Bias Analysis for Misclassification Errors in both the Response Variable and Covariate

Abstract- Much literature has focused on statistical inference for misclassified response variables or misclassified covariates. However, misclassification in both the response variable and the covariate has received very limited attention within applied fields and the statistics community. In situa...

Full description

Saved in:
Bibliographic Details
Published inThe American statistician Vol. 76; no. 4; pp. 353 - 362
Main Authors Liu, Juxin, Afful, Annshirley, Mansell, Holly, Ma, Yanyuan
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 02.10.2022
American Statistical Association
Subjects
Online AccessGet full text
ISSN0003-1305
1537-2731
DOI10.1080/00031305.2022.2066725

Cover

Abstract Abstract- Much literature has focused on statistical inference for misclassified response variables or misclassified covariates. However, misclassification in both the response variable and the covariate has received very limited attention within applied fields and the statistics community. In situations where the response variable and the covariate are simultaneously subject to misclassification errors, an assumption of independent misclassification errors is often used for convenience without justification. This article aims to show the harmful consequences of inappropriate adjustment for joint misclassification errors. In particular, we focus on the wrong adjustment by ignoring the dependence between the misclassification process of the response variable and the covariate. In this article, the dependence of misclassification in both variables is characterized by covariance-type parameters. We extend the original definition of dependence parameters to a more general setting. We discover a single quantity that governs the dependence of the two misclassification processes. Moreover, we propose likelihood ratio tests to check the nondifferential/independent misclassification assumption in main study/internal validation study designs. Our simulation studies indicate that ignoring the dependent error structure can be even worse than ignoring all the misclassification errors when the validation data size is relatively small. The methodology is illustrated by a real data example.
AbstractList Abstract- Much literature has focused on statistical inference for misclassified response variables or misclassified covariates. However, misclassification in both the response variable and the covariate has received very limited attention within applied fields and the statistics community. In situations where the response variable and the covariate are simultaneously subject to misclassification errors, an assumption of independent misclassification errors is often used for convenience without justification. This article aims to show the harmful consequences of inappropriate adjustment for joint misclassification errors. In particular, we focus on the wrong adjustment by ignoring the dependence between the misclassification process of the response variable and the covariate. In this article, the dependence of misclassification in both variables is characterized by covariance-type parameters. We extend the original definition of dependence parameters to a more general setting. We discover a single quantity that governs the dependence of the two misclassification processes. Moreover, we propose likelihood ratio tests to check the nondifferential/independent misclassification assumption in main study/internal validation study designs. Our simulation studies indicate that ignoring the dependent error structure can be even worse than ignoring all the misclassification errors when the validation data size is relatively small. The methodology is illustrated by a real data example.
Abstract–Much literature has focused on statistical inference for misclassified response variables or misclassified covariates. However, misclassification in both the response variable and the covariate has received very limited attention within applied fields and the statistics community. In situations where the response variable and the covariate are simultaneously subject to misclassification errors, an assumption of independent misclassification errors is often used for convenience without justification. This article aims to show the harmful consequences of inappropriate adjustment for joint misclassification errors. In particular, we focus on the wrong adjustment by ignoring the dependence between the misclassification process of the response variable and the covariate. In this article, the dependence of misclassification in both variables is characterized by covariance-type parameters. We extend the original definition of dependence parameters to a more general setting. We discover a single quantity that governs the dependence of the two misclassification processes. Moreover, we propose likelihood ratio tests to check the nondifferential/independent misclassification assumption in main study/internal validation study designs. Our simulation studies indicate that ignoring the dependent error structure can be even worse than ignoring all the misclassification errors when the validation data size is relatively small. The methodology is illustrated by a real data example.
