Turbulent kinetic energy transport in high-speed turbulence subject to wall disturbances

Wall disturbances in high-speed turbulent boundary layers induce large-scale motions in the outer region even when the Reynolds number is not sufficiently high for their existence in the case of smooth wall flows. In the present study, we investigate the dynamics of these outer region large-scale mo...

Full description

Saved in:
Bibliographic Details
Published inThe International journal of heat and fluid flow Vol. 106; p. 109311
Main Authors Yu, Ming, Guo, QiLong, Tang, ZhiGong, Li, Bo, Yuan, XianXu
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wall disturbances in high-speed turbulent boundary layers induce large-scale motions in the outer region even when the Reynolds number is not sufficiently high for their existence in the case of smooth wall flows. In the present study, we investigate the dynamics of these outer region large-scale motions by exploiting the scale-by-scale energy transport in the spectral space. By scrutinizing the disparity in the budget terms of the turbulent kinetic energy spectra between turbulence over smooth and disturbed walls, we found that the intensification of the large-scale motions in the outer region is statistically correlated with the stronger interaction between the Reynolds stress and the mean shear, i.e. the production term of the turbulent kinetic energy. The corresponding turbulent kinetic energy is then transferred to smaller-scale motions and dissipated by viscosity, whereas the effects of spatial diffusion and mean convection are insignificant and are dimly affected by the wall disturbances. These dynamic processes are roughly irrelevant to the Mach numbers, and processes related directly to the genuine compressibility effects, namely the dilatational motions and mass flux, are trivial. The outer large-scale motions contribute to the skin friction by approximately 19% ∼45% compared with 4% in smooth wall cases in terms of the mean kinetic energy transport, suggesting that the drag increment in turbulent boundary layers in the presence of wall disturbances should be partly attributed to their intensification. •Large-scale motions are stronger in supersonic turbulence with wall disturbances.•Turbulent kinetic energy transport in the spectral space is analysed.•The large-scale intensification is related to the turbulent production.•Large-scale motions contribute highly to skin friction disturbed wall cases.
AbstractList Wall disturbances in high-speed turbulent boundary layers induce large-scale motions in the outer region even when the Reynolds number is not sufficiently high for their existence in the case of smooth wall flows. In the present study, we investigate the dynamics of these outer region large-scale motions by exploiting the scale-by-scale energy transport in the spectral space. By scrutinizing the disparity in the budget terms of the turbulent kinetic energy spectra between turbulence over smooth and disturbed walls, we found that the intensification of the large-scale motions in the outer region is statistically correlated with the stronger interaction between the Reynolds stress and the mean shear, i.e. the production term of the turbulent kinetic energy. The corresponding turbulent kinetic energy is then transferred to smaller-scale motions and dissipated by viscosity, whereas the effects of spatial diffusion and mean convection are insignificant and are dimly affected by the wall disturbances. These dynamic processes are roughly irrelevant to the Mach numbers, and processes related directly to the genuine compressibility effects, namely the dilatational motions and mass flux, are trivial. The outer large-scale motions contribute to the skin friction by approximately 19% ∼45% compared with 4% in smooth wall cases in terms of the mean kinetic energy transport, suggesting that the drag increment in turbulent boundary layers in the presence of wall disturbances should be partly attributed to their intensification. •Large-scale motions are stronger in supersonic turbulence with wall disturbances.•Turbulent kinetic energy transport in the spectral space is analysed.•The large-scale intensification is related to the turbulent production.•Large-scale motions contribute highly to skin friction disturbed wall cases.
ArticleNumber 109311
Author Guo, QiLong
Tang, ZhiGong
Li, Bo
Yu, Ming
Yuan, XianXu
Author_xml – sequence: 1
  givenname: Ming
  surname: Yu
  fullname: Yu, Ming
  email: yum16@tsinghua.org.cn
– sequence: 2
  givenname: QiLong
  surname: Guo
  fullname: Guo, QiLong
– sequence: 3
  givenname: ZhiGong
  surname: Tang
  fullname: Tang, ZhiGong
– sequence: 4
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  email: lib044@mail.ustc.edu.cn
– sequence: 5
  givenname: XianXu
  surname: Yuan
  fullname: Yuan, XianXu
  email: yuanxianxu2023@163.com
BookMark eNqNkMtOAjEARRujiYD-QzcuB_uaKV24METRhMQNJuyaTh_QceyQtkj4e2cCK1as7uLmnuSeMbgNXbAAPGE0xQhXz83UN1ursmv33ri2O0wJIqzvBMX4BozwjIuCED67BSOEGSk44et7ME6pQQhViPERWK_2sd63NmT444PNXkMbbNwcYY4qpF0XM_QBbv1mW6SdtQbm80BbmPZ1Y3WGuYMH1bbQ-DS0qu_SA7hzqk328ZwT8P3-tpp_FMuvxef8dVloSmkuSuEQF6oizFW8P1XOMKpJxYwTiKCaCka1cLZyxriyLhl1whhRV6bUjBNc0wmYn7g6dilF66T2WWXfhf6AbyVGcpAlG3khSw6y5ElWT3m5oOyi_1XxePV-cdrb_uqft1Em7QdHxsfekDSdv5L0D2XCld0
CitedBy_id crossref_primary_10_1007_s11433_024_2481_8
crossref_primary_10_24857_rgsa_v18n12_221
