Synthesis and characterization of hierarchical multilayered flower-like assemblies of Ag doped Bi2WO6 and their photocatalytic activities

•Hierarchical flower-like Bi2WO6 as a semiconductor.•It enables us to synthesize by hydrothermal route.•A promising material for photocatalysis.•In this research, 3% Ag doped Bi2WO6 shows the highest photocatalytic activity. In this research, 0–3mol% Ag doped Bi2WO6 hierarchical multilayered flower-...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and microstructures Vol. 64; pp. 196 - 203
Main Authors Dumrongrojthanath, Phattharanit, Thongtem, Titipun, Phuruangrat, Anukorn, Thongtem, Somchai
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2013
Subjects
Online AccessGet full text
ISSN0749-6036
1096-3677
DOI10.1016/j.spmi.2013.09.028

Cover

Loading…
Abstract •Hierarchical flower-like Bi2WO6 as a semiconductor.•It enables us to synthesize by hydrothermal route.•A promising material for photocatalysis.•In this research, 3% Ag doped Bi2WO6 shows the highest photocatalytic activity. In this research, 0–3mol% Ag doped Bi2WO6 hierarchical multilayered flower-like assemblies were successfully synthesized by a simple hydrothermal method at 180°C for 24h. The XRD, FE-SEM, FTIR and Raman analyses revealed the presence of flower-like Russellite Bi2WO6 structures which were constructed from a large number of orderly arranged 2D layers of interconnected nanoplates. Their photocatalytic activities were evaluated by photodegradation of rhodamine B (RhB) under Xe visible light irradiation (λ>420nm). The 3mol% Ag doped Bi2WO6 showed the highest photocatalytic activities of 98.20% within 180min.
AbstractList •Hierarchical flower-like Bi2WO6 as a semiconductor.•It enables us to synthesize by hydrothermal route.•A promising material for photocatalysis.•In this research, 3% Ag doped Bi2WO6 shows the highest photocatalytic activity. In this research, 0–3mol% Ag doped Bi2WO6 hierarchical multilayered flower-like assemblies were successfully synthesized by a simple hydrothermal method at 180°C for 24h. The XRD, FE-SEM, FTIR and Raman analyses revealed the presence of flower-like Russellite Bi2WO6 structures which were constructed from a large number of orderly arranged 2D layers of interconnected nanoplates. Their photocatalytic activities were evaluated by photodegradation of rhodamine B (RhB) under Xe visible light irradiation (λ>420nm). The 3mol% Ag doped Bi2WO6 showed the highest photocatalytic activities of 98.20% within 180min.
In this research, 0-3 mol% Ag doped Bi2WO6 hierarchical multilayered flower-like assemblies were successfully synthesized by a simple hydrothermal method at 180 degree C for 24 h. The XRD, FE-SEM, FTIR and Raman analyses revealed the presence of flower-like Russellite Bi2WO6 structures which were constructed from a large number of orderly arranged 2D layers of interconnected nanoplates. Their photocatalytic activities were evaluated by photodegradation of rhodamine B (RhB) under Xe visible light irradiation ( lambda > 420 nm). The 3 mol% Ag doped Bi2WO6 showed the highest photocatalytic activities of 98.20% within 180 min.
