1004954122002476
GroupedDBID --K
--M
.~1
0R~
188
1B1
1~.
1~5
29B
2B.
2C0
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
8RM
92H
92I
92R
93N
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CCEZO
CDRFL
CHBEP
CS3
CW9
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
SDC
SDF
SDG
SDH
SES
SPC
SPCBC
SSG
SSZ
T5K
TCJ
TGT
UGNYK
~G-
-SB
-S~
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CAJEB
CITATION
Q--
SSH
U1G
U5L
4A8
PSX
ID FETCH-LOGICAL-c333t-5c19d00ee576c711a55db87111c390df3ac456f5ada6098c28b810143cc3a2213
IEDL.DBID .~1
ISSN 1004-9541
IngestDate Thu May 29 04:04:47 EDT 2025
Tue Jul 01 02:57:24 EDT 2025
Thu Apr 24 22:59:23 EDT 2025
Fri Feb 23 02:40:02 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords NH3-SCR
Fast-SCR
Cu modification
Flue gas
NO2 promoting effect
NbCe catalyst
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-5c19d00ee576c711a55db87111c390df3ac456f5ada6098c28b810143cc3a2213
PageCount 9
ParticipantIDs wanfang_journals_cjce202210030
crossref_citationtrail_10_1016_j_cjche_2022_05_028
crossref_primary_10_1016_j_cjche_2022_05_028
elsevier_sciencedirect_doi_10_1016_j_cjche_2022_05_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese journal of chemical engineering
PublicationTitle_FL Chinese Journal of Chemical Engineering
PublicationYear 2022
Publisher Elsevier B.V
Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,Nanjing University,Nanjing 210093,China%Center for Nanochemistry,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China%Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Nanjing University,Nanjing 210093,China%Jiangsu Key Laboratory of Vehicle Emissions Control,Center of Modern Analysis,Nanjing University,Nanjing 210093,China%Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Center of Modern Analysis,Nanjing University,Nanjing 210093,China
Publisher_xml – name: Elsevier B.V
– name: Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,Nanjing University,Nanjing 210093,China%Center for Nanochemistry,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China%Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Nanjing University,Nanjing 210093,China%Jiangsu Key Laboratory of Vehicle Emissions Control,Center of Modern Analysis,Nanjing University,Nanjing 210093,China%Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Vehicle Emissions Control,School of Environment,Center of Modern Analysis,Nanjing University,Nanjing 210093,China
References Roy, Hegde, Madras (b0025) 2009; 86
Tan, Wang, Li, Liu, Song, Guo, Luo, Liu, Gao, Dong (b0190) 2020; 388
Irfan, Goo, Kim (b0020) 2008; 78
Chen, Li, Ge, Zhu (b0205) 2010; 153
Ma, Wu, Härelind, Weng, Wang, Si (b0010) 2016; 423
Xie, Tan, Li, Ma, Ehrlich, Deng, Xu, Gao, Dong, Liu (b0130) 2022; 12
Lin, Liu, Xu, Xu, Pei, Yao, Xu, Dan, Chen (b0200) 2021; 11
Barreau, Tarot, Duprez, Courtois, Can (b0005) 2018; 220
Qi, Yu, Dai, Tang, Liu, Zhang, Gao, Dong, Chen (b0105) 2012; 119–120
Kundakovic, Flytzani-Stephanopoulos (b0115) 1998; 179
Wang, Qu, Quan, Li, Wang, Fan (b0110) 2013; 134–135
Tan, Wang, Yu, Li, Xie, Gao, Dong, Liu (b0160) 2021; 416
Busca, Lietti, Ramis, Berti (b0050) 1998; 18
Liu, Yao, Pei, Lin, Xu, Wang, Xu, Chen (b0090) 2021; 8
Li, Deng, Song, Liu, Zhao, Gao, Wei, Zhao (b0185) 2016; 120