Cites_doi 10.1017/S0022112010000959
10.1017/jfm.2021.310
10.1017/jfm.2015.172
10.1016/j.jcp.2018.08.058
10.1017/jfm.2021.236
10.1017/jfm.2016.459
10.1016/j.ijheatfluidflow.2023.109147
10.1016/j.compfluid.2012.02.027
10.1080/08927010601035738
10.1103/PhysRevFluids.4.054601
10.1016/j.paerosci.2006.12.002
10.1017/jfm.2013.133
10.1017/jfm.2022.80
10.2514/6.2007-3998
10.1063/1.868272
10.1017/jfm.2023.425
10.1017/jfm.2018.899
10.1017/jfm.2020.262
10.1016/j.ijft.2021.100077
10.1146/annurev-fluid-062520-115127
10.1017/jfm.2016.564
10.1017/jfm.2022.393
10.1007/s10409-023-23075-x
10.1017/jfm.2018.570
10.1017/jfm.2015.230
10.1016/j.cpc.2021.107906
10.1017/jfm.2020.246
10.1017/S0022112010005082
10.1017/jfm.2023.712
10.2514/1.J057296
10.1103/PhysRevFluids.4.123402
10.1063/1.3622773
10.1080/14685240600827526
10.1006/jcph.1999.6238
10.2514/8.1895
10.1017/jfm.2020.542
10.1017/jfm.2022.574
10.1016/S0021-9991(03)00090-1
10.1016/j.ijheatfluidflow.2019.108518
10.1017/jfm.2022.826
10.1146/annurev.fluid.36.050802.122103
10.1017/jfm.2019.1027
10.1017/jfm.2016.665
10.2514/1.45350
10.1017/jfm.2022.1049
10.1063/1.4944657
10.1115/1.4001492
10.1080/14685248.2019.1706741
10.1016/j.jcp.2020.110060
10.1080/14685248.2014.907904
10.1063/1.5111009
10.1017/jfm.2019.1014
10.1017/jfm.2011.368
10.1017/jfm.2021.888
10.2514/6.1992-436
10.2514/1.J061623
10.1063/5.0141369
10.1017/jfm.2016.12
10.1063/5.0084646
10.1017/jfm.2022.59
10.1017/S0022112006001534
10.1007/s00348-021-03279-4
10.1017/jfm.2023.616
10.1017/jfm.2019.1030
10.1017/jfm.2018.643
10.1017/jfm.2018.903
10.1007/s10409-017-0731-2
10.2514/2.862
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ijheatfluidflow.2024.109311
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2278
ExternalDocumentID 10_1016_j_ijheatfluidflow_2024_109311
S0142727X24000365
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABMYL
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADHUB
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
UHS
VH1
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c333t-59f079a624f670165810b264df9020b3943c9fe6fddf5b543f9dd9b6d5c4721b3
IEDL.DBID .~1
ISSN 0142-727X
IngestDate Thu Apr 24 22:50:10 EDT 2025
Tue Jul 01 01:32:27 EDT 2025
Sat Mar 23 16:40:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Turbulent boundary layer
Compressibility effects
High-speed turbulence
Skin friction
Large-scale motions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-59f079a624f670165810b264df9020b3943c9fe6fddf5b543f9dd9b6d5c4721b3
ParticipantIDs crossref_citationtrail_10_1016_j_ijheatfluidflow_2024_109311
crossref_primary_10_1016_j_ijheatfluidflow_2024_109311
elsevier_sciencedirect_doi_10_1016_j_ijheatfluidflow_2024_109311
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle The International journal of heat and fluid flow
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Shima, Kuya, Tamaki, Kawai (b55) 2021; 427
Stroh, Schäfer, Frohnapfel, Forooghi (b58) 2020; 885
Kim, Blois, Best, Christensen (b31) 2020; 887
Orlandi, Leonardi (b47) 2006
Bowersox, R., 2007. Survey of high-speed rough wall boundary layers: Invited presentation. In: 37th AIAA Fluid Dynamics Conference and Exhibit. p. 3998.
Huang, Duan, Choudhari (b26) 2022; 937
Lee, Sung, Krogstad (b37) 2011; 669
Gatski, Bonnet (b23) 2013
MacDonald, Chan, Chung, Hutchins, Ooi (b42) 2016; 804
Rumsey (b54) 2010; 47
Wang, Zhang, Hao, Huang, Shen, Xu, Zhang (b60) 2020; 893
Hernández, Yang, Hwang (b24) 2022; 936
Chan, MacDonald, Chung, Hutchins, Ooi (b6) 2015; 771
Flack, Schultz (b20) 2010; 132
Domaradzki, Liu, Härtel, Kleiser (b14) 1994; 6
Modesti, Endrikat, Hutchins, Chung (b45) 2021; 917
Kocher, Kreth, Schmisseur, LaLonde, Combs (b33) 2022; 60
Mizuno (b44) 2016; 805
Duan, Beekman, Martin (b16) 2010; 655
de Giovanetti, Hwang, Choi (b13) 2016; 808
Wu, Christensen, Pantano (b65) 2019; 863
Yu, Zhou, Su, Guo, Yuan (b70) 2023; 39
Zhang, Duan, Choudhari (b72) 2018; 56
Lee, Moser (b36) 2019; 860
Chan, MacDonald, Chung, Hutchins, Ooi (b7) 2018; 854
Stroh, Schäfer, Forooghi, Frohnapfel (b57) 2020; 81
Klein, Sadiki, Janicka (b32) 2003; 186
Ma, Xu, Sung, Huang (b40) 2023; 968
Aghaei Jouybari, Brereton, Yuan (b1) 2019; 20
Jiménez (b28) 2004; 36
Latin, Bowersox (b35) 2000; 38
Wangsawijaya, Baidya, Chung, Marusic, Hutchins (b61) 2020; 894
Cogo, Salvadore, Picano, Bernardini (b12) 2022; 945
Smits, Dussauge (b56) 2006
Duan, Zhong, Wang, Zhang, Li (b17) 2021; 918
Aghaei-Jouybari, Yuan, Li, Brereton, Jaberi (b2) 2023; 956
Ma, Xu, Sung, Huang (b38) 2020; 900
Williams, Sahoo, Papageorge, Smits (b63) 2021; 62
Yu, Xu, Pirozzoli (b67) 2019; 4
Yu, Zhao, Tang, Yuan, Xu (b68) 2022; 951
Kuya, Totani, Kawai (b34) 2018; 375
Chung, Chan, MacDonald, Hutchins, Ooi (b9) 2015; 773
Hwang (b27) 2013; 723
Ma, Xu, Sung, Huang (b41) 2023; 102
Yu, Liu, Tang, Yuan, Xu (b66) 2023; 35
Kadivar, Tormey, McGranaghan (b29) 2021; 10
van Driest (b15) 1951; 18
Wray (b64) 1990
Ducros, Ferrand, Nicoud, Weber, Darracq, Gacherieu, Poinsot (b18) 1999; 152
Ma, Xu, Sung, Huang (b39) 2022; 34
Renard, Deck (b52) 2016; 790
Peltier (b48) 2013
Flores, Jimenez (b21) 2006; 566
Zhang, Huang, Xu (b73) 2019; 4
Pirozzoli (b50) 2023; 971
Fu, Zhou, Yu, Su, Guo, Yuan (b22) 2023
Peltier, Humble, Bowersox (b49) 2016; 28
Roy, Blottner (b53) 2006; 42
Coakley, T., Huang, P., 1992. Turbulence modeling for high speed flows. In: 30th Aerospace Sciences Meeting and Exhibit. p. 436.