Author Dumrongrojthanath, Phattharanit
Thongtem, Somchai
Thongtem, Titipun
Phuruangrat, Anukorn
Author_xml – sequence: 1
  givenname: Phattharanit
  surname: Dumrongrojthanath
  fullname: Dumrongrojthanath, Phattharanit
  organization: Center for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
– sequence: 2
  givenname: Titipun
  surname: Thongtem
  fullname: Thongtem, Titipun
  email: ttpthongtem@yahoo.com
  organization: Center for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
– sequence: 3
  givenname: Anukorn
  surname: Phuruangrat
  fullname: Phuruangrat, Anukorn
  email: phuruangrat@hotmail.com
  organization: Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
– sequence: 4
  givenname: Somchai
  surname: Thongtem
  fullname: Thongtem, Somchai
  organization: Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
BookMark eNp9kM1u1DAUhS1UJKaFF2DlJZsE_wQnltiUikKlSl0AYml5nGtyBycOtqfV8Aa8NZ4OKxZd3c35ztH9zsnZEhcg5DVnLWdcvd21eZ2xFYzLlumWieEZ2XCmVSNV35-RDes73Sgm1QtynvOOMaY73m_Iny-HpUyQMVO7jNRNNllXIOFvWzAuNHo6ISSb3ITOBjrvQ8FgD5BgpD7EB0hNwJ9Abc4wbwNCPjKXP-gY1xr5gOL7nXrsrjOY6DrFEp0tNhwKOlrH8B5LxV6S596GDK_-3Qvy7frj16vPze3dp5ury9vGSSlLI_moNescuIEJ75kSXkjZCTtYJwc7jHyrpdBaeqe1d7D1IECIXjHNR9VpeUHenHrXFH_tIRczY3YQgl0g7rPhqufvtJC8r1FxiroUc07gzZpwtulgODNH72Znjt7N0bth2lTvFRr-gxyWR5klWQxPo-9PKNT_76t2kx3C4mDEBK6YMeJT-F__4qPJ
CitedBy_id crossref_primary_10_1007_s11270_020_04566_2
crossref_primary_10_1016_j_jallcom_2022_165018
crossref_primary_10_1016_j_seppur_2021_120025
crossref_primary_10_1016_j_jphotochem_2021_113283
crossref_primary_10_1016_j_jtice_2021_11_018
crossref_primary_10_1016_j_ijhydene_2018_03_091
crossref_primary_10_1016_j_jmrt_2022_05_104
crossref_primary_10_1016_j_apsusc_2020_146748
crossref_primary_10_1016_j_jhazmat_2020_122835
crossref_primary_10_1016_j_mssp_2024_108674
crossref_primary_10_1155_2020_3058621
crossref_primary_10_1007_s11051_015_2945_1
crossref_primary_10_1016_j_jwpe_2020_101399
crossref_primary_10_1016_j_jmrt_2022_02_013
crossref_primary_10_1021_acs_jpcc_0c03539
crossref_primary_10_1016_j_apmt_2021_101033
crossref_primary_10_1016_j_catcom_2022_106567
crossref_primary_10_1016_j_matlet_2015_04_061
crossref_primary_10_3389_fchem_2022_982818
crossref_primary_10_1002_asia_201500262
crossref_primary_10_1007_s11164_022_04926_z
crossref_primary_10_1016_j_ceramint_2016_02_082
crossref_primary_10_1016_j_matchemphys_2021_124691
crossref_primary_10_1016_j_colsurfa_2021_127248
crossref_primary_10_1016_j_envpol_2022_120982
crossref_primary_10_1016_j_apsusc_2021_150214
crossref_primary_10_1016_j_jphotochem_2020_112507
crossref_primary_10_1016_j_jics_2022_100495
crossref_primary_10_1016_j_chemosphere_2021_131731
crossref_primary_10_1016_j_molstruc_2022_133110
crossref_primary_10_1134_S003602441413010X
crossref_primary_10_1016_j_heliyon_2023_e16397
crossref_primary_10_1179_1432891715Z_0000000001660
crossref_primary_10_5004_dwt_2018_22461
crossref_primary_10_1016_j_envres_2021_112439
crossref_primary_10_1016_j_jpcs_2022_110954
crossref_primary_10_1016_j_seppur_2020_117518
crossref_primary_10_1016_j_chemphys_2020_110980
crossref_primary_10_1016_j_chphi_2021_100027
crossref_primary_10_1016_j_inoche_2021_108960
crossref_primary_10_1016_j_physb_2022_414028
crossref_primary_10_1016_j_mtchem_2021_100464
crossref_primary_10_1016_j_apmt_2020_100845