Author Liu, Juxin
Mansell, Holly
Afful, Annshirley
Ma, Yanyuan
Author_xml – sequence: 1
  givenname: Juxin
  orcidid: 0000-0001-6631-932X
  surname: Liu
  fullname: Liu, Juxin
  organization: Department of Mathematics and Statistics, University of Saskatchewan
– sequence: 2
  givenname: Annshirley
  surname: Afful
  fullname: Afful, Annshirley
  organization: Department of Mathematics and Statistics, University of Saskatchewan
– sequence: 3
  givenname: Holly
  surname: Mansell
  fullname: Mansell, Holly
  organization: College of Pharmacy and Nutrition, University of Saskatchewan
– sequence: 4
  givenname: Yanyuan
  surname: Ma
  fullname: Ma, Yanyuan
  organization: Department of Statistics, Pennsylvania State University, University Park
BookMark eNp9kF1LwzAYhYNMcJv-BCHgdWc-mqa9c475AYogutuQtAnL6JKZt1P2723ZvPXmfTlwzoHzTNAoxGARuqZkRklJbgkhnHIiZoww1p-ikEycoTEVXGZMcjpC48GTDaYLNAHY9JLIgo3R6t5rwPOg2wN4wC4m_OqhbjWAd77WnY8BL1OKCbAP2MRujbu1xe8WdjGAxSudvDatxTo0eBG_B9nZS3TudAv26vSn6PNh-bF4yl7eHp8X85es5px3mWC2ZLQSJaFVzoyQzJncGCIrqSujuchL3ZiyKG1TlKZuakNzRnLGpKscbQifoptj7y7Fr72FTm3iPvVrQPXDWVlVOaW9SxxddYoAyTq1S36r00FRogaE6g-hGhCqE8I-d3fM-dCD2eqfmNpGdfrQxuSSDrUHxf-v-AUrqHi5
Cites_doi 10.1093/oxfordjournals.aje.a009299
10.1093/ije/12.1.93
10.1201/9781420010138
10.2307/2529795
10.1016/0895-4356(93)90119-L
10.1093/ije/dyz251
10.1093/aje/kwy200
10.1515/em-2013-0008
10.1097/00001648-199205000-00005
10.1002/sim.2065
10.1007/978-1-4939-6640-0
ContentType Journal Article
Copyright 2022 American Statistical Association 2022
2022 American Statistical Association
Copyright_xml – notice: 2022 American Statistical Association 2022
– notice: 2022 American Statistical Association
DBID AAYXX
CITATION
DOI 10.1080/00031305.2022.2066725
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2731
EndPage 362
ExternalDocumentID 10_1080_00031305_2022_2066725
2066725
Genre Research Article
GroupedDBID -DZ
-~X
..I
.7F
.QJ
07G
0BK
0R~
123
23M
30N
4.4
6J9
7WY
85S
8FL
AABCJ
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADMHG
AEGXH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFSUE
AFVYC
AGDLA
AGMYJ
AGTJU
AHDZW
AIJEM
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMXXU
AQRUH
AVBZW
AWYRJ
BCCOT
BKOMP
BLEHA
BPLKW
C06
CCCUG
CS3
DGEBU
DKSSO
DWIFK
EBS
E~A
E~B
F5P
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HZ~
H~P
IAO
IEA
IGG
IGS
IOF
IPNFZ
J.P
JAC
K60
K6~
KYCEM
LJTGL
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TAQ
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
UB9
UPT
UT5
UU3
WH7
WZA
YZZ
ZGOLN
ZUP
~02
~S~
AAGDL
AAHIA
AAYXX
ADXHL
ADYSH
AFRVT
AIYEW
ALSLI
AMPGV
AMVHM
CITATION
PQBIZ
TASJS
ID FETCH-LOGICAL-c333t-52e82195801942b572fb4bb0797a9ba3548adb868ed68bcdcb14204227f9f1d03
ISSN 0003-1305
IngestDate Wed Aug 13 10:59:09 EDT 2025
Tue Jul 01 03:15:55 EDT 2025
Wed Dec 25 09:05:15 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-52e82195801942b572fb4bb0797a9ba3548adb868ed68bcdcb14204227f9f1d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6631-932X
OpenAccessLink https://figshare.com/articles/journal_contribution/Bias_analysis_for_misclassification_errors_in_both_the_response_variable_and_covariate/19615212
PQID 2732899411
PQPubID 41811
PageCount 10
ParticipantIDs crossref_primary_10_1080_00031305_2022_2066725
informaworld_taylorfrancis_310_1080_00031305_2022_2066725
proquest_journals_2732899411
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-02
PublicationDateYYYYMMDD 2022-10-02
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-02
  day: 02
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle The American statistician
PublicationYear 2022
Publisher Taylor & Francis
American Statistical Association
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
References CIT0010
CIT0001
CIT0012
CIT0011
Gustafson P. (CIT0006) 2004
Cramér H. (CIT0004) 1999
CIT0003
CIT0002
CIT0013
CIT0005
CIT0007
CIT0009
CIT0008
References_xml – ident: CIT0009
  doi: 10.1093/oxfordjournals.aje.a009299
– ident: CIT0005
  doi: 10.1093/ije/12.1.93
– ident: CIT0003
  doi: 10.1201/9781420010138
– ident: CIT0001
  doi: 10.2307/2529795
– ident: CIT0002
  doi: 10.1016/0895-4356(93)90119-L
– ident: CIT0011
  doi: 10.1093/ije/dyz251
– ident: CIT0008
  doi: 10.1093/aje/kwy200
– ident: CIT0010
  doi: 10.1515/em-2013-0008
– volume-title: Measurement Error and Misclassification in Statistics and Epidemiology: Impacts and Bayesian Adjustments
  year: 2004
  ident: CIT0006
– ident: CIT0007
  doi: 10.1097/00001648-199205000-00005
– ident: CIT0012
  doi: 10.1002/sim.2065
– ident: CIT0013
  doi: 10.1007/978-1-4939-6640-0
– volume-title: Mathematical Methods of Statistics
  year: 1999
  ident: CIT0004
SSID ssj0000762
Score 2.3295226
Snippet Abstract- Much literature has focused on statistical inference for misclassified response variables or misclassified covariates. However, misclassification in...
Abstract–Much literature has focused on statistical inference for misclassified response variables or misclassified covariates. However, misclassification in...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 353
SubjectTerms Dependence
Differential misclassification
Likelihood ratio
Nondifferential misclassification
Parameters
Regression analysis
Sensitivity
Specificity
Statistical inference
Statistical methods
Statistics
Title Bias Analysis for Misclassification Errors in both the Response Variable and Covariate
URI https://www.tandfonline.com/doi/abs/10.1080/00031305.2022.2066725
https://www.proquest.com/docview/2732899411