Yuan, Piomelli (b71) 2014; 15
Bernardini, Pirozzoli (b4) 2011; 23
Modesti, Sathyanarayana, Salvadore, Bernardini (b46) 2022; 942
Bernardini, Modesti, Salvadore, Pirozzoli (b3) 2021; 263
Fan, Li, Pirozzoli (b19) 2019; 31
Wenzel, Gibis, Kloker (b62) 2022; 930
Cho, Hwang, Choi (b8) 2018; 854
Chung, Hutchins, Schultz, Flack (b10) 2021; 53
Yu, Zhou, Dong, Yuan, Xu (b69) 2023; 972
Medjnoun, Vanderwel, Ganapathisubramani (b43) 2020; 886
Howell, Behrends (b25) 2006; 22
Kempf, Wysocki, Pettit (b30) 2012; 60
Pirozzoli, Bernardini (b51) 2011; 688
Wang, Wang, He (b59) 2018; 34
Chan (10.1016/j.ijheatfluidflow.2024.109311_b7) 2018; 854
Wang (10.1016/j.ijheatfluidflow.2024.109311_b59) 2018; 34
Fan (10.1016/j.ijheatfluidflow.2024.109311_b19) 2019; 31
Duan (10.1016/j.ijheatfluidflow.2024.109311_b16) 2010; 655
Aghaei-Jouybari (10.1016/j.ijheatfluidflow.2024.109311_b2) 2023; 956
Wangsawijaya (10.1016/j.ijheatfluidflow.2024.109311_b61) 2020; 894
Fu (10.1016/j.ijheatfluidflow.2024.109311_b22) 2023
Huang (10.1016/j.ijheatfluidflow.2024.109311_b26) 2022; 937
Mizuno (10.1016/j.ijheatfluidflow.2024.109311_b44) 2016; 805
Kocher (10.1016/j.ijheatfluidflow.2024.109311_b33) 2022; 60
Wang (10.1016/j.ijheatfluidflow.2024.109311_b60) 2020; 893
Yuan (10.1016/j.ijheatfluidflow.2024.109311_b71) 2014; 15
Wenzel (10.1016/j.ijheatfluidflow.2024.109311_b62) 2022; 930
Yu (10.1016/j.ijheatfluidflow.2024.109311_b67) 2019; 4
Ma (10.1016/j.ijheatfluidflow.2024.109311_b38) 2020; 900
Hwang (10.1016/j.ijheatfluidflow.2024.109311_b27) 2013; 723
Stroh (10.1016/j.ijheatfluidflow.2024.109311_b58) 2020; 885
Ma (10.1016/j.ijheatfluidflow.2024.109311_b41) 2023; 102
Pirozzoli (10.1016/j.ijheatfluidflow.2024.109311_b50) 2023; 971
Williams (10.1016/j.ijheatfluidflow.2024.109311_b63) 2021; 62
Kim (10.1016/j.ijheatfluidflow.2024.109311_b31) 2020; 887
Yu (10.1016/j.ijheatfluidflow.2024.109311_b66) 2023; 35
Orlandi (10.1016/j.ijheatfluidflow.2024.109311_b47) 2006
Flores (10.1016/j.ijheatfluidflow.2024.109311_b21) 2006; 566
Zhang (10.1016/j.ijheatfluidflow.2024.109311_b72) 2018; 56
Ma (10.1016/j.ijheatfluidflow.2024.109311_b40) 2023; 968
Modesti (10.1016/j.ijheatfluidflow.2024.109311_b46) 2022; 942
Lee (10.1016/j.ijheatfluidflow.2024.109311_b36) 2019; 860
Roy (10.1016/j.ijheatfluidflow.2024.109311_b53) 2006; 42
Bernardini (10.1016/j.ijheatfluidflow.2024.109311_b4) 2011; 23
Yu (10.1016/j.ijheatfluidflow.2024.109311_b70) 2023; 39
Bernardini (10.1016/j.ijheatfluidflow.2024.109311_b3) 2021; 263
Lee (10.1016/j.ijheatfluidflow.2024.109311_b37) 2011; 669
Wu (10.1016/j.ijheatfluidflow.2024.109311_b65) 2019; 863
Yu (10.1016/j.ijheatfluidflow.2024.109311_b69) 2023; 972
Ma (10.1016/j.ijheatfluidflow.2024.109311_b39) 2022; 34
Smits (10.1016/j.ijheatfluidflow.2024.109311_b56) 2006
Zhang (10.1016/j.ijheatfluidflow.2024.109311_b73) 2019; 4
10.1016/j.ijheatfluidflow.2024.109311_b11
Peltier (10.1016/j.ijheatfluidflow.2024.109311_b49) 2016; 28
Cho (10.1016/j.ijheatfluidflow.2024.109311_b8) 2018; 854
Medjnoun (10.1016/j.ijheatfluidflow.2024.109311_b43) 2020; 886
Cogo (10.1016/j.ijheatfluidflow.2024.109311_b12) 2022; 945
Duan (10.1016/j.ijheatfluidflow.2024.109311_b17) 2021; 918
Latin (10.1016/j.ijheatfluidflow.2024.109311_b35) 2000; 38
Ducros (10.1016/j.ijheatfluidflow.2024.109311_b18) 1999; 152
Jiménez (10.1016/j.ijheatfluidflow.2024.109311_b28) 2004; 36
MacDonald (10.1016/j.ijheatfluidflow.2024.109311_b42) 2016; 804
van Driest (10.1016/j.ijheatfluidflow.2024.109311_b15) 1951; 18
Rumsey (10.1016/j.ijheatfluidflow.2024.109311_b54) 2010; 47
Renard (10.1016/j.ijheatfluidflow.2024.109311_b52) 2016; 790
10.1016/j.ijheatfluidflow.2024.109311_b5
Hernández (10.1016/j.ijheatfluidflow.2024.109311_b24) 2022; 936
Yu (10.1016/j.ijheatfluidflow.2024.109311_b68) 2022; 951
Stroh (10.1016/j.ijheatfluidflow.2024.109311_b57) 2020; 81
Chung (10.1016/j.ijheatfluidflow.2024.109311_b9) 2015; 773
Howell (10.1016/j.ijheatfluidflow.2024.109311_b25) 2006; 22
Aghaei Jouybari (10.1016/j.ijheatfluidflow.2024.109311_b1) 2019; 20
Kempf (10.1016/j.ijheatfluidflow.2024.109311_b30) 2012; 60
Modesti (10.1016/j.ijheatfluidflow.2024.109311_b45) 2021; 917
Wray (10.1016/j.ijheatfluidflow.2024.109311_b64) 1990
Peltier (10.1016/j.ijheatfluidflow.2024.109311_b48) 2013
Gatski (10.1016/j.ijheatfluidflow.2024.109311_b23) 2013
Domaradzki (10.1016/j.ijheatfluidflow.2024.109311_b14) 1994; 6
Kuya (10.1016/j.ijheatfluidflow.2024.109311_b34) 2018; 375
Kadivar (10.1016/j.ijheatfluidflow.2024.109311_b29) 2021; 10
Klein (10.1016/j.ijheatfluidflow.2024.109311_b32) 2003; 186
Chung (10.1016/j.ijheatfluidflow.2024.109311_b10) 2021; 53
Flack (10.1016/j.ijheatfluidflow.2024.109311_b20) 2010; 132
