Bias Analysis for Misclassification Errors in both the Response Variable and Covariate
Abstract- Much literature has focused on statistical inference for misclassified response variables or misclassified covariates. However, misclassification in both the response variable and the covariate has received very limited attention within applied fields and the statistics community. In situa...
Saved in:
Published in | The American statistician Vol. 76; no. 4; pp. 353 - 362 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria
Taylor & Francis
02.10.2022
American Statistical Association |
Subjects | |
Online Access | Get full text |
ISSN | 0003-1305 1537-2731 |
DOI | 10.1080/00031305.2022.2066725 |
Cover
Abstract | Abstract-
Much literature has focused on statistical inference for misclassified response variables or misclassified covariates. However, misclassification in both the response variable and the covariate has received very limited attention within applied fields and the statistics community. In situations where the response variable and the covariate are simultaneously subject to misclassification errors, an assumption of independent misclassification errors is often used for convenience without justification. This article aims to show the harmful consequences of inappropriate adjustment for joint misclassification errors. In particular, we focus on the wrong adjustment by ignoring the dependence between the misclassification process of the response variable and the covariate. In this article, the dependence of misclassification in both variables is characterized by covariance-type parameters. We extend the original definition of dependence parameters to a more general setting. We discover a single quantity that governs the dependence of the two misclassification processes. Moreover, we propose likelihood ratio tests to check the nondifferential/independent misclassification assumption in main study/internal validation study designs. Our simulation studies indicate that ignoring the dependent error structure can be even worse than ignoring all the misclassification errors when the validation data size is relatively small. The methodology is illustrated by a real data example. |
---|---|
AbstractList | Abstract-
Much literature has focused on statistical inference for misclassified response variables or misclassified covariates. However, misclassification in both the response variable and the covariate has received very limited attention within applied fields and the statistics community. In situations where the response variable and the covariate are simultaneously subject to misclassification errors, an assumption of independent misclassification errors is often used for convenience without justification. This article aims to show the harmful consequences of inappropriate adjustment for joint misclassification errors. In particular, we focus on the wrong adjustment by ignoring the dependence between the misclassification process of the response variable and the covariate. In this article, the dependence of misclassification in both variables is characterized by covariance-type parameters. We extend the original definition of dependence parameters to a more general setting. We discover a single quantity that governs the dependence of the two misclassification processes. Moreover, we propose likelihood ratio tests to check the nondifferential/independent