Aboukais, Bennani, Aissi, Guelton, Vedrine (b0175) 1992; 4
Zhang, Yan (b0150) 2018; 62
Gu, Jin, Liu, Liu, Weng, Wu (b0210) 2013; 129
Topsøe (b0075) 1994; 265
Zhang, Qu, Su, Li (b0015) 2015; 176–177
Wang, Yu, Du, Xu, Jin, Si, Ma, Shi, Jia, Yan (b0195) 2017; 7
Ding, Liu, Shi, He (b0030) 2016; 180
Li, Xin, Li, Wang, Zhang, Zheng (b0045) 2012; 46
Wang, Shi, Li, Li (b0125) 2018; 220
Liu, Yao, Lin, Xu, Pei, Wang, Xu, Chen (b0085) 2021; 382
Ji, Tang, Han, Ran, Song, Cai, Tan, Sun, Tang, Dong (b0060) 2022
Chen, Si, Wu, Weng (b0065) 2014; 6
Tan, Wang, Yu, Li, Xie, Gao, Dong, Liu (b0100) 2021; 416
Martínez-Arias, Fernández-García, Salamanca, Valenzuela, Conesa, Soria (b0145) 2000; 104
Kwak, Tonkyn, Tran, Mei, Szanyi (b0155) 2015; 2
Tang, Zhang, Dong (b0070) 2016; 6
Yao, Zhao, Chen, Du, Tao, Yang, Dong (b0220) 2017; 208
Ali, Chen, Li, Zhang, Li, Bakhtiar, Leng, Yuan, Niu, Zhu (b0120) 2018; 236
Xiong, Li, Zhang, Cao, Yu, Tang, Dong (b0180) 2017; 19
Qu, Gao, Cen, Li (b0095) 2013; 142
Xu, Liu, Zhang, Liu, Lin, Wang, Dai, Chen (b0080) 2019; 9
Yao, Zhang, Li, Liu, Cao, Dong, Gao, Deng, Tang, Chen, Dong, Chen (b0140) 2014; 150–151
Chen, Fan, Pang, Ming, Liu, Li (b0170) 2018; 237
Li, Zhang, Ma, Zou, Cao, Xiong, Tang, Dong (b0215) 2017; 207
Stanciulescu, Caravaggio, Dobri, Moir, Burich, Charland, Bulsink (b0055) 2012; 123–124
Ma, Wu, Si, Weng, Ma (b0165) 2015; 179
Liu, He, Ding, Zhang (b0035) 2009; 93
Wang, Yi, Yu, Zeng, Chang (b0135) 2020; 54
Dunn, Koppula, Stenger, Wachs (b0040) 1998; 19
Ali (10.1016/j.cjche.2022.05.028_b0120) 2018; 236
Li (10.1016/j.cjche.2022.05.028_b0185) 2016; 120
Zhang (10.1016/j.cjche.2022.05.028_b0015) 2015; 176–177
Li (10.1016/j.cjche.2022.05.028_b0215) 2017; 207
Yao (10.1016/j.cjche.2022.05.028_b0140) 2014; 150–151
Tan (10.1016/j.cjche.2022.05.028_b0190) 2020; 388
Lin (10.1016/j.cjche.2022.05.028_b0200) 2021; 11
Liu (10.1016/j.cjche.2022.05.028_b0090) 2021; 8
Aboukais (10.1016/j.cjche.2022.05.028_b0175) 1992; 4
Ji (10.1016/j.cjche.2022.05.028_b0060) 2022
Xu (10.1016/j.cjche.2022.05.028_b0080) 2019; 9
Tang (10.1016/j.cjche.2022.05.028_b0070) 2016; 6
Chen (10.1016/j.cjche.2022.05.028_b0170) 2018; 237
Roy (10.1016/j.cjche.2022.05.028_b0025) 2009; 86
Ding (10.1016/j.cjche.2022.05.028_b0030) 2016; 180
Chen (10.1016/j.cjche.2022.05.028_b0205) 2010; 153
Busca (10.1016/j.cjche.2022.05.028_b0050) 1998; 18
Liu (10.1016/j.cjche.2022.05.028_b0035) 2009; 93
Tan (10.1016/j.cjche.2022.05.028_b0100) 2021; 416
Zhang (10.1016/j.cjche.2022.05.028_b0150) 2018; 62
Wang (10.1016/j.cjche.2022.05.028_b0195) 2017; 7
Wang (10.1016/j.cjche.2022.05.028_b0110) 2013; 134–135
Kundakovic (10.1016/j.cjche.2022.05.028_b0115) 1998; 179
Li (10.1016/j.cjche.2022.05.028_b0045) 2012; 46
Gu (10.1016/j.cjche.2022.05.028_b0210) 2013; 129
Qi (10.1016/j.cjche.2022.05.028_b0105) 2012; 119–120
Chen (10.1016/j.cjche.2022.05.028_b0065) 2014; 6
Xiong (10.1016/j.cjche.2022.05.028_b0180) 2017; 19
Dunn (10.1016/j.cjche.2022.05.028_b0040) 1998; 19
Ma (10.1016/j.cjche.2022.05.028_b0165) 2015; 179
Wang (10.1016/j.cjche.2022.05.028_b0125) 2018; 220
Kwak (10.1016/j.cjche.2022.05.028_b0155) 2015; 2
Stanciulescu (10.1016/j.cjche.2022.05.028_b0055) 2012; 123–124
Ma (10.1016/j.cjche.2022.05.028_b0010) 2016; 423
Martínez-Arias (10.1016/j.cjche.2022.05.028_b0145) 2000; 104
Barreau (10.1016/j.cjche.2022.05.028_b0005) 2018; 220
Tan (10.1016/j.cjche.2022.05.028_b0160) 2021; 416
Yao (10.1016/j.cjche.2022.05.028_b0220) 2017; 208
Topsøe (10.1016/j.cjche.2022.05.028_b0075) 1994; 265
Xie (10.1016/j.cjche.2022.05.028_b0130) 2022; 12
Liu (10.1016/j.cjche.2022.05.028_b0085) 2021; 382
Qu (10.1016/j.cjche.2022.05.028_b0095) 2013; 142
Wang (10.1016/j.cjche.2022.05.028_b0135) 2020; 54
Irfan (10.1016/j.cjche.2022.05.028_b0020) 2008; 78
References_xml – volume: 179
  start-page: 380
  year: 2015
  end-page: 394
  ident: b0165
  article-title: Impacts of niobia loading on active sites and surface acidity in NbO
  publication-title: Appl. Catal. B: Environ.
– start-page: 136530
  year: 2022
  ident: b0060
  article-title: Cerium manganese oxides coupled with ZSM-5: A novel SCR catalyst with superior K resistance
  publication-title: Chem. Eng. J.
– volume: 62
  start-page: 117
  year: 2018
  end-page: 133
  ident: b0150
  article-title: Three-component nonlinear Schrödinger equations: Modulational instability, Nth-order vector rational and semi-rational rogue waves, and dynamics
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 7
  start-page: 1313
  year: 2017
  end-page: 1329
  ident: b0195
  article-title: Crystal plane effect of ceria on supported copper oxide cluster catalyst for CO oxidation: Importance of metal-support interaction
  publication-title: ACS Catal.
– volume: 220
  start-page: 234
  year: 2018
  end-page: 250
  ident: b0125
  article-title: Promotional synergistic effect of Cu and Nb doping on a novel Cu/Ti-Nb ternary oxide catalyst for the selective catalytic reduction of NO
  publication-title: Appl. Catal. B: Environ.
– volume: 382
  start-page: 34
  year: 2021
  end-page: 41
  ident: b0085
  article-title: Optimizing acid promoters of Ce-based NH
  publication-title: Catal. Today.
– volume: 8
  start-page: 2988
  year: 2021
  end-page: 3000
  ident: b0090
  article-title: Significant differences of NH
  publication-title: Environ. Sci.: Nano.
– volume: 237
  start-page: 116
  year: 2018
  end-page: 127
  ident: b0170
  article-title: The influence of phosphorus on the catalytic properties, durability, sulfur resistance and kinetics of Cu-SSZ-13 for NO
  publication-title: Appl. Catal. B: Environ.
– volume: 208
  start-page: 82
  year: 2017
  end-page: 93
  ident: b0220
  article-title: Selective catalytic reduction of NO
  publication-title: Appl. Catal. B: Environ.
– volume: 265
  start-page: 1217
  year: 1994
  end-page: 1219
  ident: b0075
  article-title: Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by
  publication-title: Science
– volume: 11
  start-page: 7640
  year: 2021
  end-page: 7651
  ident: b0200
  article-title: Comprehensive effect of tuning Cu/SAPO-34 crystals using PEG on the enhanced hydrothermal stability for NH
  publication-title: Catal. Sci. Technol.
– volume: 6
  start-page: 1248
  year: 2016
  end-page: 1264
  ident: b0070
  article-title: Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH
  publication-title: Catal. Sci. & Technol.
– volume: 388
  start-page: 121729
  year: 2020
  ident: b0190
  article-title: Gas phase sulfation of ceria-zirconia solid solutions for generating highly efficient and SO
  publication-title: J. Hazard. Mater.
– volume: 4
  start-page: 977
  year: 1992
  end-page: 979
  ident: b0175
  article-title: Microwave frequency behavior of the EPR copper(II) ion pairs spectrum formed in CuCe oxide
  publication-title: Chem. Mater.
– volume: 176–177
  start-page: 338
  year: 2015
  end-page: 346
  ident: b0015
  article-title: A novel Ce-Ta mixed oxide catalyst for the selective catalytic reduction of NO
  publication-title: Appl. Catal. B: Environ.
– volume: 46
  start-page: 9600
  year: 2012
  end-page: 9605
  ident: b0045
  article-title: Ce-Ti amorphous oxides for selective catalytic reduction of NO with NH
  publication-title: Environ. Sci. Technol.
– volume: 19
  start-page: 21840
  year: 2017
  end-page: 21847
  ident: b0180
  article-title: Migration of copper species in Ce
  publication-title: Phys. Chem. Chem. Phys.
– volume: 19
  start-page: 103
  year: 1998
  end-page: 117
  ident: b0040
  article-title: Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts
  publication-title: Appl. Catal. B: Environ.
– volume: 150–151
  start-page: 315
  year: 2014
  end-page: 329
  ident: b0140
  article-title: Investigation of the structure, acidity, and catalytic performance of CuO/Ti
  publication-title: Appl. Catal. B: Environ.
– volume: 9
  start-page: 11557
  year: 2019
  end-page: 11562
  ident: b0080
  article-title: Design and synthesis of highly-dispersed WO
  publication-title: ACS Catal.
– volume: 54
  start-page: 12612
  year: 2020
  end-page: 12620
  ident: b0135
  article-title: Novel methods for assessing the SO
  publication-title: Environ. Sci. & Technol.
– volume: 236
  start-page: 25
  year: 2018
  end-page: 35
  ident: b0120
  article-title: Cu
  publication-title: Appl. Catal. B: Environ.
– volume: 179
  start-page: 203
  year: 1998
  end-page: 221
  ident: b0115
  article-title: Cu- and Ag-modified cerium oxide catalysts for methane oxidation
  publication-title: J. Catal.
– volume: 416
  start-page: 125826
  year: 2021
  ident: b0100
  article-title: Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NO
  publication-title: J. Hazard. Mater.
– volume: 120
  start-page: 14669
  year: 2016
  end-page: 14680
  ident: b0185
  article-title: Nature of Cu species in Cu-SAPO-18 catalyst for NH
  publication-title: J. Phys. Chem. C
– volume: 153
  start-page: 77
  year: 2010
  end-page: 83
  ident: b0205
  article-title: Enhanced activity of tungsten modified CeO
  publication-title: Catal. Today
– volume: 93
  start-page: 194
  year: 2009
  end-page: 204
  ident: b0035
  article-title: Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH
  publication-title: Appl. Catal. B: Environ.
– volume: 134–135
  start-page: 153
  year: 2013
  end-page: 166
  ident: b0110
  article-title: Selective catalytic oxidation of ammonia to nitrogen over CuO-CeO
  publication-title: Appl. Catal. B: Environ.
– volume: 129
  start-page: 30
  year: 2013
  end-page: 38
  ident: b0210
  article-title: Promoting effect of calcium doping on the performances of MnO
  publication-title: Appl. Catal. B: Environ.
– volume: 18
  start-page: 1
  year: 1998
  end-page: 36
  ident: b0050
  article-title: Chemical and mechanistic aspects of the selective catalytic reduction of NO
  publication-title: Appl. Catal. B: Environ.
– volume: 207
  start-page: 366
  year: 2017
  end-page: 375
  ident: b0215
  article-title: Ultra-low loading of copper modified TiO
  publication-title: Appl. Catal. B: Environ.
– volume: 86
  start-page: 2283
  year: 2009
  end-page: 2297
  ident: b0025
  article-title: Catalysis for NO
  publication-title: Appl. Energy
– volume: 142
  start-page: 290
  year: 2013
  end-page: 297
  ident: b0095
  article-title: Relationship between structure and performance of a novel cerium-niobium binary oxide catalyst for selective catalytic reduction of NO with NH
  publication-title: Appl. Catal. B: Environ.
– volume: 6
  start-page: 8134
  year: 2014
  end-page: 8145
  ident: b0065
  article-title: DRIFT study of CuO-CeO
  publication-title: ACS Appl. Mater. & Inter.
– volume: 423
  start-page: 172
  year: 2016
  end-page: 180
  ident: b0010
  article-title: NH
  publication-title: J. Mol. Catal. A: Chem.
– volume: 104
  start-page: 4038
  year: 2000
  end-page: 4046
  ident: b0145
  article-title: Structural and redox properties of ceria in alumina-supported ceria catalyst supports
  publication-title: J. Phys. Chem. B
– volume: 12
  start-page: 2441
  year: 2022
  end-page: 2453
  ident: b0130
  article-title: Copper single atom-triggered niobia-ceria catalyst for efficient low-temperature reduction of nitrogen oxides
  publication-title: ACS Catal.
– volume: 119–120
  start-page: 308
  year: 2012
  end-page: 320
  ident: b0105
  article-title: Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO
  publication-title: Appl. Catal. B: Environ.
– volume: 180
  start-page: 766
  year: 2016
  end-page: 774
  ident: b0030
  article-title: Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NO
  publication-title: Appl. Catal. B: Environ.
– volume: 123–124
  start-page: 229
  year: 2012
  end-page: 240
  ident: b0055
  article-title: Low-temperature selective catalytic reduction of NO
  publication-title: Appl. Catal. B: Environ.
– volume: 416
  year: 2021
  ident: b0160
  article-title: Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NO removal by NH
  publication-title: J. Hazard. Mater.
– volume: 220
  start-page: 19
  year: 2018
  end-page: 30
  ident: b0005
  article-title: Remarkable enhancement of the selective catalytic reduction of NO at low temperature by collaborative effect of ethanol and NH
  publication-title: Appl. Catal. B: Environ.
– volume: 78
  start-page: 267
  year: 2008
  end-page: 274
  ident: b0020
  article-title: Co
  publication-title: Appl. Catal. B: Environ.
– volume: 2
  start-page: 1432
  year: 2015
  end-page: 1440
  ident: b0155
  article-title: Size-dependent catalytic performance of CuO on gamma-Al
  publication-title: ACS Catal.
– volume: 180
  start-page: 766
  year: 2016
  ident: 10.1016/j.cjche.2022.05.028_b0030
  article-title: Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NOx with NH3 over CeZrOx catalyst
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2015.06.055
– volume: 129
  start-page: 30
  year: 2013
  ident: 10.1016/j.cjche.2022.05.028_b0210
  article-title: Promoting effect of calcium doping on the performances of MnOx/TiO2 catalysts for NO reduction with NH3 at low temperature
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2012.09.003
– volume: 6
  start-page: 8134
  year: 2014
  ident: 10.1016/j.cjche.2022.05.028_b0065
  article-title: DRIFT study of CuO-CeO2-TiO2 mixed oxides for NOx reduction with NH3 at low temperatures
  publication-title: ACS Appl. Mater. & Inter.
  doi: 10.1021/am5004969
– volume: 62
  start-page: 117
  year: 2018
  ident: 10.1016/j.cjche.2022.05.028_b0150
  article-title: Three-component nonlinear Schrödinger equations: Modulational instability, Nth-order vector rational and semi-rational rogue waves, and dynamics
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.02.008
– volume: 237
  start-page: 116
  year: 2018
  ident: 10.1016/j.cjche.2022.05.028_b0170
  article-title: The influence of phosphorus on the catalytic properties, durability, sulfur resistance and kinetics of Cu-SSZ-13 for NOx reduction by NH3-SCR
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.05.075
– volume: 265
  start-page: 1217
  year: 1994
  ident: 10.1016/j.cjche.2022.05.028_b0075
  article-title: Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy
  publication-title: Science
  doi: 10.1126/science.265.5176.1217
– volume: 54
  start-page: 12612
  year: 2020
  ident: 10.1016/j.cjche.2022.05.028_b0135
  article-title: Novel methods for assessing the SO2 poisoning effect and thermal regeneration possibility of MOx-WO3/TiO2 (M = Fe, Mn, Cu, and V) catalysts for NH3-SCR
  publication-title: Environ. Sci. & Technol.
  doi: 10.1021/acs.est.0c02840
– volume: 150–151
  start-page: 315
  year: 2014
  ident: 10.1016/j.cjche.2022.05.028_b0140
  article-title: Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2013.12.007
– volume: 2
  start-page: 1432
  year: 2015
  ident: 10.1016/j.cjche.2022.05.028_b0155
  article-title: Size-dependent catalytic performance of CuO on gamma-Al2O3: NO reduction versus NH3 oxidation
  publication-title: ACS Catal.
  doi: 10.1021/cs3002463
– volume: 78
  start-page: 267
  year: 2008
  ident: 10.1016/j.cjche.2022.05.028_b0020
  article-title: Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2007.09.029
– volume: 8
  start-page: 2988
  year: 2021
  ident: 10.1016/j.cjche.2022.05.028_b0090
  article-title: Significant differences of NH3-SCR performances between monoclinic and hexagonal WO3 on Ce-based catalysts
  publication-title: Environ. Sci.: Nano.
– volume: 176–177
  start-page: 338
  year: 2015
  ident: 10.1016/j.cjche.2022.05.028_b0015
  article-title: A novel Ce-Ta mixed oxide catalyst for the selective catalytic reduction of NOx with NH3
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2015.04.023
– volume: 416
  start-page: 125826
  year: 2021
  ident: 10.1016/j.cjche.2022.05.028_b0100
  article-title: Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NOx removal by NH3-SCR
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125826
– volume: 382
  start-page: 34
  year: 2021
  ident: 10.1016/j.cjche.2022.05.028_b0085
  article-title: Optimizing acid promoters of Ce-based NH3-SCR catalysts for reducing NOx emissions
  publication-title: Catal. Today.
  doi: 10.1016/j.cattod.2021.05.007
– volume: 18
  start-page: 1
  year: 1998
  ident: 10.1016/j.cjche.2022.05.028_b0050
  article-title: Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/S0926-3373(98)00040-X
– volume: 12
  start-page: 2441
  year: 2022
  ident: 10.1016/j.cjche.2022.05.028_b0130
  article-title: Copper single atom-triggered niobia-ceria catalyst for efficient low-temperature reduction of nitrogen oxides
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05661
– volume: 208
  start-page: 82
  year: 2017
  ident: 10.1016/j.cjche.2022.05.028_b0220
  article-title: Selective catalytic reduction of NOx by NH3 over CeO2 supported on TiO2: Comparison of anatase, brookite, and rutile
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.02.060
– volume: 6
  start-page: 1248
  year: 2016
  ident: 10.1016/j.cjche.2022.05.028_b0070
  article-title: Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3
  publication-title: Catal. Sci. & Technol.
  doi: 10.1039/C5CY01487E
– volume: 207
  start-page: 366
  year: 2017
  ident: 10.1016/j.cjche.2022.05.028_b0215
  article-title: Ultra-low loading of copper modified TiO2/CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.02.041
– volume: 120
  start-page: 14669
  year: 2016
  ident: 10.1016/j.cjche.2022.05.028_b0185
  article-title: Nature of Cu species in Cu-SAPO-18 catalyst for NH3-SCR: Combination of experiments and DFT calculations
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b03464
– volume: 388
  start-page: 121729
  year: 2020
  ident: 10.1016/j.cjche.2022.05.028_b0190
  article-title: Gas phase sulfation of ceria-zirconia solid solutions for generating highly efficient and SO2 resistant NH3-SCR catalysts for NO removal
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121729
– volume: 86
  start-page: 2283
  year: 2009
  ident: 10.1016/j.cjche.2022.05.028_b0025
  article-title: Catalysis for NOx abatement
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.03.022
– volume: 416
  year: 2021
  ident: 10.1016/j.cjche.2022.05.028_b0160
  article-title: Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NO removal by NH3-SCR
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125826
– volume: 220
  start-page: 19
  year: 2018
  ident: 10.1016/j.cjche.2022.05.028_b0005
  article-title: Remarkable enhancement of the selective catalytic reduction of NO at low temperature by collaborative effect of ethanol and NH3 over silver supported catalyst
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.08.015
– volume: 19
  start-page: 21840
  year: 2017
  ident: 10.1016/j.cjche.2022.05.028_b0180
  article-title: Migration of copper species in CexCu1-xO2 catalyst driven by thermal treatment and the effect on CO oxidation
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP03735J
– volume: 179
  start-page: 380
  year: 2015
  ident: 10.1016/j.cjche.2022.05.028_b0165
  article-title: Impacts of niobia loading on active sites and surface acidity in NbOx/CeO2-ZrO2 NH3-SCR catalysts
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2015.05.038
– start-page: 136530
  year: 2022
  ident: 10.1016/j.cjche.2022.05.028_b0060
  article-title: Cerium manganese oxides coupled with ZSM-5: A novel SCR catalyst with superior K resistance
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136530
– volume: 220
  start-page: 234
  year: 2018
  ident: 10.1016/j.cjche.2022.05.028_b0125
  article-title: Promotional synergistic effect of Cu and Nb doping on a novel Cu/Ti-Nb ternary oxide catalyst for the selective catalytic reduction of NOx with NH3
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.08.021
– volume: 11
  start-page: 7640
  year: 2021
  ident: 10.1016/j.cjche.2022.05.028_b0200
  article-title: Comprehensive effect of tuning Cu/SAPO-34 crystals using PEG on the enhanced hydrothermal stability for NH3-SCR
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D1CY01194D
– volume: 123–124
  start-page: 229
  year: 2012
  ident: 10.1016/j.cjche.2022.05.028_b0055
  article-title: Low-temperature selective catalytic reduction of NOx with NH3 over Mn-containing catalysts
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2012.04.012
– volume: 236
  start-page: 25
  year: 2018
  ident: 10.1016/j.cjche.2022.05.028_b0120
  article-title: Cux-Nb1.1-x (x= 0.45, 0.35, 0.25, 0.15) bimetal oxides catalysts for the low temperature selective catalytic reduction of NO with NH3
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.05.014
– volume: 142
  start-page: 290
  year: 2013
  ident: 10.1016/j.cjche.2022.05.028_b0095
  article-title: Relationship between structure and performance of a novel cerium-niobium binary oxide catalyst for selective catalytic reduction of NO with NH3
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2013.05.035
– volume: 7
  start-page: 1313
  year: 2017
  ident: 10.1016/j.cjche.2022.05.028_b0195
  article-title: Crystal plane effect of ceria on supported copper oxide cluster catalyst for CO oxidation: Importance of metal-support interaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03234
– volume: 104
  start-page: 4038
  year: 2000
  ident: 10.1016/j.cjche.2022.05.028_b0145
  article-title: Structural and redox properties of ceria in alumina-supported ceria catalyst supports
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp992796y
– volume: 134–135
  start-page: 153
  year: 2013
  ident: 10.1016/j.cjche.2022.05.028_b0110
  article-title: Selective catalytic oxidation of ammonia to nitrogen over CuO-CeO2 mixed oxides prepared by surfactant-templated method
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2013.01.029
– volume: 179
  start-page: 203
  year: 1998
  ident: 10.1016/j.cjche.2022.05.028_b0115
  article-title: Cu- and Ag-modified cerium oxide catalysts for methane oxidation
  publication-title: J. Catal.
  doi: 10.1006/jcat.1998.2213
– volume: 153
  start-page: 77
  year: 2010
  ident: 10.1016/j.cjche.2022.05.028_b0205
  article-title: Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2010.01.062
– volume: 119–120
  start-page: 308
  year: 2012
  ident: 10.1016/j.cjche.2022.05.028_b0105
  article-title: Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2012.02.029
– volume: 19
  start-page: 103
  year: 1998
  ident: 10.1016/j.cjche.2022.05.028_b0040
  article-title: Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/S0926-3373(98)00060-5
– volume: 46
  start-page: 9600
  year: 2012
  ident: 10.1016/j.cjche.2022.05.028_b0045
  article-title: Ce-Ti amorphous oxides for selective catalytic reduction of NO with NH3: Confirmation of Ce-O-Ti active sites
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301661r
– volume: 4
  start-page: 977
  year: 1992
  ident: 10.1016/j.cjche.2022.05.028_b0175
  article-title: Microwave frequency behavior of the EPR copper(II) ion pairs spectrum formed in CuCe oxide
  publication-title: Chem. Mater.
  doi: 10.1021/cm00023a008
– volume: 93
  start-page: 194
  year: 2009
  ident: 10.1016/j.cjche.2022.05.028_b0035
  article-title: Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2009.09.029
– volume: 423
  start-page: 172
  year: 2016
  ident: 10.1016/j.cjche.2022.05.028_b0010
  article-title: NH3-SCR reaction mechanisms of NbOx/Ce0.75Zr0.25O2 catalyst: DRIFTS and kinetics studies
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2016.06.023
– volume: 9
  start-page: 11557
  year: 2019
  ident: 10.1016/j.cjche.2022.05.028_b0080
  article-title: Design and synthesis of highly-dispersed WO3 catalyst with highly effective NH3-SCR activity for NOx abatement
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b03503
SSID ssj0020818
Score 2.3607905
Snippet [Display omitted] A simple strategy of Cu modification was proposed to broaden the operation temperature window for NbCe catalyst. The best catalyst...
A simple strategy of Cu modification was proposed to broaden the operation temperature window for NbCe catalyst.The best catalyst Cu0.010/NbiCe3 presented over...
SourceID wanfang
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 301
SubjectTerms Cu modification
Fast-SCR
Flue gas
NbCe catalyst
NH3-SCR
NO2 promoting effect
Title Insight into the promotional mechanism of Cu modification towards wide-temperature NH3-SCR performance of NbCe catalyst
URI https://dx.doi.org/10.1016/j.cjche.2022.05.028
https://d.wanfangdata.com.cn/periodical/cjce202210030
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZLSqE9lKZpaNpm0aHHKquXvdYxmIZNQvbQNJCb0MpScOh6l9hh6aW_vRpZzgPCHnoyNiNjZkbzkD99Quib4m4qTM5JSHUFkWECkcKLjNhKUUW9s8LB0sDFPJ9dybPr7HqEymEvDMAqU-zvY3qM1unJJGlzsq7rySVwnalMMg44AzkF2m0ZLsGnj_4-wDw4ULbFP55UEpAemIcixsveBs2EJpHzSN8JR7K_nJ1eb0zjTXPzJPecvEfvUtGIj_vv2kUj13xAb59QCe6hzWnTQp-N66Zb4VDV4XUPtINKGy8dbPCt2yVeeVze4-WqAohQtAruInK2xZs6qBCoqhLPMp7PBLksf-L14-YCGD9flA7HZZ8_bfcRXZ38-FXOSDpUgVghREcyy1RFqXOh0bBTxkyWVYvQNTFmhaKVF8aGmspnpjI5VYXlxQI4wKSwVhjOmdhHO82qcZ8QpjlX0gcX8LKQ3IZXMaNMkTsok3xVHCA-KFPbxDgOB1_81gO07FZHC2iwgKaZDhY4QN8fBq17wo3t4vlgJf3Mb3RICdsHjpNNdZq1LQg5EGEQ-j7_75u_oDdw1yP-vqKd7u7eHYbKpVuMo2uO0avj0_PZ_B-zTu0o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEaIcEE-1PIoPcMOsX8nGhx6qhWqXtnugrdSb8To2StXNrppUq174U_xBPI5TioR6QOo1sa1oZjwP5_M3CL1X3A2FyTkJoa4gMmwgUniREVsqqqh3Vjg4Gjic5uMT-fU0O11Dv_q7MACrTL6_8-nRW6cngyTNwbKqBkfAdaYyyTjgDOQwT8jKfXe1CnVbszP5HJT8gfO9L8ejMUmtBYgVQrQks0yVlDoX0m07ZMxkWTkLtQNjVihaemFsyCx8ZkqTU1VYXsyACUsKa4XhnImw7j10XwZ3AW0TPv28xpVw4IiLv1ipJPB5PdVRBJXZs6CKUJVyHvlCoQf8v8Phg5Wpval_3Ah2e0_Q45Sl4t1OEE_RmqufoUc3uAufo9WkbqCwx1XdLnBII_GyQ_ZBao_nDm4UV80cLzweXeL5ogRMUjQD3EaoboNXVdAZcGMlYmc8HQtyNPqGl39uM8D86WzkcDxnumraF-jkTkT9Eq3Xi9ptIkxzrqQPNudlIbkNSzGjTJE7yMt8WWwh3gtT20RxDp02znWPZTvTUQMaNKBppoMGttDH60nLjuHj9uF5ryX9l6HqEINun7iddKqTm2hgkIMhDHztq_9d-R16OD4-PNAHk-n-a7QBbzq44Ru03l5curchbWpn29FMMfp-1_viN_QZJ5s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+the+promotional+mechanism+of+Cu+modification+towards+wide-temperature+NH3-SCR+performance+of+NbCe+catalyst&rft.jtitle=Chinese+journal+of+chemical+engineering&rft.au=An%2C+Dongqi&rft.au=Yang%2C+Yuyao&rft.au=Zou%2C+Weixin&rft.au=Cai%2C+Yandi&rft.date=2022-10-01&rft.pub=Elsevier+B.V&rft.issn=1004-9541&rft.eissn=2210-321X&rft.volume=50&rft.spage=301&rft.epage=309&rft_id=info:doi/10.1016%2Fj.cjche.2022.05.028&rft.externalDocID=S1004954122002476
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fcjce%2Fcjce.jpg