Directional assist (0 1 0) plane growth in LiMnPO4 prepared by solvothermal method with polyols to enhance electrochemical performance
[Display omitted] Phosphate material LiMnPO4 is popular for its high energy density (697 W·h·kg−1) and safety. When LiMnPO4 crystal grows, the potential barrier along b and c axis is strong, which makes the crystal grow along b axis to form a one-dimensional chain structure. However, the main migrat...
Saved in:
Published in | Chinese journal of chemical engineering Vol. 36; no. 8; pp. 181 - 189 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2021
School of Chemistry and Chemical Engineering,Guangzhou University,Guangzhou 510006,China%Sunwoda Electronics Co.,Ltd.,Shenzhen 518107,China%GAC Automotive Research & Development Center,Guangzhou 511434,China%School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Phosphate material LiMnPO4 is popular for its high energy density (697 W·h·kg−1) and safety. When LiMnPO4 crystal grows, the potential barrier along b and c axis is strong, which makes the crystal grow along b axis to form a one-dimensional chain structure. However, the main migration channel of lithium ions in olivine structure is plane (0 1 0). By shortening the growth in the direction of b axis and enhancing the diffusion along the directions of a and c, two-dimensional nanosheets that are more conducive to the migration of lithium ions are formed. The dosage of polyols is the key factor guiding the dispersion of the crystals to the (0 1 0) plane. X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and other means are used to characterize the samples. After experiments, we found that when the ratio of polyol/water was 2:1, the morphology of the synthesized sample was 20–30 nm thick nanosheets, which had the best electrochemical performance. At 0.1C, the discharge specific capacity reaches 148.9 mA·h·g−1, still reaches 144.3 mA·h·g−1 at the 50th cycle. and there is still 112.5 mA·h·g−1 under high rate (5C). This is thanks to the good dispersion of the material in the direction of the crystal plane (0 1 0). This can solve the problem of low conductivity and ionic mobility of phosphate materials. |
---|---|
AbstractList | [Display omitted]
Phosphate material LiMnPO4 is popular for its high energy density (697 W·h·kg−1) and safety. When LiMnPO4 crystal grows, the potential barrier along b and c axis is strong, which makes the crystal grow along b axis to form a one-dimensional chain structure. However, the main migration channel of lithium ions in olivine structure is plane (0 1 0). By shortening the growth in the direction of b axis and enhancing the diffusion along the directions of a and c, two-dimensional nanosheets that are more conducive to the migration of lithium ions are formed. The dosage of polyols is the key factor guiding the dispersion of the crystals to the (0 1 0) plane. X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and other means are used to characterize the samples. After experiments, we found that when the ratio of polyol/water was 2:1, the morphology of the synthesized sample was 20–30 nm thick nanosheets, which had the best electrochemical performance. At 0.1C, the discharge specific capacity reaches 148.9 mA·h·g−1, still reaches 144.3 mA·h·g−1 at the 50th cycle. and there is still 112.5 mA·h·g−1 under high rate (5C). This is thanks to the good dispersion of the material in the direction of the crystal plane (0 1 0). This can solve the problem of low conductivity and ionic mobility of phosphate materials. Phosphate material LiMnPO4 is popular for its high energy density (697 W·h·kg-1) and safety.When LiMnPO4 crystal grows,the potential barrier along b and c axis is strong,which makes the crystal grow along b axis to form a one-dimensional chain structure.However,the main migration channel of lithium ions in olivine structure is plane (010).By shortening the growth in the direction ofb axis and enhancing the diffusion along the directions of a and c,two-dimensional nanosheets that are more conducive to the migration of lithium ions are formed.The dosage of polyols is the key factor guiding the dispersion of the crystals to the (010) plane.X-ray diffraction (XRD),Scanning electron microscopy (SEM),transmission electron microscopy (TEM) and other means are used to characterize the samples.After experiments,we found that when the ratio of polyol/water was 2∶1,the morphology of the synthesized sample was 20-30 nm thick nanosheets,which had the best electrochemical performance.At 0.1C,the discharge specific capacity reaches 148.9 mA·h·g-1,still reaches 144.3 mA·h·g-1 at the 50th cycle,and there is still 112.5 mA·h·g-1 under high rate (5C).This is thanks to the good dispersion of the material in the direction of the crystal plane (010).This can solve the problem of low conductivity and ionic mobility of phosphate materials. |
