Turbulent kinetic energy transport in high-speed turbulence subject to wall disturbances
Wall disturbances in high-speed turbulent boundary layers induce large-scale motions in the outer region even when the Reynolds number is not sufficiently high for their existence in the case of smooth wall flows. In the present study, we investigate the dynamics of these outer region large-scale mo...
Saved in:
Published in | The International journal of heat and fluid flow Vol. 106; p. 109311 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wall disturbances in high-speed turbulent boundary layers induce large-scale motions in the outer region even when the Reynolds number is not sufficiently high for their existence in the case of smooth wall flows. In the present study, we investigate the dynamics of these outer region large-scale motions by exploiting the scale-by-scale energy transport in the spectral space. By scrutinizing the disparity in the budget terms of the turbulent kinetic energy spectra between turbulence over smooth and disturbed walls, we found that the intensification of the large-scale motions in the outer region is statistically correlated with the stronger interaction between the Reynolds stress and the mean shear, i.e. the production term of the turbulent kinetic energy. The corresponding turbulent kinetic energy is then transferred to smaller-scale motions and dissipated by viscosity, whereas the effects of spatial diffusion and mean convection are insignificant and are dimly affected by the wall disturbances. These dynamic processes are roughly irrelevant to the Mach numbers, and processes related directly to the genuine compressibility effects, namely the dilatational motions and mass flux, are trivial. The outer large-scale motions contribute to the skin friction by approximately 19% ∼45% compared with 4% in smooth wall cases in terms of the mean kinetic energy transport, suggesting that the drag increment in turbulent boundary layers in the presence of wall disturbances should be partly attributed to their intensification.
•Large-scale motions are stronger in supersonic turbulence with wall disturbances.•Turbulent kinetic energy transport in the spectral space is analysed.•The large-scale intensification is related to the turbulent production.•Large-scale motions contribute highly to skin friction disturbed wall cases. |
---|---|
AbstractList | Wall disturbances in high-speed turbulent boundary layers induce large-scale motions in the outer region even when the Reynolds number is not sufficiently high for their existence in the case of smooth wall flows. In the present study, we investigate the dynamics of these outer region large-scale motions by exploiting the scale-by-scale energy transport in the spectral space. By scrutinizing the disparity in the budget terms of the turbulent kinetic energy spectra between turbulence over smooth and disturbed walls, we found that the intensification of the large-scale motions in the outer region is statistically correlated with the stronger interaction between the Reynolds stress and the mean shear, i.e. the production term of the turbulent kinetic energy. The corresponding turbulent kinetic energy is then transferred to smaller-scale motions and dissipated by viscosity, whereas the effects of spatial diffusion and mean convection are insignificant and are dimly affected by the wall disturbances. These dynamic processes are roughly irrelevant to the Mach numbers, and processes related directly to the genuine compressibility effects, namely the dilatational motions and mass flux, are trivial. The outer large-scale motions contribute to the skin friction by approximately 19% ∼45% compared with 4% in smooth wall cases in terms of the mean kinetic energy transport, suggesting that the drag increment in turbulent boundary layers in the presence of wall disturbances should be partly attributed to their intensification.
•Large-scale motions are stronger in supersonic turbulence with wall disturbances.•Turbulent kinetic energy transport in the spectral space is analysed.•The large-scale intensification is related to the turbulent production.•Large-scale motions contribute highly to skin friction disturbed wall cases. |
ArticleNumber | 109311 |
Author | Guo, QiLong Tang, ZhiGong Li, Bo Yu, Ming Yuan, XianXu |
Author_xml | – sequence: 1 givenname: Ming surname: Yu fullname: Yu, Ming email: yum16@tsinghua.org.cn – sequence: 2 givenname: QiLong surname: Guo fullname: Guo, QiLong – sequence: 3 givenname: ZhiGong surname: Tang fullname: Tang, ZhiGong – sequence: 4 givenname: Bo surname: Li fullname: Li, Bo email: lib044@mail.ustc.edu.cn – sequence: 5 givenname: XianXu surname: Yuan fullname: Yuan, XianXu email: yuanxianxu2023@163.com |
BookMark | eNqNkMtOAjEARRujiYD-QzcuB_uaKV24METRhMQNJuyaTh_QceyQtkj4e2cCK1as7uLmnuSeMbgNXbAAPGE0xQhXz83UN1ursmv33ri2O0wJIqzvBMX4BozwjIuCED67BSOEGSk44et7ME6pQQhViPERWK_2sd63NmT444PNXkMbbNwcYY4qpF0XM_QBbv1mW6SdtQbm80BbmPZ1Y3WGuYMH1bbQ-DS0qu_SA7hzqk328ZwT8P3-tpp_FMuvxef8dVloSmkuSuEQF6oizFW8P1XOMKpJxYwTiKCaCka1cLZyxriyLhl1whhRV6bUjBNc0wmYn7g6dilF66T2WWXfhf6AbyVGcpAlG3khSw6y5ElWT3m5oOyi_1XxePV-cdrb_uqft1Em7QdHxsfekDSdv5L0D2XCld0 |
CitedBy_id | crossref_primary_10_1007_s11433_024_2481_8 crossref_primary_10_24857_rgsa_v18n12_221 |