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swELay7qV7mLZu07p1kx_2VhEBBgyPWdcq25poUtOqbxYGo_FCqgBVtT9if_PubAxEifbrBSWOYpDv4853vvuOkA-g8BKwipmjPHibghwclDRxQ0fyPJRuIf1A9yFbLKP5dfDlNrydTH6OspbaRk6zH3vrSv5HqjAGcsUq2X-QbD8pDMBnkC9cQcJw_SsZfyzTeqAVwYTBRVlnuB_GBCAj2vPNBvvplNWpXGPI9Ts2atB5ser0BhxlXTqF0fOz9T1-bbZyg1ZD4UmFYYdG8zqPIHVZtqa446Hsx2ZF0Zqz_wqTwTb27FgHvrEC3hBoY5frYVzbAtBMbTd3F4kAJxbP0Qe_tX-aK_s0e0Bm1TBzwHia42xlNS_HOiFvrJpNa5gOgsFIzzLDMNyZbGYU-o416NMnGd5sis88Rfp67oeD-bNH_vPZlfj26UJcfl5-fUQe-5zrY3_mLgfLziPfdmDEGW1FGHK177vJ1l5niwl3x_Lr7czqGXna-SF0ZkD1nExUdUSeLHoS3_qIHPYrXL8gN4g1arFG4R50B2vUYI2WFUWsUZiLWqxRizUKWKM91l6S64vz1dnc6XpyOBljrHFCX8U-EhSBaxD4MuR-IQMpXZ7wNJEpAwc4zWUcxSqPYpnlGQYZkWeOF0nh5S57RQ6qdaVeE1rEEbLBxVkUuUGuctg4ShW4SuYSGaHYMZna1RN3hnpFeD2jrVlugcstuuU-Jsl4jUWjY16FaVAj2B_-e2IFIro3vBY-MlklSeB5b37_81tyOLwQJ-Sg2bTqHWxWG_leI-gXZ6WQWQ
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHIADjwFiPHPguqlN2rQ9wjQ0YNsBMcQtappUmpA2tHYc-PXY7To2EOLAsapiJbHjfI7szwBX6PAivBWTpnXxNHkGA5Q4cvymDoyvnVRzr-hD1h_I7tC7f_FflmphKK2SYui0JIoofDUdbnqMrlLiqPpAoO_1MbzjVEwlZcD9ddjwEbuTlQtn8OWNA8mrrnk0pqri-U3Myv20wl76w1sXV9DtLiTV5MvMk9fWLNet5OMbr-P_VrcHO3OEyq5Lk9qHNTuuw3Z_Qe-a1WGLIGrJ8HwAzzejOGMVuQnDlbD-KEsIlVMaUqF51plOJ9OMjcZMo2kwlMUey-xcy54xXKcCLoZTZu3JO33m9hCGt52ndrc579bQTIQQOUa0NuREXYOg0ePaD3iqPa2dIAriSMcCQ6PY6FCG1shQJyah5ydiIAvSKHWNI46gNp6M7TGwNJTEExYmUjqesQYhhbaeY7XRxBUkGtCqdKTeSlIO5S64TsvdU7R7ar57DYiWNany4jUkLVuXKPHH2LNK7Wp-vjPFieMoijzXPfmH6EvY7D71e6p3N3g4hS36VeQJ8jOo5dOZPUe8k-uLwqA_Ae8h7_U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwEB2xi4S6Bz7KrrZQwAeurRI7cZLjsrQqsK0QohU3KxM7UrVSWzXpHvbX70w-yhaEOPQYRbZsjz1-Y715A_CRHF5Ct2I2cD6dpsBSgJImXjjAyIbo5SiDqg7ZdKYn8-Drr7BlExYNrZJj6LwWiqh8NR_ujc1bRhwnHyhyvSFFd5JzqbSOZHgCTzXBE2b1KW_22xlHWrZF87hNm8Tzr24OrqcD8dK_nHV1A41fALZjr4knt8NdicPs_g9Zx6Mm9xKeN_hUXNUb6hU8casunE334q5FFzoMUGt959ew-LRMC9FKmwiaiJgui4wxOZOQKruL0Xa73hZiuRJIG0NQX-JHzc11YkHBOqdvCRqxuF7f8WfpzmE-Hv28ngyaWg2DTClVUjzrYsnCNQQZA4lhJHMMEL0oidIEU0WBUWox1rGzOsbMZvz4xPpjUZ7kvvXUBZyu1it3CSKPNauExZkmg1pnCVCgCzyHFlkpSPVg2JrIbGpJDuPvlU7r1TO8eqZZvR4kjw1pyuotJK8Llxj1n7b91uqmOd2FkaxwlCSB7785ousP8Oz757G5-TL79hY6_KciCco-nJbbnXtHYKfE99V2fgD7uO6Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bias+Analysis+for+Misclassification+Errors+in+both+the+Response+Variable+and+Covariate&rft.jtitle=The+American+statistician&rft.au=Liu%2C+Juxin&rft.au=Afful%2C+Annshirley&rft.au=Mansell%2C+Holly&rft.au=Ma%2C+Yanyuan&rft.date=2022-10-02&rft.pub=American+Statistical+Association&rft.issn=0003-1305&rft.eissn=1537-2731&rft.volume=76&rft.issue=4&rft.spage=353&rft.epage=362&rft_id=info:doi/10.1080%2F00031305.2022.2066725&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-1305&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-1305&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-1305&client=summon