Author | Zhu, Jihua Wang, Yali Xie, Qian Chen, Shengzhou Wang, Chengyun Fang, Kaibin Liu, Quanbing Yang, Wei |
AuthorAffiliation | School of Chemistry and Chemical Engineering,Guangzhou University,Guangzhou 510006,China%Sunwoda Electronics Co.,Ltd.,Shenzhen 518107,China%GAC Automotive Research & Development Center,Guangzhou 511434,China%School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,China |
AuthorAffiliation_xml | – name: School of Chemistry and Chemical Engineering,Guangzhou University,Guangzhou 510006,China%Sunwoda Electronics Co.,Ltd.,Shenzhen 518107,China%GAC Automotive Research & Development Center,Guangzhou 511434,China%School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,China |
Author_xml | – sequence: 1 givenname: Qian surname: Xie fullname: Xie, Qian organization: School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China – sequence: 2 givenname: Jihua surname: Zhu fullname: Zhu, Jihua organization: Sunwoda Electronics Co., Ltd., Shenzhen 518107, China – sequence: 3 givenname: Chengyun surname: Wang fullname: Wang, Chengyun organization: GAC Automotive Research & Development Center, Guangzhou 511434, China – sequence: 4 givenname: Kaibin surname: Fang fullname: Fang, Kaibin organization: School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China – sequence: 5 givenname: Wei surname: Yang fullname: Yang, Wei email: wyang@gzhu.edu.cn organization: School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China – sequence: 6 givenname: Quanbing surname: Liu fullname: Liu, Quanbing email: liuqb@gdut.edu.cn organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China – sequence: 7 givenname: Yali surname: Wang fullname: Wang, Yali organization: School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China – sequence: 8 givenname: Shengzhou surname: Chen fullname: Chen, Shengzhou organization: School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China |
BookMark | eNqFkcFO3DAQhq0KpC7QJ-jFFyR6yNaO0zg5cKhoKUiL6KGVerO8zpg4ytqRbVjtG_AYPAtP1gnbUw9wsCyN_3_mn89H5MAHD4R85GzJGa8_D0szmB6WJSvnypKV8h1ZlCVnhSj5nwOy4IxVRful4u_JUUoDQ2HDmwV5_OYimOyC1yPVKbmU6Rl7fuLPT-wTnUbtgd7FsM09dZ6u3I3_eVvRKcKkI3R0vaMpjA8h9xA32GEDuQ8d3TrUT2HchTHRHCj4XnsDFEacFQNG3TiD8gmiDWjEtxNyaPWY4MO_-5j8vvz-6-KqWN3-uL74uiqMECIXApNLXum1NLh4Y9taNA0ztYbKCguNlJVpZbluJWtqYevWVrLr8GgttJZGHJPTfd-t9lb7OzWE-4jLJ4UIAQFy1iAc1LV7nYkhpQhWGZf1DCpH7UbFmZrRq0G9oFcz-rmI8dAr_vNO0W103L3hOt-7ANd_cBBVMg4QTffyRaoL7lX_X3nOoxo |
CitedBy_id | crossref_primary_10_1016_j_mtener_2022_101162 crossref_primary_10_1021_acs_iecr_1c04639 crossref_primary_10_1016_j_est_2024_112378 crossref_primary_10_1016_j_jpowsour_2024_236082 crossref_primary_10_1002_tcr_202200128 crossref_primary_10_1016_j_jallcom_2024_175853 crossref_primary_10_1016_j_ensm_2024_103722 crossref_primary_10_1016_j_ssi_2023_116274 crossref_primary_10_1016_j_mseb_2023_117032 crossref_primary_10_1016_j_ensm_2023_103125 crossref_primary_10_1002_aenm_202302893 crossref_primary_10_1016_j_jpowsour_2025_236747 |
Cites_doi | 10.1007/s11581-020-03654-x 10.1039/C5CE01253H 10.1016/j.jallcom.2018.10.161 10.1039/c2ta01393b 10.1016/j.ceramint.2019.05.336 10.1016/j.ceramint.2016.02.116 10.1016/j.jpowsour.2012.11.093 10.1016/j.electacta.2011.01.079 10.1039/C9CE01387C 10.1039/C3CE41567H 10.1016/S0040-6090(02)00480-7 10.1016/j.electacta.2018.09.095 10.1038/35104644 10.1039/C3TA14010E 10.1016/j.electacta.2012.09.106 10.1016/j.electacta.2015.05.105 10.1039/C6CE00336B 10.1002/aenm.201802847 10.1016/j.jcrysgro.2009.01.090 10.1039/c2jm30821e 10.1021/acssuschemeng.8b02868 10.1002/adma.200400998 10.1039/b716916g 10.1016/j.carbon.2019.11.067 10.1016/j.jpowsour.2007.09.102 10.1149/2.0401902jes 10.1021/cm203095d 10.1021/acsami.7b17597 10.1039/C7RA01396E 10.1039/C4TA01365D 10.1016/j.jcrysgro.2010.10.029 10.1016/j.jmst.2018.04.017 10.1016/j.jpowsour.2013.12.010 10.1021/acs.inorgchem.9b03545 10.1016/j.jelechem.2018.10.062 10.1016/j.ssi.2007.10.015 10.1016/S0022-0248(01)02130-3 10.1002/ejic.201701270 10.1016/j.electacta.2014.12.012 10.1107/S090744490804362X 10.1039/c2ce25094b 10.1039/C1JM13547C |
ContentType | Journal Article |
Copyright | 2020 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2020 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/j.cjche.2020.10.027 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2210-321X |
EndPage | 189 |
ExternalDocumentID | cjce202108020 10_1016_j_cjche_2020_10_027 S1004954120306431 |