Cites_doi | 10.1017/S0022112010000959 10.1017/jfm.2021.310 10.1017/jfm.2015.172 10.1016/j.jcp.2018.08.058 10.1017/jfm.2021.236 10.1017/jfm.2016.459 10.1016/j.ijheatfluidflow.2023.109147 10.1016/j.compfluid.2012.02.027 10.1080/08927010601035738 10.1103/PhysRevFluids.4.054601 10.1016/j.paerosci.2006.12.002 10.1017/jfm.2013.133 10.1017/jfm.2022.80 10.2514/6.2007-3998 10.1063/1.868272 10.1017/jfm.2023.425 10.1017/jfm.2018.899 10.1017/jfm.2020.262 10.1016/j.ijft.2021.100077 10.1146/annurev-fluid-062520-115127 10.1017/jfm.2016.564 10.1017/jfm.2022.393 10.1007/s10409-023-23075-x 10.1017/jfm.2018.570 10.1017/jfm.2015.230 10.1016/j.cpc.2021.107906 10.1017/jfm.2020.246 10.1017/S0022112010005082 10.1017/jfm.2023.712 10.2514/1.J057296 10.1103/PhysRevFluids.4.123402 10.1063/1.3622773 10.1080/14685240600827526 10.1006/jcph.1999.6238 10.2514/8.1895 10.1017/jfm.2020.542 10.1017/jfm.2022.574 10.1016/S0021-9991(03)00090-1 10.1016/j.ijheatfluidflow.2019.108518 10.1017/jfm.2022.826 10.1146/annurev.fluid.36.050802.122103 10.1017/jfm.2019.1027 10.1017/jfm.2016.665 10.2514/1.45350 10.1017/jfm.2022.1049 10.1063/1.4944657 10.1115/1.4001492 10.1080/14685248.2019.1706741 10.1016/j.jcp.2020.110060 10.1080/14685248.2014.907904 10.1063/1.5111009 10.1017/jfm.2019.1014 10.1017/jfm.2011.368 10.1017/jfm.2021.888 10.2514/6.1992-436 10.2514/1.J061623 10.1063/5.0141369 10.1017/jfm.2016.12 10.1063/5.0084646 10.1017/jfm.2022.59 10.1017/S0022112006001534 10.1007/s00348-021-03279-4 10.1017/jfm.2023.616 10.1017/jfm.2019.1030 10.1017/jfm.2018.643 10.1017/jfm.2018.903 10.1007/s10409-017-0731-2 10.2514/2.862 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. |
Copyright_xml | – notice: 2024 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijheatfluidflow.2024.109311 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-2278 |
ExternalDocumentID | 10_1016_j_ijheatfluidflow_2024_109311 S0142727X24000365 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABMYL ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADHUB ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 UHS VH1 VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c333t-59f079a624f670165810b264df9020b3943c9fe6fddf5b543f9dd9b6d5c4721b3 |
IEDL.DBID | .~1 |
ISSN | 0142-727X |
IngestDate | Thu Apr 24 22:50:10 EDT 2025 Tue Jul 01 01:32:27 EDT 2025 Sat Mar 23 16:40:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Turbulent boundary layer Compressibility effects High-speed turbulence Skin friction Large-scale motions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-59f079a624f670165810b264df9020b3943c9fe6fddf5b543f9dd9b6d5c4721b3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ijheatfluidflow_2024_109311 crossref_primary_10_1016_j_ijheatfluidflow_2024_109311 elsevier_sciencedirect_doi_10_1016_j_ijheatfluidflow_2024_109311 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationTitle | The International journal of heat and fluid flow |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Shima, Kuya, Tamaki, Kawai (b55) 2021; 427 Stroh, Schäfer, Frohnapfel, Forooghi (b58) 2020; 885 Kim, Blois, Best, Christensen (b31) 2020; 887 Orlandi, Leonardi (b47) 2006 Bowersox, R., 2007. Survey of high-speed rough wall boundary layers: Invited presentation. In: 37th AIAA Fluid Dynamics Conference and Exhibit. p. 3998. Huang, Duan, Choudhari (b26) 2022; 937 Lee, Sung, Krogstad (b37) 2011; 669 Gatski, Bonnet (b23) 2013 MacDonald, Chan, Chung, Hutchins, Ooi (b42) 2016; 804 Rumsey (b54) 2010; 47 Wang, Zhang, Hao, Huang, Shen, Xu, Zhang (b60) 2020; 893 Hernández, Yang, Hwang (b24) 2022; 936 Chan, MacDonald, Chung, Hutchins, Ooi (b6) 2015; 771 Flack, Schultz (b20) 2010; 132 Domaradzki, Liu, Härtel, Kleiser (b14) 1994; 6 Modesti, Endrikat, Hutchins, Chung (b45) 2021; 917 Kocher, Kreth, Schmisseur, LaLonde, Combs (b33) 2022; 60 Mizuno (b44) 2016; 805 Duan, Beekman, Martin (b16) 2010; 655 de Giovanetti, Hwang, Choi (b13) 2016; 808 Wu, Christensen, Pantano (b65) 2019; 863 Yu, Zhou, Su, Guo, Yuan (b70) 2023; 39 Zhang, Duan, Choudhari (b72) 2018; 56 Lee, Moser (b36) 2019; 860 Chan, MacDonald, Chung, Hutchins, Ooi (b7) 2018; 854 Stroh, Schäfer, Forooghi, Frohnapfel (b57) 2020; 81 Klein, Sadiki, Janicka (b32) 2003; 186 Ma, Xu, Sung, Huang (b40) 2023; 968 Aghaei Jouybari, Brereton, Yuan (b1) 2019; 20 Jiménez (b28) 2004; 36 Latin, Bowersox (b35) 2000; 38 Wangsawijaya, Baidya, Chung, Marusic, Hutchins (b61) 2020; 894 Cogo, Salvadore, Picano, Bernardini (b12) 2022; 945 Smits, Dussauge (b56) 2006 Duan, Zhong, Wang, Zhang, Li (b17) 2021; 918 Aghaei-Jouybari, Yuan, Li, Brereton, Jaberi (b2) 2023; 956 Ma, Xu, Sung, Huang (b38) 2020; 900 Williams, Sahoo, Papageorge, Smits (b63) 2021; 62 Yu, Xu, Pirozzoli (b67) 2019; 4 Yu, Zhao, Tang, Yuan, Xu (b68) 2022; 951 Kuya, Totani, Kawai (b34) 2018; 375 Chung, Chan, MacDonald, Hutchins, Ooi (b9) 2015; 773 Hwang (b27) 2013; 723 Ma, Xu, Sung, Huang (b41) 2023; 102 Yu, Liu, Tang, Yuan, Xu (b66) 2023; 35 Kadivar, Tormey, McGranaghan (b29) 2021; 10 van Driest (b15) 1951; 18 Wray (b64) 1990 Ducros, Ferrand, Nicoud, Weber, Darracq, Gacherieu, Poinsot (b18) 1999; 152 Ma, Xu, Sung, Huang (b39) 2022; 34 Renard, Deck (b52) 2016; 790 Peltier (b48) 2013 Flores, Jimenez (b21) 2006; 566 Zhang, Huang, Xu (b73) 2019; 4 Pirozzoli (b50) 2023; 971 Fu, Zhou, Yu, Su, Guo, Yuan (b22) 2023 Peltier, Humble, Bowersox (b49) 2016; 28 Roy, Blottner (b53) 2006; 42 Coakley, T., Huang, P., 1992. Turbulence modeling for high speed flows. In: 30th Aerospace Sciences Meeting and Exhibit. p. 436. Yuan, Piomelli (b71) 2014; 15 Bernardini, Pirozzoli (b4) 2011; 23 Modesti, Sathyanarayana, Salvadore, Bernardini (b46) 2022; 942 Bernardini, Modesti, Salvadore, Pirozzoli (b3) 2021; 263 Fan, Li, Pirozzoli (b19) 2019; 31 Wenzel, Gibis, Kloker (b62) 2022; 930 Cho, Hwang, Choi (b8) 2018; 854 Chung, Hutchins, Schultz, Flack (b10) 2021; 53 Yu, Zhou, Dong, Yuan, Xu (b69) 2023; 972 Medjnoun, Vanderwel, Ganapathisubramani (b43) 2020; 886 Howell, Behrends (b25) 2006; 22 Kempf, Wysocki, Pettit (b30) 2012; 60 Pirozzoli, Bernardini (b51) 2011; 688 Wang, Wang, He (b59) 2018; 34 Chan (10.1016/j.ijheatfluidflow.2024.109311_b7) 2018; 854 Wang (10.1016/j.ijheatfluidflow.2024.109311_b59) 2018; 34 Fan (10.1016/j.ijheatfluidflow.2024.109311_b19) 2019; 31 Duan (10.1016/j.ijheatfluidflow.2024.109311_b16) 2010; 655 Aghaei-Jouybari (10.1016/j.ijheatfluidflow.2024.109311_b2) 2023; 956 Wangsawijaya (10.1016/j.ijheatfluidflow.2024.109311_b61) 2020; 894 Fu (10.1016/j.ijheatfluidflow.2024.109311_b22) 2023 Huang (10.1016/j.ijheatfluidflow.2024.109311_b26) 2022; 937 Mizuno (10.1016/j.ijheatfluidflow.2024.109311_b44) 2016; 805 Kocher (10.1016/j.ijheatfluidflow.2024.109311_b33) 2022; 60 Wang (10.1016/j.ijheatfluidflow.2024.109311_b60) 2020; 893 Yuan (10.1016/j.ijheatfluidflow.2024.109311_b71) 2014; 15 Wenzel (10.1016/j.ijheatfluidflow.2024.109311_b62) 2022; 930 Yu (10.1016/j.ijheatfluidflow.2024.109311_b67) 2019; 4 Ma (10.1016/j.ijheatfluidflow.2024.109311_b38) 2020; 900 Hwang (10.1016/j.ijheatfluidflow.2024.109311_b27) 2013; 723 Stroh (10.1016/j.ijheatfluidflow.2024.109311_b58) 2020; 885 Ma (10.1016/j.ijheatfluidflow.2024.109311_b41) 2023; 102 Pirozzoli (10.1016/j.ijheatfluidflow.2024.109311_b50) 2023; 971 Williams (10.1016/j.ijheatfluidflow.2024.109311_b63) 2021; 62 Kim (10.1016/j.ijheatfluidflow.2024.109311_b31) 2020; 887 Yu (10.1016/j.ijheatfluidflow.2024.109311_b66) 2023; 35 Orlandi (10.1016/j.ijheatfluidflow.2024.109311_b47) 2006 Flores (10.1016/j.ijheatfluidflow.2024.109311_b21) 2006; 566 Zhang (10.1016/j.ijheatfluidflow.2024.109311_b72) 2018; 56 Ma (10.1016/j.ijheatfluidflow.2024.109311_b40) 2023; 968 Modesti (10.1016/j.ijheatfluidflow.2024.109311_b46) 2022; 942 Lee (10.1016/j.ijheatfluidflow.2024.109311_b36) 2019; 860 Roy (10.1016/j.ijheatfluidflow.2024.109311_b53) 2006; 42 Bernardini (10.1016/j.ijheatfluidflow.2024.109311_b4) 2011; 23 Yu (10.1016/j.ijheatfluidflow.2024.109311_b70) 2023; 39 Bernardini (10.1016/j.ijheatfluidflow.2024.109311_b3) 2021; 263 Lee (10.1016/j.ijheatfluidflow.2024.109311_b37) 2011; 669 Wu (10.1016/j.ijheatfluidflow.2024.109311_b65) 2019; 863 Yu (10.1016/j.ijheatfluidflow.2024.109311_b69) 2023; 972 Ma (10.1016/j.ijheatfluidflow.2024.109311_b39) 2022; 34 Smits (10.1016/j.ijheatfluidflow.2024.109311_b56) 2006 Zhang (10.1016/j.ijheatfluidflow.2024.109311_b73) 2019; 4 10.1016/j.ijheatfluidflow.2024.109311_b11 Peltier (10.1016/j.ijheatfluidflow.2024.109311_b49) 2016; 28 Cho (10.1016/j.ijheatfluidflow.2024.109311_b8) 2018; 854 Medjnoun (10.1016/j.ijheatfluidflow.2024.109311_b43) 2020; 886 Cogo (10.1016/j.ijheatfluidflow.2024.109311_b12) 2022; 945 Duan (10.1016/j.ijheatfluidflow.2024.109311_b17) 2021; 918 Latin (10.1016/j.ijheatfluidflow.2024.109311_b35) 2000; 38 Ducros (10.1016/j.ijheatfluidflow.2024.109311_b18) 1999; 152 Jiménez (10.1016/j.ijheatfluidflow.2024.109311_b28) 2004; 36 MacDonald (10.1016/j.ijheatfluidflow.2024.109311_b42) 2016; 804 van Driest (10.1016/j.ijheatfluidflow.2024.109311_b15) 1951; 18 Rumsey (10.1016/j.ijheatfluidflow.2024.109311_b54) 2010; 47 Renard (10.1016/j.ijheatfluidflow.2024.109311_b52) 2016; 790 10.1016/j.ijheatfluidflow.2024.109311_b5 Hernández (10.1016/j.ijheatfluidflow.2024.109311_b24) 2022; 936 Yu (10.1016/j.ijheatfluidflow.2024.109311_b68) 2022; 951 Stroh (10.1016/j.ijheatfluidflow.2024.109311_b57) 2020; 81 Chung (10.1016/j.ijheatfluidflow.2024.109311_b9) 2015; 773 Howell (10.1016/j.ijheatfluidflow.2024.109311_b25) 2006; 22 Aghaei Jouybari (10.1016/j.ijheatfluidflow.2024.109311_b1) 2019; 20 Kempf (10.1016/j.ijheatfluidflow.2024.109311_b30) 2012; 60 Modesti (10.1016/j.ijheatfluidflow.2024.109311_b45) 2021; 917 Wray (10.1016/j.ijheatfluidflow.2024.109311_b64) 1990 Peltier (10.1016/j.ijheatfluidflow.2024.109311_b48) 2013 Gatski (10.1016/j.ijheatfluidflow.2024.109311_b23) 2013 Domaradzki (10.1016/j.ijheatfluidflow.2024.109311_b14) 1994; 6 Kuya (10.1016/j.ijheatfluidflow.2024.109311_b34) 2018; 375 Kadivar (10.1016/j.ijheatfluidflow.2024.109311_b29) 2021; 10 Klein (10.1016/j.ijheatfluidflow.2024.109311_b32) 2003; 186 Chung (10.1016/j.ijheatfluidflow.2024.109311_b10) 2021; 53 Flack (10.1016/j.ijheatfluidflow.2024.109311_b20) 2010; 132 Pirozzoli (10.1016/j.ijheatfluidflow.2024.109311_b51) 2011; 688 de Giovanetti (10.1016/j.ijheatfluidflow.2024.109311_b13) 2016; 808 Shima (10.1016/j.ijheatfluidflow.2024.109311_b55) 2021; 427 Chan (10.1016/j.ijheatfluidflow.2024.109311_b6) 2015; 771 |
References_xml | – volume: 81 year: 2020 ident: b57 article-title: Secondary flow and heat transfer in turbulent flow over streamwise ridges publication-title: Int. J. Heat Fluid Flow – year: 2013 ident: b23 article-title: Compressibility, Turbulence and High Speed Flow – volume: 28 year: 2016 ident: b49 article-title: Crosshatch roughness distortions on a hypersonic turbulent boundary layer publication-title: Phys. Fluids – volume: 20 start-page: 723 year: 2019 end-page: 749 ident: b1 article-title: Turbulence structures over realistic and synthetic wall roughness in open channel flow at publication-title: J. Turbul. – reference: Bowersox, R., 2007. Survey of high-speed rough wall boundary layers: Invited presentation. In: 37th AIAA Fluid Dynamics Conference and Exhibit. p. 3998. – volume: 860 start-page: 886 year: 2019 end-page: 938 ident: b36 article-title: Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number publication-title: J. Fluid Mech. – start-page: 1 year: 2023 end-page: 18 ident: b22 article-title: Effects of groove distributions on supersonic turbulent channel flows publication-title: J. Turbul. – volume: 887 start-page: A3 year: 2020 ident: b31 article-title: Experimental evidence of amplitude modulation in permeable-wall turbulence publication-title: J. Fluid Mech. – volume: 34 year: 2022 ident: b39 article-title: Scaling of rough-wall turbulence in a transitionally rough regime publication-title: Phys. Fluids – year: 2006 ident: b56 article-title: Turbulent Shear Layers in Supersonic Flow – volume: 60 start-page: 58 year: 2012 end-page: 60 ident: b30 article-title: An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS publication-title: Comput. Fluids – volume: 152 start-page: 517 year: 1999 end-page: 549 ident: b18 article-title: Large-eddy simulation of the shock/turbulence interaction publication-title: J. Comput. Phys. – year: 2013 ident: b48 article-title: Behavior of Turbulent Structures Within a Mach 5 Mechanically Distorted Boundary Layer – volume: 900 start-page: R7 year: 2020 ident: b38 article-title: Scaling of rough-wall turbulence by the roughness height and steepness publication-title: J. Fluid Mech. – volume: 723 start-page: 264 year: 2013 end-page: 288 ident: b27 article-title: Near-wall turbulent fluctuations in the absence of wide outer motions publication-title: J. Fluid Mech. – volume: 23 year: 2011 ident: b4 article-title: Wall pressure fluctuations beneath supersonic turbulent boundary layers publication-title: Phys. Fluids – volume: 186 start-page: 652 year: 2003 end-page: 665 ident: b32 article-title: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations publication-title: J. Comput. Phys. – volume: 655 start-page: 419 year: 2010 end-page: 445 ident: b16 article-title: Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature publication-title: J. Fluid Mech. – volume: 854 start-page: 5 year: 2018 end-page: 33 ident: b7 article-title: Secondary motion in turbulent pipe flow with three-dimensional roughness publication-title: J. Fluid Mech. – volume: 886 start-page: A31 year: 2020 ident: b43 article-title: Effects of heterogeneous surface geometry on secondary flows in turbulent boundary layers publication-title: J. Fluid Mech. – volume: 22 start-page: 401 year: 2006 end-page: 410 ident: b25 article-title: A review of surface roughness in antifouling coatings illustrating the importance of cutoff length publication-title: Biofouling – volume: 35 year: 2023 ident: b66 article-title: Effects of wall disturbances on the statistics of supersonic turbulent boundary layers publication-title: Phys. Fluids – volume: 968 start-page: A18 year: 2023 ident: b40 article-title: Outer-layer similarity and energy transfer in a rough-wall turbulent channel flow publication-title: J. Fluid Mech. – volume: 808 start-page: 511 year: 2016 end-page: 538 ident: b13 article-title: Skin-friction generation by attached eddies in turbulent channel flow publication-title: J. Fluid Mech. – volume: 885 start-page: R5 year: 2020 ident: b58 article-title: Rearrangement of secondary flow over spanwise heterogeneous roughness publication-title: J. Fluid Mech. – volume: 62 start-page: 1 year: 2021 end-page: 13 ident: b63 article-title: Effects of roughness on a turbulent boundary layer in hypersonic flow publication-title: Exp. Fluids – volume: 42 start-page: 469 year: 2006 end-page: 530 ident: b53 article-title: Review and assessment of turbulence models for hypersonic flows publication-title: Prog. Aerosp. Sci. – start-page: N73 year: 2006 ident: b47 article-title: DNS of turbulent channel flows with two-and three-dimensional roughness publication-title: J. Turbul. – volume: 972 start-page: A32 year: 2023 ident: b69 article-title: Compressibility effects in supersonic and hypersonic turbulent boundary layers subject to wall disturbances publication-title: J. Fluid Mech. – volume: 10 year: 2021 ident: b29 article-title: A review on turbulent flow over rough surfaces: Fundamentals and theories publication-title: Int. J. Thermofluids – year: 1990 ident: b64 publication-title: Minimal Storage Time Advancement Schemes for Spectral Methods – volume: 4 year: 2019 ident: b73 article-title: Very large-scale motions in turbulent flows over streamwise traveling wavy boundaries publication-title: Phys. Rev. Fluids – volume: 669 start-page: 397 year: 2011 end-page: 431 ident: b37 article-title: Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall publication-title: J. Fluid Mech. – volume: 56 start-page: 4297 year: 2018 end-page: 4311 ident: b72 article-title: Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers publication-title: AIAA J. – volume: 956 start-page: A3 year: 2023 ident: b2 article-title: Supersonic turbulent flows over sinusoidal rough walls publication-title: J. Fluid Mech. – volume: 773 start-page: 418 year: 2015 end-page: 431 ident: b9 article-title: A fast direct numerical simulation method for characterising hydraulic roughness publication-title: J. Fluid Mech. – volume: 918 start-page: A40 year: 2021 ident: b17 article-title: Contributions of different scales of turbulent motions to the mean wall-shear stress in open channel flows at low-to-moderate Reynolds numbers publication-title: J. Fluid Mech. – volume: 937 start-page: A3 year: 2022 ident: b26 article-title: Direct numerical simulation of hypersonic turbulent boundary layers: effect of spatial evolution and Reynolds number publication-title: J. Fluid Mech. – volume: 805 start-page: 171 year: 2016 end-page: 187 ident: b44 article-title: Spectra of energy transport in turbulent channel flows for moderate Reynolds numbers publication-title: J. Fluid Mech. – volume: 375 start-page: 823 year: 2018 end-page: 853 ident: b34 article-title: Kinetic energy and entropy preserving schemes for compressible flows by split convective forms publication-title: J. Comput. Phys. – volume: 917 year: 2021 ident: b45 article-title: Dispersive stresses in turbulent flow over riblets publication-title: J. Fluid Mech. – volume: 771 start-page: 743 year: 2015 end-page: 777 ident: b6 article-title: A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime publication-title: J. Fluid Mech. – volume: 427 year: 2021 ident: b55 article-title: Preventing spurious pressure oscillations in split convective form discretization for compressible flows publication-title: J. Comput. Phys. – volume: 945 start-page: A30 year: 2022 ident: b12 article-title: Direct numerical simulation of supersonic and hypersonic turbulent boundary layers at moderate-high Reynolds numbers and isothermal wall condition publication-title: J. Fluid Mech. – volume: 930 start-page: A1 year: 2022 ident: b62 article-title: About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers publication-title: J. Fluid Mech. – reference: Coakley, T., Huang, P., 1992. Turbulence modeling for high speed flows. In: 30th Aerospace Sciences Meeting and Exhibit. p. 436. – volume: 