Synthesis and characterization of hierarchical multilayered flower-like assemblies of Ag doped Bi2WO6 and their photocatalytic activities
•Hierarchical flower-like Bi2WO6 as a semiconductor.•It enables us to synthesize by hydrothermal route.•A promising material for photocatalysis.•In this research, 3% Ag doped Bi2WO6 shows the highest photocatalytic activity. In this research, 0–3mol% Ag doped Bi2WO6 hierarchical multilayered flower-...
Saved in:
Published in | Superlattices and microstructures Vol. 64; pp. 196 - 203 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0749-6036 1096-3677 |
DOI | 10.1016/j.spmi.2013.09.028 |
Cover
Loading…
Abstract | •Hierarchical flower-like Bi2WO6 as a semiconductor.•It enables us to synthesize by hydrothermal route.•A promising material for photocatalysis.•In this research, 3% Ag doped Bi2WO6 shows the highest photocatalytic activity.
In this research, 0–3mol% Ag doped Bi2WO6 hierarchical multilayered flower-like assemblies were successfully synthesized by a simple hydrothermal method at 180°C for 24h. The XRD, FE-SEM, FTIR and Raman analyses revealed the presence of flower-like Russellite Bi2WO6 structures which were constructed from a large number of orderly arranged 2D layers of interconnected nanoplates. Their photocatalytic activities were evaluated by photodegradation of rhodamine B (RhB) under Xe visible light irradiation (λ>420nm). The 3mol% Ag doped Bi2WO6 showed the highest photocatalytic activities of 98.20% within 180min. |
---|---|
AbstractList | •Hierarchical flower-like Bi2WO6 as a semiconductor.•It enables us to synthesize by hydrothermal route.•A promising material for photocatalysis.•In this research, 3% Ag doped Bi2WO6 shows the highest photocatalytic activity.
In this research, 0–3mol% Ag doped Bi2WO6 hierarchical multilayered flower-like assemblies were successfully synthesized by a simple hydrothermal method at 180°C for 24h. The XRD, FE-SEM, FTIR and Raman analyses revealed the presence of flower-like Russellite Bi2WO6 structures which were constructed from a large number of orderly arranged 2D layers of interconnected nanoplates. Their photocatalytic activities were evaluated by photodegradation of rhodamine B (RhB) under Xe visible light irradiation (λ>420nm). The 3mol% Ag doped Bi2WO6 showed the highest photocatalytic activities of 98.20% within 180min. In this research, 0-3 mol% Ag doped Bi2WO6 hierarchical multilayered flower-like assemblies were successfully synthesized by a simple hydrothermal method at 180 degree C for 24 h. The XRD, FE-SEM, FTIR and Raman analyses revealed the presence of flower-like Russellite Bi2WO6 structures which were constructed from a large number of orderly arranged 2D layers of interconnected nanoplates. Their photocatalytic activities were evaluated by photodegradation of rhodamine B (RhB) under Xe visible light irradiation ( lambda > 420 nm). The 3 mol% Ag doped Bi2WO6 showed the highest photocatalytic activities of 98.20% within 180 min. |
Author | Dumrongrojthanath, Phattharanit Thongtem, Somchai Thongtem, Titipun Phuruangrat, Anukorn |
Author_xml | – sequence: 1 givenname: Phattharanit surname: Dumrongrojthanath fullname: Dumrongrojthanath, Phattharanit organization: Center for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand – sequence: 2 givenname: Titipun surname: Thongtem fullname: Thongtem, Titipun email: ttpthongtem@yahoo.com organization: Center for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand – sequence: 3 givenname: Anukorn surname: Phuruangrat fullname: Phuruangrat, Anukorn email: phuruangrat@hotmail.com organization: Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand – sequence: 4 givenname: Somchai surname: Thongtem fullname: Thongtem, Somchai organization: Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand |
BookMark | eNp9kM1u1DAUhS1UJKaFF2DlJZsE_wQnltiUikKlSl0AYml5nGtyBycOtqfV8Aa8NZ4OKxZd3c35ztH9zsnZEhcg5DVnLWdcvd21eZ2xFYzLlumWieEZ2XCmVSNV35-RDes73Sgm1QtynvOOMaY73m_Iny-HpUyQMVO7jNRNNllXIOFvWzAuNHo6ISSb3ITOBjrvQ8FgD5BgpD7EB0hNwJ9Abc4wbwNCPjKXP-gY1xr5gOL7nXrsrjOY6DrFEp0tNhwKOlrH8B5LxV6S596GDK_-3Qvy7frj16vPze3dp5ury9vGSSlLI_moNescuIEJ75kSXkjZCTtYJwc7jHyrpdBaeqe1d7D1IECIXjHNR9VpeUHenHrXFH_tIRczY3YQgl0g7rPhqufvtJC8r1FxiroUc07gzZpwtulgODNH72Znjt7N0bth2lTvFRr-gxyWR5klWQxPo-9PKNT_76t2kx3C4mDEBK6YMeJT-F__4qPJ |
CitedBy_id | crossref_primary_10_1007_s11270_020_04566_2 crossref_primary_10_1016_j_jallcom_2022_165018 crossref_primary_10_1016_j_seppur_2021_120025 crossref_primary_10_1016_j_jphotochem_2021_113283 crossref_primary_10_1016_j_jtice_2021_11_018 crossref_primary_10_1016_j_ijhydene_2018_03_091 crossref_primary_10_1016_j_jmrt_2022_05_104 crossref_primary_10_1016_j_apsusc_2020_146748 crossref_primary_10_1016_j_jhazmat_2020_122835 crossref_primary_10_1016_j_mssp_2024_108674 crossref_primary_10_1155_2020_3058621 crossref_primary_10_1007_s11051_015_2945_1 crossref_primary_10_1016_j_jwpe_2020_101399 crossref_primary_10_1016_j_jmrt_2022_02_013 crossref_primary_10_1021_acs_jpcc_0c03539 crossref_primary_10_1016_j_apmt_2021_101033 crossref_primary_10_1016_j_catcom_2022_106567 crossref_primary_10_1016_j_matlet_2015_04_061 crossref_primary_10_3389_fchem_2022_982818 crossref_primary_10_1002_asia_201500262 crossref_primary_10_1007_s11164_022_04926_z crossref_primary_10_1016_j_ceramint_2016_02_082 crossref_primary_10_1016_j_matchemphys_2021_124691 crossref_primary_10_1016_j_colsurfa_2021_127248 crossref_primary_10_1016_j_envpol_2022_120982 crossref_primary_10_1016_j_apsusc_2021_150214 crossref_primary_10_1016_j_jphotochem_2020_112507 crossref_primary_10_1016_j_jics_2022_100495 crossref_primary_10_1016_j_chemosphere_2021_131731 crossref_primary_10_1016_j_molstruc_2022_133110 crossref_primary_10_1134_S003602441413010X crossref_primary_10_1016_j_heliyon_2023_e16397 crossref_primary_10_1179_1432891715Z_0000000001660 crossref_primary_10_5004_dwt_2018_22461 crossref_primary_10_1016_j_envres_2021_112439 crossref_primary_10_1016_j_jpcs_2022_110954 crossref_primary_10_1016_j_seppur_2020_117518 crossref_primary_10_1016_j_chemphys_2020_110980 crossref_primary_10_1016_j_chphi_2021_100027 crossref_primary_10_1016_j_inoche_2021_108960 crossref_primary_10_1016_j_physb_2022_414028 crossref_primary_10_1016_j_mtchem_2021_100464 crossref_primary_10_1016_j_apmt_2020_100845 crossref_primary_10_1021_acsami_9b18785 crossref_primary_10_1016_j_jphotochem_2019_04_046 crossref_primary_10_1016_j_jhazmat_2020_122462 crossref_primary_10_1016_j_rechem_2023_101290 crossref_primary_10_1016_j_colsurfa_2022_128534 crossref_primary_10_1016_j_jallcom_2022_163860 crossref_primary_10_1016_j_matchemphys_2022_127248 crossref_primary_10_1016_j_mtcomm_2022_104804 crossref_primary_10_1016_j_jwpe_2022_102714 crossref_primary_10_1016_j_enmm_2020_100425 crossref_primary_10_1016_j_apsusc_2021_151960 crossref_primary_10_1007_s11144_021_02054_0 crossref_primary_10_1039_C9RA10952H crossref_primary_10_1016_j_chemosphere_2022_133755 crossref_primary_10_1016_j_colsurfa_2020_125233 crossref_primary_10_1021_acsaenm_3c00039 crossref_primary_10_1016_S1002_0721_14_60193_9 crossref_primary_10_1016_j_apsusc_2022_153800 