GrantInformation_xml | – fundername: (The authors gratefully acknowledge the financial support from Natural Science Foundation of Guangdong Province); (Key Research and Development Program of Guangdong Province ); (and Pearl River Science and Technology New Star Project ) funderid: (The authors gratefully acknowledge the financial support from Natural Science Foundation of Guangdong Province); (Key Research and Development Program of Guangdong Province ); (and Pearl River Science and Technology New Star Project ) |
GroupedDBID | --K --M .~1 0R~ 188 1B1 1~. 1~5 29B 2B. 2C0 4.4 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 8RM 92H 92I 92R 93N AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CCEZO CDRFL CHBEP CS3 CW9 DU5 EBS EFJIC EFLBG EJD ENUVR EO9 EP2 EP3 FA0 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL SDC SDF SDG SDH SES SPC SPCBC SSG SSZ T5K TCJ TGT UGNYK ~G- -SB -S~ AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CAJEB CITATION Q-- SSH U1G U5L 4A8 PSX |
ID | FETCH-LOGICAL-c333t-3002714ab7c0168f963880c6ae4f3fe8774c972b970863f69f47dd47daa3aa7c3 |
IEDL.DBID | .~1 |
ISSN | 1004-9541 |
IngestDate | Thu May 29 04:04:47 EDT 2025 Tue Jul 01 02:57:20 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Fri Feb 23 02:44:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | LMnPO4 Lithium-ion battery Polyols Phosphate material Crystal |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-3002714ab7c0168f963880c6ae4f3fe8774c972b970863f69f47dd47daa3aa7c3 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_cjce202108020 crossref_citationtrail_10_1016_j_cjche_2020_10_027 crossref_primary_10_1016_j_cjche_2020_10_027 elsevier_sciencedirect_doi_10_1016_j_cjche_2020_10_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese journal of chemical engineering |
PublicationTitle_FL | Chinese Journal of Chemical Engineering |
PublicationYear | 2021 |
Publisher | Elsevier B.V School of Chemistry and Chemical Engineering,Guangzhou University,Guangzhou 510006,China%Sunwoda Electronics Co.,Ltd.,Shenzhen 518107,China%GAC Automotive Research & Development Center,Guangzhou 511434,China%School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,China |
Publisher_xml | – name: Elsevier B.V – name: School of Chemistry and Chemical Engineering,Guangzhou University,Guangzhou 510006,China%Sunwoda Electronics Co.,Ltd.,Shenzhen 518107,China%GAC Automotive Research & Development Center,Guangzhou 511434,China%School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,China |
References | Li, Luo, Ding, Wang, He (b0055) 2018; 10 Spek (b0090) 2009; 65 Zhu, Wu, Xie, Chen, Tu, Cao, Zhao (b0125) 2018; 34 Guo, Wu, Xie, Zhang, Cao, Zhao (b0135) 2014; 2 Tarascon, Armand (b0025) 2001; 414 Xu, Yang, Li, Li, Wang, Bao, Li, Shen, Han (b0165) 2016; 18 Liu, Liu, Huang, Yu (b0100) 2013; 229 Su, Liu, Long, Yao, Lv, Wen (b0105) 2015; 173 Wang, Wang, Liu, Zhu, Wang (b0115) 2017; 7 Fang, Li, Yang, Yan, Li (b0130) 2008; 9 Ji, Yang, Ni, Roy, Pinto, Jiang (b0140) 2011; 56 Xu, Ren, Du, Weng, Shen, Han (b0190) 2005; 17 Qin, Zhou, Xia, Tang, Liu (b0210) 2012; 22 Chen, Vacchio, Wang, Chernova, Zavalij, Whittingham (b0010) 2008; 178 Luo, Sun, Bao, Li, Zhang, Yi (b0075) 2019; 832 Yang, Wang, Duh (b0085) 2018; 6 Pivko, Bele, Tchernychova, Logar, Dominko, Gaberscek (b0020) 2012; 24 Li, Ding, Li, Xie, Qian (b0200) 2002; 236 Liang, Sun, Zhang, Hou, Sun, Liu, Wang, Yuan (b0070) 2019; 9 El Khalfaouy, Addaou, Laajeb, Lahsini (b0045) 2019; 775 Wizent, Behr, Löser, Büchner, Klingeler (b0155) 2011; 318 El Khalfaouy, Turan, Dermenci, Savaci, Addaou, Laajeb, Lahsini (b0050) 2019; 45 Gnewuch, Rodriguez (b0175) 2020; 59 Zhang, Shan, Zhu, Liu, Liu, Tian (b0215) 2015; 153 Li, Luo, Wang, Yan, Feng, Liu, Ding, He (b0065) 2018; 289 Li, Luo, Wang, Yan, Feng, Ding, He, Zong (b0060) 2019; 166 Hong, Tang, Quan, Wang, Zhang (b0110) 2016; 42 Herrera, Camacho-Montes, Fuentes, Álvarez-Contreras (b0030) 2015; 3 Li, Ding, Li, Xie, Qian (b0195) 2002; 414 Shang, Wang, Mei, Hui, Liu (b0185) 2012; 22 Wizent, Behr, Lipps, Hellmann, Klingeler, Kataev, Löser, Sato, Büchner (b0150) 2009; 311 Bao, Xu, Wang, Zong, Li, Zhao, Zhou, Shen, Han (b0170) 2015; 17 Nie, Shen, Zhang, Chen, Deng, Zhang (b0145) 2012; 14 Zhou, Zhu, Fu, Chen, Sun, Wong (b0160) 2014; 16 Ye, Wang, He, Fang, Dai, Wang, Huang, Lian, Wang, Tian, Ouyang (b0120) 2014; 253 Aravindan, Gnanaraj, Lee, Madhavi (b0005) 2013; 1 Pan, Xu, Hong, Fang, Zhen (b0095) 2013; 87 Chang, Luo, Li, Lang, San, Liu, Li (b0040) 2020; 26 Bao, Chen, Xu, Yang, Ji (b0205) 2018; 2018 Yang, Fu, Sun, Wang, Liu (b0080) 2020; 158 Pan, Gao, Liu, Xie, Yuan, Xiao (b0180) 2019; 21 Zhang, Qu, Zhang, Li, Zheng (b0035) 2014; 2 Doh, Kim, Kim, Shin, Jeong, Moon, Jin, Eom, Kim, Kim, Oh, Veluchamy (b0015) 2008; 175 Chen (10.1016/j.cjche.2020.10.027_b0010) 2008; 178 Tarascon (10.1016/j.cjche.2020.10.027_b0025) 2001; 414 Qin (10.1016/j.cjche.2020.10.027_b0210) 2012; 22 Li (10.1016/j.cjche.2020.10.027_b0195) 2002; 414 Li (10.1016/j.cjche.2020.10.027_b0060) 2019; 166 Li (10.1016/j.cjche.2020.10.027_b0065) 2018; 289 Su (10.1016/j.cjche.2020.10.027_b0105) 2015; 173 Pivko (10.1016/j.cjche.2020.10.027_b0020) 2012; 24 Shang (10.1016/j.cjche.2020.10.027_b0185) 2012; 22 Doh (10.1016/j.cjche.2020.10.027_b0015) 2008; 175 Zhou (10.1016/j.cjche.2020.10.027_b0160) 2014; 16 Yang (10.1016/j.cjche.2020.10.027_b0080) 2020; 158 Gnewuch (10.1016/j.cjche.2020.10.027_b0175) 2020; 59 Spek (10.1016/j.cjche.2020.10.027_b0090) 2009; 65 Wang (10.1016/j.cjche.2020.10.027_b0115) 2017; 7 Zhu (10.1016/j.cjche.2020.10.027_b0125) 2018; 34 Bao (10.1016/j.cjche.2020.10.027_b0205) 2018; 2018 Chang (10.1016/j.cjche.2020.10.027_b0040) 2020; 26 Hong (10.1016/j.cjche.2020.10.027_b0110) 2016; 42 Nie (10.1016/j.cjche.2020.10.027_b0145) 2012; 14 Li (10.1016/j.cjche.2020.10.027_b0055) 2018; 10 Pan (10.1016/j.cjche.2020.10.027_b0180) 2019; 21 El Khalfaouy (10.1016/j.cjche.2020.10.027_b0050) 2019; 45 Wizent (10.1016/j.cjche.2020.10.027_b0150) 2009; 311 Luo (10.1016/j.cjche.2020.10.027_b0075) 2019; 832 Fang (10.1016/j.cjche.2020.10.027_b0130) 2008; 9 Guo (10.1016/j.cjche.2020.10.027_b0135) 2014; 2 Pan (10.1016/j.cjche.2020.10.027_b0095) 2013; 87 Yang (10.1016/j.cjche.2020.10.027_b0085) 2018; 6 Ji (10.1016/j.cjche.2020.10.027_b0140) 2011; 56 Wizent (10.1016/j.cjche.2020.10.027_b0155) 2011; 318 Bao (10.1016/j.cjche.2020.10.027_b0170) 2015; 17 El Khalfaouy (10.1016/j.cjche.2020.10.027_b0045) 2019; 775 Xu (10.1016/j.cjche.2020.10.027_b0190) 2005; 17 Li (10.1016/j.cjche.2020.10.027_b0200) 2002; 236 Zhang (10.1016/j.cjche.2020.10.027_b0215) 2015; 153 Xu (10.1016/j.cjche.2020.10.027_b0165) 2016; 18 Liang (10.1016/j.cjche.2020.10.027_b0070) 2019; 9 Aravindan (10.1016/j.cjche.2020.10.027_b0005) 2013; 1 Zhang (10.1016/j.cjche.2020.10.027_b0035) 2014; 2 Liu (10.1016/j.cjche.2020.10.027_b0100) 2013; 229 Herrera (10.1016/j.cjche.2020.10.027_b0030) 2015; 3 Ye (10.1016/j.cjche.2020.10.027_b0120) 2014; 253 |
References_xml | – volume: 9 start-page: 1118 year: 2008 end-page: 1120 ident: b0130 article-title: Carbonate anions controlled morphological evolution of LiMnPO publication-title: Chem. Commun. (Camb.) – volume: 832 start-page: 196 year: 2019 end-page: 203 ident: b0075 article-title: Synthesis of Er-doped LiMnPO publication-title: J. Electroanal. Chem. – volume: 42 start-page: 8769 year: 2016 end-page: 8778 ident: b0110 article-title: Controllable synthesis of LiMnPO publication-title: Ceram. Int. – volume: 175 start-page: 881 year: 2008 end-page: 885 ident: b0015 article-title: Thermal and electrochemical behaviour of C/Li publication-title: J. Power Sources – volume: 17 year: 2005 ident: b0190 article-title: Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr publication-title: Adv. Mater. – volume: 16 start-page: 766 year: 2014 end-page: 774 ident: b0160 article-title: Comparative study of LiMnPO publication-title: CrystEngComm – volume: 14 start-page: 4284 year: 2012 end-page: 4288 ident: b0145 article-title: Flower-like LiMnPO publication-title: CrystEngComm – volume: 318 start-page: 995 year: 2011 end-page: 999 ident: b0155 article-title: Challenges in the crystal growth of Li publication-title: J. Cryst. Growth – volume: 173 start-page: 559 year: 2015 end-page: 565 ident: b0105 article-title: Enhanced electrochemical performance of LiMnPO publication-title: Electrochim. Acta – volume: 236 start-page: 357 year: 2002 end-page: 362 ident: b0200 article-title: Solvothermal growth of vaterite in the presence of ethylene glycol, 1,2-propanediol and glycerin publication-title: J. Cryst. Growth – volume: 2018 start-page: 1533 year: 2018 end-page: 1539 ident: b0205 article-title: Hydrothermal synthesis of monodispersed LiMnPO publication-title: Eur. J. Inorg. Chem. – volume: 17 start-page: 6399 year: 2015 end-page: 6405 ident: b0170 article-title: Hydrothermal synthesis of flower-like LiMnPO publication-title: CrystEngComm – volume: 65 start-page: 148 year: 2009 end-page: 155 ident: b0090 article-title: Structure validation in chemical crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 289 start-page: 415 year: 2018 end-page: 421 ident: b0065 article-title: Facile synthesis of carbon-LiMnPO publication-title: Electrochim. Acta – volume: 18 start-page: 3282 year: 2016 end-page: 3288 ident: b0165 article-title: Ethylene glycol (EG) solvothermal synthesis of flower-like LiMnPO publication-title: CrystEngComm – volume: 2 start-page: 711 year: 