942 start-page: A44 year: 2022 ident: b46 article-title: Direct numerical simulation of supersonic turbulent flows over rough surfaces publication-title: J. Fluid Mech. – volume: 102 year: 2023 ident: b41 article-title: Secondary motions and wall-attached structures in a turbulent flow over a random rough surface publication-title: Int. J. Heat Fluid Flow – volume: 863 start-page: 407 year: 2019 end-page: 453 ident: b65 article-title: Modelling smooth-and transitionally rough-wall turbulent channel flow by leveraging inner–outer interactions and principal component analysis publication-title: J. Fluid Mech. – volume: 132 year: 2010 ident: b20 article-title: Review of hydraulic roughness scales in the fully rough regime publication-title: J. Fluids Eng. – volume: 15 start-page: 350 year: 2014 end-page: 365 ident: b71 article-title: Estimation and prediction of the roughness function on realistic surfaces publication-title: J. Turbul. – volume: 790 start-page: 339 year: 2016 end-page: 367 ident: b52 article-title: A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer publication-title: J. Fluid Mech. – volume: 893 start-page: A21 year: 2020 ident: b60 article-title: Surface wave effects on energy transfer in overlying turbulent flow publication-title: J. Fluid Mech. – volume: 47 start-page: 11 year: 2010 end-page: 20 ident: b54 article-title: Compressibility considerations for kw turbulence models in hypersonic boundary-layer applications publication-title: J. Spacecr. Rockets – volume: 4 year: 2019 ident: b67 article-title: Genuine compressibility effects in wall-bounded turbulence publication-title: Phys. Rev. Fluids – volume: 38 start-page: 1804 year: 2000 end-page: 1821 ident: b35 article-title: Flow properties of a supersonic turbulent boundary layer with wall roughness publication-title: AIAA J. – volume: 804 start-page: 130 year: 2016 end-page: 161 ident: b42 article-title: Turbulent flow over transitionally rough surfaces with varying roughness densities publication-title: J. Fluid Mech. – volume: 854 start-page: 474 year: 2018 end-page: 504 ident: b8 article-title: Scale interactions and spectral energy transfer in turbulent channel flow publication-title: J. Fluid Mech. – volume: 951 start-page: A2 year: 2022 ident: b68 article-title: A spectral inspection for turbulence amplification in oblique shock wave/turbulent boundary layer interaction publication-title: J. Fluid Mech. – volume: 6 start-page: 1583 year: 1994 end-page: 1599 ident: b14 article-title: Energy transfer in numerically simulated wall-bounded turbulent flows publication-title: Phys. Fluids – volume: 39 year: 2023 ident: b70 article-title: Influences of wall disturbances on coherent structures in supersonic turbulent boundary layers publication-title: Acta Mech. Sin. – volume: 971 start-page: A15 year: 2023 ident: b50 article-title: Searching for the log law in open channel flow publication-title: J. Fluid Mech. – volume: 53 start-page: 439 year: 2021 end-page: 471 ident: b10 article-title: Predicting the drag of rough surfaces publication-title: Annu. Rev. Fluid Mech. – volume: 34 start-page: 452 year: 2018 end-page: 461 ident: b59 article-title: The spanwise spectra in wall-bounded turbulence publication-title: Acta Mech. Sin. – volume: 894 start-page: A7 year: 2020 ident: b61 article-title: The effect of spanwise wavelength of surface heterogeneity on turbulent secondary flows publication-title: J. Fluid Mech. – volume: 31 year: 2019 ident: b19 article-title: Decomposition of the mean friction drag in zero-pressure-gradient turbulent boundary layers publication-title: Phys. Fluids – volume: 60 start-page: 5136 year: 2022 end-page: 5149 ident: b33 article-title: Characterizing streamwise development of surface roughness effects on a supersonic boundary layer publication-title: AIAA J. – volume: 263 year: 2021 ident: b3 article-title: STREAmS: A high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows publication-title: Comput. Phys. Commun. – volume: 936 start-page: A33 year: 2022 ident: b24 article-title: Generalised quasilinear approximations of turbulent channel flow. Part 1. Streamwise nonlinear energy transfer publication-title: J. Fluid Mech. – volume: 688 start-page: 120 year: 2011 end-page: 168 ident: b51 article-title: Turbulence in supersonic boundary layers at moderate Reynolds number publication-title: J. Fluid Mech. – volume: 18 start-page: 145 year: 1951 end-page: 160 ident: b15 article-title: Turbulent boundary layer in compressible fluids publication-title: Int. J. Aeronaut. Space Sci. – volume: 36 start-page: 173 year: 2004 end-page: 196 ident: b28 article-title: Turbulent flows over rough walls publication-title: Annu. Rev. Fluid Mech. – volume: 566 start-page: 357 year: 2006 end-page: 376 ident: b21 article-title: Effect of wall-boundary disturbances on turbulent channel flows publication-title: J. Fluid Mech. – volume: 655 start-page: 419 year: 2010 ident: 10.1016/j.ijheatfluidflow.2024.109311_b16 article-title: Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature publication-title: J. Fluid Mech. doi: 10.1017/S0022112010000959 – volume: 917 year: 2021 ident: 10.1016/j.ijheatfluidflow.2024.109311_b45 article-title: Dispersive stresses in turbulent flow over riblets publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.310 – volume: 771 start-page: 743 year: 2015 ident: 10.1016/j.ijheatfluidflow.2024.109311_b6 article-title: A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.172 – volume: 375 start-page: 823 year: 2018 ident: 10.1016/j.ijheatfluidflow.2024.109311_b34 article-title: Kinetic energy and entropy preserving schemes for compressible flows by split convective forms publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.058 – volume: 918 start-page: A40 year: 2021 ident: 10.1016/j.ijheatfluidflow.2024.109311_b17 article-title: Contributions of different scales of turbulent