misclassification assumption in main study/internal validation study designs. Our simulation studies indicate that ignoring the dependent error structure can be even worse than ignoring all the misclassification errors when the validation data size is relatively small. The methodology is illustrated by a real data example. Abstract–Much literature has focused on statistical inference for misclassified response variables or misclassified covariates. However, misclassification in both the response variable and the covariate has received very limited attention within applied fields and the statistics community. In situations where the response variable and the covariate are simultaneously subject to misclassification errors, an assumption of independent misclassification errors is often used for convenience without justification. This article aims to show the harmful consequences of inappropriate adjustment for joint misclassification errors. In particular, we focus on the wrong adjustment by ignoring the dependence between the misclassification process of the response variable and the covariate. In this article, the dependence of misclassification in both variables is characterized by covariance-type parameters. We extend the original definition of dependence parameters to a more general setting. We discover a single quantity that governs the dependence of the two misclassification processes. Moreover, we propose likelihood ratio tests to check the nondifferential/independent misclassification assumption in main study/internal validation study designs. Our simulation studies indicate that ignoring the dependent error structure can be even worse than ignoring all the misclassification errors when the validation data size is relatively small. The methodology is illustrated by a real data example. |
Author | Liu, Juxin Mansell, Holly Afful, Annshirley Ma, Yanyuan |
Author_xml | – sequence: 1 givenname: Juxin orcidid: 0000-0001-6631-932X surname: Liu fullname: Liu, Juxin organization: Department of Mathematics and Statistics, University of Saskatchewan – sequence: 2 givenname: Annshirley surname: Afful fullname: Afful, Annshirley organization: Department of Mathematics and Statistics, University of Saskatchewan – sequence: 3 givenname: Holly surname: Mansell fullname: Mansell, Holly organization: College of Pharmacy and Nutrition, University of Saskatchewan – sequence: 4 givenname: Yanyuan surname: Ma fullname: Ma, Yanyuan organization: Department of Statistics, Pennsylvania State University, University Park |
BookMark | eNp9kF1LwzAYhYNMcJv-BCHgdWc-mqa9c475AYogutuQtAnL6JKZt1P2723ZvPXmfTlwzoHzTNAoxGARuqZkRklJbgkhnHIiZoww1p-ikEycoTEVXGZMcjpC48GTDaYLNAHY9JLIgo3R6t5rwPOg2wN4wC4m_OqhbjWAd77WnY8BL1OKCbAP2MRujbu1xe8WdjGAxSudvDatxTo0eBG_B9nZS3TudAv26vSn6PNh-bF4yl7eHp8X85es5px3mWC2ZLQSJaFVzoyQzJncGCIrqSujuchL3ZiyKG1TlKZuakNzRnLGpKscbQifoptj7y7Fr72FTm3iPvVrQPXDWVlVOaW9SxxddYoAyTq1S36r00FRogaE6g-hGhCqE8I-d3fM-dCD2eqfmNpGdfrQxuSSDrUHxf-v-AUrqHi5 |
Cites_doi | 10.1093/oxfordjournals.aje.a009299 10.1093/ije/12.1.93 10.1201/9781420010138 10.2307/2529795 10.1016/0895-4356(93)90119-L 10.1093/ije/dyz251 10.1093/aje/kwy200 10.1515/em-2013-0008 10.1097/00001648-199205000-00005 10.1002/sim.2065 10.1007/978-1-4939-6640-0 |
ContentType | Journal Article |
Copyright | 2022 American Statistical Association 2022 2022 American Statistical Association |
Copyright_xml | – notice: 2022 American Statistical Association 2022 – notice: 2022 American Statistical Association |
DBID | AAYXX CITATION |
DOI | 10.1080/00031305.2022.2066725 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-2731 |
EndPage | 362 |
ExternalDocumentID | 10_1080_00031305_2022_2066725 2066725 |
Genre | Research Article |
GroupedDBID | -DZ -~X ..I .7F .QJ 07G 0BK 0R~ 123 23M 30N 4.4 6J9 7WY 85S 8FL AABCJ AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB ADMHG AEGXH AEISY AENEX AEOZL AEPSL AEYOC AFSUE AFVYC AGDLA AGMYJ AGTJU AHDZW AIJEM AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AMXXU AQRUH AVBZW AWYRJ BCCOT BKOMP BLEHA BPLKW C06 CCCUG CS3 DGEBU DKSSO DWIFK EBS E~A E~B F5P GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HZ~ H~P IAO IEA IGG IGS IOF IPNFZ J.P JAC K60 K6~ KYCEM LJTGL M4Z MS~ MW2 NA5 NY~ O9- OFU P2P RIG RNANH ROSJB RTWRZ S-T SNACF TAQ TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ UB9 UPT UT5 UU3 WH7 WZA YZZ ZGOLN ZUP ~02 ~S~ AAGDL AAHIA AAYXX ADXHL ADYSH AFRVT AIYEW ALSLI AMPGV AMVHM CITATION PQBIZ TASJS |
ID | FETCH-LOGICAL-c333t-52e82195801942b572fb4bb0797a9ba3548adb868ed68bcdcb14204227f9f1d03 |
ISSN | 0003-1305 |
IngestDate | Wed Aug 13 10:59:09 EDT 2025 Tue Jul 01 03:15:55 EDT 2025 Wed Dec 25 09:05:15 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c333t-52e82195801942b572fb4bb0797a9ba3548adb868ed68bcdcb14204227f9f1d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6631-932X |
OpenAccessLink | https://figshare.com/articles/journal_contribution/Bias_analysis_for_misclassification_errors_in_both_the_response_variable_and_covariate/19615212 |
PQID | 2732899411 |
PQPubID | 41811 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1080_00031305_2022_2066725 informaworld_taylorfrancis_310_1080_00031305_2022_2066725 proquest_journals_2732899411 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-02 |
PublicationDateYYYYMMDD | 2022-10-02 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Alexandria |
PublicationPlace_xml | – name: Alexandria |
PublicationTitle | The American statistician |
PublicationYear | 2022 |
Publisher | Taylor & Francis American Statistical Association |
Publisher_xml | – name: Taylor & Francis – name: American Statistical Association |
References | CIT0010 CIT0001 CIT0012 CIT0011 Gustafson P. (CIT0006) 2004 Cramér H. (CIT0004) 1999 CIT0003 CIT0002 CIT0013 CIT0005 CIT0007 CIT0009 CIT0008 |
References_xml | – ident: CIT0009 doi: 10.1093/oxfordjournals.aje.a009299 – ident: CIT0005 doi: 10.1093/ije/12.1.93 – ident: CIT0003 doi: 10.1201/9781420010138 – ident: CIT0001 doi: 10.2307/2529795 – ident: CIT0002 doi: 10.1016/0895-4356(93)90119-L – ident: CIT0011 doi: 10.1093/ije/dyz251 – ident: CIT0008 doi: 10.1093/aje/kwy200 – ident: CIT0010 doi: 10.1515/em-2013-0008 – volume-title: Measurement Error and Misclassification in Statistics and Epidemiology: Impacts and Bayesian Adjustments year: 2004 ident: CIT0006 – ident: CIT0007 doi: 10.1097/00001648-199205000-00005 – ident: CIT0012 doi: 10.1002/sim.2065 – ident: CIT0013 doi: 10.1007/978-1-4939-6640-0 – volume-title: Mathematical Methods of Statistics year: 1999 ident: CIT0004 |
SSID | ssj0000762 |
Score | 2.3295226 |
Snippet | Abstract-
Much literature has focused on statistical inference for misclassified response variables or misclassified covariates. However, misclassification in... Abstract–Much literature has focused on statistical inference for misclassified response variables or misclassified covariates. However, misclassification in... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 353 |