Pirozzoli (10.1016/j.ijheatfluidflow.2024.109311_b51) 2011; 688
de Giovanetti (10.1016/j.ijheatfluidflow.2024.109311_b13) 2016; 808
Shima (10.1016/j.ijheatfluidflow.2024.109311_b55) 2021; 427
Chan (10.1016/j.ijheatfluidflow.2024.109311_b6) 2015; 771
References_xml – volume: 81
  year: 2020
  ident: b57
  article-title: Secondary flow and heat transfer in turbulent flow over streamwise ridges
  publication-title: Int. J. Heat Fluid Flow
– year: 2013
  ident: b23
  article-title: Compressibility, Turbulence and High Speed Flow
– volume: 28
  year: 2016
  ident: b49
  article-title: Crosshatch roughness distortions on a hypersonic turbulent boundary layer
  publication-title: Phys. Fluids
– volume: 20
  start-page: 723
  year: 2019
  end-page: 749
  ident: b1
  article-title: Turbulence structures over realistic and synthetic wall roughness in open channel flow at
  publication-title: J. Turbul.
– reference: Bowersox, R., 2007. Survey of high-speed rough wall boundary layers: Invited presentation. In: 37th AIAA Fluid Dynamics Conference and Exhibit. p. 3998.
– volume: 860
  start-page: 886
  year: 2019
  end-page: 938
  ident: b36
  article-title: Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number
  publication-title: J. Fluid Mech.
– start-page: 1
  year: 2023
  end-page: 18
  ident: b22
  article-title: Effects of groove distributions on supersonic turbulent channel flows
  publication-title: J. Turbul.
– volume: 887
  start-page: A3
  year: 2020
  ident: b31
  article-title: Experimental evidence of amplitude modulation in permeable-wall turbulence
  publication-title: J. Fluid Mech.
– volume: 34
  year: 2022
  ident: b39
  article-title: Scaling of rough-wall turbulence in a transitionally rough regime
  publication-title: Phys. Fluids
– year: 2006
  ident: b56
  article-title: Turbulent Shear Layers in Supersonic Flow
– volume: 60
  start-page: 58
  year: 2012
  end-page: 60
  ident: b30
  article-title: An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS
  publication-title: Comput. Fluids
– volume: 152
  start-page: 517
  year: 1999
  end-page: 549
  ident: b18
  article-title: Large-eddy simulation of the shock/turbulence interaction
  publication-title: J. Comput. Phys.
– year: 2013
  ident: b48
  article-title: Behavior of Turbulent Structures Within a Mach 5 Mechanically Distorted Boundary Layer
– volume: 900
  start-page: R7
  year: 2020
  ident: b38
  article-title: Scaling of rough-wall turbulence by the roughness height and steepness
  publication-title: J. Fluid Mech.
– volume: 723
  start-page: 264
  year: 2013
  end-page: 288
  ident: b27
  article-title: Near-wall turbulent fluctuations in the absence of wide outer motions
  publication-title: J. Fluid Mech.
– volume: 23
  year: 2011
  ident: b4
  article-title: Wall pressure fluctuations beneath supersonic turbulent boundary layers
  publication-title: Phys. Fluids
– volume: 186
  start-page: 652
  year: 2003
  end-page: 665
  ident: b32
  article-title: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations
  publication-title: J. Comput. Phys.
– volume: 655
  start-page: 419
  year: 2010
  end-page: 445
  ident: b16
  article-title: Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature
  publication-title: J. Fluid Mech.
– volume: 854
  start-page: 5
  year: 2018
  end-page: 33
  ident: b7
  article-title: Secondary motion in turbulent pipe flow with three-dimensional roughness
  publication-title: J. Fluid Mech.
– volume: 886
  start-page: A31
  year: 2020
  ident: b43
  article-title: Effects of heterogeneous surface geometry on secondary flows in turbulent boundary layers
  publication-title: J. Fluid Mech.
– volume: 22
  start-page: 401
  year: 2006
  end-page: 410
  ident: b25
  article-title: A review of surface roughness in antifouling coatings illustrating the importance of cutoff length
  publication-title: Biofouling
– volume: 35
  year: 2023
  ident: b66
  article-title: Effects of wall disturbances on the statistics of supersonic turbulent boundary layers
  publication-title: Phys. Fluids
– volume: 968
  start-page: A18
  year: 2023
  ident: b40
  article-title: Outer-layer similarity and energy transfer in a rough-wall turbulent channel flow
  publication-title: J. Fluid Mech.
– volume: 808
  start-page: 511
  year: 2016
  end-page: 538
  ident: b13
  article-title: Skin-friction generation by attached eddies in turbulent channel flow
  publication-title: J. Fluid Mech.
– volume: 885
  start-page: R5
  year: 2020
  ident: b58
  article-title: Rearrangement of secondary flow over spanwise heterogeneous roughness
  publication-title: J. Fluid Mech.