crossref_primary_10_1016_j_cej_2021_129934 crossref_primary_10_1155_2020_4310513 crossref_primary_10_1016_j_optmat_2020_110500 crossref_primary_10_1016_j_apsusc_2019_145203 crossref_primary_10_1016_j_jclepro_2020_125089 crossref_primary_10_1515_ijmr_2021_8333 crossref_primary_10_1016_j_cclet_2023_108563 crossref_primary_10_1016_j_matlet_2022_132615 crossref_primary_10_1016_j_jics_2022_100342 crossref_primary_10_1016_j_jics_2022_100860 crossref_primary_10_1016_j_physb_2022_414241 crossref_primary_10_1016_j_surfin_2021_100973 crossref_primary_10_1016_j_jphotochem_2020_112712 crossref_primary_10_1007_s11244_019_01190_1 crossref_primary_10_1016_j_jsamd_2020_10_004 crossref_primary_10_18038_aubtda_412443 crossref_primary_10_1016_j_ceramint_2025_03_028 crossref_primary_10_1515_ijcre_2021_0170 crossref_primary_10_1016_j_cej_2023_141378 crossref_primary_10_1016_j_envres_2022_114862 crossref_primary_10_1016_j_nanoso_2021_100772 crossref_primary_10_1016_j_apsusc_2021_149708 crossref_primary_10_1016_j_inoche_2022_109905 crossref_primary_10_1016_j_scitotenv_2021_148519 crossref_primary_10_1016_j_apcatb_2020_119171 crossref_primary_10_1016_j_surfin_2020_100502 crossref_primary_10_1002_slct_202000805 crossref_primary_10_1186_s42825_020_00029_w crossref_primary_10_1016_j_inoche_2024_113759 crossref_primary_10_1016_j_ccr_2022_214515 crossref_primary_10_1021_acsomega_2c05107 crossref_primary_10_1016_j_spmi_2014_11_038 crossref_primary_10_1016_j_surfin_2021_101527 crossref_primary_10_1016_j_jpcs_2022_110998 crossref_primary_10_1016_j_physb_2021_413493 crossref_primary_10_1016_j_pce_2023_103506 crossref_primary_10_1080_02773813_2016_1173063 crossref_primary_10_1016_j_jics_2022_100688 crossref_primary_10_1002_cctc_201701965 crossref_primary_10_1016_j_apsusc_2023_156605 crossref_primary_10_1016_S1872_2067_24_60156_7 crossref_primary_10_1016_j_apsusc_2022_154020 crossref_primary_10_1007_s11664_021_08935_3 crossref_primary_10_1016_j_jallcom_2021_161583 crossref_primary_10_1016_j_solidstatesciences_2022_107052 crossref_primary_10_1007_s11144_022_02182_1 crossref_primary_10_1016_j_mseb_2022_115630 crossref_primary_10_1016_j_matchemphys_2023_127980 crossref_primary_10_1016_j_apsusc_2020_145468 crossref_primary_10_1016_j_seppur_2020_117388 crossref_primary_10_1016_j_jpcs_2020_109903 crossref_primary_10_1016_j_inoche_2022_109889 crossref_primary_10_1016_j_ces_2023_119551 crossref_primary_10_1016_j_chemphys_2021_111144 crossref_primary_10_1016_j_apsusc_2020_147015 crossref_primary_10_1016_j_ijleo_2024_171927 crossref_primary_10_1016_j_jenvman_2021_114289 crossref_primary_10_1016_j_jmrt_2019_12_086 crossref_primary_10_1016_j_optmat_2020_110218 |
Cites_doi | 10.1016/j.molstruc.2011.08.017 10.1016/j.spmi.2012.11.001 10.1016/j.apcatb.2012.07.002 10.1007/s11426-010-4166-x 10.1016/j.catcom.2010.09.027 10.1016/j.matchemphys.2010.01.046 10.1002/jrs.2378 10.1016/j.matchemphys.2010.08.077 10.1016/j.matchemphys.2009.10.039 10.1021/jp910263n 10.1021/cm0501517 10.1016/j.jhazmat.2010.01.020 10.1002/jrs.2526 10.1016/j.matlet.2012.09.009 10.1007/s11051-012-1033-z 10.1088/0022-3727/42/10/105107 10.1021/jp072752m 10.1016/j.jcis.2011.12.056 10.1016/j.jssc.2007.02.013 10.1088/0953-8984/23/40/405902 10.1016/j.matlet.2012.12.058 10.1111/j.1432-1033.1996.0387r.x 10.1002/adma.200801354 10.1016/j.jssc.2005.04.003 10.1063/1.3530631 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd |
Copyright_xml | – notice: 2013 Elsevier Ltd |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.spmi.2013.09.028 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