2014 end-page: 719 ident: b0035 article-title: Confined synthesis of hierarchical structured LiMnPO publication-title: J. Mater. Chem. A – volume: 9 start-page: 1802847 year: 2019 ident: b0070 article-title: In situ synthesis of hierarchical core double-shell Ti-doped LiMnPO publication-title: Adv. Energy Mater. – volume: 22 start-page: 21144 year: 2012 end-page: 21153 ident: b0210 article-title: Morphology controlled synthesis and modification of high-performance LiMnPO publication-title: J. Mater. Chem. – volume: 153 start-page: 385 year: 2015 end-page: 392 ident: b0215 article-title: LiMnPO publication-title: Electrochim. Acta – volume: 59 start-page: 5883 year: 2020 end-page: 5895 ident: b0175 article-title: Distinguishing the intrinsic antiferromagnetism in polycrystalline LiCoPO publication-title: Inorg. Chem. – volume: 45 start-page: 17688 year: 2019 end-page: 17695 ident: b0050 article-title: Nickel-substituted LiMnPO publication-title: Ceram. Int. – volume: 2 start-page: 10581 year: 2014 end-page: 10588 ident: b0135 article-title: Controllable synthesis of high-performance LiMnPO publication-title: J. Mater. Chem. A – volume: 1 start-page: 3518 year: 2013 end-page: 3539 ident: b0005 article-title: LiMnPO4 – a next generation cathode material for lithium-ion batteries publication-title: J. Mater. Chem. A – volume: 229 start-page: 203 year: 2013 end-page: 209 ident: b0100 article-title: Synthesis of nano-sized LiMnPO publication-title: J. Power Sources – volume: 775 start-page: 836 year: 2019 end-page: 844 ident: b0045 article-title: Synthesis and characterization of Na-substituted LiMnPO publication-title: J. Alloy. Compd. – volume: 10 start-page: 10786 year: 2018 end-page: 10795 ident: b0055 article-title: Three-dimensional honeycomb-structural LiAlO publication-title: ACS Appl Mater Interfaces – volume: 87 start-page: 303 year: 2013 end-page: 308 ident: b0095 article-title: Hydrothermal synthesis of well-dispersed LiMnPO publication-title: Electrochim. Acta – volume: 34 start-page: 1544 year: 2018 end-page: 1549 ident: b0125 article-title: Solvothermal-assisted morphology evolution of nanostructured LiMnPO publication-title: J. Mater. Sci. Technol. – volume: 6 start-page: 13302 year: 2018 end-page: 13311 ident: b0085 article-title: Developing a diamine-assisted polymerization method to synthesize nano-LiMnPO publication-title: ACS Sustain. Chem. Eng. – volume: 253 start-page: 143 year: 2014 end-page: 149 ident: b0120 article-title: Solvothermal synthesis of nano LiMn publication-title: J. Power Sources – volume: 24 start-page: 1041 year: 2012 end-page: 1047 ident: b0020 article-title: Synthesis of nanometric LiMnPO publication-title: Chem. Mater. – volume: 22 start-page: 1142 year: 2012 end-page: 1149 ident: b0185 article-title: Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO publication-title: J. Mater. Chem. – volume: 311 start-page: 1273 year: 2009 end-page: 1277 ident: b0150 article-title: Single-crystal growth of LiMnPO publication-title: J. Cryst. Growth – volume: 178 start-page: 1676 year: 2008 end-page: 1693 ident: b0010 article-title: The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications publication-title: Solid State Ionics – volume: 414 start-page: 359 year: 2001 end-page: 367 ident: b0025 article-title: Issues and challenges facing rechargeable lithium batteries publication-title: Nature – volume: 414 start-page: 180 year: 2002 end-page: 183 ident: b0195 article-title: Solvothermal deposition of vaterite thin film on glass substrate publication-title: Thin Solid Films – volume: 166 start-page: A118 year: 2019 end-page: A124 ident: b0060 article-title: Facile fabrication of hierarchical LiMnPO publication-title: J. Electrochem. Soc. – volume: 21 start-page: 7217 year: 2019 end-page: 7223 ident: b0180 article-title: Controllable fabrication of LiMnPO publication-title: CrystEngComm – volume: 3 start-page: 54 year: 2015 end-page: 64 ident: b0030 article-title: LiMnPO publication-title: J. Mater. Sci. Chem. Eng. – volume: 56 start-page: 3093 year: 2011 end-page: 3100 ident: b0140 article-title: General synthesis and morphology control of LiMnPO publication-title: Electrochim. Acta – volume: 26 start-page: 4977 year: 2020 end-page: 4983 ident: b0040 article-title: Enhanced electrochemical performance of LiAlO publication-title: Ionics – volume: 158 start-page: 102 year: 2020 end-page: 109 ident: b0080 article-title: Fe-doped LiMnPO publication-title: Carbon – volume: 7 start-page: 14354 year: 2017 end-page: 14359 ident: b0115 article-title: Solvothermal synthesis of LiFe publication-title: RSC Adv. – volume: 26 start-page: 4977 year: 2020 ident: 