– volume: 62
  start-page: 1
  year: 2021
  end-page: 13
  ident: b63
  article-title: Effects of roughness on a turbulent boundary layer in hypersonic flow
  publication-title: Exp. Fluids
– volume: 42
  start-page: 469
  year: 2006
  end-page: 530
  ident: b53
  article-title: Review and assessment of turbulence models for hypersonic flows
  publication-title: Prog. Aerosp. Sci.
– start-page: N73
  year: 2006
  ident: b47
  article-title: DNS of turbulent channel flows with two-and three-dimensional roughness
  publication-title: J. Turbul.
– volume: 972
  start-page: A32
  year: 2023
  ident: b69
  article-title: Compressibility effects in supersonic and hypersonic turbulent boundary layers subject to wall disturbances
  publication-title: J. Fluid Mech.
– volume: 10
  year: 2021
  ident: b29
  article-title: A review on turbulent flow over rough surfaces: Fundamentals and theories
  publication-title: Int. J. Thermofluids
– year: 1990
  ident: b64
  publication-title: Minimal Storage Time Advancement Schemes for Spectral Methods
– volume: 4
  year: 2019
  ident: b73
  article-title: Very large-scale motions in turbulent flows over streamwise traveling wavy boundaries
  publication-title: Phys. Rev. Fluids
– volume: 669
  start-page: 397
  year: 2011
  end-page: 431
  ident: b37
  article-title: Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall
  publication-title: J. Fluid Mech.
– volume: 56
  start-page: 4297
  year: 2018
  end-page: 4311
  ident: b72
  article-title: Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers
  publication-title: AIAA J.
– volume: 956
  start-page: A3
  year: 2023
  ident: b2
  article-title: Supersonic turbulent flows over sinusoidal rough walls
  publication-title: J. Fluid Mech.
– volume: 773
  start-page: 418
  year: 2015
  end-page: 431
  ident: b9
  article-title: A fast direct numerical simulation method for characterising hydraulic roughness
  publication-title: J. Fluid Mech.
– volume: 918
  start-page: A40
  year: 2021
  ident: b17
  article-title: Contributions of different scales of turbulent motions to the mean wall-shear stress in open channel flows at low-to-moderate Reynolds numbers
  publication-title: J. Fluid Mech.
– volume: 937
  start-page: A3
  year: 2022
  ident: b26
  article-title: Direct numerical simulation of hypersonic turbulent boundary layers: effect of spatial evolution and Reynolds number
  publication-title: J. Fluid Mech.
– volume: 805
  start-page: 171
  year: 2016
  end-page: 187
  ident: b44
  article-title: Spectra of energy transport in turbulent channel flows for moderate Reynolds numbers
  publication-title: J. Fluid Mech.
– volume: 375
  start-page: 823
  year: 2018
  end-page: 853
  ident: b34
  article-title: Kinetic energy and entropy preserving schemes for compressible flows by split convective forms
  publication-title: J. Comput. Phys.
– volume: 917
  year: 2021
  ident: b45
  article-title: Dispersive stresses in turbulent flow over riblets
  publication-title: J. Fluid Mech.
– volume: 771
  start-page: 743
  year: 2015
  end-page: 777
  ident: b6
  article-title: A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime
  publication-title: J. Fluid Mech.
– volume: 427
  year: 2021
  ident: b55
  article-title: Preventing spurious pressure oscillations in split convective form discretization for compressible flows
  publication-title: J. Comput. Phys.
– volume: 945
  start-page: A30
  year: 2022
  ident: b12
  article-title: Direct numerical simulation of supersonic and hypersonic turbulent boundary layers at moderate-high Reynolds numbers and isothermal wall condition
  publication-title: J. Fluid Mech.
– volume: 930
  start-page: A1
  year: 2022
  ident: b62
  article-title: About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers
  publication-title: J. Fluid Mech.
– reference: Coakley, T., Huang, P., 1992. Turbulence modeling for high speed flows. In: 30th Aerospace Sciences Meeting and Exhibit. p. 436.
– volume: 942
  start-page: A44
  year: 2022
  ident: b46
  article-title: Direct numerical simulation of supersonic turbulent flows over rough surfaces
  publication-title: J. Fluid Mech.
– volume: 102
  year: 2023
  ident: b41
  article-title: Secondary motions and wall-attached structures in a turbulent flow over a random rough surface
  publication-title: Int. J. Heat Fluid Flow
– volume: 863
  start-page: 407
  year: 2019
  end-page: 453
  ident: b65
  article-title: Modelling smooth-and transitionally rough-wall turbulent channel flow by leveraging inner–outer interactions and principal component analysis
  publication-title: J. Fluid Mech.
– volume: 132
  year: 2010
  ident: b20
  article-title: Review of hydraulic roughness scales in the fully rough regime
  publication-title: J. Fluids Eng.
– volume: 15
  start-page: 350
  year: 2014
  end-page: 365
  ident: b71
  article-title: Estimation and prediction of the roughness function on realistic surfaces
  publication-title: J. Turbul.
– volume: 790
  start-page: 339
  year: 2016
  end-page: 367
  ident: b52
  article-title: A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer
  publication-title: J. Fluid Mech.
– volume: 893
  start-page: A21
  year: 2020
  ident: b60
  article-title: Surface wave effects on energy transfer in overlying turbulent flow
  publication-title: J. Fluid Mech.
– volume: 47
  start-page: 11
  year: 2010
  end-page: 20
  ident: b54
  article-title: Compressibility considerations for kw turbulence models in hypersonic boundary-layer applications
  publication-title: J. Spacecr. Rockets
– volume: 4
  year: 2019
  ident: b67
  article-title: Genuine compressibility effects in wall-bounded turbulence
  publication-title: Phys. Rev. Fluids
– volume: 38
  start-page: 1804
  year: 2000
  end-page: 1821
  ident: b35
  article-title: Flow properties of a supersonic turbulent boundary layer with wall roughness
  publication-title: AIAA J.
– volume: 804
  start-page: 130
  year: 2016
  end-page: 161
  ident: b42
  article-title: Turbulent flow over transitionally rough surfaces with varying roughness densities
  publication-title: J. Fluid Mech.