EndPage | 203 |
ExternalDocumentID | 10_1016_j_spmi_2013_09_028 S074960361300311X |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c333t-31d9904cec802ff062f23342a8ac38a8d1b932993fc99fcebfe2e2276091d6493 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Fri Jul 11 05:21:07 EDT 2025 Thu Apr 24 23:02:48 EDT 2025 Tue Jul 01 01:34:54 EDT 2025 Fri Feb 23 02:23:01 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Photocatalysis Hydrothermal method Ag doped Bi2WO6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-31d9904cec802ff062f23342a8ac38a8d1b932993fc99fcebfe2e2276091d6493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1671592317 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1671592317 crossref_primary_10_1016_j_spmi_2013_09_028 crossref_citationtrail_10_1016_j_spmi_2013_09_028 elsevier_sciencedirect_doi_10_1016_j_spmi_2013_09_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Xie, Yuan, Hai, Wang, Wang, Li (b0075) 2009; 42 Kim, Yong, facile (b0140) 2012; 14 Zhang, Zhu (b0130) 2005; 17 Hu, Xu, Zhen (b0045) 2013; 95 Zhang, Shen, Fu, Dong, Zheng, Shi (b0135) 2007; 180 Mączka, Kępiński, Macalik, Hanuza (b0025) 2011; 125 Welderfael, Yadav, Taddesse, Kaushal (b0065) 2013; 27 Mączka, Macalik, Kojima (b0095) 2011; 23 Mączka, Macalik, Hermanowicz, Kępiński, Tomaszewski (b0090) 2010; 41 Dumrongrojthanath, Thongtem, Phuruangrat, Thongtem (b0005) 2013; 54 Zhuo, Huang, Cao, Ouyang, Wu (b0030) 2013; 90 Han, Ren, Cui, Chen, Pan, Chen (b0010) 2012; 126 Li, Sadler, Sun (b0070) 1996; 242 Zhang, Wang, Cheng, Yao, Zhu (b0115) 2009; 21 Shang, Wang, Zhang, Xu (b0020) 2010; 120 Zhang, Wang, Shang, Yin (b0040) 2010; 177 Lupan, Chow, Ono, Cuenya, Chai, Khallaf, Park, Schulte (b0060) 2010; 114 Suryanarayana, Norton (b0055) 1998 Huang, Wu, Huang, Lin, Huang (b0015) 2011; 54 Chen, Cao, Kuang, Chen, Chen, Lin (b0035) 2010; 12 Li, Ye (b0125) 2007; 111 Gupta, Archana (b0100) 2011; 1005 Mączka, Macalik, Hanuza (b0105) 2009; 40 Yu, Xiong, Cheng, Yu, Wang (b0080) 2005; 178 Xia, Li, Luo, Xu, Wang, Yin, Yan (b0085) 2010; 121 Zeferino, Flores, Pal (b0120) 2011; 109 Huang, Chen, Xia, Tao, Gan, Weng, Zhang (b0110) 2012; 370 Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073–3273, USA, 2001. Xia (10.1016/j.spmi.2013.09.028_b0085) 2010; 121 Chen (10.1016/j.spmi.2013.09.028_b0035) 2010; 12 Mączka (10.1016/j.spmi.2013.09.028_b0025) 2011; 125 Dumrongrojthanath (10.1016/j.spmi.2013.09.028_b0005) 2013; 54 Mączka (10.1016/j.spmi.2013.09.028_b0095) 2011; 23 Mączka (10.1016/j.spmi.2013.09.028_b0105) 2009; 40 Welderfael (10.1016/j.spmi.2013.09.028_b0065) 2013; 27 Zhuo (10.1016/j.spmi.2013.09.028_b0030) 2013; 90 Zeferino (10.1016/j.spmi.2013.09.028_b0120) 2011; 109 Suryanarayana (10.1016/j.spmi.2013.09.028_b0055) 1998 Xie (10.1016/j.spmi.2013.09.028_b0075) 2009; 42 Hu (10.1016/j.spmi.2013.09.028_b0045) 2013; 95 10.1016/j.spmi.2013.09.028_b0050 Huang (10.1016/j.spmi.2013.09.028_b0110) 2012; 370 Zhang (10.1016/j.spmi.2013.09.028_b0040) 2010; 177 Mączka (10.1016/j.spmi.2013.09.028_b0090) 2010; 41 Han (10.1016/j.spmi.2013.09.028_b0010) 2012; 126 Gupta (10.1016/j.spmi.2013.09.028_b0100) 2011; 1005 Lupan (10.1016/j.spmi.2013.09.028_b0060) 2010; 114 Zhang (10.1016/j.spmi.2013.09.028_b0115) 2009; 21 Yu (10.1016/j.spmi.2013.09.028_b0080) 2005; 178 Kim (10.1016/j.spmi.2013.09.028_b0140) 2012; 14 Li (10.1016/j.spmi.2013.09.028_b0070) 1996; 242 Zhang (10.1016/j.spmi.2013.09.028_b0135) 2007; 180 Li (10.1016/j.spmi.2013.09.028_b0125) 2007; 111 Huang (10.1016/j.spmi.2013.09.028_b0015) 2011; 54 Zhang (10.1016/j.spmi.2013.09.028_b0130) 2005; 17 Shang (10.1016/j.spmi.2013.09.028_b0020) 2010; 120 |