10.1016/j.cjche.2020.10.027_b0040 article-title: Enhanced electrochemical performance of LiAlO2-LiMnPO4/C composite using LiAlO2 from AAO synthesis by hydrothermal rout publication-title: Ionics doi: 10.1007/s11581-020-03654-x – volume: 17 start-page: 6399 issue: 33 year: 2015 ident: 10.1016/j.cjche.2020.10.027_b0170 article-title: Hydrothermal synthesis of flower-like LiMnPO4 nanostructures self-assembled with (010) nanosheets and their application in Li-ion batteries publication-title: CrystEngComm doi: 10.1039/C5CE01253H – volume: 775 start-page: 836 issue: 15 year: 2019 ident: 10.1016/j.cjche.2020.10.027_b0045 article-title: Synthesis and characterization of Na-substituted LiMnPO4 as a cathode material for improved lithium ion batteries publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.10.161 – volume: 1 start-page: 3518 issue: 11 year: 2013 ident: 10.1016/j.cjche.2020.10.027_b0005 article-title: LiMnPO4 – a next generation cathode material for lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/c2ta01393b – volume: 45 start-page: 17688 issue: 14 year: 2019 ident: 10.1016/j.cjche.2020.10.027_b0050 article-title: Nickel-substituted LiMnPO4/C olivine cathode material: Combustion synthesis, characterization and electrochemical performances publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.05.336 – volume: 42 start-page: 8769 issue: 7 year: 2016 ident: 10.1016/j.cjche.2020.10.027_b0110 article-title: Controllable synthesis of LiMnPO4 nanocrystals: morphology evolution and their size-dependent electrochemical properties publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.02.116 – volume: 229 start-page: 203 year: 2013 ident: 10.1016/j.cjche.2020.10.027_b0100 article-title: Synthesis of nano-sized LiMnPO4 and in situ carbon coating using a solvothermal method publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.11.093 – volume: 56 start-page: 3093 issue: 9 year: 2011 ident: 10.1016/j.cjche.2020.10.027_b0140 article-title: General synthesis and morphology control of LiMnPO4 nanocrystals via microwave-hydrothermal route publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.01.079 – volume: 21 start-page: 7217 issue: 47 year: 2019 ident: 10.1016/j.cjche.2020.10.027_b0180 article-title: Controllable fabrication of LiMnPO4 microspheres assembled by radially arranged nanoplates with highly exposed (010) facets for an enhanced electrochemical performance publication-title: CrystEngComm doi: 10.1039/C9CE01387C – volume: 16 start-page: 766 issue: 5 year: 2014 ident: 10.1016/j.cjche.2020.10.027_b0160 article-title: Comparative study of LiMnPO4 cathode materials synthesized by solvothermal methods using different manganese salts publication-title: CrystEngComm doi: 10.1039/C3CE41567H – volume: 414 start-page: 180 issue: 2 year: 2002 ident: 10.1016/j.cjche.2020.10.027_b0195 article-title: Solvothermal deposition of vaterite thin film on glass substrate publication-title: Thin Solid Films doi: 10.1016/S0040-6090(02)00480-7 – volume: 289 start-page: 415 issue: 1 year: 2018 ident: 10.1016/j.cjche.2020.10.027_b0065 article-title: Facile synthesis of carbon-LiMnPO4 nanorods with hierarchical architecture as a cathode for high-performance Li-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.09.095 – volume: 414 start-page: 359 issue: 6861 year: 2001 ident: 10.1016/j.cjche.2020.10.027_b0025 article-title: Issues and challenges facing rechargeable lithium batteries publication-title: Nature doi: 10.1038/35104644 – volume: 2 start-page: 711 issue: 3 year: 2014 ident: 10.1016/j.cjche.2020.10.027_b0035 article-title: Confined synthesis of hierarchical structured LiMnPO4/C granules by a facile surfactant-assisted solid-state method for high-performance lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14010E – volume: 87 start-page: 303 year: 2013 ident: 10.1016/j.cjche.2020.10.027_b0095 article-title: Hydrothermal synthesis of well-dispersed LiMnPO4 plates for lithium ion batteries cathode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.09.106 – volume: 173 start-page: 559 year: 2015 ident: 10.1016/j.cjche.2020.10.027_b0105 article-title: Enhanced electrochemical performance of LiMnPO4/C prepared by microwave-assisted solvothermal method publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.05.105 – volume: 18 start-page: 3282 issue: 18 year: 2016 ident: 10.1016/j.cjche.2020.10.027_b0165 article-title: Ethylene glycol (EG) solvothermal synthesis of flower-like LiMnPO4nanostructures self-assembled with (010) nanobelts for Li-ion battery positive cathodes publication-title: CrystEngComm doi: 10.1039/C6CE00336B – volume: 9 start-page: 1802847 issue: 11 year: 2019 ident: 