crossref_primary_10_1021_acsami_9b18785
crossref_primary_10_1016_j_jphotochem_2019_04_046
crossref_primary_10_1016_j_jhazmat_2020_122462
crossref_primary_10_1016_j_rechem_2023_101290
crossref_primary_10_1016_j_colsurfa_2022_128534
crossref_primary_10_1016_j_jallcom_2022_163860
crossref_primary_10_1016_j_matchemphys_2022_127248
crossref_primary_10_1016_j_mtcomm_2022_104804
crossref_primary_10_1016_j_jwpe_2022_102714
crossref_primary_10_1016_j_enmm_2020_100425
crossref_primary_10_1016_j_apsusc_2021_151960
crossref_primary_10_1007_s11144_021_02054_0
crossref_primary_10_1039_C9RA10952H
crossref_primary_10_1016_j_chemosphere_2022_133755
crossref_primary_10_1016_j_colsurfa_2020_125233
crossref_primary_10_1021_acsaenm_3c00039
crossref_primary_10_1016_S1002_0721_14_60193_9
crossref_primary_10_1016_j_apsusc_2022_153800
crossref_primary_10_1016_j_cej_2021_129934
crossref_primary_10_1155_2020_4310513
crossref_primary_10_1016_j_optmat_2020_110500
crossref_primary_10_1016_j_apsusc_2019_145203
crossref_primary_10_1016_j_jclepro_2020_125089
crossref_primary_10_1515_ijmr_2021_8333
crossref_primary_10_1016_j_cclet_2023_108563
crossref_primary_10_1016_j_matlet_2022_132615
crossref_primary_10_1016_j_jics_2022_100342
crossref_primary_10_1016_j_jics_2022_100860
crossref_primary_10_1016_j_physb_2022_414241
crossref_primary_10_1016_j_surfin_2021_100973
crossref_primary_10_1016_j_jphotochem_2020_112712
crossref_primary_10_1007_s11244_019_01190_1
crossref_primary_10_1016_j_jsamd_2020_10_004
crossref_primary_10_18038_aubtda_412443
crossref_primary_10_1016_j_ceramint_2025_03_028
crossref_primary_10_1515_ijcre_2021_0170
crossref_primary_10_1016_j_cej_2023_141378
crossref_primary_10_1016_j_envres_2022_114862
crossref_primary_10_1016_j_nanoso_2021_100772
crossref_primary_10_1016_j_apsusc_2021_149708
crossref_primary_10_1016_j_inoche_2022_109905
crossref_primary_10_1016_j_scitotenv_2021_148519
crossref_primary_10_1016_j_apcatb_2020_119171
crossref_primary_10_1016_j_surfin_2020_100502
crossref_primary_10_1002_slct_202000805
crossref_primary_10_1186_s42825_020_00029_w
crossref_primary_10_1016_j_inoche_2024_113759
crossref_primary_10_1016_j_ccr_2022_214515
crossref_primary_10_1021_acsomega_2c05107
crossref_primary_10_1016_j_spmi_2014_11_038
crossref_primary_10_1016_j_surfin_2021_101527
crossref_primary_10_1016_j_jpcs_2022_110998
crossref_primary_10_1016_j_physb_2021_413493
crossref_primary_10_1016_j_pce_2023_103506
crossref_primary_10_1080_02773813_2016_1173063
crossref_primary_10_1016_j_jics_2022_100688
crossref_primary_10_1002_cctc_201701965
crossref_primary_10_1016_j_apsusc_2023_156605
crossref_primary_10_1016_S1872_2067_24_60156_7
crossref_primary_10_1016_j_apsusc_2022_154020
crossref_primary_10_1007_s11664_021_08935_3
crossref_primary_10_1016_j_jallcom_2021_161583
crossref_primary_10_1016_j_solidstatesciences_2022_107052
crossref_primary_10_1007_s11144_022_02182_1
crossref_primary_10_1016_j_mseb_2022_115630
crossref_primary_10_1016_j_matchemphys_2023_127980
crossref_primary_10_1016_j_apsusc_2020_145468
crossref_primary_10_1016_j_seppur_2020_117388
crossref_primary_10_1016_j_jpcs_2020_109903
crossref_primary_10_1016_j_inoche_2022_109889
crossref_primary_10_1016_j_ces_2023_119551
crossref_primary_10_1016_j_chemphys_2021_111144
crossref_primary_10_1016_j_apsusc_2020_147015
crossref_primary_10_1016_j_ijleo_2024_171927