References_xml | – volume: 242 start-page: 387 year: 1996 end-page: 393 ident: b0070 article-title: Rationalization of the strength of metal binding to human serum transferrin publication-title: Eur. J. Biochem. – volume: 21 start-page: 1286 year: 2009 end-page: 1290 ident: b0115 article-title: Synthesis of porous Bi publication-title: Adv. Mater. – volume: 27 start-page: 221 year: 2013 end-page: 232 ident: b0065 article-title: Synthesis, characterization and photocatalytic activities of Ag–N-codoped ZnO nanoparticles for degradation of methyl red publication-title: Bull. Chem. Soc. Ethiop. – volume: 14 start-page: 1033 year: 2012 ident: b0140 article-title: coverage controlled deposition of Au nanoparticles on ZnO nanorods by sonochemical reaction for enhancement of photocatalytic activity publication-title: J. Nanopart. Res. – volume: 178 start-page: 1968 year: 2005 end-page: 1972 ident: b0080 article-title: Hydrothermal preparation and visible-light photocatalytic activity of Bi publication-title: J. Solid State Chem. – volume: 370 start-page: 132 year: 2012 end-page: 138 ident: b0110 article-title: Controllable synthesis and visible-light-responsive photocatalytic activity of Bi publication-title: J. Colloid Interface Sci. – volume: 42 start-page: 105107 year: 2009 ident: b0075 article-title: Enhancement emission intensity of CaMoO publication-title: J. Phys. D: Appl. Phys. – volume: 12 start-page: 247 year: 2010 end-page: 250 ident: b0035 article-title: The gas-phase photocatalytic mineralization of benzene over visible-light-driven Bi publication-title: Catal. Commun. – volume: 126 start-page: 298 year: 2012 end-page: 305 ident: b0010 article-title: Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance publication-title: Appl. Catal. B: Environ. – volume: 177 start-page: 1013 year: 2010 end-page: 1018 ident: b0040 article-title: Low-temperature combustion synthesis of Bi publication-title: J. Hazard. Mater. – volume: 95 start-page: 117 year: 2013 end-page: 120 ident: b0045 article-title: Solvothermal synthesis of Bi publication-title: Mater. Lett. – volume: 54 start-page: 211 year: 2011 end-page: 216 ident: b0015 article-title: Influence of surfactants on the morphology and photocatalytic activity of Bi publication-title: Sci. Chin. Chem. – volume: 90 start-page: 107 year: 2013 end-page: 110 ident: b0030 article-title: Photocatalytic activity of snow-like Bi publication-title: Mater. Lett. – volume: 54 start-page: 71 year: 2013 end-page: 77 ident: b0005 article-title: Hydrothermal synthesis of Bi publication-title: Superlatt. Microstr. – volume: 121 start-page: 6 year: 2010 end-page: 9 ident: b0085 article-title: Self-assembly and enhanced optical absorption of Bi publication-title: Mater. Chem. Phys. – volume: 17 start-page: 3537 year: 2005 end-page: 3545 ident: b0130 article-title: Synthesis of square Bi publication-title: Chem. Mater. – volume: 111 start-page: 13109 year: 2007 end-page: 13116 ident: b0125 article-title: Photocatalytic degradation of rhodamine B over Pb publication-title: J. Phys. Chem. C – volume: 125 start-page: 93 year: 2011 end-page: 101 ident: b0025 article-title: Crystallization of nanosized Aurivillius phase Bi publication-title: Mater. Chem. Phys. – reference: Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073–3273, USA, 2001. – volume: 120 start-page: 155 year: 2010 end-page: 159 ident: b0020 article-title: Bi publication-title: Mater. Chem. Phys. – year: 1998 ident: b0055 