motions to the mean wall-shear stress in open channel flows at low-to-moderate Reynolds numbers publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.236 – volume: 804 start-page: 130 year: 2016 ident: 10.1016/j.ijheatfluidflow.2024.109311_b42 article-title: Turbulent flow over transitionally rough surfaces with varying roughness densities publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.459 – volume: 102 year: 2023 ident: 10.1016/j.ijheatfluidflow.2024.109311_b41 article-title: Secondary motions and wall-attached structures in a turbulent flow over a random rough surface publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2023.109147 – volume: 60 start-page: 58 year: 2012 ident: 10.1016/j.ijheatfluidflow.2024.109311_b30 article-title: An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2012.02.027 – volume: 22 start-page: 401 issue: 6 year: 2006 ident: 10.1016/j.ijheatfluidflow.2024.109311_b25 article-title: A review of surface roughness in antifouling coatings illustrating the importance of cutoff length publication-title: Biofouling doi: 10.1080/08927010601035738 – year: 2006 ident: 10.1016/j.ijheatfluidflow.2024.109311_b56 – volume: 4 issue: 5 year: 2019 ident: 10.1016/j.ijheatfluidflow.2024.109311_b73 article-title: Very large-scale motions in turbulent flows over streamwise traveling wavy boundaries publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.4.054601 – volume: 42 start-page: 469 issue: 7–8 year: 2006 ident: 10.1016/j.ijheatfluidflow.2024.109311_b53 article-title: Review and assessment of turbulence models for hypersonic flows publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2006.12.002 – volume: 723 start-page: 264 year: 2013 ident: 10.1016/j.ijheatfluidflow.2024.109311_b27 article-title: Near-wall turbulent fluctuations in the absence of wide outer motions publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.133 – volume: 937 start-page: A3 year: 2022 ident: 10.1016/j.ijheatfluidflow.2024.109311_b26 article-title: Direct numerical simulation of hypersonic turbulent boundary layers: effect of spatial evolution and Reynolds number publication-title: J. Fluid Mech. doi: 10.1017/jfm.2022.80 – ident: 10.1016/j.ijheatfluidflow.2024.109311_b5 doi: 10.2514/6.2007-3998 – volume: 6 start-page: 1583 issue: 4 year: 1994 ident: 10.1016/j.ijheatfluidflow.2024.109311_b14 article-title: Energy transfer in numerically simulated wall-bounded turbulent flows publication-title: Phys. Fluids doi: 10.1063/1.868272 – volume: 968 start-page: A18 year: 2023 ident: 10.1016/j.ijheatfluidflow.2024.109311_b40 article-title: Outer-layer similarity and energy transfer in a rough-wall turbulent channel flow publication-title: J. Fluid Mech. doi: 10.1017/jfm.2023.425 – volume: 863 start-page: 407 year: 2019 ident: 10.1016/j.ijheatfluidflow.2024.109311_b65 article-title: Modelling smooth-and transitionally rough-wall turbulent channel flow by leveraging inner–outer interactions and principal component analysis publication-title: J. Fluid Mech. doi: 10.1017/jfm.2018.899 – volume: 894 start-page: A7 year: 2020 ident: 10.1016/j.ijheatfluidflow.2024.109311_b61 article-title: The effect of spanwise wavelength of surface heterogeneity on turbulent secondary flows publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.262 – volume: 10 year: 2021 ident: 10.1016/j.ijheatfluidflow.2024.109311_b29 article-title: A review on turbulent flow over rough surfaces: Fundamentals and theories publication-title: Int. J. Thermofluids doi: 10.1016/j.ijft.2021.100077 – volume: 53 start-page: 439 year: 2021 ident: 10.1016/j.ijheatfluidflow.2024.109311_b10 article-title: Predicting the drag of rough surfaces publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-062520-115127 – volume: 805 start-page: 171 year: 2016 ident: 10.1016/j.ijheatfluidflow.2024.109311_b44 article-title: Spectra of energy transport in turbulent channel flows for moderate Reynolds numbers publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.564 – start-page: 1 year: 2023 ident: 10.1016/j.ijheatfluidflow.2024.109311_b22 article-title: Effects of groove distributions on supersonic turbulent channel flows publication-title: J. Turbul. – volume: 942 start-page: A44 year: 2022 ident: 10.1016/j.ijheatfluidflow.2024.109311_b46 article-title: Direct numerical simulation of supersonic turbulent flows over rough surfaces publication-title: J. Fluid Mech. doi: 10.1017/jfm.2022.393 – volume: 39 issue: 12 year: 2023 ident: 10.1016/j.ijheatfluidflow.2024.109311_b70 article-title: Influences of wall disturbances on coherent structures in supersonic turbulent boundary layers publication-title: Acta Mech. Sin. doi: 10.1007/s10409-023-23075-x – volume: 854 start-page: 5 year: 2018 ident: 10.1016/j.ijheatfluidflow.2024.109311_b7 article-title: Secondary motion in turbulent pipe flow with three-dimensional roughness publication-title: J. Fluid Mech. doi: 10.1017/jfm.2018.570 – volume: 773 start-page: 418 year: 2015 ident: 10.1016/j.ijheatfluidflow.2024.109311_b9 article-title: A fast direct numerical simulation method for characterising hydraulic roughness publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.230 – volume: 263 year: 2021 ident: 10.1016/j.ijheatfluidflow.2024.109311_b3 article-title: STREAmS: A high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.107906 – volume: 893 start-page: A21 year: 2020 ident: 10.1016/j.ijheatfluidflow.2024.109311_b60 article-title: Surface wave effects on energy transfer in overlying turbulent flow publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.246 – volume: 669 start-page: 397 year: 2011 ident: 10.1016/j.ijheatfluidflow.2024.109311_b37 article-title: Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall publication-title: J. Fluid Mech. doi: 10.1017/S0022112010005082 – year: 1990 ident: 10.1016/j.ijheatfluidflow.2024.109311_b64 – volume: 972 start-page: A32 year: 2023 ident: 