– volume: 854
  start-page: 474
  year: 2018
  end-page: 504
  ident: b8
  article-title: Scale interactions and spectral energy transfer in turbulent channel flow
  publication-title: J. Fluid Mech.
– volume: 951
  start-page: A2
  year: 2022
  ident: b68
  article-title: A spectral inspection for turbulence amplification in oblique shock wave/turbulent boundary layer interaction
  publication-title: J. Fluid Mech.
– volume: 6
  start-page: 1583
  year: 1994
  end-page: 1599
  ident: b14
  article-title: Energy transfer in numerically simulated wall-bounded turbulent flows
  publication-title: Phys. Fluids
– volume: 39
  year: 2023
  ident: b70
  article-title: Influences of wall disturbances on coherent structures in supersonic turbulent boundary layers
  publication-title: Acta Mech. Sin.
– volume: 971
  start-page: A15
  year: 2023
  ident: b50
  article-title: Searching for the log law in open channel flow
  publication-title: J. Fluid Mech.
– volume: 53
  start-page: 439
  year: 2021
  end-page: 471
  ident: b10
  article-title: Predicting the drag of rough surfaces
  publication-title: Annu. Rev. Fluid Mech.
– volume: 34
  start-page: 452
  year: 2018
  end-page: 461
  ident: b59
  article-title: The spanwise spectra in wall-bounded turbulence
  publication-title: Acta Mech. Sin.
– volume: 894
  start-page: A7
  year: 2020
  ident: b61
  article-title: The effect of spanwise wavelength of surface heterogeneity on turbulent secondary flows
  publication-title: J. Fluid Mech.
– volume: 31
  year: 2019
  ident: b19
  article-title: Decomposition of the mean friction drag in zero-pressure-gradient turbulent boundary layers
  publication-title: Phys. Fluids
– volume: 60
  start-page: 5136
  year: 2022
  end-page: 5149
  ident: b33
  article-title: Characterizing streamwise development of surface roughness effects on a supersonic boundary layer
  publication-title: AIAA J.
– volume: 263
  year: 2021
  ident: b3
  article-title: STREAmS: A high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows
  publication-title: Comput. Phys. Commun.
– volume: 936
  start-page: A33
  year: 2022
  ident: b24
  article-title: Generalised quasilinear approximations of turbulent channel flow. Part 1. Streamwise nonlinear energy transfer
  publication-title: J. Fluid Mech.
– volume: 688
  start-page: 120
  year: 2011
  end-page: 168
  ident: b51
  article-title: Turbulence in supersonic boundary layers at moderate Reynolds number
  publication-title: J. Fluid Mech.
– volume: 18
  start-page: 145
  year: 1951
  end-page: 160
  ident: b15
  article-title: Turbulent boundary layer in compressible fluids
  publication-title: Int. J. Aeronaut. Space Sci.
– volume: 36
  start-page: 173
  year: 2004
  end-page: 196
  ident: b28
  article-title: Turbulent flows over rough walls
  publication-title: Annu. Rev. Fluid Mech.
– volume: 566
  start-page: 357
  year: 2006
  end-page: 376
  ident: b21
  article-title: Effect of wall-boundary disturbances on turbulent channel flows
  publication-title: J. Fluid Mech.
– volume: 655
  start-page: 419
  year: 2010
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b16
  article-title: Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010000959
– volume: 917
  year: 2021
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b45
  article-title: Dispersive stresses in turbulent flow over riblets
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.310
– volume: 771
  start-page: 743
  year: 2015
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b6
  article-title: A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.172
– volume: 375
  start-page: 823
  year: 2018
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b34
  article-title: Kinetic energy and entropy preserving schemes for compressible flows by split convective forms
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.058
– volume: 918
  start-page: A40
  year: 2021
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b17
  article-title: Contributions of different scales of turbulent motions to the mean wall-shear stress in open channel flows at low-to-moderate Reynolds numbers
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.236
– volume: 804
  start-page: 130
  year: 2016
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b42
  article-title: Turbulent flow over transitionally rough surfaces with varying roughness densities
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.459
– volume: 102
  year: 2023
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b41
  article-title: Secondary motions and wall-attached structures in a turbulent flow over a random rough surface
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2023.109147
– volume: 60
  start-page: 58
  year: 2012
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b30
  article-title: An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2012.02.027
– volume: 22
  start-page: 401
  issue: 6
  year: 2006
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b25
  article-title: A review of surface roughness in antifouling coatings illustrating the importance of cutoff length
  publication-title: Biofouling
  doi: 10.1080/08927010601035738
– year: 2006
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b56
– volume: 4
  issue: 5
  year: 2019
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b73
  article-title: Very large-scale motions in turbulent flows over streamwise traveling wavy boundaries
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.4.054601
– volume: 42
  start-page: 469
  issue: 7–8
  year: 2006
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b53
  article-title: Review and assessment of turbulence models for hypersonic flows
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2006.12.002
– volume: 723
  start-page: 264
  year: 2013
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b27
  article-title: Near-wall turbulent fluctuations in the absence of wide outer motions
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.133
– volume: 937
  start-page: A3
  year: 2022
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b26
  article-title: Direct numerical simulation of hypersonic turbulent boundary layers: effect of spatial evolution and Reynolds number
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.80
– ident: 10.1016/j.ijheatfluidflow.2024.109311_b5
  doi: 10.2514/6.2007-3998
– volume: 6
  start-page: 1583
  issue: 4
  year: 1994
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b14
  article-title: Energy transfer in numerically simulated wall-bounded turbulent flows
  publication-title: Phys. Fluids
  doi: 10.1063/1.868272
– volume: 968
  start-page: A18
  year: 2023
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b40
  article-title: Outer-layer similarity and energy transfer in a rough-wall turbulent channel flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2023.425
– volume: 863
  start-page: 407
  year: 2019
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b65
  article-title: Modelling smooth-and transitionally rough-wall turbulent channel flow by leveraging inner–outer interactions and principal component analysis
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.899
– volume: 894
  start-page: A7
  year: 2020
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b61
  article-title: The effect of spanwise wavelength of surface heterogeneity on turbulent secondary flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.262
– volume: 10
  year: 2021
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b29
  article-title: A review on turbulent flow over rough surfaces: Fundamentals and theories
  publication-title: Int. J. Thermofluids
  doi: 10.1016/j.ijft.2021.100077
– volume: 53
  start-page: 439
  year: 2021
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b10
  article-title: Predicting the drag of rough surfaces
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-062520-115127
– volume: 805
  start-page: 171
  year: 2016
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b44
  article-title: Spectra of energy transport in turbulent channel flows for moderate Reynolds numbers
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.564
– start-page: 1
  year: 2023
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b22
  article-title: Effects of groove distributions on supersonic turbulent channel flows
  publication-title: J. Turbul.