10.1016/j.cjche.2020.10.027_b0070 article-title: In situ synthesis of hierarchical core double-shell Ti-doped LiMnPO4@NaTi2(PO4)3@C/3D graphene cathode with high-rate capability and long cycle life for lithium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802847 – volume: 311 start-page: 1273 issue: 5 year: 2009 ident: 10.1016/j.cjche.2020.10.027_b0150 article-title: Single-crystal growth of LiMnPO4 by the floating-zone method publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2009.01.090 – volume: 22 start-page: 21144 issue: 39 year: 2012 ident: 10.1016/j.cjche.2020.10.027_b0210 article-title: Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries publication-title: J. Mater. Chem. doi: 10.1039/c2jm30821e – volume: 6 start-page: 13302 issue: 10 year: 2018 ident: 10.1016/j.cjche.2020.10.027_b0085 article-title: Developing a diamine-assisted polymerization method to synthesize nano-LiMnPO4 with N-doped carbon from polyamides for high-performance Li-Ion batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02868 – volume: 17 issue: 7 year: 2005 ident: 10.1016/j.cjche.2020.10.027_b0190 article-title: Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3 nanowires publication-title: Adv. Mater. doi: 10.1002/adma.200400998 – volume: 9 start-page: 1118 year: 2008 ident: 10.1016/j.cjche.2020.10.027_b0130 article-title: Carbonate anions controlled morphological evolution of LiMnPO4 crystals publication-title: Chem. Commun. (Camb.) doi: 10.1039/b716916g – volume: 158 start-page: 102 year: 2020 ident: 10.1016/j.cjche.2020.10.027_b0080 article-title: Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient publication-title: Carbon doi: 10.1016/j.carbon.2019.11.067 – volume: 175 start-page: 881 issue: 2 year: 2008 ident: 10.1016/j.cjche.2020.10.027_b0015 article-title: Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.09.102 – volume: 166 start-page: A118 issue: 2 year: 2019 ident: 10.1016/j.cjche.2020.10.027_b0060 article-title: Facile fabrication of hierarchical LiMnPO4 microspheres for high-performance lithium-ion batteries cathode publication-title: J. Electrochem. Soc. doi: 10.1149/2.0401902jes – volume: 24 start-page: 1041 issue: 6 year: 2012 ident: 10.1016/j.cjche.2020.10.027_b0020 article-title: Synthesis of nanometric LiMnPO4 via a two-step technique publication-title: Chem. Mater. doi: 10.1021/cm203095d – volume: 10 start-page: 10786 issue: 13 year: 2018 ident: 10.1016/j.cjche.2020.10.027_b0055 article-title: Three-dimensional honeycomb-structural LiAlO2-modified LiMnPO4 composite with superior high rate capability as Li-ion battery cathodes publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b17597 – volume: 7 start-page: 14354 issue: 24 year: 2017 ident: 10.1016/j.cjche.2020.10.027_b0115 article-title: Solvothermal synthesis of LiFe1/3Mn1/3Co1/3PO4 solid solution as lithium storage cathode materials publication-title: RSC Adv. doi: 10.1039/C7RA01396E – volume: 2 start-page: 10581 issue: 27 year: 2014 ident: 10.1016/j.cjche.2020.10.027_b0135 article-title: Controllable synthesis of high-performance LiMnPO4 nanocrystals by a facile one-spot solvothermal process publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01365D – volume: 318 start-page: 995 issue: 1 year: 2011 ident: 10.1016/j.cjche.2020.10.027_b0155 article-title: Challenges in the crystal growth of Li2CuO2 and LiMnPO4 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2010.10.029 – volume: 34 start-page: 1544 issue: 9 year: 2018 ident: 10.1016/j.cjche.2020.10.027_b0125 article-title: Solvothermal-assisted morphology evolution of nanostructured LiMnPO4 as high-performance lithium-ion batteries cathode publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2018.04.017 – volume: 253 start-page: 143 year: 2014 ident: 10.1016/j.cjche.2020.10.027_b0120 article-title: Solvothermal synthesis of nano LiMn0.9Fe0.1PO4: Reaction mechanism and electrochemical properties publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.12.010 – volume: 59 start-page: 5883 issue: 9 year: 2020 ident: 10.1016/j.cjche.2020.10.027_b0175 article-title: Distinguishing the intrinsic antiferromagnetism in polycrystalline LiCoPO4 and LiMnPO4 olivines publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b03545 – volume: 832 start-page: 196 year: 2019 ident: 10.1016/j.cjche.2020.10.027_b0075 article-title: Synthesis of Er-doped LiMnPO4/C by a sol-assisted hydrothermal process with superior rate capability publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2018.10.062 – volume: 178 start-page: 1676 issue: 31–32 year: 2008 ident: 10.1016/j.cjche.2020.10.027_b0010 article-title: The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications publication-title: Solid State Ionics doi: 10.1016/j.ssi.2007.10.015 – volume: 236 start-page: 357 issue: 1–3 year: 2002 ident: 10.1016/j.cjche.2020.10.027_b0200 article-title: Solvothermal growth of vaterite in the presence of ethylene glycol, 1,2-propanediol and glycerin publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(01)02130-3 – volume: 2018 start-page: 1533 issue: 13 year: 2018 ident: 10.1016/j.cjche.2020.10.027_b0205 article-title: Hydrothermal synthesis of monodispersed LiMnPO4 (010) nanobelts and [001] nanorods and their applications in lithium-Ion batteries publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201701270 – volume: 153 start-page: 385 year: 2015 ident: 10.1016/j.cjche.2020.10.027_b0215 article-title: LiMnPO4 nanoplates grown via a facile surfactant-mediated solvothermal reaction for high-performance Li-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.12.012 – volume: 3 start-page: 54 issue: 5 year: 2015 ident: 10.1016/j.cjche.2020.10.027_b0030 article-title: LiMnPO4: Review on synthesis and electrochemical properties publication-title: J. Mater. Sci. Chem. Eng. – volume: 65 start-page: 148 issue: Pt 2 year: 2009 ident: 10.1016/j.cjche.2020.10.027_b0090 article-title: Structure validation in chemical crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S090744490804362X – volume: 14 start-page: 4284 issue: 13 year: 2012 ident: 10.1016/j.cjche.2020.10.027_b0145 article-title: Flower-like LiMnPO4 hierarchical microstructures assembled from single-crystalline nanosheets for lithium-ion batteries publication-title: CrystEngComm doi: 10.1039/c2ce25094b – volume: 22 start-page: 1142 issue: 3 year: 2012 ident: 10.1016/j.cjche.2020.10.027_b0185 article-title: Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4(M = Mn, Fe Co, and Ni): a comparative first-principles study publication-title: J. Mater. Chem. doi: 10.1039/C1JM13547C |
SSID | ssj0020818 |
Score | 2.3165672 |
Snippet | [Display omitted]
Phosphate material LiMnPO4 is popular for its high energy density (697 W·h·kg−1) and safety. When LiMnPO4 crystal grows, the potential... Phosphate material LiMnPO4 is popular for its high energy density (697 W·h·kg-1) and safety.When LiMnPO4 crystal grows,the potential barrier along b and c axis... |
SourceID | wanfang crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 181 |
SubjectTerms | Crystal Lithium-ion battery LMnPO4 Phosphate material Polyols |
Title | Directional assist (0 1 0) plane growth in LiMnPO4 prepared by solvothermal method with polyols to enhance electrochemical performance |
URI | https://dx.doi.org/10.1016/j.cjche.2020.10.027 https://d.wanfangdata.com.cn/periodical/cjce202108020 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQFRI9VOUlaMtqDhyKRFjH8eZxRAi0PIsESNyiiZPAom02grQVl577M_gt_DJmHIeHhDj0kIs1tqyZ8fibeB5CrOXGVwwbvEGoS09nGHpoZOQhuUAJ4kDlNj366Dgcnuv9i8HFlNjucmE4rNLZ_tamW2vtRvqOm_16NOqfcq2zZKB9xbBX21xqrSPW8s2_T2Eeiku22RdPqT2m7ioP2Rgvc02cISdR8cim5NYyb99OM3-wKrG6fHH37H4WnxxohK12X3NiqqjmxccXpQQXxD9nuxhYAwFikh58lw_3_sO9XIeaQ1rhklzu5gpGFRyOjqqTHxrqm8JGoEN2B6SEv2061k9aoW0sDfyXFurJ-G4yvoVmAkV1xVoCrnmOcdUGoH5OP1gU57s7Z9tDz3VZ8EwQBI0XsGfqa8wiQ0yJSz6RsTQhFroMyiImfGiSSGVJRN5PUIZJqaM8pw8xQIxMsCSmq0lVLAvIjPFzGRsZYqS1MpgRgGAXKESUEvMVoTrupsaVIOdOGOO0izW7Tq1IUhYJD9LWVsTG06S6rcDxPnnYiS19pUgp3RHvT-w5IafuGN8yUaHYK46J7sv_rvxVzPIibdjgNzHd3PwqVgnKNFnP6mpPfNjaOxgePwLLRfRw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELbQIkQ5VOWngpbCHHoAibBO4vwdESpaYHdBAiRu0cRJYNGSjXbTVrwBj8Gz8GSdSRxKJcShh1ws24pmxuPvS-ZHiO-pth2GDZbnq9xSCfoWahlYSBQoQvSctE6PHgz93pU6ufau58RhmwvDYZXG9zc-vfbWZqRrpNktR6PuBdc6izxlOwx7FedSz3N1Kq8j5g-OT3vDF97FVdvqn55SWbygLT5Uh3npOxIO8USHR_Yld5d5-4Ja-I1FjsXNq-vn6JP4aHAjHDSvtizmsmJFLL2qJrgqHo37YmwNhIlJgbAjn5_s5ye5CyVHtcINse7qFkYF9EeD4vxMQTnN6iB0SB6A7PBXnZF1Tzs0vaWBP9RCORk_TMYzqCaQFbdsKGD652hTcADKvxkIa-Lq6MflYc8yjRYs7bpuZblMTm2FSaBJKGHOhzKU2sdM5W6ehQQRdRQ4SRQQAXJzP8pVkKb0ILqIgXY_i04xKbJ1AYnWdipDLX0MlHI0JoQhmAX5iFJiuiGcVrqxNlXIuRnGOG7Dze7iWiUxq4QH6dU2xN7LorIpwvH-dL9VW_yPLcV0Tby_cMsoOTYnecaTMoeJcUjzvvzvzttisXc56Mf94-HpV_GBN2yiCDdFp5r-zL4RsqmSLWO5fwAn5fch |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Directional+assist+%280%C2%A01%C2%A00%29+plane+growth+in+LiMnPO4+prepared+by+solvothermal+method+with+polyols+to+enhance+electrochemical+performance&rft.jtitle=Chinese+journal+of+chemical+engineering&rft.au=Xie%2C+Qian&rft.au=Zhu%2C+Jihua&rft.au=Wang%2C+Chengyun&rft.au=Fang%2C+Kaibin&rft.date=2021-08-01&rft.issn=1004-9541&rft.volume=36&rft.spage=181&rft.epage=189&rft_id=info:doi/10.1016%2Fj.cjche.2020.10.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cjche_2020_10_027 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fcjce%2Fcjce.jpg |