crossref_primary_10_1016_j_jenvman_2021_114289
crossref_primary_10_1016_j_jmrt_2019_12_086
crossref_primary_10_1016_j_optmat_2020_110218
Cites_doi 10.1016/j.molstruc.2011.08.017
10.1016/j.spmi.2012.11.001
10.1016/j.apcatb.2012.07.002
10.1007/s11426-010-4166-x
10.1016/j.catcom.2010.09.027
10.1016/j.matchemphys.2010.01.046
10.1002/jrs.2378
10.1016/j.matchemphys.2010.08.077
10.1016/j.matchemphys.2009.10.039
10.1021/jp910263n
10.1021/cm0501517
10.1016/j.jhazmat.2010.01.020
10.1002/jrs.2526
10.1016/j.matlet.2012.09.009
10.1007/s11051-012-1033-z
10.1088/0022-3727/42/10/105107
10.1021/jp072752m
10.1016/j.jcis.2011.12.056
10.1016/j.jssc.2007.02.013
10.1088/0953-8984/23/40/405902
10.1016/j.matlet.2012.12.058
10.1111/j.1432-1033.1996.0387r.x
10.1002/adma.200801354
10.1016/j.jssc.2005.04.003
10.1063/1.3530631
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright_xml – notice: 2013 Elsevier Ltd
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.spmi.2013.09.028
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
EndPage 203
ExternalDocumentID 10_1016_j_spmi_2013_09_028
S074960361300311X
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c333t-31d9904cec802ff062f23342a8ac38a8d1b932993fc99fcebfe2e2276091d6493
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Fri Jul 11 05:21:07 EDT 2025
Thu Apr 24 23:02:48 EDT 2025
Tue Jul 01 01:34:54 EDT 2025
Fri Feb 23 02:23:01 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords Photocatalysis
Hydrothermal method
Ag doped Bi2WO6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-31d9904cec802ff062f23342a8ac38a8d1b932993fc99fcebfe2e2276091d6493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671592317
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1671592317
crossref_primary_10_1016_j_spmi_2013_09_028
crossref_citationtrail_10_1016_j_spmi_2013_09_028
elsevier_sciencedirect_doi_10_1016_j_spmi_2013_09_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Superlattices and microstructures
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xie, Yuan, Hai, Wang, Wang, Li (b0075) 2009; 42
Kim, Yong, facile (b0140) 2012; 14
Zhang, Zhu (b0130) 2005; 17
Hu, Xu, Zhen (b0045) 2013; 95
Zhang, Shen, Fu, Dong, Zheng, Shi (b0135) 2007; 180
Mączka, Kępiński, Macalik, Hanuza (b0025) 2011; 125
Welderfael, Yadav, Taddesse, Kaushal (b0065) 2013; 27
Mączka, Macalik, Kojima (b0095) 2011; 23
Mączka, Macalik, Hermanowicz, Kępiński, Tomaszewski (b0090) 2010; 41
Dumrongrojthanath, Thongtem, Phuruangrat, Thongtem (b0005) 2013; 54
Zhuo, Huang, Cao, Ouyang, Wu (b0030) 2013; 90
Han, Ren, Cui, Chen, Pan, Chen (b0010) 2012; 126
Li, Sadler, Sun (b0070) 1996; 242
Zhang, Wang, Cheng, Yao, Zhu (b0115) 2009; 21
Shang, Wang, Zhang, Xu (b0020) 2010; 120
Zhang, Wang, Shang, Yin (b0040) 2010; 177
Lupan, Chow, Ono, Cuenya, Chai, Khallaf, Park, Schulte (b0060) 2010; 114
Suryanarayana, Norton (b0055) 1998
Huang, Wu, Huang, Lin, Huang (b0015) 2011; 54
Chen, Cao, Kuang, Chen, Chen, Lin (b0035) 2010; 12
Li, Ye (b0125) 2007; 111
Gupta, Archana (b0100) 2011; 1005
Mączka, Macalik, Hanuza (b0105) 2009; 40
Yu, Xiong, Cheng, Yu, Wang (b0080) 2005; 178
Xia, Li, Luo, Xu, Wang, Yin, Yan (b0085) 2010; 121
Zeferino, Flores, Pal (b0120) 2011; 109
Huang, Chen, Xia, Tao, Gan, Weng, Zhang (b0110) 2012; 370
Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073–3273, USA, 2001.