– volume: 942
  start-page: A44
  year: 2022
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b46
  article-title: Direct numerical simulation of supersonic turbulent flows over rough surfaces
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.393
– volume: 39
  issue: 12
  year: 2023
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b70
  article-title: Influences of wall disturbances on coherent structures in supersonic turbulent boundary layers
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-023-23075-x
– volume: 854
  start-page: 5
  year: 2018
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b7
  article-title: Secondary motion in turbulent pipe flow with three-dimensional roughness
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.570
– volume: 773
  start-page: 418
  year: 2015
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b9
  article-title: A fast direct numerical simulation method for characterising hydraulic roughness
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.230
– volume: 263
  year: 2021
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b3
  article-title: STREAmS: A high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.107906
– volume: 893
  start-page: A21
  year: 2020
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b60
  article-title: Surface wave effects on energy transfer in overlying turbulent flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.246
– volume: 669
  start-page: 397
  year: 2011
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b37
  article-title: Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010005082
– year: 1990
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b64
– volume: 972
  start-page: A32
  year: 2023
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b69
  article-title: Compressibility effects in supersonic and hypersonic turbulent boundary layers subject to wall disturbances
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2023.712
– volume: 56
  start-page: 4297
  issue: 11
  year: 2018
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b72
  article-title: Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers
  publication-title: AIAA J.
  doi: 10.2514/1.J057296
– volume: 4
  issue: 12
  year: 2019
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b67
  article-title: Genuine compressibility effects in wall-bounded turbulence
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.4.123402
– volume: 23
  issue: 8
  year: 2011
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b4
  article-title: Wall pressure fluctuations beneath supersonic turbulent boundary layers
  publication-title: Phys. Fluids
  doi: 10.1063/1.3622773
– start-page: N73
  issue: 7
  year: 2006
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b47
  article-title: DNS of turbulent channel flows with two-and three-dimensional roughness
  publication-title: J. Turbul.
  doi: 10.1080/14685240600827526
– volume: 152
  start-page: 517
  issue: 2
  year: 1999
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b18
  article-title: Large-eddy simulation of the shock/turbulence interaction
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6238
– volume: 18
  start-page: 145
  issue: 3
  year: 1951
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b15
  article-title: Turbulent boundary layer in compressible fluids
  publication-title: Int. J. Aeronaut. Space Sci.
  doi: 10.2514/8.1895
– volume: 900
  start-page: R7
  year: 2020
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b38
  article-title: Scaling of rough-wall turbulence by the roughness height and steepness
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.542
– volume: 945
  start-page: A30
  year: 2022
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b12
  article-title: Direct numerical simulation of supersonic and hypersonic turbulent boundary layers at moderate-high Reynolds numbers and isothermal wall condition
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.574
– year: 2013
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b23
– volume: 186
  start-page: 652
  issue: 2
  year: 2003
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b32
  article-title: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(03)00090-1
– volume: 81
  year: 2020
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b57
  article-title: Secondary flow and heat transfer in turbulent flow over streamwise ridges
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2019.108518
– volume: 951
  start-page: A2
  year: 2022
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b68
  article-title: A spectral inspection for turbulence amplification in oblique shock wave/turbulent boundary layer interaction
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.826
– volume: 36
  start-page: 173
  year: 2004
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b28
  article-title: Turbulent flows over rough walls
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.36.050802.122103
– volume: 887
  start-page: A3
  year: 2020
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b31
  article-title: Experimental evidence of amplitude modulation in permeable-wall turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.1027
– volume: 808
  start-page: 511
  year: 2016
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b13
  article-title: Skin-friction generation by attached eddies in turbulent channel flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.665
– volume: 47
  start-page: 11
  issue: 1
  year: 2010
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b54
  article-title: Compressibility considerations for kw turbulence models in hypersonic boundary-layer applications
  publication-title: J. Spacecr. Rockets
  doi: 10.2514/1.45350
– volume: 956
  start-page: A3
  year: 2023
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b2
  article-title: Supersonic turbulent flows over sinusoidal rough walls
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.1049
– year: 2013
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b48
– volume: 28
  issue: 4
  year: 2016
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b49
  article-title: Crosshatch roughness distortions on a hypersonic turbulent boundary layer
  publication-title: Phys. Fluids
  doi: 10.1063/1.4944657
– volume: 132
  issue: 4
  year: 2010
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b20
  article-title: Review of hydraulic roughness scales in the fully rough regime
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.4001492
– volume: 20
  start-page: 723
  issue: 11–12
  year: 2019
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b1
  article-title: Turbulence structures over realistic and synthetic wall roughness in open channel flow at Reτ=1000
  publication-title: J. Turbul.
  doi: 10.1080/14685248.2019.1706741
– volume: 427
  year: 2021
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b55
  article-title: Preventing spurious pressure oscillations in split convective form discretization for compressible flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.110060
– volume: 15
  start-page: 350
  issue: 6
  year: 2014
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b71
  article-title: Estimation and prediction of the roughness function on realistic surfaces
  publication-title: J. Turbul.
  doi: 10.1080/14685248.2014.907904
– volume: 31
  issue: 8
  year: 2019
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b19
  article-title: Decomposition of the mean friction drag in zero-pressure-gradient turbulent boundary layers
  publication-title: Phys. Fluids
  doi: 10.1063/1.5111009
– volume: 886
  start-page: A31
  year: 2020
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b43
  article-title: Effects of heterogeneous surface geometry on secondary flows in turbulent boundary layers
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.1014
– volume: 688
  start-page: 120
  year: 2011
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b51
  article-title: Turbulence in supersonic boundary layers at moderate Reynolds number
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.368
– volume: 930
  start-page: A1
  year: 2022
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b62
  article-title: About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.888
– ident: 10.1016/j.ijheatfluidflow.2024.109311_b11
  doi: 10.2514/6.1992-436
– volume: 60
  start-page: 5136
  issue: 9
  year: 2022
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b33
  article-title: Characterizing streamwise development of surface roughness effects on a supersonic boundary layer
  publication-title: AIAA J.
  doi: 10.2514/1.J061623
– volume: 35
  issue: 2
  year: 2023
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b66
  article-title: Effects of wall disturbances on the statistics of supersonic turbulent boundary layers
  publication-title: Phys. Fluids
  doi: 10.1063/5.0141369
– volume: 790
  start-page: 339
  year: 2016
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b52
  article-title: A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.12
– volume: 34
  issue: 3
  year: 2022
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b39
  article-title: Scaling of rough-wall turbulence in a transitionally rough regime
  publication-title: Phys. Fluids
  doi: 10.1063/5.0084646
– volume: 936
  start-page: A33
  year: 2022
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b24
  article-title: Generalised quasilinear approximations of turbulent channel flow. Part 1. Streamwise nonlinear energy transfer
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.59
– volume: 566
  start-page: 357
  year: 2006
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b21
  article-title: Effect of wall-boundary disturbances on turbulent channel flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112006001534
– volume: 62
  start-page: 1
  issue: 9
  year: 2021
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b63
  article-title: Effects of roughness on a turbulent boundary layer in hypersonic flow
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-021-03279-4
– volume: 971
  start-page: A15
  year: 2023
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b50
  article-title: Searching for the log law in open channel flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2023.616
– volume: 885
  start-page: R5
  year: 2020
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b58
  article-title: Rearrangement of secondary flow over spanwise heterogeneous roughness
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.1030
– volume: 854
  start-page: 474
  year: 2018
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b8
  article-title: Scale interactions and spectral energy transfer in turbulent channel flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.643
– volume: 860
  start-page: 886
  year: 2019
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b36
  article-title: Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.903
– volume: 34
  start-page: 452
  year: 2018
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b59
  article-title: The spanwise spectra in wall-bounded turbulence
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-017-0731-2
– volume: 38
  start-page: 1804
  issue: 10
  year: 2000
  ident: 10.1016/j.ijheatfluidflow.2024.109311_b35
  article-title: Flow properties of a supersonic turbulent boundary layer with wall roughness
  publication-title: AIAA J.
  doi: 10.2514/2.862
SSID ssj0006047
Score 2.413661
Snippet Wall disturbances in high-speed turbulent boundary layers induce large-scale motions in the outer region even when the Reynolds number is not sufficiently high...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109311
SubjectTerms Compressibility effects
High-speed turbulence
Large-scale motions
Skin friction
Turbulent boundary layer
Title Turbulent kinetic energy transport in high-speed turbulence subject to wall disturbances
URI https://dx.doi.org/10.1016/j.ijheatfluidflow.2024.109311
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH4MBdGDv8WfIwc91rVN0i7gwSGOqehJYbfSNAl0lm24Dm_-7b60qU7xMPDYtC-U15f3vpTvfQE4j2moeIwLCZMjblACFnqpnymPB10pfKoVr3QKHp-iwQu7H_JhC26aXhhLq3S5v87pVbZ2Ix3nzc40zzuWlhRi9R1aFiTmYdtozlhso_zy45vmEfmsbpnGt7BPr8HFN8crH9mMZ4p5rkwxecftYsgqgaUg-LtOLdSe_jZsOtBIevV77UBLj3dhywFI4pbnbBc2FtQF92D4PEeX2apCXnEUbYmuOv1I2Siak3xMrGCxN5tiFSOlM8g0mc2l_UNDygl5T4uCKAwHvGtjZLYPL_3b55uB5w5S8DJKaelxYfxYpFHITBTb_qVu4EtEQsoIRIuSCkYzYXRklDJcckaNUErISPGM4Q5R0gNYGU_G-hCI0BkCBMElwgyW6lDESqlUaoO4LuJCHsFV47Ykcyrj9rCLImnoZKPkl9cT6_Wk9voRRF_m01puY1nD6-YbJT_iJ8HSsNwUx_-f4gTW7VXN7DmFlfJtrs8QtJSyXUVlG1Z7dw-Dp0_KB_AO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkVgO7Iiy-gDHqElsJ1jiQIVALUtPReotimNbSonaiqbq7zNuHDZxQOJqayxrMn7zHM08A1zENFQ8xoOE4IgXlICFXupnyuPBlRQ-1YovdAqee1HnhT0M-GAJbuteGFtW6bC_wvQFWruRlvNma5LnLVuWFGL2HdgqSMRhvgwrVp2KN2Cl3X3s9D4AOfJZ1TWNG7EGq3D5WeaVDy3omWKWK1OM53hjDNlCYykIfk9VX9LP_TZsOt5I2tXWdmBJj3Zhy3FI4k7odBc2vggM7sGgP0Ov2cRCXnEUbYleNPuRshY1J_mIWM1ibzrBREZKZ5BpMp1J-5OGlGMyT4uCKIwInLVhMt2Hl_u7_m3Hc28peBmltPS4MH4s0ihkJoptC9NV4EskQ8oIJIySCkYzYXRklDJcckaNUErISPGM4SVR0gNojMYjfQhE6Aw5guASmQZLdShipVQqtUFqF3Ehm3Bduy3JnNC4fe-iSOqKsmHyw-uJ9XpSeb0J0Yf5pFLc-KvhTf2Nkm8hlGB2-NsSR_9f4hzWOv3np-Sp23s8hnU7UxX6nECjfJvpU-QwpTxzMfoO-eHyvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turbulent+kinetic+energy+transport+in+high-speed+turbulence+subject+to+wall+disturbances&rft.jtitle=The+International+journal+of+heat+and+fluid+flow&rft.au=Yu%2C+Ming&rft.au=Guo%2C+QiLong&rft.au=Tang%2C+ZhiGong&rft.au=Li%2C+Bo&rft.date=2024-04-01&rft.pub=Elsevier+Inc&rft.issn=0142-727X&rft.eissn=1879-2278&rft.volume=106&rft_id=info:doi/10.1016%2Fj.ijheatfluidflow.2024.109311&rft.externalDocID=S0142727X24000365
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-727X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-727X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-727X&client=summon