3D-Printing Enables Fabrication of Swirl Nozzles for Fast Aerosolization of Water-Based Drugs

Portable inhalers are used for delivering drugs to the lung in the form of aerosols and form the standard treatment for diseases such as Asthma, COPD, and cystic fibrosis. However, for aqueous drug formulations, spray nozzle chips have so far been restricted to cleanroom manufacture due to their sma...

Full description

Saved in:
Bibliographic Details
Published inJournal of microelectromechanical systems Vol. 30; no. 2; pp. 181 - 183
Main Authors Last, Torben S., Stemme, Goran, Roxhed, Niclas
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Portable inhalers are used for delivering drugs to the lung in the form of aerosols and form the standard treatment for diseases such as Asthma, COPD, and cystic fibrosis. However, for aqueous drug formulations, spray nozzle chips have so far been restricted to cleanroom manufacture due to their small feature sizes. Here we present a spring-actuated 3D-printed swirl nozzle that sprays an aqueous drug solution, matching propellant-containing inhalers in aerosolization time. The use of two-photon polymerization enables the small nozzle feature size of 100 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> and device print times of only 4 min, making serial mass-fabrication a viable option. Our 35 bar spring-operated swirl nozzle prototype achieves mean volumetric particle sizes of 12.5<inline-formula> <tex-math notation="LaTeX">{\mu }\text{m} </tex-math></inline-formula> on doses of 100<inline-formula> <tex-math notation="LaTeX">{\mu }\text{l} </tex-math></inline-formula>, aerosolized in 270 ms, as fast as a propellant-driven inhaler. [2021-0002]
AbstractList Portable inhalers are used for delivering drugs to the lung in the form of aerosols and form the standard treatment for diseases such as Asthma, COPD, and cystic fibrosis. However, for aqueous drug formulations, spray nozzle chips have so far been restricted to cleanroom manufacture due to their small feature sizes. Here we present a spring-actuated 3D-printed swirl nozzle that sprays an aqueous drug solution, matching propellant-containing inhalers in aerosolization time. The use of two-photon polymerization enables the small nozzle feature size of 100 mu m and device print times of only 4 min, making serial mass-fabrication a viable option. Our 35 bar spring-operated swirl nozzle prototype achieves mean volumetric particle sizes of 12.5 mu m on doses of 100 mu l, aerosolized in 270 ms, as fast as a propellant-driven inhaler. [2021-0002]
Portable inhalers are used for delivering drugs to the lung in the form of aerosols and form the standard treatment for diseases such as Asthma, COPD, and cystic fibrosis. However, for aqueous drug formulations, spray nozzle chips have so far been restricted to cleanroom manufacture due to their small feature sizes. Here we present a spring-actuated 3D-printed swirl nozzle that sprays an aqueous drug solution, matching propellant-containing inhalers in aerosolization time. The use of two-photon polymerization enables the small nozzle feature size of 100 [Formula Omitted] and device print times of only 4 min, making serial mass-fabrication a viable option. Our 35 bar spring-operated swirl nozzle prototype achieves mean volumetric particle sizes of 12.5[Formula Omitted] on doses of 100[Formula Omitted], aerosolized in 270 ms, as fast as a propellant-driven inhaler. [2021-0002]
Portable inhalers are used for delivering drugs to the lung in the form of aerosols and form the standard treatment for diseases such as Asthma, COPD, and cystic fibrosis. However, for aqueous drug formulations, spray nozzle chips have so far been restricted to cleanroom manufacture due to their small feature sizes. Here we present a spring-actuated 3D-printed swirl nozzle that sprays an aqueous drug solution, matching propellant-containing inhalers in aerosolization time. The use of two-photon polymerization enables the small nozzle feature size of 100 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> and device print times of only 4 min, making serial mass-fabrication a viable option. Our 35 bar spring-operated swirl nozzle prototype achieves mean volumetric particle sizes of 12.5<inline-formula> <tex-math notation="LaTeX">{\mu }\text{m} </tex-math></inline-formula> on doses of 100<inline-formula> <tex-math notation="LaTeX">{\mu }\text{l} </tex-math></inline-formula>, aerosolized in 270 ms, as fast as a propellant-driven inhaler. [2021-0002]
Author Roxhed, Niclas
Last, Torben S.
Stemme, Goran
Author_xml – sequence: 1
  givenname: Torben S.
  orcidid: 0000-0001-9947-5011
  surname: Last
  fullname: Last, Torben S.
  organization: Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 2
  givenname: Goran
  orcidid: 0000-0001-9552-4234
  surname: Stemme
  fullname: Stemme, Goran
  organization: Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 3
  givenname: Niclas
  orcidid: 0000-0002-7147-6730
  surname: Roxhed
  fullname: Roxhed, Niclas
  email: roxhed@kth.se
  organization: Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295257$$DView record from Swedish Publication Index
BookMark eNo9kMtOwzAQRS1UJNrCD8AmEmsXO7bjZFn64KEWkMpjhSw7dYpLiIudqKJfj0tQVzPSnDuaOT3QqWylATjHaIAxyq7u55P5YhCjGA8IYiSh9Ah0cUYxRJilndAjxiHHjJ-AnvdrhDCladIF72QMn5ypalOtokklVal9NJXKmVzWxlaRLaLF1rgyerC73X5YWBcAX0dD7ay3pdkdwDdZawevpdfLaOyalT8Fx4UsvT77r33wMp08j27h7PHmbjScwZwQUkOaEEmo4inNeBbOIoqTVFGqmJIoKVSKdJzKZRJjxpZZojKucJpoVuR5jrVSpA9gu9dv9aZRYuPMl3Q_wkojxuZ1KKxbic_6Q8QZixkP_GXLb5z9brSvxdo2rgoniphhRIM5jgIVt1QeHvVOF4e9GIm9dvGnXey1i3_tIXTRhozW-hDICGWccvILWBN_tw
CODEN JMIYET
CitedBy_id crossref_primary_10_1002_advs_202204072
crossref_primary_10_1039_D3LC00743J
crossref_primary_10_3390_pharmaceutics15071877
Cites_doi 10.1109/JMEMS.2020.2969611
10.1016/j.fuel.2019.116094
10.1038/s41598-020-64955-9
10.1007/s12206-018-1242-1
10.1111/j.1151-2916.1999.tb02272.x
10.1038/s41586-020-3029-7
10.1089/jam.2005.18.273
10.1016/j.physrep.2013.07.005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
7U5
8FD
FR3
L7M
ADTPV
AOWAS
D8V
DOI 10.1109/JMEMS.2021.3053644
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1941-0158
EndPage 183
ExternalDocumentID oai_DiVA_org_kth_295257
10_1109_JMEMS_2021_3053644
9345747
Genre orig-research
GrantInformation_xml – fundername: Swedish Foundation for Strategic Research (SSF)
  grantid: GMT14-0071
  funderid: 10.13039/501100001729
GroupedDBID -~X
.DC
0R~
29L
4.4
5GY
5VS
6IK
97E
9M8
AAIKC
AAJGR
AAMNW
AASAJ
ABQJQ
ABVLG
ACBEA
ACGFS
ACIWK
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
RXW
TAE
TN5
TWZ
VH1
XFK
XWC
AAYXX
CITATION
7SP
7TB
7U5
8FD
FR3
L7M
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c333t-463a34b7849794863b738b44b5ba06fb80e28ad62155d96b97b186e5fccc1ebb3
IEDL.DBID RIE
ISSN 1057-7157
1941-0158
IngestDate Sat Aug 24 00:10:30 EDT 2024
Thu Oct 10 20:20:55 EDT 2024
Fri Aug 23 01:12:47 EDT 2024
Wed Jun 26 19:27:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-463a34b7849794863b738b44b5ba06fb80e28ad62155d96b97b186e5fccc1ebb3
ORCID 0000-0001-9552-4234
0000-0002-7147-6730
0000-0001-9947-5011
PQID 2510419470
PQPubID 106006
PageCount 3
ParticipantIDs swepub_primary_oai_DiVA_org_kth_295257
proquest_journals_2510419470
ieee_primary_9345747
crossref_primary_10_1109_JMEMS_2021_3053644
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of microelectromechanical systems
PublicationTitleAbbrev JMEMS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References (ref10) 2020
ref12
ref9
ref4
ref3
ref6
ref11
ref5
regehly (ref2) 2020; 588
farjas (ref7) 2017
baldacchini (ref1) 2016
last (ref8) 2020
References_xml – ident: ref3
  doi: 10.1109/JMEMS.2020.2969611
– year: 2017
  ident: ref7
  article-title: The development path to bioequivalence for a nasal spray
  contributor:
    fullname: farjas
– ident: ref6
  doi: 10.1016/j.fuel.2019.116094
– start-page: 22
  year: 2020
  ident: ref8
  article-title: First micro swirl nozzle for fast drug delivery to the lung
  publication-title: Proc IEEE 34th Int Conf Micro Electro Mech Syst (MEMS)
  contributor:
    fullname: last
– ident: ref12
  doi: 10.1038/s41598-020-64955-9
– ident: ref5
  doi: 10.1007/s12206-018-1242-1
– ident: ref11
  doi: 10.1111/j.1151-2916.1999.tb02272.x
– year: 2016
  ident: ref1
  publication-title: Three-Dimensional Microfabrication Using Two-photon Polymerization
  contributor:
    fullname: baldacchini
– year: 2020
  ident: ref10
  publication-title: NanoGuide
– volume: 588
  start-page: 620
  year: 2020
  ident: ref2
  article-title: Xolography for linear volumetric 3D printing
  publication-title: Nature
  doi: 10.1038/s41586-020-3029-7
  contributor:
    fullname: regehly
– ident: ref4
  doi: 10.1089/jam.2005.18.273
– ident: ref9
  doi: 10.1016/j.physrep.2013.07.005
SSID ssj0014486
Score 2.40074
Snippet Portable inhalers are used for delivering drugs to the lung in the form of aerosols and form the standard treatment for diseases such as Asthma, COPD, and...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 181
SubjectTerms Aerosols
Asthma
Bars
Chip formation
Cleanrooms
Cystic fibrosis
drug delivery
Drugs
Formulations
high-pressure microfluidics
Inhalers
Lasers
Medical MEMS
Polymers
portable inhalers
Prototypes
Resins
Spray nozzles
Three dimensional printing
two-photon-polymerization
Title 3D-Printing Enables Fabrication of Swirl Nozzles for Fast Aerosolization of Water-Based Drugs
URI https://ieeexplore.ieee.org/document/9345747
https://www.proquest.com/docview/2510419470
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295257
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ra9swED7awmB7WLt2Y2m74Yexl02pLcmW_ZgtCaWQMui69WWInCR3pSUetkMhv34n2Qnt6MPejC3bkr4T993p7gTwwZBOVCpxTMSFZdKgYeiPDDO8FAmWIpPWO_Rn59nppTy7Sq-24PMmF8Y5F4LP3NBfhr18W5mld5WdFEKmRH-3YTuPeZertdkxIDMjZBIR_2AqSdU6QSYuTs5mk9kFmYI8GZJ00-_lIyUUTlV5TDAfFg0Nima6C7N1F7v4ktvhssWhWf1TvfF_x7AHL3vGGY06EXkFW26xDy8e1CHch2chDtQ0B_BLjNk3uumDoaNJyKtqoukc6961F1VldHF_U99F59Vq5R8S6aUGTRuNHI21uuvzOn3Dn8Rja_aF9KSNxvXyunkNl9PJ96-nrD-BgRkhRMtkJuZCosplQes2zwQqkaOUmOI8zkrMY8fzuc2IN6S2yLBQmOSZS0tjTOIQxRvYWVQL9xYiJxQvERU65aRNXc6TzApluShTHqc4gE9rSPSfrtCGDgZKXOgAoPYA6h7AARz4qd207Gd1AMdrFHW_FhtNDC6WSSFVPICPHbKb93xx7fHNj5EmjPRt-1vzwpeHPXz680fw3HeiC9w5hp22Xrp3xElafB-E8S-BXN1X
link.rule.ids 230,315,786,790,802,891,27955,27956,55107
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NIQQ88GMDURiQB8QLuEtix04eC21VxlIhbYO9IKvnODBtalCSCql_PWcnrTbEA29RYke2v7Puu_PdGeCNIZ2oVGQZD7OCCYOGobsyzMQlj7DkUhTOoZ_P5exMHJ0n5zvwfpsLY631wWd26B79WX5RmZVzlR1mXCREf2_BbdLzoeqytbZnBmRo-FwiYiBMRYnapMiE2eFRPslPyBiMoyHJNw1A3FBD_l6VmxTzetlQr2qmDyHfDLKLMLkcrlocmvVf9Rv_dxaP4EHPOYNRJySPYccu9-D-tUqEe3DHR4KaZh--8zH7Qi9dOHQw8ZlVTTBdYN0794KqDE5-X9RXwbxar91Hor3UoGmDkaW5Vld9Zqdr-I2YbM0-kKYsgnG9-tE8gbPp5PTjjPV3MDDDOW-ZkHzBBapUZLRzU8lR8RSFwAQXoSwxDW2cLgpJzCEpMomZwiiVNimNMZFF5E9hd1kt7TMILFdxiajQKiuKxKZxJAuuipiXSRwmOIB3G0j0r67UhvYmSphpD6B2AOoewAHsu6XdtuxXdQAHGxR1vxsbTRwuFFEmVDiAtx2y236uvPb44utIE0b6sv2p48wViH3-79-_hruz0_xYH3-af34B99yAujCeA9ht65V9SQylxVdeMP8AUtPgqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-Printing+Enables+Fabrication+of+Swirl+Nozzles+for+Fast+Aerosolization+of+Water-Based+Drugs&rft.jtitle=Journal+of+microelectromechanical+systems&rft.au=Last%2C+Torben+S.&rft.au=Stemme%2C+Goran&rft.au=Roxhed%2C+Niclas&rft.date=2021-04-01&rft.pub=IEEE&rft.issn=1057-7157&rft.eissn=1941-0158&rft.volume=30&rft.issue=2&rft.spage=181&rft.epage=183&rft_id=info:doi/10.1109%2FJMEMS.2021.3053644&rft.externalDocID=9345747
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7157&client=summon