Xia (10.1016/j.spmi.2013.09.028_b0085) 2010; 121
Chen (10.1016/j.spmi.2013.09.028_b0035) 2010; 12
Mączka (10.1016/j.spmi.2013.09.028_b0025) 2011; 125
Dumrongrojthanath (10.1016/j.spmi.2013.09.028_b0005) 2013; 54
Mączka (10.1016/j.spmi.2013.09.028_b0095) 2011; 23
Mączka (10.1016/j.spmi.2013.09.028_b0105) 2009; 40
Welderfael (10.1016/j.spmi.2013.09.028_b0065) 2013; 27
Zhuo (10.1016/j.spmi.2013.09.028_b0030) 2013; 90
Zeferino (10.1016/j.spmi.2013.09.028_b0120) 2011; 109
Suryanarayana (10.1016/j.spmi.2013.09.028_b0055) 1998
Xie (10.1016/j.spmi.2013.09.028_b0075) 2009; 42
Hu (10.1016/j.spmi.2013.09.028_b0045) 2013; 95
10.1016/j.spmi.2013.09.028_b0050
Huang (10.1016/j.spmi.2013.09.028_b0110) 2012; 370
Zhang (10.1016/j.spmi.2013.09.028_b0040) 2010; 177
Mączka (10.1016/j.spmi.2013.09.028_b0090) 2010; 41
Han (10.1016/j.spmi.2013.09.028_b0010) 2012; 126
Gupta (10.1016/j.spmi.2013.09.028_b0100) 2011; 1005
Lupan (10.1016/j.spmi.2013.09.028_b0060) 2010; 114
Zhang (10.1016/j.spmi.2013.09.028_b0115) 2009; 21
Yu (10.1016/j.spmi.2013.09.028_b0080) 2005; 178
Kim (10.1016/j.spmi.2013.09.028_b0140) 2012; 14
Li (10.1016/j.spmi.2013.09.028_b0070) 1996; 242
Zhang (10.1016/j.spmi.2013.09.028_b0135) 2007; 180
Li (10.1016/j.spmi.2013.09.028_b0125) 2007; 111
Huang (10.1016/j.spmi.2013.09.028_b0015) 2011; 54
Zhang (10.1016/j.spmi.2013.09.028_b0130) 2005; 17
Shang (10.1016/j.spmi.2013.09.028_b0020) 2010; 120
References_xml – volume: 242
  start-page: 387
  year: 1996
  end-page: 393
  ident: b0070
  article-title: Rationalization of the strength of metal binding to human serum transferrin
  publication-title: Eur. J. Biochem.
– volume: 21
  start-page: 1286
  year: 2009
  end-page: 1290
  ident: b0115
  article-title: Synthesis of porous Bi
  publication-title: Adv. Mater.
– volume: 27
  start-page: 221
  year: 2013
  end-page: 232
  ident: b0065
  article-title: Synthesis, characterization and photocatalytic activities of Ag–N-codoped ZnO nanoparticles for degradation of methyl red
  publication-title: Bull. Chem. Soc. Ethiop.
– volume: 14
  start-page: 1033
  year: 2012
  ident: b0140
  article-title: coverage controlled deposition of Au nanoparticles on ZnO nanorods by sonochemical reaction for enhancement of photocatalytic activity
  publication-title: J. Nanopart. Res.
– volume: 178
  start-page: 1968
  year: 2005
  end-page: 1972
  ident: b0080
  article-title: Hydrothermal preparation and visible-light photocatalytic activity of Bi
  publication-title: J. Solid State Chem.
– volume: 370
  start-page: 132
  year: 2012
  end-page: 138
  ident: b0110
  article-title: Controllable synthesis and visible-light-responsive photocatalytic activity of Bi
  publication-title: J. Colloid Interface Sci.
– volume: 42
  start-page: 105107
  year: 2009
  ident: b0075
  article-title: Enhancement emission intensity of CaMoO
  publication-title: J. Phys. D: Appl. Phys.
– volume: 12
  start-page: 247
  year: 2010
  end-page: 250
  ident: b0035
  article-title: The gas-phase photocatalytic mineralization of benzene over visible-light-driven Bi
  publication-title: Catal. Commun.
– volume: 126
  start-page: 298
  year: 2012
  end-page: 305
  ident: b0010
  article-title: Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance
  publication-title: Appl. Catal. B: Environ.
– volume: 177
  start-page: 1013
  year: 2010
  end-page: 1018
  ident: b0040
  article-title: Low-temperature combustion synthesis of Bi
  publication-title: J. Hazard. Mater.
– volume: 95
  start-page: 117
  year: 2013
  end-page: 120
  ident: b0045
  article-title: Solvothermal synthesis of Bi
  publication-title: Mater. Lett.
– volume: 54
  start-page: 211
  year: 2011
  end-page: 216
  ident: b0015
  article-title: Influence of surfactants on the morphology and photocatalytic activity of Bi
  publication-title: Sci. Chin. Chem.
– volume: 90
  start-page: 107
  year: 2013
  end-page: 110
  ident: b0030
  article-title: Photocatalytic activity of snow-like Bi
  publication-title: Mater. Lett.
– volume: 54
  start-page: 71
  year: 2013
  end-page: 77
  ident: b0005
  article-title: Hydrothermal synthesis of Bi
  publication-title: Superlatt. Microstr.
– volume: 121
  start-page: 6
  year: 2010
  end-page: 9
  ident: b0085
  article-title: Self-assembly and enhanced optical absorption of Bi
  publication-title: Mater. Chem. Phys.
– volume: 17
  start-page: 3537
  year: 2005
  end-page: 3545
  ident: b0130
  article-title: Synthesis of square Bi
  publication-title: Chem. Mater.
– volume: 111
  start-page: 13109
  year: 2007
  end-page: 13116
  ident: b0125
  article-title: Photocatalytic degradation of rhodamine B over Pb
  publication-title: J. Phys. Chem. C
– volume: 125
  start-page: 93
  year: 2011
  end-page: 101
  ident: b0025
  article-title: Crystallization of nanosized Aurivillius phase Bi
  publication-title: Mater. Chem. Phys.
– reference: Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073–3273, USA, 2001.
– volume: 120
  start-page: 155
  year: 2010
  end-page: 159
  ident: b0020
  article-title: Bi
  publication-title: Mater. Chem. Phys.
– year: 1998
  ident: b0055
  publication-title: X-ray Diffract., A Pract. Appro.
– volume: 114
  start-page: 12401
  year: 2010
  end-page: 12408
  ident: b0060
  article-title: Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route
  publication-title: J. Phys. Chem. C
– volume: 41
  start-page: 1059
  year: 2010
  end-page: 1066
  ident: b0090
  article-title: Phonon properties of nanosized bismuth layered ferroelectric material – Bi
  publication-title: J. Raman Spectrosc.
– volume: 1005
  start-page: 53
  year: 2011
  end-page: 58
  ident: b0100
  article-title: Luthra, Lattice dynamical investigations for Raman and infrared frequencies of Bi
  publication-title: J. Mol. Struct.
– volume: 23
  start-page: 405902
  year: 2011
  ident: b0095
  article-title: Temperature-dependent Raman scattering study of cation-deficient Aurivillius phases: Bi
  publication-title: J. Phys. Condens. Matter.
– volume: 40
  start-page: 2099
  year: 2009
  end-page: 2103
  ident: b0105
  article-title: Raman and IR spectra of the cation-deficient Aurivillius layered crystal Bi
  publication-title: J. Raman Spectrosc.
– volume: 109
  start-page: 014308
  year: 2011
  ident: b0120
  article-title: Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles
  publication-title: J. Appl. Phys.
– volume: 180
  start-page: 1456
  year: 2007
  end-page: 1463
  ident: b0135
  article-title: Bi
  publication-title: J. Solid State Chem.
– volume: 1005
  start-page: 53
  year: 2011
  ident: 10.1016/j.spmi.2013.09.028_b0100
  article-title: Luthra, Lattice dynamical investigations for Raman and infrared frequencies of Bi2WO6
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2011.08.017
– ident: 10.1016/j.spmi.2013.09.028_b0050
– volume: 54
  start-page: 71
  year: 2013
  ident: 10.1016/j.spmi.2013.09.028_b0005
  article-title: Hydrothermal synthesis of Bi2WO6 hierarchical flowers with their photonic and photocatalytic properties
  publication-title: Superlatt. Microstr.
  doi: 10.1016/j.spmi.2012.11.001
– volume: 126
  start-page: 298
  year: 2012
  ident: 10.1016/j.spmi.2013.09.028_b0010
  article-title: Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2012.07.002
– volume: 54
  start-page: 211
  year: 2011
  ident: 10.1016/j.spmi.2013.09.028_b0015
  article-title: Influence of surfactants on the morphology and photocatalytic activity of Bi2WO6 by hydrothermal synthesis
  publication-title: Sci. Chin. Chem.
  doi: 10.1007/s11426-010-4166-x
– volume: 12
  start-page: 247
  year: 2010
  ident: 10.1016/j.spmi.2013.09.028_b0035
  article-title: The gas-phase photocatalytic mineralization of benzene over visible-light-driven Bi2WO6@C microspheres
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2010.09.027
– volume: 121
  start-page: 6
  year: 2010
  ident: 10.1016/j.spmi.2013.09.028_b0085
  article-title: Self-assembly and enhanced optical absorption of Bi2WO6 nests via ionic liquid-assisted hydrothermal method
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2010.01.046
– volume: 40
  start-page: 2099
  year: 2009
  ident: 10.1016/j.spmi.2013.09.028_b0105
  article-title: Raman and IR spectra of the cation-deficient Aurivillius layered crystal Bi2W2O9
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.2378
– volume: 125
  start-page: 93
  year: 2011
  ident: 10.1016/j.spmi.2013.09.028_b0025
  article-title: Crystallization of nanosized Aurivillius phase Bi2W2O9 from amorphous precursor
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2010.08.077
– volume: 120
  start-page: 155
  year: 2010
  ident: 10.1016/j.spmi.2013.09.028_b0020
  article-title: Bi2WO6 with significantly enhanced photocatalytic activities by nitrogen doping
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2009.10.039
– volume: 114
  start-page: 12401
  year: 2010
  ident: 10.1016/j.spmi.2013.09.028_b0060
  article-title: Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp910263n
– volume: 17
  start-page: 3537
  year: 2005
  ident: 10.1016/j.spmi.2013.09.028_b0130
  article-title: Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts
  publication-title: Chem. Mater.
  doi: 10.1021/cm0501517
– volume: 177
  start-page: 1013
  year: 2010
  ident: 10.1016/j.spmi.2013.09.028_b0040
  article-title: Low-temperature combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.01.020
– volume: 41
  start-page: 1059
  year: 2010
  ident: 10.1016/j.spmi.2013.09.028_b0090
  article-title: Phonon properties of nanosized bismuth layered ferroelectric material – Bi2WO6
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.2526
– volume: 90
  start-page: 107
  year: 2013
  ident: 10.1016/j.spmi.2013.09.028_b0030
  article-title: Photocatalytic activity of snow-like Bi2WO6 microcrystalline for decomposition of Rhodamine B under natural sunlight irradiation
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2012.09.009
– year: 1998
  ident: 10.1016/j.spmi.2013.09.028_b0055
– volume: 14
  start-page: 1033
  year: 2012
  ident: 10.1016/j.spmi.2013.09.028_b0140
  article-title: coverage controlled deposition of Au nanoparticles on ZnO nanorods by sonochemical reaction for enhancement of photocatalytic activity
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-012-1033-z
– volume: 42
  start-page: 105107
  year: 2009
  ident: 10.1016/j.spmi.2013.09.028_b0075
  article-title: Enhancement emission intensity of CaMoO4:Eu3+ Na+ phosphor via Bi co-doping and Si substitution for application to white LEDs
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/42/10/105107
– volume: 111
  start-page: 13109
  year: 2007
  ident: 10.1016/j.spmi.2013.09.028_b0125
  article-title: Photocatalytic degradation of rhodamine B over Pb3Nb4O13/fumed SiO2 composite under visible light irradiation
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp072752m
– volume: 370
  start-page: 132
  year: 2012
  ident: 10.1016/j.spmi.2013.09.028_b0110
  article-title: Controllable synthesis and visible-light-responsive photocatalytic activity of Bi2WO6 fluffy microsphere with hierarchical architecture
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.12.056
– volume: 180
  start-page: 1456
  year: 2007
  ident: 10.1016/j.spmi.2013.09.028_b0135
  article-title: Bi2WO6 photocatalytic films fabricated by layer-by-layer technique from Bi2WO6 nanoplates and its spectral selectivity
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2007.02.013
– volume: 23
  start-page: 405902
  year: 2011
  ident: 10.1016/j.spmi.2013.09.028_b0095
  article-title: Temperature-dependent Raman scattering study of cation-deficient Aurivillius phases: Bi2 WO6 and Bi2W2O9
  publication-title: J. Phys. Condens. Matter.
  doi: 10.1088/0953-8984/23/40/405902
– volume: 95
  start-page: 117
  year: 2013
  ident: 10.1016/j.spmi.2013.09.028_b0045
  article-title: Solvothermal synthesis of Bi2WO6 hollow structures with excellent visible-light photocatalytic properties
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2012.12.058
– volume: 242
  start-page: 387
  year: 1996
  ident: 10.1016/j.spmi.2013.09.028_b0070
  article-title: Rationalization of the strength of metal binding to human serum transferrin
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1996.0387r.x
– volume: 21
  start-page: 1286
  year: 2009
  ident: 10.1016/j.spmi.2013.09.028_b0115
  article-title: Synthesis of porous Bi2WO6 thin films as efficient visible-light-active photocatalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801354
– volume: 27
  start-page: 221
  year: 2013
  ident: 10.1016/j.spmi.2013.09.028_b0065
  article-title: Synthesis, characterization and photocatalytic activities of Ag–N-codoped ZnO nanoparticles for degradation of methyl red
  publication-title: Bull. Chem. Soc. Ethiop.
– volume: 178
  start-page: 1968
  year: 2005
  ident: 10.1016/j.spmi.2013.09.028_b0080
  article-title: Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2005.04.003
– volume: 109
  start-page: 014308
  year: 2011
  ident: 10.1016/j.spmi.2013.09.028_b0120
  article-title: Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3530631
SSID ssj0009417
Score 2.0270076
Snippet •Hierarchical flower-like Bi2WO6 as a semiconductor.•It enables us to synthesize by hydrothermal route.•A promising material for photocatalysis.•In this...
