On asymptotic normality in estimation after a group sequential trial
We prove that in many realistic cases, the ordinary sample mean after a group sequential trial is asymptotically normal if the maximal number of observations increases. We derive that it is often safe to use naive confidence intervals for the mean of the collected observations, based on the ordinary...
Saved in:
Published in | Sequential analysis Vol. 39; no. 4; pp. 443 - 466 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
01.10.2020
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0747-4946 1532-4176 |
DOI | 10.1080/07474946.2020.1826784 |
Cover
Loading…
Abstract | We prove that in many realistic cases, the ordinary sample mean after a group sequential trial is asymptotically normal if the maximal number of observations increases. We derive that it is often safe to use naive confidence intervals for the mean of the collected observations, based on the ordinary sample mean. Our theoretical findings are confirmed by a simulation study. |
---|---|
AbstractList | We prove that in many realistic cases, the ordinary sample mean after a group sequential trial is asymptotically normal if the maximal number of observations increases. We derive that it is often safe to use naive confidence intervals for the mean of the collected observations, based on the ordinary sample mean. Our theoretical findings are confirmed by a simulation study. |
Author | Ivanova, Anna Molenberghs, Geert Berckmoes, Ben |
Author_xml | – sequence: 1 givenname: Ben surname: Berckmoes fullname: Berckmoes, Ben organization: Department of Mathematics, University of Antwerp – sequence: 2 givenname: Anna surname: Ivanova fullname: Ivanova, Anna organization: Department of CenStat, University of Hasselt – sequence: 3 givenname: Geert surname: Molenberghs fullname: Molenberghs, Geert organization: Department of L-BioStat, University of Leuven |
BookMark | eNp9kEtLAzEQgINUsK3-BCHgeWseu5vsTalPKPSi55DuTiRlm6xJiuy_N0vr1csMDN-8vgWaOe8AoVtKVpRIck9EKcqmrFeMsFySrBayvEBzWnFWlFTUMzSfmGKCrtAixj0hVFIi5uhp67CO42FIPtkWOx8OurdpxNZhiMkedLI-IyZBwBp_BX8ccITvI7hkdY9TyPEaXRrdR7g55yX6fHn-WL8Vm-3r-_pxU7Sc81TwSu-6suUajBDNTgM0ogWQlZEgTNOBaARjNTQVq7uaCsO0YbzmUoLZtRr4Et2d5g7B5wtiUnt_DC6vVKyUtCq5pCJT1Ylqg48xgFFDyH-EUVGiJmHqT5iahKmzsNz3cOqzzkwafnzoO5X02PtggnatjYr_P-IX8IZ1CA |
Cites_doi | 10.2307/2532050 10.2307/2530245 10.1093/biomet/79.2.347 10.1177/0962280212445801 10.1016/j.csda.2018.03.016 10.1093/biomet/64.2.191 10.2307/2335213 |
ContentType | Journal Article |
Copyright | 2020 Taylor & Francis Group, LLC 2020 2020 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2020 Taylor & Francis Group, LLC 2020 – notice: 2020 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/07474946.2020.1826784 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-4176 |
EndPage | 466 |
ExternalDocumentID | 10_1080_07474946_2020_1826784 1826784 |
Genre | Research Article |
GroupedDBID | .7F .QJ 0BK 0R~ 123 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7SC 8FD JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c333t-35abd4c3aef779baee97cee85f8e7f9de797226e9526d617f2af236388efbcae3 |
ISSN | 0747-4946 |
IngestDate | Wed Aug 13 07:27:23 EDT 2025 Tue Jul 01 03:56:57 EDT 2025 Wed Dec 25 09:06:56 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c333t-35abd4c3aef779baee97cee85f8e7f9de797226e9526d617f2af236388efbcae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://hdl.handle.net/1942/33469 |
PQID | 2481543817 |
PQPubID | 216170 |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1080_07474946_2020_1826784 informaworld_taylorfrancis_310_1080_07474946_2020_1826784 proquest_journals_2481543817 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Sequential analysis |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Rachev S. T. (CIT0006) 1991 CIT0001 CIT0003 CIT0002 Whitehead J. (CIT0008) 1987 Zolotarev V. M. (CIT0010) 1983; 28 CIT0005 CIT0004 CIT0007 CIT0009 |
References_xml | – ident: CIT0002 doi: 10.2307/2532050 – ident: CIT0004 doi: 10.2307/2530245 – volume-title: The Design and Analysis of Sequential Clinical Trials year: 1987 ident: CIT0008 – ident: CIT0009 doi: 10.1093/biomet/79.2.347 – ident: CIT0003 doi: 10.1177/0962280212445801 – ident: CIT0001 doi: 10.1016/j.csda.2018.03.016 – volume-title: Probability Metrics and the Stability of Stochastic Models year: 1991 ident: CIT0006 – ident: CIT0005 doi: 10.1093/biomet/64.2.191 – ident: CIT0007 doi: 10.2307/2335213 – volume: 28 start-page: 264 year: 1983 ident: CIT0010 publication-title: Probability Metrics (Russian) Teoriya Veroyatnostei i ee Primeneniya |
SSID | ssj0018107 |
Score | 2.1566138 |
Snippet | We prove that in many realistic cases, the ordinary sample mean after a group sequential trial is asymptotically normal if the maximal number of observations... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 443 |
SubjectTerms | Asymptotic normality Asymptotic properties confidence interval Confidence intervals group sequential trial Normality sample mean |
Title | On asymptotic normality in estimation after a group sequential trial |
URI | https://www.tandfonline.com/doi/abs/10.1080/07474946.2020.1826784 https://www.proquest.com/docview/2481543817 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZaeqEHBG1ReRT50Nsqq03srOMjrwqQFg4FiVvk-KFWFV7EppXg1zN-JbsF8bpEUVZxvJ7x-Bt75huEvuuci4ZXMlOA5zNKZJk1SlLQZaoUp4oynxQ2OR0fXdCTy_Kyj1X12SVtM5R3j-aVvEWq8Azk6rJkXyHZrlF4APcgX7iChOH6Ihmf2YGY3V5dt1NHu2od_PSo2tGAwNQNWYmxDLgY-ASOQYidbn26iOviPDr92f8mIllJ567rG_nnahqMyl6fP3YMSHz6L2zOWtvZ-Ik77nehY7_izruOhwBxgwG8yRSqluwQeBwZ5XGnUCc7CZLNQ-mWZEgDK1FUGDpnFWlgYooLLA1lVh7Y7hjsCF9zHxu6rgyd98NCDblFruz_1rAusjBPlKexmdo1U8dm3qMPBXgTrsIHGZ12h01VHrLq0_9MiV6Ogv2x3ixAmAWC2wcLukcp56toJboXeDfoyhp6p-0n9HHScfPOPqODM4t7rcGd1uDfFvdag73WYIG91uBea7DXmi_o4sfh-f5RFmtpZJIQ0makFI2ikghtGOON0JozwEdVaSrNDFeacQZIXPOyGCtAtaYQpiBgnCttGik0WUdLdmr1V4SLcTWiOs-FGXPKmxFYgVwatzZQRcBD3UDDNDz1daBMqZ8Uywbi84NYt36vyoTCMjV55t3tNOJ1nJmzunAMRI67jm2-ti9baLmfA9toqb35q78B7GybHa8098ACes8 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1Eo4IE1pYmdOB4RUBVoy9JK3SzHDwkBaUXTAX49fiRVC0IMXR2d5djnu8_23XcAXKmQ8oymIpAGzwcYiTjIpMBGl7GUFEtMXFJYr590hvhxFI8WcmFsWKU9Q2tPFOFstd3c9jK6Com7tqTvmGIbYRCZJoOQSYrXwUZME2LLN6BWf_6SkIY-ZdqIBFamyuL5q5sl_7TEXvrLWjsX1N4Fohq8jzx5bc6KrCm-fvA6rvZ3e2CnRKjwxqvUPlhT-QHY7s3pXaeH4O45h3z6-T4pxqYB5nbwFs7Dlxxa1g6fDgld_XHIocscgT5o2xiUN-hKhRyBYft-cNsJynIMgUAIFQGKeSaxQFxpQmjGlaLEuNg01qkimkpFKDFgTtE4SqQBRjriOkJmf6dKZ4IrdAxq-ThXJwBGSdrCKgy5TiimWcsoUii0NS9YInPIqYNmtQhs4lk3WFiRmZbTw-z0sHJ66oAuLhUr3HWH9rVJGPpHtlGtKys38JRFlsTG0p-R0xW6vgSbnUGvy7oP_aczsGU_-UDABqgVHzN1bgBNkV04jf0Gw9rouA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgG3ohCAQ-sKU3sxPGIKFV5tDBQic2yY1tCQFqRdIBfjx9JRUGIoasjW47vfP6cfPcdAGcqpFzQNAukwfMBRlkcCJlh48tYSoolJi4pbDBM-iN88xTXbMKiolXaO7T2QhEuVtvNPZG6ZsSdW813TLElGESmyQBkkuJlsJIYeGIdG3WGsx8Jaegzpk2XwPapk3j-GmbueJoTL_0VrN0J1NsEop67J568tKelaGefP2QdF3q5LbBR4VN44R1qGyypfAesD2birsUu6N7nkBcfb5NybBpgbuduwTx8zqHV7PDJkNBVH4ccurwR6CnbJpy8QlcoZA-MelePl_2gKsYQZAihMkAxFxJniCtNCBVcKUrMAZvGOlVEU6kIJQbKKRpHiTSwSEdcR8js7lRpkXGF9kEjH-fqAMAoSTtYhSHXCcVUdIwbhZm2wQVLZK44TdCubcAmXnODhbWUabU8zC4Pq5anCeh3S7HSfezQvjIJQ__0bdVmZdX2LVhkJWys-Bk5XGDoU7D60O2xu-vh7RFYs088C7AFGuX7VB0bNFOKE-evXw2O52U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+asymptotic+normality+in+estimation+after+a+group+sequential+trial&rft.jtitle=Sequential+analysis&rft.au=Berckmoes%2C+Ben&rft.au=Ivanova%2C+Anna&rft.au=Molenberghs%2C+Geert&rft.date=2020-10-01&rft.issn=0747-4946&rft.eissn=1532-4176&rft.volume=39&rft.issue=4&rft.spage=443&rft.epage=466&rft_id=info:doi/10.1080%2F07474946.2020.1826784&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07474946_2020_1826784 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-4946&client=summon |