SubjectTerms | Dependence Differential misclassification Likelihood ratio Nondifferential misclassification Parameters Regression analysis Sensitivity Specificity Statistical inference Statistical methods Statistics |
Title | Bias Analysis for Misclassification Errors in both the Response Variable and Covariate |
URI | https://www.tandfonline.com/doi/abs/10.1080/00031305.2022.2066725 https://www.proquest.com/docview/2732899411 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swELay7qV7mLZu07p1kx_2VhEBBgyPWdcq25poUtOqbxYGo_FCqgBVtT9if_PubAxEifbrBSWOYpDv4853vvuOkA-g8BKwipmjPHibghwclDRxQ0fyPJRuIf1A9yFbLKP5dfDlNrydTH6OspbaRk6zH3vrSv5HqjAGcsUq2X-QbD8pDMBnkC9cQcJw_SsZfyzTeqAVwYTBRVlnuB_GBCAj2vPNBvvplNWpXGPI9Ts2atB5ser0BhxlXTqF0fOz9T1-bbZyg1ZD4UmFYYdG8zqPIHVZtqa446Hsx2ZF0Zqz_wqTwTb27FgHvrEC3hBoY5frYVzbAtBMbTd3F4kAJxbP0Qe_tX-aK_s0e0Bm1TBzwHia42xlNS_HOiFvrJpNa5gOgsFIzzLDMNyZbGYU-o416NMnGd5sis88Rfp67oeD-bNH_vPZlfj26UJcfl5-fUQe-5zrY3_mLgfLziPfdmDEGW1FGHK177vJ1l5niwl3x_Lr7czqGXna-SF0ZkD1nExUdUSeLHoS3_qIHPYrXL8gN4g1arFG4R50B2vUYI2WFUWsUZiLWqxRizUKWKM91l6S64vz1dnc6XpyOBljrHFCX8U-EhSBaxD4MuR-IQMpXZ7wNJEpAwc4zWUcxSqPYpnlGQYZkWeOF0nh5S57RQ6qdaVeE1rEEbLBxVkUuUGuctg4ShW4SuYSGaHYMZna1RN3hnpFeD2jrVlugcstuuU-Jsl4jUWjY16FaVAj2B_-e2IFIro3vBY-MlklSeB5b37_81tyOLwQJ-Sg2bTqHWxWG_leI-gXZ6WQWQ |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHIADjwFiPHPguqlN2rQ9wjQ0YNsBMcQtappUmpA2tHYc-PXY7To2EOLAsapiJbHjfI7szwBX6PAivBWTpnXxNHkGA5Q4cvymDoyvnVRzr-hD1h_I7tC7f_FflmphKK2SYui0JIoofDUdbnqMrlLiqPpAoO_1MbzjVEwlZcD9ddjwEbuTlQtn8OWNA8mrrnk0pqri-U3Myv20wl76w1sXV9DtLiTV5MvMk9fWLNet5OMbr-P_VrcHO3OEyq5Lk9qHNTuuw3Z_Qe-a1WGLIGrJ8HwAzzejOGMVuQnDlbD-KEsIlVMaUqF51plOJ9OMjcZMo2kwlMUey-xcy54xXKcCLoZTZu3JO33m9hCGt52ndrc579bQTIQQOUa0NuREXYOg0ePaD3iqPa2dIAriSMcCQ6PY6FCG1shQJyah5ydiIAvSKHWNI46gNp6M7TGwNJTEExYmUjqesQYhhbaeY7XRxBUkGtCqdKTeSlIO5S64TsvdU7R7ar57DYiWNany4jUkLVuXKPHH2LNK7Wp-vjPFieMoijzXPfmH6EvY7D71e6p3N3g4hS36VeQJ8jOo5dOZPUe8k-uLwqA_Ae8h7_U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwEB2xi4S6Bz7KrrZQwAeurRI7cZLjsrQqsK0QohU3KxM7UrVSWzXpHvbX70w-yhaEOPQYRbZsjz1-Y715A_CRHF5Ct2I2cD6dpsBSgJImXjjAyIbo5SiDqg7ZdKYn8-Drr7BlExYNrZJj6LwWiqh8NR_ujc1bRhwnHyhyvSFFd5JzqbSOZHgCTzXBE2b1KW_22xlHWrZF87hNm8Tzr24OrqcD8dK_nHV1A41fALZjr4knt8NdicPs_g9Zx6Mm9xKeN_hUXNUb6hU8casunE334q5FFzoMUGt959ew-LRMC9FKmwiaiJgui4wxOZOQKruL0Xa73hZiuRJIG0NQX-JHzc11YkHBOqdvCRqxuF7f8WfpzmE-Hv28ngyaWg2DTClVUjzrYsnCNQQZA4lhJHMMEL0oidIEU0WBUWox1rGzOsbMZvz4xPpjUZ7kvvXUBZyu1it3CSKPNauExZkmg1pnCVCgCzyHFlkpSPVg2JrIbGpJDuPvlU7r1TO8eqZZvR4kjw1pyuotJK8Llxj1n7b91uqmOd2FkaxwlCSB7785ousP8Oz757G5-TL79hY6_KciCco-nJbbnXtHYKfE99V2fgD7uO6Z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bias+Analysis+for+Misclassification+Errors+in+both+the+Response+Variable+and+Covariate&rft.jtitle=The+American+statistician&rft.au=Liu%2C+Juxin&rft.au=Afful%2C+Annshirley&rft.au=Mansell%2C+Holly&rft.au=Ma%2C+Yanyuan&rft.date=2022-10-02&rft.pub=American+Statistical+Association&rft.issn=0003-1305&rft.eissn=1537-2731&rft.volume=76&rft.issue=4&rft.spage=353&rft.epage=362&rft_id=info:doi/10.1080%2F00031305.2022.2066725&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-1305&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-1305&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-1305&client=summon |