In this research, 0-3 mol% Ag doped Bi2WO6 hierarchical multilayered flower-like assemblies were successfully synthesized by a simple hydrothermal method at...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 196
SubjectTerms Ag doped Bi2WO6
Assemblies
Hydrothermal method
Iron
Light irradiation
Microstructure
Nanostructure
Photocatalysis
Silver
Two dimensional
Title Synthesis and characterization of hierarchical multilayered flower-like assemblies of Ag doped Bi2WO6 and their photocatalytic activities
URI https://dx.doi.org/10.1016/j.spmi.2013.09.028
https://www.proquest.com/docview/1671592317
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVWRYheKihU_aIyEjcUNmt7neS4rKgWEMuhrNib5fijhG6TqNlW2kvv_GtmnKQIhPbAMZFtWRln5iXzZh4hr-PEpfDaZJHwLoYPFOsjnSNzKgX4obWTwmJG9_Nczhbi43K8HJBpXwuDtMrO97c-PXjr7s6we5rDuiiGFxD8AH5zBMBwMkdLrGAXCZ7yt_e_aR6ZCKq7ODjC0V3hTMvxaurrAuldPPQ6RUX2fwenv9x0iD3nT8leBxrppN3XMzJw5T55Mu212vbJ40DkNM1z8vNiUwKma4qG6tJS89CPuS23pJWnqH4d8gdgHhoIhSu9QclO6leomRatiitHAVS76xwQaoNzJpfUVjUMeVewb19kWDvkGGj9vVpX4SfQBnZHsU7iLnRpfUEW5--_TmdRJ7cQGc75GryxhdAkjDNpzLyPJfOMc8F0qg1PdWpHOYA9wDPeZJk3LveOOcYSCZDDSpHxA7JTVqU7JNTwsZAmQVUsKTzYXHPLvNE8zrWwjh-RUf-clel6kaMkxkr1pLMfCm2j0DYqzhTY5oi8eZhTt504to4e9-ZTf5wnBaFi67xXva0V2BCzJ7p01W2jRjIB6AdwODn-z7VPyC5etWSYU7Kzvrl1LwHSrPOzcGbPyKPJh0-z-S8wNPje
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrVC5ICggytNI3FC0Wdubx3FZUW1puxzair1Zjh8lsE0iskXan8C_ZsZJikCoB66Jx7LyOTNfMuP5AN7Gqcvwtckj6V2MHyjWR7qgyqkM6YfWLpGWMrqny2RxIT-upqsdmA9nYaissvf9nU8P3rq_Mu6f5rgpy_EZBj-k34IIMO7MyeoO7FJ3qukIdmdHx4vl7967Mgjv0viIDPqzM12ZV9tclVThJUK7UxJl_3d8-stTh_Bz-ADu97yRzbqlPYQdV-3D3nyQa9uHu6GW07SP4OfZtkJa15Yt05Vl5qYlc3fiktWekQB2SCEgQizUFK71llQ7mV-TbFq0Lr85hrzaXRVIUluymV0yWzc45H3JP39KwtwhzcCaL_WmDv-Btrg6RkclfoRGrY_h4vDD-XwR9YoLkRFCbNAhW4xO0jiTxdz7OOGeCyG5zrQRmc7spEC-h5TGmzz3xhXeccd5miDrsInMxRMYVXXlngIzYioTk5IwViI9wq6F5d5oERdaWicOYDI8Z2X6duSkirFWQ93ZV0XYKMJGxblCbA7g3Y1N0zXjuHX0dIBP_bGlFEaLW-3eDFgrxJASKLpy9XWrJkmK7A8ZcfrsP-d-DXuL89MTdXK0PH4O9-hOVxvzAkab79fuJTKcTfGq38G_AK_6-48
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+characterization+of+hierarchical+multilayered+flower-like+assemblies+of+Ag+doped+Bi2WO6+and+their+photocatalytic+activities&rft.jtitle=Superlattices+and+microstructures&rft.au=Dumrongrojthanath%2C+Phattharanit&rft.au=Thongtem%2C+Titipun&rft.au=Phuruangrat%2C+Anukorn&rft.au=Thongtem%2C+Somchai&rft.date=2013-12-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=64&rft.spage=196&rft.epage=203&rft_id=info:doi/10.1016%2Fj.spmi.2013.09.028&rft.externalDocID=S074960361300311X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon