Directional assist (0 1 0) plane growth in LiMnPO4 prepared by solvothermal method with polyols to enhance electrochemical performance

[Display omitted] Phosphate material LiMnPO4 is popular for its high energy density (697 W·h·kg−1) and safety. When LiMnPO4 crystal grows, the potential barrier along b and c axis is strong, which makes the crystal grow along b axis to form a one-dimensional chain structure. However, the main migrat...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemical engineering Vol. 36; no. 8; pp. 181 - 189
Main Authors Xie, Qian, Zhu, Jihua, Wang, Chengyun, Fang, Kaibin, Yang, Wei, Liu, Quanbing, Wang, Yali, Chen, Shengzhou
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2021
School of Chemistry and Chemical Engineering,Guangzhou University,Guangzhou 510006,China%Sunwoda Electronics Co.,Ltd.,Shenzhen 518107,China%GAC Automotive Research & Development Center,Guangzhou 511434,China%School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Phosphate material LiMnPO4 is popular for its high energy density (697 W·h·kg−1) and safety. When LiMnPO4 crystal grows, the potential barrier along b and c axis is strong, which makes the crystal grow along b axis to form a one-dimensional chain structure. However, the main migration channel of lithium ions in olivine structure is plane (0 1 0). By shortening the growth in the direction of b axis and enhancing the diffusion along the directions of a and c, two-dimensional nanosheets that are more conducive to the migration of lithium ions are formed. The dosage of polyols is the key factor guiding the dispersion of the crystals to the (0 1 0) plane. X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and other means are used to characterize the samples. After experiments, we found that when the ratio of polyol/water was 2:1, the morphology of the synthesized sample was 20–30 nm thick nanosheets, which had the best electrochemical performance. At 0.1C, the discharge specific capacity reaches 148.9 mA·h·g−1, still reaches 144.3 mA·h·g−1 at the 50th cycle. and there is still 112.5 mA·h·g−1 under high rate (5C). This is thanks to the good dispersion of the material in the direction of the crystal plane (0 1 0). This can solve the problem of low conductivity and ionic mobility of phosphate materials.
AbstractList [Display omitted] Phosphate material LiMnPO4 is popular for its high energy density (697 W·h·kg−1) and safety. When LiMnPO4 crystal grows, the potential barrier along b and c axis is strong, which makes the crystal grow along b axis to form a one-dimensional chain structure. However, the main migration channel of lithium ions in olivine structure is plane (0 1 0). By shortening the growth in the direction of b axis and enhancing the diffusion along the directions of a and c, two-dimensional nanosheets that are more conducive to the migration of lithium ions are formed. The dosage of polyols is the key factor guiding the dispersion of the crystals to the (0 1 0) plane. X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and other means are used to characterize the samples. After experiments, we found that when the ratio of polyol/water was 2:1, the morphology of the synthesized sample was 20–30 nm thick nanosheets, which had the best electrochemical performance. At 0.1C, the discharge specific capacity reaches 148.9 mA·h·g−1, still reaches 144.3 mA·h·g−1 at the 50th cycle. and there is still 112.5 mA·h·g−1 under high rate (5C). This is thanks to the good dispersion of the material in the direction of the crystal plane (0 1 0). This can solve the problem of low conductivity and ionic mobility of phosphate materials.
Phosphate material LiMnPO4 is popular for its high energy density (697 W·h·kg-1) and safety.When LiMnPO4 crystal grows,the potential barrier along b and c axis is strong,which makes the crystal grow along b axis to form a one-dimensional chain structure.However,the main migration channel of lithium ions in olivine structure is plane (010).By shortening the growth in the direction ofb axis and enhancing the diffusion along the directions of a and c,two-dimensional nanosheets that are more conducive to the migration of lithium ions are formed.The dosage of polyols is the key factor guiding the dispersion of the crystals to the (010) plane.X-ray diffraction (XRD),Scanning electron microscopy (SEM),transmission electron microscopy (TEM) and other means are used to characterize the samples.After experiments,we found that when the ratio of polyol/water was 2∶1,the morphology of the synthesized sample was 20-30 nm thick nanosheets,which had the best electrochemical performance.At 0.1C,the discharge specific capacity reaches 148.9 mA·h·g-1,still reaches 144.3 mA·h·g-1 at the 50th cycle,and there is still 112.5 mA·h·g-1 under high rate (5C).This is thanks to the good dispersion of the material in the direction of the crystal plane (010).This can solve the problem of low conductivity and ionic mobility of phosphate materials.
Author Zhu, Jihua
Wang, Yali
Xie, Qian
Chen, Shengzhou
Wang, Chengyun
Fang, Kaibin
Liu, Quanbing
Yang, Wei
AuthorAffiliation School of Chemistry and Chemical Engineering,Guangzhou University,Guangzhou 510006,China%Sunwoda Electronics Co.,Ltd.,Shenzhen 518107,China%GAC Automotive Research & Development Center,Guangzhou 511434,China%School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,China
AuthorAffiliation_xml – name: School of Chemistry and Chemical Engineering,Guangzhou University,Guangzhou 510006,China%Sunwoda Electronics Co.,Ltd.,Shenzhen 518107,China%GAC Automotive Research & Development Center,Guangzhou 511434,China%School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,China
Author_xml – sequence: 1
  givenname: Qian
  surname: Xie
  fullname: Xie, Qian
  organization: School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
– sequence: 2
  givenname: Jihua
  surname: Zhu
  fullname: Zhu, Jihua
  organization: Sunwoda Electronics Co., Ltd., Shenzhen 518107, China
– sequence: 3
  givenname: Chengyun
  surname: Wang
  fullname: Wang, Chengyun
  organization: GAC Automotive Research & Development Center, Guangzhou 511434, China
– sequence: 4
  givenname: Kaibin
  surname: Fang
  fullname: Fang, Kaibin
  organization: School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
– sequence: 5
  givenname: Wei
  surname: Yang
  fullname: Yang, Wei
  email: wyang@gzhu.edu.cn
  organization: School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
– sequence: 6
  givenname: Quanbing
  surname: Liu
  fullname: Liu, Quanbing
  email: liuqb@gdut.edu.cn
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
– sequence: 7
  givenname: Yali
  surname: Wang
  fullname: Wang, Yali
  organization: School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
– sequence: 8
  givenname: Shengzhou
  surname: Chen
  fullname: Chen, Shengzhou
  organization: School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
BookMark eNqFkcFO3DAQhq0KpC7QJ-jFFyR6yNaO0zg5cKhoKUiL6KGVerO8zpg4ytqRbVjtG_AYPAtP1gnbUw9wsCyN_3_mn89H5MAHD4R85GzJGa8_D0szmB6WJSvnypKV8h1ZlCVnhSj5nwOy4IxVRful4u_JUUoDQ2HDmwV5_OYimOyC1yPVKbmU6Rl7fuLPT-wTnUbtgd7FsM09dZ6u3I3_eVvRKcKkI3R0vaMpjA8h9xA32GEDuQ8d3TrUT2HchTHRHCj4XnsDFEacFQNG3TiD8gmiDWjEtxNyaPWY4MO_-5j8vvz-6-KqWN3-uL74uiqMECIXApNLXum1NLh4Y9taNA0ztYbKCguNlJVpZbluJWtqYevWVrLr8GgttJZGHJPTfd-t9lb7OzWE-4jLJ4UIAQFy1iAc1LV7nYkhpQhWGZf1DCpH7UbFmZrRq0G9oFcz-rmI8dAr_vNO0W103L3hOt-7ANd_cBBVMg4QTffyRaoL7lX_X3nOoxo
CitedBy_id crossref_primary_10_1016_j_mtener_2022_101162
crossref_primary_10_1021_acs_iecr_1c04639
crossref_primary_10_1016_j_est_2024_112378
crossref_primary_10_1016_j_jpowsour_2024_236082
crossref_primary_10_1002_tcr_202200128
crossref_primary_10_1016_j_jallcom_2024_175853
crossref_primary_10_1016_j_ensm_2024_103722
crossref_primary_10_1016_j_ssi_2023_116274
crossref_primary_10_1016_j_mseb_2023_117032
crossref_primary_10_1016_j_ensm_2023_103125
crossref_primary_10_1002_aenm_202302893
crossref_primary_10_1016_j_jpowsour_2025_236747
Cites_doi 10.1007/s11581-020-03654-x
10.1039/C5CE01253H
10.1016/j.jallcom.2018.10.161
10.1039/c2ta01393b
10.1016/j.ceramint.2019.05.336
10.1016/j.ceramint.2016.02.116
10.1016/j.jpowsour.2012.11.093
10.1016/j.electacta.2011.01.079
10.1039/C9CE01387C
10.1039/C3CE41567H
10.1016/S0040-6090(02)00480-7
10.1016/j.electacta.2018.09.095
10.1038/35104644
10.1039/C3TA14010E
10.1016/j.electacta.2012.09.106
10.1016/j.electacta.2015.05.105
10.1039/C6CE00336B
10.1002/aenm.201802847
10.1016/j.jcrysgro.2009.01.090
10.1039/c2jm30821e
10.1021/acssuschemeng.8b02868
10.1002/adma.200400998
10.1039/b716916g
10.1016/j.carbon.2019.11.067
10.1016/j.jpowsour.2007.09.102
10.1149/2.0401902jes
10.1021/cm203095d
10.1021/acsami.7b17597
10.1039/C7RA01396E
10.1039/C4TA01365D
10.1016/j.jcrysgro.2010.10.029
10.1016/j.jmst.2018.04.017
10.1016/j.jpowsour.2013.12.010
10.1021/acs.inorgchem.9b03545
10.1016/j.jelechem.2018.10.062
10.1016/j.ssi.2007.10.015
10.1016/S0022-0248(01)02130-3
10.1002/ejic.201701270
10.1016/j.electacta.2014.12.012
10.1107/S090744490804362X
10.1039/c2ce25094b
10.1039/C1JM13547C
ContentType Journal Article
Copyright 2020 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2020 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/j.cjche.2020.10.027
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2210-321X
EndPage 189
ExternalDocumentID cjce202108020
10_1016_j_cjche_2020_10_027
S1004954120306431
GrantInformation_xml – fundername: (The authors gratefully acknowledge the financial support from Natural Science Foundation of Guangdong Province); (Key Research and Development Program of Guangdong Province ); (and Pearl River Science and Technology New Star Project )
  funderid: (The authors gratefully acknowledge the financial support from Natural Science Foundation of Guangdong Province); (Key Research and Development Program of Guangdong Province ); (and Pearl River Science and Technology New Star Project )
GroupedDBID --K
--M
.~1
0R~
188
1B1
1~.
1~5
29B
2B.
2C0
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
8RM
92H
92I
92R
93N
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CCEZO
CDRFL
CHBEP
CS3
CW9
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
SDC
SDF
SDG
SDH
SES
SPC
SPCBC
SSG
SSZ
T5K
TCJ
TGT
UGNYK
~G-
-SB
-S~
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CAJEB
CITATION
Q--
SSH
U1G
U5L
4A8
PSX
ID FETCH-LOGICAL-c333t-3002714ab7c0168f963880c6ae4f3fe8774c972b970863f69f47dd47daa3aa7c3
IEDL.DBID .~1
ISSN 1004-9541
IngestDate Thu May 29 04:04:47 EDT 2025
Tue Jul 01 02:57:20 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Fri Feb 23 02:44:10 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords LMnPO4
Lithium-ion battery
Polyols
Phosphate material
Crystal
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-3002714ab7c0168f963880c6ae4f3fe8774c972b970863f69f47dd47daa3aa7c3
PageCount 9
ParticipantIDs wanfang_journals_cjce202108020
crossref_citationtrail_10_1016_j_cjche_2020_10_027
crossref_primary_10_1016_j_cjche_2020_10_027
elsevier_sciencedirect_doi_10_1016_j_cjche_2020_10_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese journal of chemical engineering
PublicationTitle_FL Chinese Journal of Chemical Engineering
PublicationYear 2021
Publisher Elsevier B.V
School of Chemistry and Chemical Engineering,Guangzhou University,Guangzhou 510006,China%Sunwoda Electronics Co.,Ltd.,Shenzhen 518107,China%GAC Automotive Research & Development Center,Guangzhou 511434,China%School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,China
Publisher_xml – name: Elsevier B.V
– name: School of Chemistry and Chemical Engineering,Guangzhou University,Guangzhou 510006,China%Sunwoda Electronics Co.,Ltd.,Shenzhen 518107,China%GAC Automotive Research & Development Center,Guangzhou 511434,China%School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,China
References Li, Luo, Ding, Wang, He (b0055) 2018; 10
Spek (b0090) 2009; 65
Zhu, Wu, Xie, Chen, Tu, Cao, Zhao (b0125) 2018; 34
Guo, Wu, Xie, Zhang, Cao, Zhao (b0135) 2014; 2
Tarascon, Armand (b0025) 2001; 414
Xu, Yang, Li, Li, Wang, Bao, Li, Shen, Han (b0165) 2016; 18
Liu, Liu, Huang, Yu (b0100) 2013; 229
Su, Liu, Long, Yao, Lv, Wen (b0105) 2015; 173
Wang, Wang, Liu, Zhu, Wang (b0115) 2017; 7
Fang, Li, Yang, Yan, Li (b0130) 2008; 9
Ji, Yang, Ni, Roy, Pinto, Jiang (b0140) 2011; 56
Xu, Ren, Du, Weng, Shen, Han (b0190) 2005; 17
Qin, Zhou, Xia, Tang, Liu (b0210) 2012; 22
Chen, Vacchio, Wang, Chernova, Zavalij, Whittingham (b0010) 2008; 178
Luo, Sun, Bao, Li, Zhang, Yi (b0075) 2019; 832
Yang, Wang, Duh (b0085) 2018; 6
Pivko, Bele, Tchernychova, Logar, Dominko, Gaberscek (b0020) 2012; 24
Li, Ding, Li, Xie, Qian (b0200) 2002; 236
Liang, Sun, Zhang, Hou, Sun, Liu, Wang, Yuan (b0070) 2019; 9
El Khalfaouy, Addaou, Laajeb, Lahsini (b0045) 2019; 775
Wizent, Behr, Löser, Büchner, Klingeler (b0155) 2011; 318
El Khalfaouy, Turan, Dermenci, Savaci, Addaou, Laajeb, Lahsini (b0050) 2019; 45
Gnewuch, Rodriguez (b0175) 2020; 59
Zhang, Shan, Zhu, Liu, Liu, Tian (b0215) 2015; 153
Li, Luo, Wang, Yan, Feng, Liu, Ding, He (b0065) 2018; 289
Li, Luo, Wang, Yan, Feng, Ding, He, Zong (b0060) 2019; 166
Hong, Tang, Quan, Wang, Zhang (b0110) 2016; 42
Herrera, Camacho-Montes, Fuentes, Álvarez-Contreras (b0030) 2015; 3
Li, Ding, Li, Xie, Qian (b0195) 2002; 414
Shang, Wang, Mei, Hui, Liu (b0185) 2012; 22
Wizent, Behr, Lipps, Hellmann, Klingeler, Kataev, Löser, Sato, Büchner (b0150) 2009; 311
Bao, Xu, Wang, Zong, Li, Zhao, Zhou, Shen, Han (b0170) 2015; 17
Nie, Shen, Zhang, Chen, Deng, Zhang (b0145) 2012; 14
Zhou, Zhu, Fu, Chen, Sun, Wong (b0160) 2014; 16
Ye, Wang, He, Fang, Dai, Wang, Huang, Lian, Wang, Tian, Ouyang (b0120) 2014; 253
Aravindan, Gnanaraj, Lee, Madhavi (b0005) 2013; 1
Pan, Xu, Hong, Fang, Zhen (b0095) 2013; 87
Chang, Luo, Li, Lang, San, Liu, Li (b0040) 2020; 26
Bao, Chen, Xu, Yang, Ji (b0205) 2018; 2018
Yang, Fu, Sun, Wang, Liu (b0080) 2020; 158
Pan, Gao, Liu, Xie, Yuan, Xiao (b0180) 2019; 21
Zhang, Qu, Zhang, Li, Zheng (b0035) 2014; 2
Doh, Kim, Kim, Shin, Jeong, Moon, Jin, Eom, Kim, Kim, Oh, Veluchamy (b0015) 2008; 175
Chen (10.1016/j.cjche.2020.10.027_b0010) 2008; 178
Tarascon (10.1016/j.cjche.2020.10.027_b0025) 2001; 414
Qin (10.1016/j.cjche.2020.10.027_b0210) 2012; 22
Li (10.1016/j.cjche.2020.10.027_b0195) 2002; 414
Li (10.1016/j.cjche.2020.10.027_b0060) 2019; 166
Li (10.1016/j.cjche.2020.10.027_b0065) 2018; 289
Su (10.1016/j.cjche.2020.10.027_b0105) 2015; 173
Pivko (10.1016/j.cjche.2020.10.027_b0020) 2012; 24
Shang (10.1016/j.cjche.2020.10.027_b0185) 2012; 22
Doh (10.1016/j.cjche.2020.10.027_b0015) 2008; 175
Zhou (10.1016/j.cjche.2020.10.027_b0160) 2014; 16
Yang (10.1016/j.cjche.2020.10.027_b0080) 2020; 158
Gnewuch (10.1016/j.cjche.2020.10.027_b0175) 2020; 59
Spek (10.1016/j.cjche.2020.10.027_b0090) 2009; 65
Wang (10.1016/j.cjche.2020.10.027_b0115) 2017; 7
Zhu (10.1016/j.cjche.2020.10.027_b0125) 2018; 34
Bao (10.1016/j.cjche.2020.10.027_b0205) 2018; 2018
Chang (10.1016/j.cjche.2020.10.027_b0040) 2020; 26
Hong (10.1016/j.cjche.2020.10.027_b0110) 2016; 42
Nie (10.1016/j.cjche.2020.10.027_b0145) 2012; 14
Li (10.1016/j.cjche.2020.10.027_b0055) 2018; 10
Pan (10.1016/j.cjche.2020.10.027_b0180) 2019; 21
El Khalfaouy (10.1016/j.cjche.2020.10.027_b0050) 2019; 45
Wizent (10.1016/j.cjche.2020.10.027_b0150) 2009; 311
Luo (10.1016/j.cjche.2020.10.027_b0075) 2019; 832
Fang (10.1016/j.cjche.2020.10.027_b0130) 2008; 9
Guo (10.1016/j.cjche.2020.10.027_b0135) 2014; 2
Pan (10.1016/j.cjche.2020.10.027_b0095) 2013; 87
Yang (10.1016/j.cjche.2020.10.027_b0085) 2018; 6
Ji (10.1016/j.cjche.2020.10.027_b0140) 2011; 56
Wizent (10.1016/j.cjche.2020.10.027_b0155) 2011; 318
Bao (10.1016/j.cjche.2020.10.027_b0170) 2015; 17
El Khalfaouy (10.1016/j.cjche.2020.10.027_b0045) 2019; 775
Xu (10.1016/j.cjche.2020.10.027_b0190) 2005; 17
Li (10.1016/j.cjche.2020.10.027_b0200) 2002; 236
Zhang (10.1016/j.cjche.2020.10.027_b0215) 2015; 153
Xu (10.1016/j.cjche.2020.10.027_b0165) 2016; 18
Liang (10.1016/j.cjche.2020.10.027_b0070) 2019; 9
Aravindan (10.1016/j.cjche.2020.10.027_b0005) 2013; 1
Zhang (10.1016/j.cjche.2020.10.027_b0035) 2014; 2
Liu (10.1016/j.cjche.2020.10.027_b0100) 2013; 229
Herrera (10.1016/j.cjche.2020.10.027_b0030) 2015; 3
Ye (10.1016/j.cjche.2020.10.027_b0120) 2014; 253
References_xml – volume: 9
  start-page: 1118
  year: 2008
  end-page: 1120
  ident: b0130
  article-title: Carbonate anions controlled morphological evolution of LiMnPO
  publication-title: Chem. Commun. (Camb.)
– volume: 832
  start-page: 196
  year: 2019
  end-page: 203
  ident: b0075
  article-title: Synthesis of Er-doped LiMnPO
  publication-title: J. Electroanal. Chem.
– volume: 42
  start-page: 8769
  year: 2016
  end-page: 8778
  ident: b0110
  article-title: Controllable synthesis of LiMnPO
  publication-title: Ceram. Int.
– volume: 175
  start-page: 881
  year: 2008
  end-page: 885
  ident: b0015
  article-title: Thermal and electrochemical behaviour of C/Li
  publication-title: J. Power Sources
– volume: 17
  year: 2005
  ident: b0190
  article-title: Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr
  publication-title: Adv. Mater.
– volume: 16
  start-page: 766
  year: 2014
  end-page: 774
  ident: b0160
  article-title: Comparative study of LiMnPO
  publication-title: CrystEngComm
– volume: 14
  start-page: 4284
  year: 2012
  end-page: 4288
  ident: b0145
  article-title: Flower-like LiMnPO
  publication-title: CrystEngComm
– volume: 318
  start-page: 995
  year: 2011
  end-page: 999
  ident: b0155
  article-title: Challenges in the crystal growth of Li
  publication-title: J. Cryst. Growth
– volume: 173
  start-page: 559
  year: 2015
  end-page: 565
  ident: b0105
  article-title: Enhanced electrochemical performance of LiMnPO
  publication-title: Electrochim. Acta
– volume: 236
  start-page: 357
  year: 2002
  end-page: 362
  ident: b0200
  article-title: Solvothermal growth of vaterite in the presence of ethylene glycol, 1,2-propanediol and glycerin
  publication-title: J. Cryst. Growth
– volume: 2018
  start-page: 1533
  year: 2018
  end-page: 1539
  ident: b0205
  article-title: Hydrothermal synthesis of monodispersed LiMnPO
  publication-title: Eur. J. Inorg. Chem.
– volume: 17
  start-page: 6399
  year: 2015
  end-page: 6405
  ident: b0170
  article-title: Hydrothermal synthesis of flower-like LiMnPO
  publication-title: CrystEngComm
– volume: 65
  start-page: 148
  year: 2009
  end-page: 155
  ident: b0090
  article-title: Structure validation in chemical crystallography
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 289
  start-page: 415
  year: 2018
  end-page: 421
  ident: b0065
  article-title: Facile synthesis of carbon-LiMnPO
  publication-title: Electrochim. Acta
– volume: 18
  start-page: 3282
  year: 2016
  end-page: 3288
  ident: b0165
  article-title: Ethylene glycol (EG) solvothermal synthesis of flower-like LiMnPO
  publication-title: CrystEngComm
– volume: 2
  start-page: 711
  year: 2014
  end-page: 719
  ident: b0035
  article-title: Confined synthesis of hierarchical structured LiMnPO
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 1802847
  year: 2019
  ident: b0070
  article-title: In situ synthesis of hierarchical core double-shell Ti-doped LiMnPO
  publication-title: Adv. Energy Mater.
– volume: 22
  start-page: 21144
  year: 2012
  end-page: 21153
  ident: b0210
  article-title: Morphology controlled synthesis and modification of high-performance LiMnPO
  publication-title: J. Mater. Chem.
– volume: 153
  start-page: 385
  year: 2015
  end-page: 392
  ident: b0215
  article-title: LiMnPO
  publication-title: Electrochim. Acta
– volume: 59
  start-page: 5883
  year: 2020
  end-page: 5895
  ident: b0175
  article-title: Distinguishing the intrinsic antiferromagnetism in polycrystalline LiCoPO
  publication-title: Inorg. Chem.
– volume: 45
  start-page: 17688
  year: 2019
  end-page: 17695
  ident: b0050
  article-title: Nickel-substituted LiMnPO
  publication-title: Ceram. Int.
– volume: 2
  start-page: 10581
  year: 2014
  end-page: 10588
  ident: b0135
  article-title: Controllable synthesis of high-performance LiMnPO
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 3518
  year: 2013
  end-page: 3539
  ident: b0005
  article-title: LiMnPO4 – a next generation cathode material for lithium-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 229
  start-page: 203
  year: 2013
  end-page: 209
  ident: b0100
  article-title: Synthesis of nano-sized LiMnPO
  publication-title: J. Power Sources
– volume: 775
  start-page: 836
  year: 2019
  end-page: 844
  ident: b0045
  article-title: Synthesis and characterization of Na-substituted LiMnPO
  publication-title: J. Alloy. Compd.
– volume: 10
  start-page: 10786
  year: 2018
  end-page: 10795
  ident: b0055
  article-title: Three-dimensional honeycomb-structural LiAlO
  publication-title: ACS Appl Mater Interfaces
– volume: 87
  start-page: 303
  year: 2013
  end-page: 308
  ident: b0095
  article-title: Hydrothermal synthesis of well-dispersed LiMnPO
  publication-title: Electrochim. Acta
– volume: 34
  start-page: 1544
  year: 2018
  end-page: 1549
  ident: b0125
  article-title: Solvothermal-assisted morphology evolution of nanostructured LiMnPO
  publication-title: J. Mater. Sci. Technol.
– volume: 6
  start-page: 13302
  year: 2018
  end-page: 13311
  ident: b0085
  article-title: Developing a diamine-assisted polymerization method to synthesize nano-LiMnPO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 253
  start-page: 143
  year: 2014
  end-page: 149
  ident: b0120
  article-title: Solvothermal synthesis of nano LiMn
  publication-title: J. Power Sources
– volume: 24
  start-page: 1041
  year: 2012
  end-page: 1047
  ident: b0020
  article-title: Synthesis of nanometric LiMnPO
  publication-title: Chem. Mater.
– volume: 22
  start-page: 1142
  year: 2012
  end-page: 1149
  ident: b0185
  article-title: Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO
  publication-title: J. Mater. Chem.
– volume: 311
  start-page: 1273
  year: 2009
  end-page: 1277
  ident: b0150
  article-title: Single-crystal growth of LiMnPO
  publication-title: J. Cryst. Growth
– volume: 178
  start-page: 1676
  year: 2008
  end-page: 1693
  ident: b0010
  article-title: The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications
  publication-title: Solid State Ionics
– volume: 414
  start-page: 359
  year: 2001
  end-page: 367
  ident: b0025
  article-title: Issues and challenges facing rechargeable lithium batteries
  publication-title: Nature
– volume: 414
  start-page: 180
  year: 2002
  end-page: 183
  ident: b0195
  article-title: Solvothermal deposition of vaterite thin film on glass substrate
  publication-title: Thin Solid Films
– volume: 166
  start-page: A118
  year: 2019
  end-page: A124
  ident: b0060
  article-title: Facile fabrication of hierarchical LiMnPO
  publication-title: J. Electrochem. Soc.
– volume: 21
  start-page: 7217
  year: 2019
  end-page: 7223
  ident: b0180
  article-title: Controllable fabrication of LiMnPO
  publication-title: CrystEngComm
– volume: 3
  start-page: 54
  year: 2015
  end-page: 64
  ident: b0030
  article-title: LiMnPO
  publication-title: J. Mater. Sci. Chem. Eng.
– volume: 56
  start-page: 3093
  year: 2011
  end-page: 3100
  ident: b0140
  article-title: General synthesis and morphology control of LiMnPO
  publication-title: Electrochim. Acta
– volume: 26
  start-page: 4977
  year: 2020
  end-page: 4983
  ident: b0040
  article-title: Enhanced electrochemical performance of LiAlO
  publication-title: Ionics
– volume: 158
  start-page: 102
  year: 2020
  end-page: 109
  ident: b0080
  article-title: Fe-doped LiMnPO
  publication-title: Carbon
– volume: 7
  start-page: 14354
  year: 2017
  end-page: 14359
  ident: b0115
  article-title: Solvothermal synthesis of LiFe
  publication-title: RSC Adv.
– volume: 26
  start-page: 4977
  year: 2020
  ident: 10.1016/j.cjche.2020.10.027_b0040
  article-title: Enhanced electrochemical performance of LiAlO2-LiMnPO4/C composite using LiAlO2 from AAO synthesis by hydrothermal rout
  publication-title: Ionics
  doi: 10.1007/s11581-020-03654-x
– volume: 17
  start-page: 6399
  issue: 33
  year: 2015
  ident: 10.1016/j.cjche.2020.10.027_b0170
  article-title: Hydrothermal synthesis of flower-like LiMnPO4 nanostructures self-assembled with (010) nanosheets and their application in Li-ion batteries
  publication-title: CrystEngComm
  doi: 10.1039/C5CE01253H
– volume: 775
  start-page: 836
  issue: 15
  year: 2019
  ident: 10.1016/j.cjche.2020.10.027_b0045
  article-title: Synthesis and characterization of Na-substituted LiMnPO4 as a cathode material for improved lithium ion batteries
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.10.161
– volume: 1
  start-page: 3518
  issue: 11
  year: 2013
  ident: 10.1016/j.cjche.2020.10.027_b0005
  article-title: LiMnPO4 – a next generation cathode material for lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c2ta01393b
– volume: 45
  start-page: 17688
  issue: 14
  year: 2019
  ident: 10.1016/j.cjche.2020.10.027_b0050
  article-title: Nickel-substituted LiMnPO4/C olivine cathode material: Combustion synthesis, characterization and electrochemical performances
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.05.336
– volume: 42
  start-page: 8769
  issue: 7
  year: 2016
  ident: 10.1016/j.cjche.2020.10.027_b0110
  article-title: Controllable synthesis of LiMnPO4 nanocrystals: morphology evolution and their size-dependent electrochemical properties
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.02.116
– volume: 229
  start-page: 203
  year: 2013
  ident: 10.1016/j.cjche.2020.10.027_b0100
  article-title: Synthesis of nano-sized LiMnPO4 and in situ carbon coating using a solvothermal method
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.11.093
– volume: 56
  start-page: 3093
  issue: 9
  year: 2011
  ident: 10.1016/j.cjche.2020.10.027_b0140
  article-title: General synthesis and morphology control of LiMnPO4 nanocrystals via microwave-hydrothermal route
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.01.079
– volume: 21
  start-page: 7217
  issue: 47
  year: 2019
  ident: 10.1016/j.cjche.2020.10.027_b0180
  article-title: Controllable fabrication of LiMnPO4 microspheres assembled by radially arranged nanoplates with highly exposed (010) facets for an enhanced electrochemical performance
  publication-title: CrystEngComm
  doi: 10.1039/C9CE01387C
– volume: 16
  start-page: 766
  issue: 5
  year: 2014
  ident: 10.1016/j.cjche.2020.10.027_b0160
  article-title: Comparative study of LiMnPO4 cathode materials synthesized by solvothermal methods using different manganese salts
  publication-title: CrystEngComm
  doi: 10.1039/C3CE41567H
– volume: 414
  start-page: 180
  issue: 2
  year: 2002
  ident: 10.1016/j.cjche.2020.10.027_b0195
  article-title: Solvothermal deposition of vaterite thin film on glass substrate
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(02)00480-7
– volume: 289
  start-page: 415
  issue: 1
  year: 2018
  ident: 10.1016/j.cjche.2020.10.027_b0065
  article-title: Facile synthesis of carbon-LiMnPO4 nanorods with hierarchical architecture as a cathode for high-performance Li-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.09.095
– volume: 414
  start-page: 359
  issue: 6861
  year: 2001
  ident: 10.1016/j.cjche.2020.10.027_b0025
  article-title: Issues and challenges facing rechargeable lithium batteries
  publication-title: Nature
  doi: 10.1038/35104644
– volume: 2
  start-page: 711
  issue: 3
  year: 2014
  ident: 10.1016/j.cjche.2020.10.027_b0035
  article-title: Confined synthesis of hierarchical structured LiMnPO4/C granules by a facile surfactant-assisted solid-state method for high-performance lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA14010E
– volume: 87
  start-page: 303
  year: 2013
  ident: 10.1016/j.cjche.2020.10.027_b0095
  article-title: Hydrothermal synthesis of well-dispersed LiMnPO4 plates for lithium ion batteries cathode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.09.106
– volume: 173
  start-page: 559
  year: 2015
  ident: 10.1016/j.cjche.2020.10.027_b0105
  article-title: Enhanced electrochemical performance of LiMnPO4/C prepared by microwave-assisted solvothermal method
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.05.105
– volume: 18
  start-page: 3282
  issue: 18
  year: 2016
  ident: 10.1016/j.cjche.2020.10.027_b0165
  article-title: Ethylene glycol (EG) solvothermal synthesis of flower-like LiMnPO4nanostructures self-assembled with (010) nanobelts for Li-ion battery positive cathodes
  publication-title: CrystEngComm
  doi: 10.1039/C6CE00336B
– volume: 9
  start-page: 1802847
  issue: 11
  year: 2019
  ident: 10.1016/j.cjche.2020.10.027_b0070
  article-title: In situ synthesis of hierarchical core double-shell Ti-doped LiMnPO4@NaTi2(PO4)3@C/3D graphene cathode with high-rate capability and long cycle life for lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802847
– volume: 311
  start-page: 1273
  issue: 5
  year: 2009
  ident: 10.1016/j.cjche.2020.10.027_b0150
  article-title: Single-crystal growth of LiMnPO4 by the floating-zone method
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2009.01.090
– volume: 22
  start-page: 21144
  issue: 39
  year: 2012
  ident: 10.1016/j.cjche.2020.10.027_b0210
  article-title: Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30821e
– volume: 6
  start-page: 13302
  issue: 10
  year: 2018
  ident: 10.1016/j.cjche.2020.10.027_b0085
  article-title: Developing a diamine-assisted polymerization method to synthesize nano-LiMnPO4 with N-doped carbon from polyamides for high-performance Li-Ion batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02868
– volume: 17
  issue: 7
  year: 2005
  ident: 10.1016/j.cjche.2020.10.027_b0190
  article-title: Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3 nanowires
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200400998
– volume: 9
  start-page: 1118
  year: 2008
  ident: 10.1016/j.cjche.2020.10.027_b0130
  article-title: Carbonate anions controlled morphological evolution of LiMnPO4 crystals
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/b716916g
– volume: 158
  start-page: 102
  year: 2020
  ident: 10.1016/j.cjche.2020.10.027_b0080
  article-title: Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.11.067
– volume: 175
  start-page: 881
  issue: 2
  year: 2008
  ident: 10.1016/j.cjche.2020.10.027_b0015
  article-title: Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.09.102
– volume: 166
  start-page: A118
  issue: 2
  year: 2019
  ident: 10.1016/j.cjche.2020.10.027_b0060
  article-title: Facile fabrication of hierarchical LiMnPO4 microspheres for high-performance lithium-ion batteries cathode
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0401902jes
– volume: 24
  start-page: 1041
  issue: 6
  year: 2012
  ident: 10.1016/j.cjche.2020.10.027_b0020
  article-title: Synthesis of nanometric LiMnPO4 via a two-step technique
  publication-title: Chem. Mater.
  doi: 10.1021/cm203095d
– volume: 10
  start-page: 10786
  issue: 13
  year: 2018
  ident: 10.1016/j.cjche.2020.10.027_b0055
  article-title: Three-dimensional honeycomb-structural LiAlO2-modified LiMnPO4 composite with superior high rate capability as Li-ion battery cathodes
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b17597
– volume: 7
  start-page: 14354
  issue: 24
  year: 2017
  ident: 10.1016/j.cjche.2020.10.027_b0115
  article-title: Solvothermal synthesis of LiFe1/3Mn1/3Co1/3PO4 solid solution as lithium storage cathode materials
  publication-title: RSC Adv.
  doi: 10.1039/C7RA01396E
– volume: 2
  start-page: 10581
  issue: 27
  year: 2014
  ident: 10.1016/j.cjche.2020.10.027_b0135
  article-title: Controllable synthesis of high-performance LiMnPO4 nanocrystals by a facile one-spot solvothermal process
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01365D
– volume: 318
  start-page: 995
  issue: 1
  year: 2011
  ident: 10.1016/j.cjche.2020.10.027_b0155
  article-title: Challenges in the crystal growth of Li2CuO2 and LiMnPO4
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2010.10.029
– volume: 34
  start-page: 1544
  issue: 9
  year: 2018
  ident: 10.1016/j.cjche.2020.10.027_b0125
  article-title: Solvothermal-assisted morphology evolution of nanostructured LiMnPO4 as high-performance lithium-ion batteries cathode
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2018.04.017
– volume: 253
  start-page: 143
  year: 2014
  ident: 10.1016/j.cjche.2020.10.027_b0120
  article-title: Solvothermal synthesis of nano LiMn0.9Fe0.1PO4: Reaction mechanism and electrochemical properties
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.12.010
– volume: 59
  start-page: 5883
  issue: 9
  year: 2020
  ident: 10.1016/j.cjche.2020.10.027_b0175
  article-title: Distinguishing the intrinsic antiferromagnetism in polycrystalline LiCoPO4 and LiMnPO4 olivines
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b03545
– volume: 832
  start-page: 196
  year: 2019
  ident: 10.1016/j.cjche.2020.10.027_b0075
  article-title: Synthesis of Er-doped LiMnPO4/C by a sol-assisted hydrothermal process with superior rate capability
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2018.10.062
– volume: 178
  start-page: 1676
  issue: 31–32
  year: 2008
  ident: 10.1016/j.cjche.2020.10.027_b0010
  article-title: The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2007.10.015
– volume: 236
  start-page: 357
  issue: 1–3
  year: 2002
  ident: 10.1016/j.cjche.2020.10.027_b0200
  article-title: Solvothermal growth of vaterite in the presence of ethylene glycol, 1,2-propanediol and glycerin
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(01)02130-3
– volume: 2018
  start-page: 1533
  issue: 13
  year: 2018
  ident: 10.1016/j.cjche.2020.10.027_b0205
  article-title: Hydrothermal synthesis of monodispersed LiMnPO4 (010) nanobelts and [001] nanorods and their applications in lithium-Ion batteries
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201701270
– volume: 153
  start-page: 385
  year: 2015
  ident: 10.1016/j.cjche.2020.10.027_b0215
  article-title: LiMnPO4 nanoplates grown via a facile surfactant-mediated solvothermal reaction for high-performance Li-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.12.012
– volume: 3
  start-page: 54
  issue: 5
  year: 2015
  ident: 10.1016/j.cjche.2020.10.027_b0030
  article-title: LiMnPO4: Review on synthesis and electrochemical properties
  publication-title: J. Mater. Sci. Chem. Eng.
– volume: 65
  start-page: 148
  issue: Pt 2
  year: 2009
  ident: 10.1016/j.cjche.2020.10.027_b0090
  article-title: Structure validation in chemical crystallography
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S090744490804362X
– volume: 14
  start-page: 4284
  issue: 13
  year: 2012
  ident: 10.1016/j.cjche.2020.10.027_b0145
  article-title: Flower-like LiMnPO4 hierarchical microstructures assembled from single-crystalline nanosheets for lithium-ion batteries
  publication-title: CrystEngComm
  doi: 10.1039/c2ce25094b
– volume: 22
  start-page: 1142
  issue: 3
  year: 2012
  ident: 10.1016/j.cjche.2020.10.027_b0185
  article-title: Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4(M = Mn, Fe Co, and Ni): a comparative first-principles study
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM13547C
SSID ssj0020818
Score 2.3165672
Snippet [Display omitted] Phosphate material LiMnPO4 is popular for its high energy density (697 W·h·kg−1) and safety. When LiMnPO4 crystal grows, the potential...
Phosphate material LiMnPO4 is popular for its high energy density (697 W·h·kg-1) and safety.When LiMnPO4 crystal grows,the potential barrier along b and c axis...
SourceID wanfang
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 181
SubjectTerms Crystal
Lithium-ion battery
LMnPO4
Phosphate material
Polyols
Title Directional assist (0 1 0) plane growth in LiMnPO4 prepared by solvothermal method with polyols to enhance electrochemical performance
URI https://dx.doi.org/10.1016/j.cjche.2020.10.027
https://d.wanfangdata.com.cn/periodical/cjce202108020
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQFRI9VOUlaMtqDhyKRFjH8eZxRAi0PIsESNyiiZPAom02grQVl577M_gt_DJmHIeHhDj0kIs1tqyZ8fibeB5CrOXGVwwbvEGoS09nGHpoZOQhuUAJ4kDlNj366Dgcnuv9i8HFlNjucmE4rNLZ_tamW2vtRvqOm_16NOqfcq2zZKB9xbBX21xqrSPW8s2_T2Eeiku22RdPqT2m7ioP2Rgvc02cISdR8cim5NYyb99OM3-wKrG6fHH37H4WnxxohK12X3NiqqjmxccXpQQXxD9nuxhYAwFikh58lw_3_sO9XIeaQ1rhklzu5gpGFRyOjqqTHxrqm8JGoEN2B6SEv2061k9aoW0sDfyXFurJ-G4yvoVmAkV1xVoCrnmOcdUGoH5OP1gU57s7Z9tDz3VZ8EwQBI0XsGfqa8wiQ0yJSz6RsTQhFroMyiImfGiSSGVJRN5PUIZJqaM8pw8xQIxMsCSmq0lVLAvIjPFzGRsZYqS1MpgRgGAXKESUEvMVoTrupsaVIOdOGOO0izW7Tq1IUhYJD9LWVsTG06S6rcDxPnnYiS19pUgp3RHvT-w5IafuGN8yUaHYK46J7sv_rvxVzPIibdjgNzHd3PwqVgnKNFnP6mpPfNjaOxgePwLLRfRw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELbQIkQ5VOWngpbCHHoAibBO4vwdESpaYHdBAiRu0cRJYNGSjXbTVrwBj8Gz8GSdSRxKJcShh1ws24pmxuPvS-ZHiO-pth2GDZbnq9xSCfoWahlYSBQoQvSctE6PHgz93pU6ufau58RhmwvDYZXG9zc-vfbWZqRrpNktR6PuBdc6izxlOwx7FedSz3N1Kq8j5g-OT3vDF97FVdvqn55SWbygLT5Uh3npOxIO8USHR_Yld5d5-4Ja-I1FjsXNq-vn6JP4aHAjHDSvtizmsmJFLL2qJrgqHo37YmwNhIlJgbAjn5_s5ye5CyVHtcINse7qFkYF9EeD4vxMQTnN6iB0SB6A7PBXnZF1Tzs0vaWBP9RCORk_TMYzqCaQFbdsKGD652hTcADKvxkIa-Lq6MflYc8yjRYs7bpuZblMTm2FSaBJKGHOhzKU2sdM5W6ehQQRdRQ4SRQQAXJzP8pVkKb0ILqIgXY_i04xKbJ1AYnWdipDLX0MlHI0JoQhmAX5iFJiuiGcVrqxNlXIuRnGOG7Dze7iWiUxq4QH6dU2xN7LorIpwvH-dL9VW_yPLcV0Tby_cMsoOTYnecaTMoeJcUjzvvzvzttisXc56Mf94-HpV_GBN2yiCDdFp5r-zL4RsqmSLWO5fwAn5fch
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Directional+assist+%280%C2%A01%C2%A00%29+plane+growth+in+LiMnPO4+prepared+by+solvothermal+method+with+polyols+to+enhance+electrochemical+performance&rft.jtitle=Chinese+journal+of+chemical+engineering&rft.au=Xie%2C+Qian&rft.au=Zhu%2C+Jihua&rft.au=Wang%2C+Chengyun&rft.au=Fang%2C+Kaibin&rft.date=2021-08-01&rft.issn=1004-9541&rft.volume=36&rft.spage=181&rft.epage=189&rft_id=info:doi/10.1016%2Fj.cjche.2020.10.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cjche_2020_10_027
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fcjce%2Fcjce.jpg