10.1016/j.ijheatfluidflow.2024.109311_b69 article-title: Compressibility effects in supersonic and hypersonic turbulent boundary layers subject to wall disturbances publication-title: J. Fluid Mech. doi: 10.1017/jfm.2023.712 – volume: 56 start-page: 4297 issue: 11 year: 2018 ident: 10.1016/j.ijheatfluidflow.2024.109311_b72 article-title: Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers publication-title: AIAA J. doi: 10.2514/1.J057296 – volume: 4 issue: 12 year: 2019 ident: 10.1016/j.ijheatfluidflow.2024.109311_b67 article-title: Genuine compressibility effects in wall-bounded turbulence publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.4.123402 – volume: 23 issue: 8 year: 2011 ident: 10.1016/j.ijheatfluidflow.2024.109311_b4 article-title: Wall pressure fluctuations beneath supersonic turbulent boundary layers publication-title: Phys. Fluids doi: 10.1063/1.3622773 – start-page: N73 issue: 7 year: 2006 ident: 10.1016/j.ijheatfluidflow.2024.109311_b47 article-title: DNS of turbulent channel flows with two-and three-dimensional roughness publication-title: J. Turbul. doi: 10.1080/14685240600827526 – volume: 152 start-page: 517 issue: 2 year: 1999 ident: 10.1016/j.ijheatfluidflow.2024.109311_b18 article-title: Large-eddy simulation of the shock/turbulence interaction publication-title: J. Comput. Phys. doi: 10.1006/jcph.1999.6238 – volume: 18 start-page: 145 issue: 3 year: 1951 ident: 10.1016/j.ijheatfluidflow.2024.109311_b15 article-title: Turbulent boundary layer in compressible fluids publication-title: Int. J. Aeronaut. Space Sci. doi: 10.2514/8.1895 – volume: 900 start-page: R7 year: 2020 ident: 10.1016/j.ijheatfluidflow.2024.109311_b38 article-title: Scaling of rough-wall turbulence by the roughness height and steepness publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.542 – volume: 945 start-page: A30 year: 2022 ident: 10.1016/j.ijheatfluidflow.2024.109311_b12 article-title: Direct numerical simulation of supersonic and hypersonic turbulent boundary layers at moderate-high Reynolds numbers and isothermal wall condition publication-title: J. Fluid Mech. doi: 10.1017/jfm.2022.574 – year: 2013 ident: 10.1016/j.ijheatfluidflow.2024.109311_b23 – volume: 186 start-page: 652 issue: 2 year: 2003 ident: 10.1016/j.ijheatfluidflow.2024.109311_b32 article-title: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(03)00090-1 – volume: 81 year: 2020 ident: 10.1016/j.ijheatfluidflow.2024.109311_b57 article-title: Secondary flow and heat transfer in turbulent flow over streamwise ridges publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2019.108518 – volume: 951 start-page: A2 year: 2022 ident: 10.1016/j.ijheatfluidflow.2024.109311_b68 article-title: A spectral inspection for turbulence amplification in oblique shock wave/turbulent boundary layer interaction publication-title: J. Fluid Mech. doi: 10.1017/jfm.2022.826 – volume: 36 start-page: 173 year: 2004 ident: 10.1016/j.ijheatfluidflow.2024.109311_b28 article-title: Turbulent flows over rough walls publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.36.050802.122103 – volume: 887 start-page: A3 year: 2020 ident: 10.1016/j.ijheatfluidflow.2024.109311_b31 article-title: Experimental evidence of amplitude modulation in permeable-wall turbulence publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.1027 – volume: 808 start-page: 511 year: 2016 ident: 10.1016/j.ijheatfluidflow.2024.109311_b13 article-title: Skin-friction generation by attached eddies in turbulent channel flow publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.665 – volume: 47 start-page: 11 issue: 1 year: 2010 ident: 10.1016/j.ijheatfluidflow.2024.109311_b54 article-title: Compressibility considerations for kw turbulence models in hypersonic boundary-layer applications publication-title: J. Spacecr. Rockets doi: 10.2514/1.45350 – volume: 956 start-page: A3 year: 2023 ident: 10.1016/j.ijheatfluidflow.2024.109311_b2 article-title: Supersonic turbulent flows over sinusoidal rough walls publication-title: J. Fluid Mech. doi: 10.1017/jfm.2022.1049 – year: 2013 ident: 10.1016/j.ijheatfluidflow.2024.109311_b48 – volume: 28 issue: 4 year: 2016 ident: 10.1016/j.ijheatfluidflow.2024.109311_b49 article-title: Crosshatch roughness distortions on a hypersonic turbulent boundary layer publication-title: Phys. Fluids doi: 10.1063/1.4944657 – volume: 132 issue: 4 year: 2010 ident: 10.1016/j.ijheatfluidflow.2024.109311_b20 article-title: Review of hydraulic roughness scales in the fully rough regime publication-title: J. Fluids Eng. doi: 10.1115/1.4001492 – volume: 20 start-page: 723 issue: 11–12 year: 2019 ident: 10.1016/j.ijheatfluidflow.2024.109311_b1 article-title: Turbulence structures over realistic and synthetic wall roughness in open channel flow at Reτ=1000 publication-title: J. Turbul. doi: 10.1080/14685248.2019.1706741 – volume: 427 year: 2021 ident: 10.1016/j.ijheatfluidflow.2024.109311_b55 article-title: Preventing spurious pressure oscillations in split convective form discretization for compressible flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.110060 – volume: 15 start-page: 350 issue: 6 year: 2014 ident: 10.1016/j.ijheatfluidflow.2024.109311_b71 article-title: Estimation and prediction of the roughness function on realistic surfaces publication-title: J. Turbul. doi: 10.1080/14685248.2014.907904 – volume: 31 issue: 8 year: 2019 ident: 10.1016/j.ijheatfluidflow.2024.109311_b19 article-title: Decomposition of the mean friction drag in zero-pressure-gradient turbulent boundary layers publication-title: Phys. Fluids doi: 10.1063/1.5111009 – volume: 886 start-page: A31 year: 2020 ident: 10.1016/j.ijheatfluidflow.2024.109311_b43 article-title: Effects of heterogeneous surface geometry on secondary flows in turbulent boundary layers publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.1014 – volume: 688 start-page: 120 year: 2011 ident: 10.1016/j.ijheatfluidflow.2024.109311_b51 article-title: Turbulence in supersonic boundary layers at moderate Reynolds number publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.368 – volume: 930 start-page: A1 year: 2022 ident: 10.1016/j.ijheatfluidflow.2024.109311_b62 article-title: About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.888 – ident: 10.1016/j.ijheatfluidflow.2024.109311_b11 doi: 10.2514/6.1992-436 – volume: 60 start-page: 5136 issue: 9 year: 2022 ident: 10.1016/j.ijheatfluidflow.2024.109311_b33 article-title: Characterizing streamwise development of surface roughness effects on a supersonic boundary layer publication-title: AIAA J. doi: 10.2514/1.J061623 – volume: 35 issue: 2 year: 2023 ident: 10.1016/j.ijheatfluidflow.2024.109311_b66 article-title: Effects of wall disturbances on the statistics of supersonic turbulent boundary layers publication-title: Phys. Fluids doi: 10.1063/5.0141369 – volume: 790 start-page: 339 year: 2016 ident: 10.1016/j.ijheatfluidflow.2024.109311_b52 article-title: A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.12 – volume: 34 issue: 3 year: 2022 ident: 10.1016/j.ijheatfluidflow.2024.109311_b39 article-title: Scaling of rough-wall turbulence in a transitionally rough regime publication-title: Phys. Fluids doi: 10.1063/5.0084646 – volume: 936 start-page: A33 year: 2022 ident: 10.1016/j.ijheatfluidflow.2024.109311_b24 article-title: Generalised quasilinear approximations of turbulent channel flow. Part 1. Streamwise nonlinear energy transfer publication-title: J. Fluid Mech. doi: 10.1017/jfm.2022.59 – volume: 566 start-page: 357 year: 2006 ident: 10.1016/j.ijheatfluidflow.2024.109311_b21 article-title: Effect of wall-boundary disturbances on turbulent channel flows publication-title: J. Fluid Mech. doi: 10.1017/S0022112006001534 – volume: 62 start-page: 1 issue: 9 year: 2021 ident: 10.1016/j.ijheatfluidflow.2024.109311_b63 article-title: Effects of roughness on a turbulent boundary layer in hypersonic flow publication-title: Exp. Fluids doi: 10.1007/s00348-021-03279-4 – volume: 971 start-page: A15 year: 2023 ident: 10.1016/j.ijheatfluidflow.2024.109311_b50 article-title: Searching for the log law in open channel flow publication-title: J. Fluid Mech. doi: 10.1017/jfm.2023.616 – volume: 885 start-page: R5 year: 2020 ident: 10.1016/j.ijheatfluidflow.2024.109311_b58 article-title: Rearrangement of secondary flow over spanwise heterogeneous roughness publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.1030 – volume: 854 start-page: 474 year: 2018 ident: 10.1016/j.ijheatfluidflow.2024.109311_b8 article-title: Scale interactions and spectral energy transfer in turbulent channel flow publication-title: J. Fluid Mech. doi: 10.1017/jfm.2018.643 – volume: 860 start-page: 886 year: 2019 ident: 10.1016/j.ijheatfluidflow.2024.109311_b36 article-title: Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number publication-title: J. Fluid Mech. doi: 10.1017/jfm.2018.903 – volume: 34 start-page: 452 year: 2018 ident: 10.1016/j.ijheatfluidflow.2024.109311_b59 article-title: The spanwise spectra in wall-bounded turbulence publication-title: Acta Mech. Sin. doi: 10.1007/s10409-017-0731-2 – volume: 38 start-page: 1804 issue: 10 year: 2000 ident: 10.1016/j.ijheatfluidflow.2024.109311_b35 article-title: Flow properties of a supersonic turbulent boundary layer with wall roughness publication-title: AIAA J. doi: 10.2514/2.862 |
SSID | ssj0006047 |
Score | 2.413661 |
Snippet | Wall disturbances in high-speed turbulent boundary layers induce large-scale motions in the outer region even when the Reynolds number is not sufficiently high... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109311 |
SubjectTerms | Compressibility effects High-speed turbulence Large-scale motions Skin friction Turbulent boundary layer |
Title | Turbulent kinetic energy transport in high-speed turbulence subject to wall disturbances |
URI | https://dx.doi.org/10.1016/j.ijheatfluidflow.2024.109311 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH4MBdGDv8WfIwc91rVN0i7gwSGOqehJYbfSNAl0lm24Dm_-7b60qU7xMPDYtC-U15f3vpTvfQE4j2moeIwLCZMjblACFnqpnymPB10pfKoVr3QKHp-iwQu7H_JhC26aXhhLq3S5v87pVbZ2Ix3nzc40zzuWlhRi9R1aFiTmYdtozlhso_zy45vmEfmsbpnGt7BPr8HFN8crH9mMZ4p5rkwxecftYsgqgaUg-LtOLdSe_jZsOtBIevV77UBLj3dhywFI4pbnbBc2FtQF92D4PEeX2apCXnEUbYmuOv1I2Siak3xMrGCxN5tiFSOlM8g0mc2l_UNDygl5T4uCKAwHvGtjZLYPL_3b55uB5w5S8DJKaelxYfxYpFHITBTb_qVu4EtEQsoIRIuSCkYzYXRklDJcckaNUErISPGM4Q5R0gNYGU_G-hCI0BkCBMElwgyW6lDESqlUaoO4LuJCHsFV47Ykcyrj9rCLImnoZKPkl9cT6_Wk9voRRF_m01puY1nD6-YbJT_iJ8HSsNwUx_-f4gTW7VXN7DmFlfJtrs8QtJSyXUVlG1Z7dw-Dp0_KB_AO |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkVgO7Iiy-gDHqElsJ1jiQIVALUtPReotimNbSonaiqbq7zNuHDZxQOJqayxrMn7zHM08A1zENFQ8xoOE4IgXlICFXupnyuPBlRQ-1YovdAqee1HnhT0M-GAJbuteGFtW6bC_wvQFWruRlvNma5LnLVuWFGL2HdgqSMRhvgwrVp2KN2Cl3X3s9D4AOfJZ1TWNG7EGq3D5WeaVDy3omWKWK1OM53hjDNlCYykIfk9VX9LP_TZsOt5I2tXWdmBJj3Zhy3FI4k7odBc2vggM7sGgP0Ov2cRCXnEUbYleNPuRshY1J_mIWM1ibzrBREZKZ5BpMp1J-5OGlGMyT4uCKIwInLVhMt2Hl_u7_m3Hc28peBmltPS4MH4s0ihkJoptC9NV4EskQ8oIJIySCkYzYXRklDJcckaNUErISPGM4SVR0gNojMYjfQhE6Aw5guASmQZLdShipVQqtUFqF3Ehm3Bduy3JnNC4fe-iSOqKsmHyw-uJ9XpSeb0J0Yf5pFLc-KvhTf2Nkm8hlGB2-NsSR_9f4hzWOv3np-Sp23s8hnU7UxX6nECjfJvpU-QwpTxzMfoO-eHyvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turbulent+kinetic+energy+transport+in+high-speed+turbulence+subject+to+wall+disturbances&rft.jtitle=The+International+journal+of+heat+and+fluid+flow&rft.au=Yu%2C+Ming&rft.au=Guo%2C+QiLong&rft.au=Tang%2C+ZhiGong&rft.au=Li%2C+Bo&rft.date=2024-04-01&rft.pub=Elsevier+Inc&rft.issn=0142-727X&rft.eissn=1879-2278&rft.volume=106&rft_id=info:doi/10.1016%2Fj.ijheatfluidflow.2024.109311&rft.externalDocID=S0142727X24000365 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-727X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-727X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-727X&client=summon |