publication-title: X-ray Diffract., A Pract. Appro. – volume: 114 start-page: 12401 year: 2010 end-page: 12408 ident: b0060 article-title: Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route publication-title: J. Phys. Chem. C – volume: 41 start-page: 1059 year: 2010 end-page: 1066 ident: b0090 article-title: Phonon properties of nanosized bismuth layered ferroelectric material – Bi publication-title: J. Raman Spectrosc. – volume: 1005 start-page: 53 year: 2011 end-page: 58 ident: b0100 article-title: Luthra, Lattice dynamical investigations for Raman and infrared frequencies of Bi publication-title: J. Mol. Struct. – volume: 23 start-page: 405902 year: 2011 ident: b0095 article-title: Temperature-dependent Raman scattering study of cation-deficient Aurivillius phases: Bi publication-title: J. Phys. Condens. Matter. – volume: 40 start-page: 2099 year: 2009 end-page: 2103 ident: b0105 article-title: Raman and IR spectra of the cation-deficient Aurivillius layered crystal Bi publication-title: J. Raman Spectrosc. – volume: 109 start-page: 014308 year: 2011 ident: b0120 article-title: Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles publication-title: J. Appl. Phys. – volume: 180 start-page: 1456 year: 2007 end-page: 1463 ident: b0135 article-title: Bi publication-title: J. Solid State Chem. – volume: 1005 start-page: 53 year: 2011 ident: 10.1016/j.spmi.2013.09.028_b0100 article-title: Luthra, Lattice dynamical investigations for Raman and infrared frequencies of Bi2WO6 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2011.08.017 – ident: 10.1016/j.spmi.2013.09.028_b0050 – volume: 54 start-page: 71 year: 2013 ident: 10.1016/j.spmi.2013.09.028_b0005 article-title: Hydrothermal synthesis of Bi2WO6 hierarchical flowers with their photonic and photocatalytic properties publication-title: Superlatt. Microstr. doi: 10.1016/j.spmi.2012.11.001 – volume: 126 start-page: 298 year: 2012 ident: 10.1016/j.spmi.2013.09.028_b0010 article-title: Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2012.07.002 – volume: 54 start-page: 211 year: 2011 ident: 10.1016/j.spmi.2013.09.028_b0015 article-title: Influence of surfactants on the morphology and photocatalytic activity of Bi2WO6 by hydrothermal synthesis publication-title: Sci. Chin. Chem. doi: 10.1007/s11426-010-4166-x – volume: 12 start-page: 247 year: 2010 ident: 10.1016/j.spmi.2013.09.028_b0035 article-title: The gas-phase photocatalytic mineralization of benzene over visible-light-driven Bi2WO6@C microspheres publication-title: Catal. Commun. doi: 10.1016/j.catcom.2010.09.027 – volume: 121 start-page: 6 year: 2010 ident: 10.1016/j.spmi.2013.09.028_b0085 article-title: Self-assembly and enhanced optical absorption of Bi2WO6 nests via ionic liquid-assisted hydrothermal method publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2010.01.046 – volume: 40 start-page: 2099 year: 2009 ident: 10.1016/j.spmi.2013.09.028_b0105 article-title: Raman and IR spectra of the cation-deficient Aurivillius layered crystal Bi2W2O9 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.2378 – volume: 125 start-page: 93 year: 2011 ident: 10.1016/j.spmi.2013.09.028_b0025 article-title: Crystallization of nanosized Aurivillius phase Bi2W2O9 from amorphous precursor publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2010.08.077 – volume: 120 start-page: 155 year: 2010 ident: 10.1016/j.spmi.2013.09.028_b0020 article-title: Bi2WO6 with significantly enhanced photocatalytic activities by nitrogen doping publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2009.10.039 – volume: 114 start-page: 12401 year: 2010 ident: 10.1016/j.spmi.2013.09.028_b0060 article-title: Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route publication-title: J. Phys. Chem. C doi: 10.1021/jp910263n – volume: 17 start-page: 3537 year: 2005 ident: 10.1016/j.spmi.2013.09.028_b0130 article-title: Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts publication-title: Chem. Mater. doi: 10.1021/cm0501517 – volume: 177 start-page: 1013 year: 2010 ident: 10.1016/j.spmi.2013.09.028_b0040 article-title: Low-temperature combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.01.020 – volume: 41 start-page: 1059 year: 2010 ident: 10.1016/j.spmi.2013.09.028_b0090 article-title: Phonon properties of nanosized bismuth layered ferroelectric material – Bi2WO6 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.2526 – volume: 90 start-page: 107 year: 2013 ident: 10.1016/j.spmi.2013.09.028_b0030 article-title: Photocatalytic activity of snow-like Bi2WO6 microcrystalline for decomposition of Rhodamine B under natural sunlight irradiation publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.09.009 – year: 1998 ident: 10.1016/j.spmi.2013.09.028_b0055 – volume: 14 start-page: 1033 year: 2012 ident: 10.1016/j.spmi.2013.09.028_b0140 article-title: coverage controlled deposition of Au nanoparticles on ZnO nanorods by sonochemical reaction for enhancement of photocatalytic activity publication-title: J. Nanopart. Res. doi: 10.1007/s11051-012-1033-z – volume: 42 start-page: 105107 year: 2009 ident: 10.1016/j.spmi.2013.09.028_b0075 article-title: Enhancement emission intensity of CaMoO4:Eu3+ Na+ phosphor via Bi co-doping and Si substitution for application to white LEDs publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/42/10/105107 – volume: 111 start-page: 13109 year: 2007 ident: 10.1016/j.spmi.2013.09.028_b0125 article-title: Photocatalytic degradation of rhodamine B over Pb3Nb4O13/fumed SiO2 composite under visible light irradiation publication-title: J. Phys. Chem. C doi: 10.1021/jp072752m – volume: 370 start-page: 132 year: 2012 ident: 10.1016/j.spmi.2013.09.028_b0110 article-title: Controllable synthesis and visible-light-responsive photocatalytic activity of Bi2WO6 fluffy microsphere with hierarchical architecture publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.12.056 – volume: 180 start-page: 1456 year: 2007 ident: 10.1016/j.spmi.2013.09.028_b0135 article-title: Bi2WO6 photocatalytic films fabricated by layer-by-layer technique from Bi2WO6 nanoplates and its spectral selectivity publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2007.02.013 – volume: 23 start-page: 405902 year: 2011 ident: 10.1016/j.spmi.2013.09.028_b0095 article-title: Temperature-dependent Raman scattering study of cation-deficient Aurivillius phases: Bi2 WO6 and Bi2W2O9 publication-title: J. Phys. Condens. Matter. doi: 10.1088/0953-8984/23/40/405902 – volume: 95 start-page: 117 year: 2013 ident: 10.1016/j.spmi.2013.09.028_b0045 article-title: Solvothermal synthesis of Bi2WO6 hollow structures with excellent visible-light photocatalytic properties publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.12.058 – volume: 242 start-page: 387 year: 1996 ident: 10.1016/j.spmi.2013.09.028_b0070 article-title: Rationalization of the strength of metal binding to human serum transferrin publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1996.0387r.x – volume: 21 start-page: 1286 year: 2009 ident: 10.1016/j.spmi.2013.09.028_b0115 article-title: Synthesis of porous Bi2WO6 thin films as efficient visible-light-active photocatalysts publication-title: Adv. Mater. doi: 10.1002/adma.200801354 – volume: 27 start-page: 221 year: 2013 ident: 10.1016/j.spmi.2013.09.028_b0065 article-title: Synthesis, characterization and photocatalytic activities of Ag–N-codoped ZnO nanoparticles for degradation of methyl red publication-title: Bull. Chem. Soc. Ethiop. – volume: 178 start-page: 1968 year: 2005 ident: 10.1016/j.spmi.2013.09.028_b0080 article-title: Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2005.04.003 – volume: 109 start-page: 014308 year: 2011 ident: 10.1016/j.spmi.2013.09.028_b0120 article-title: Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles publication-title: J. Appl. Phys. doi: 10.1063/1.3530631 |
SSID | ssj0009417 |
Score | 2.0270076 |
Snippet | •Hierarchical flower-like Bi2WO6 as a semiconductor.•It enables us to synthesize by hydrothermal route.•A promising material for photocatalysis.•In this... In this research, 0-3 mol% Ag doped Bi2WO6 hierarchical multilayered flower-like assemblies were successfully synthesized by a simple hydrothermal method at... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 196 |
SubjectTerms | Ag doped Bi2WO6 Assemblies Hydrothermal method Iron Light irradiation Microstructure Nanostructure Photocatalysis Silver Two dimensional |
Title | Synthesis and characterization of hierarchical multilayered flower-like assemblies of Ag doped Bi2WO6 and their photocatalytic activities |
URI | https://dx.doi.org/10.1016/j.spmi.2013.09.028 https://www.proquest.com/docview/1671592317 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVWRYheKihU_aIyEjcUNmt7neS4rKgWEMuhrNib5fijhG6TqNlW2kvv_GtmnKQIhPbAMZFtWRln5iXzZh4hr-PEpfDaZJHwLoYPFOsjnSNzKgX4obWTwmJG9_Nczhbi43K8HJBpXwuDtMrO97c-PXjr7s6we5rDuiiGFxD8AH5zBMBwMkdLrGAXCZ7yt_e_aR6ZCKq7ODjC0V3hTMvxaurrAuldPPQ6RUX2fwenv9x0iD3nT8leBxrppN3XMzJw5T55Mu212vbJ40DkNM1z8vNiUwKma4qG6tJS89CPuS23pJWnqH4d8gdgHhoIhSu9QclO6leomRatiitHAVS76xwQaoNzJpfUVjUMeVewb19kWDvkGGj9vVpX4SfQBnZHsU7iLnRpfUEW5--_TmdRJ7cQGc75GryxhdAkjDNpzLyPJfOMc8F0qg1PdWpHOYA9wDPeZJk3LveOOcYSCZDDSpHxA7JTVqU7JNTwsZAmQVUsKTzYXHPLvNE8zrWwjh-RUf-clel6kaMkxkr1pLMfCm2j0DYqzhTY5oi8eZhTt504to4e9-ZTf5wnBaFi67xXva0V2BCzJ7p01W2jRjIB6AdwODn-z7VPyC5etWSYU7Kzvrl1LwHSrPOzcGbPyKPJh0-z-S8wNPje |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrVC5ICggytNI3FC0Wdubx3FZUW1puxzair1Zjh8lsE0iskXan8C_ZsZJikCoB66Jx7LyOTNfMuP5AN7Gqcvwtckj6V2MHyjWR7qgyqkM6YfWLpGWMrqny2RxIT-upqsdmA9nYaissvf9nU8P3rq_Mu6f5rgpy_EZBj-k34IIMO7MyeoO7FJ3qukIdmdHx4vl7967Mgjv0viIDPqzM12ZV9tclVThJUK7UxJl_3d8-stTh_Bz-ADu97yRzbqlPYQdV-3D3nyQa9uHu6GW07SP4OfZtkJa15Yt05Vl5qYlc3fiktWekQB2SCEgQizUFK71llQ7mV-TbFq0Lr85hrzaXRVIUluymV0yWzc45H3JP39KwtwhzcCaL_WmDv-Btrg6RkclfoRGrY_h4vDD-XwR9YoLkRFCbNAhW4xO0jiTxdz7OOGeCyG5zrQRmc7spEC-h5TGmzz3xhXeccd5miDrsInMxRMYVXXlngIzYioTk5IwViI9wq6F5d5oERdaWicOYDI8Z2X6duSkirFWQ93ZV0XYKMJGxblCbA7g3Y1N0zXjuHX0dIBP_bGlFEaLW-3eDFgrxJASKLpy9XWrJkmK7A8ZcfrsP-d-DXuL89MTdXK0PH4O9-hOVxvzAkab79fuJTKcTfGq38G_AK_6-48 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+characterization+of+hierarchical+multilayered+flower-like+assemblies+of+Ag+doped+Bi2WO6+and+their+photocatalytic+activities&rft.jtitle=Superlattices+and+microstructures&rft.au=Dumrongrojthanath%2C+Phattharanit&rft.au=Thongtem%2C+Titipun&rft.au=Phuruangrat%2C+Anukorn&rft.au=Thongtem%2C+Somchai&rft.date=2013-12-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=64&rft.spage=196&rft.epage=203&rft_id=info:doi/10.1016%2Fj.spmi.2013.09.028&rft.externalDocID=S074960361300311X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |