Study on the degradation of mechanical properties of corroded steel plates based on surface topography
Degradation laws of mechanical properties of corroded steel plates were studied by experimental method and numerical simulation method based on surface topography in this paper. First, Q235 steel plate was subject to accelerated corrosion with artificial salt spray, and the characteristics of the su...
Saved in:
Published in | Journal of constructional steel research Vol. 125; pp. 205 - 217 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0143-974X 1873-5983 |
DOI | 10.1016/j.jcsr.2016.06.018 |
Cover
Abstract | Degradation laws of mechanical properties of corroded steel plates were studied by experimental method and numerical simulation method based on surface topography in this paper. First, Q235 steel plate was subject to accelerated corrosion with artificial salt spray, and the characteristics of the surface of corroded steel plate were measured by three-dimensional morphology observation instrument to obtain the values related to corrosion damage parameters, and the relationship between the surface characteristic parameters and the corrosion rate was established. Then the stress-strain curves and mechanical properties of the corroded steel plates were obtained by monotonic tensile test. Finally, the mechanical properties of steel plates with real corroded surfaces were studied by numerical simulation method with reverse engineering software Geomagic Studio and finite element software ANSYS, and the stress concentration phenomenon caused by corrosion pit was discussed. The results showed that: (a) the corrosion rate is within 15%, the stress-strain curves have obvious yield plateaus; (b) and with the increase of corrosion rate, yield plateaus, yield strength, ultimate strength, and fracture strength of corroded steel plates does not decrease much, but ductility significantly decreases; (c) when the corrosion rate is over 15%, all the mechanical property index significantly decreases; (d) the constitutive model was established, and the law of the variations of the parameters of the model was summarized; (e) the numerical simulation method is feasible compared with the experimental results.
•Degradation laws of mechanical properties of corroded steel plates are studied.•The constitutive model of corroded steel plates is proposed.•Numerical simulation method based on surface topography is proposed. |
---|---|
AbstractList | Degradation laws of mechanical properties of corroded steel plates were studied by experimental method and numerical simulation method based on surface topography in this paper. First, Q235 steel plate was subject to accelerated corrosion with artificial salt spray, and the characteristics of the surface of corroded steel plate were measured by three-dimensional morphology observation instrument to obtain the values related to corrosion damage parameters, and the relationship between the surface characteristic parameters and the corrosion rate was established. Then the stress-strain curves and mechanical properties of the corroded steel plates were obtained by monotonic tensile test. Finally, the mechanical properties of steel plates with real corroded surfaces were studied by numerical simulation method with reverse engineering software Geomagic Studio and finite element software ANSYS, and the stress concentration phenomenon caused by corrosion pit was discussed. The results showed that: (a) the corrosion rate is within 15%, the stress-strain curves have obvious yield plateaus; (b) and with the increase of corrosion rate, yield plateaus, yield strength, ultimate strength, and fracture strength of corroded steel plates does not decrease much, but ductility significantly decreases; (c) when the corrosion rate is over 15%, all the mechanical property index significantly decreases; (d) the constitutive model was established, and the law of the variations of the parameters of the model was summarized; (e) the numerical simulation method is feasible compared with the experimental results.
•Degradation laws of mechanical properties of corroded steel plates are studied.•The constitutive model of corroded steel plates is proposed.•Numerical simulation method based on surface topography is proposed. Degradation laws of mechanical properties of corroded steel plates were studied by experimental method and numerical simulation method based on surface topography in this paper. First, Q235 steel plate was subject to accelerated corrosion with artificial salt spray, and the characteristics of the surface of corroded steel plate were measured by three-dimensional morphology observation instrument to obtain the values related to corrosion damage parameters, and the relationship between the surface characteristic parameters and the corrosion rate was established. Then the stress-strain curves and mechanical properties of the corroded steel plates were obtained by monotonic tensile test. Finally, the mechanical properties of steel plates with real corroded surfaces were studied by numerical simulation method with reverse engineering software Geomagic Studio and finite element software ANSYS, and the stress concentration phenomenon caused by corrosion pit was discussed. The results showed that: (a) the corrosion rate is within 15%, the stress-strain curves have obvious yield plateaus; (b) and with the increase of corrosion rate, yield plateaus, yield strength, ultimate strength, and fracture strength of corroded steel plates does not decrease much, but ductility significantly decreases; (c) when the corrosion rate is over 15%, all the mechanical property index significantly decreases; (d) the constitutive model was established, and the law of the variations of the parameters of the model was summarized; (e) the numerical simulation method is feasible compared with the experimental results. |
Author | Qin, Guang-chong Zhang, Zong-xing Xu, Shan-hua Yao, Dao-qiang |
Author_xml | – sequence: 1 givenname: Guang-chong surname: Qin fullname: Qin, Guang-chong email: qinguangchong@126.com – sequence: 2 givenname: Shan-hua surname: Xu fullname: Xu, Shan-hua – sequence: 3 givenname: Dao-qiang surname: Yao fullname: Yao, Dao-qiang – sequence: 4 givenname: Zong-xing surname: Zhang fullname: Zhang, Zong-xing |
BookMark | eNp9kEFr2zAUx0VJYUnaL7CTj7s41bPsRIJeRtnaQaGHrdCbeJaeGwXH8iR5kG9fudmph8ID6emv30P6rdhi8AMx9hX4Bjhsbw6bg4lhU-X9hucCecGWIHeibJQUC7bkUItS7eqXL2wV44FzLpWQS9b9TpM9FX4o0p4KS68BLSaXe98VRzJ7HJzBvhiDHykkR3EOjA_BW7JFTEQ57DHloMWYjzIap9ChoSL50eeB4_50xS477CNd_1_X7Pnnjz93D-Xj0_2vu--PpRFCpLJqRd2oCmqpWrslvq15BcBRYte2FdDOtoBGQKu46JQEIRGNxV2jTCeAlFizb-e5-b1_J4pJH1001Pc4kJ-iBimaRtYqS1mz6nzVBB9joE6PwR0xnDRwPUvVBz1L1bNUzXPBDMkPkHHp3VcK6PrP0dszSvn__xwFHY2jwZB1gUzS1rvP8Dc6kZbI |
CitedBy_id | crossref_primary_10_1002_maco_202213640 crossref_primary_10_1016_j_istruc_2021_01_079 crossref_primary_10_1016_j_jcsr_2022_107369 crossref_primary_10_1016_j_oceaneng_2021_110211 crossref_primary_10_1007_s12205_019_0153_8 crossref_primary_10_1016_j_kscej_2024_100119 crossref_primary_10_1016_j_actamat_2022_117728 crossref_primary_10_1016_j_istruc_2023_105357 crossref_primary_10_1016_j_jcsr_2023_108294 crossref_primary_10_1016_j_conbuildmat_2023_133210 crossref_primary_10_3390_met12020238 crossref_primary_10_1016_j_tws_2022_110380 crossref_primary_10_1016_j_mtcomm_2022_105184 crossref_primary_10_2139_ssrn_4170491 crossref_primary_10_1016_j_jcsr_2020_106026 crossref_primary_10_1016_j_rineng_2022_100555 crossref_primary_10_1007_s11668_022_01345_5 crossref_primary_10_1080_19648189_2022_2081262 crossref_primary_10_1016_j_tws_2022_110406 crossref_primary_10_1016_j_istruc_2021_12_052 crossref_primary_10_1016_j_istruc_2024_107925 crossref_primary_10_1016_j_istruc_2025_108503 crossref_primary_10_1155_2022_1719196 crossref_primary_10_1016_j_dibe_2023_100214 crossref_primary_10_1016_j_tws_2021_108286 crossref_primary_10_1088_1755_1315_571_1_012134 crossref_primary_10_1016_j_oceaneng_2020_108248 crossref_primary_10_3390_met9121259 crossref_primary_10_1016_j_conbuildmat_2021_125706 crossref_primary_10_1016_j_cscm_2022_e00972 crossref_primary_10_1016_j_jcsr_2024_109255 crossref_primary_10_1016_j_prostr_2021_10_084 crossref_primary_10_1007_s40964_024_00810_x crossref_primary_10_1007_s11804_020_00179_7 crossref_primary_10_1016_j_corsci_2024_112598 crossref_primary_10_1007_s11665_024_09535_y crossref_primary_10_1016_j_engstruct_2024_117832 crossref_primary_10_1016_j_conbuildmat_2019_01_092 crossref_primary_10_3390_w16243581 crossref_primary_10_1016_j_ijfatigue_2023_107810 crossref_primary_10_1016_j_jcsr_2024_108670 crossref_primary_10_1016_j_measurement_2021_110678 crossref_primary_10_1016_j_istruc_2024_107038 crossref_primary_10_1016_j_oceaneng_2019_05_073 crossref_primary_10_1016_j_conbuildmat_2023_132342 crossref_primary_10_1016_j_oceaneng_2024_118565 crossref_primary_10_1061__ASCE_MT_1943_5533_0004252 crossref_primary_10_1016_j_jobe_2024_108705 crossref_primary_10_1016_j_conbuildmat_2018_08_082 crossref_primary_10_1016_j_conbuildmat_2020_121915 crossref_primary_10_1016_j_jcsr_2024_109127 crossref_primary_10_1016_j_conbuildmat_2025_140713 crossref_primary_10_1016_j_jcsr_2020_106375 crossref_primary_10_1016_j_oceaneng_2022_111759 crossref_primary_10_1016_j_porgcoat_2019_04_008 crossref_primary_10_1016_j_jcsr_2022_107535 crossref_primary_10_1016_j_oceaneng_2021_109370 crossref_primary_10_1061__ASCE_MT_1943_5533_0004427 crossref_primary_10_1016_j_oceaneng_2023_113679 crossref_primary_10_1016_j_conbuildmat_2019_117735 crossref_primary_10_1016_j_tws_2019_106450 crossref_primary_10_1155_2022_6764915 crossref_primary_10_1016_j_conbuildmat_2022_126560 crossref_primary_10_1016_j_jobe_2024_110900 crossref_primary_10_1016_j_istruc_2024_106454 crossref_primary_10_1016_j_jobe_2021_103046 crossref_primary_10_1177_1478422X231218072 crossref_primary_10_1016_j_jcsr_2019_105879 crossref_primary_10_1016_j_jcsr_2024_109234 crossref_primary_10_1016_j_conbuildmat_2020_120899 crossref_primary_10_1515_corrrev_2020_0108 crossref_primary_10_1016_j_engstruct_2024_119352 crossref_primary_10_1002_mawe_202000081 crossref_primary_10_1007_s13296_018_0009_y crossref_primary_10_1016_j_jcsr_2022_107449 crossref_primary_10_1016_j_conbuildmat_2024_136918 crossref_primary_10_1016_j_apor_2023_103845 crossref_primary_10_1016_j_jobe_2021_102786 crossref_primary_10_1016_j_jcsr_2024_109066 crossref_primary_10_1016_j_conbuildmat_2019_07_345 crossref_primary_10_1007_s10518_023_01748_1 crossref_primary_10_1007_s13296_020_00328_2 crossref_primary_10_1016_j_tws_2023_111391 crossref_primary_10_1016_j_conbuildmat_2024_138265 crossref_primary_10_5006_4658 crossref_primary_10_1080_1478422X_2019_1613779 crossref_primary_10_1016_j_conbuildmat_2019_06_130 crossref_primary_10_1108_ACMM_06_2023_2843 crossref_primary_10_1016_j_oceaneng_2022_111177 crossref_primary_10_32604_sdhm_2024_044628 crossref_primary_10_1016_j_engstruct_2025_119744 crossref_primary_10_1051_matecconf_201928707004 crossref_primary_10_1016_j_engstruct_2020_110544 crossref_primary_10_1007_s12205_022_1223_x crossref_primary_10_1016_j_tws_2021_108481 crossref_primary_10_1016_j_ijfatigue_2020_106098 crossref_primary_10_1016_j_istruc_2024_108132 crossref_primary_10_1016_j_jcsr_2023_108269 crossref_primary_10_1016_j_jcsr_2024_108883 crossref_primary_10_1016_j_tws_2020_106735 crossref_primary_10_1016_j_jcsr_2019_105706 crossref_primary_10_1016_j_tws_2024_111929 crossref_primary_10_1016_j_engfracmech_2024_110024 crossref_primary_10_1080_17445302_2022_2032988 crossref_primary_10_1155_2020_4058452 crossref_primary_10_1016_j_istruc_2023_105136 crossref_primary_10_1016_j_engstruct_2019_04_037 crossref_primary_10_1016_j_conbuildmat_2025_139893 crossref_primary_10_1080_15376494_2024_2419988 crossref_primary_10_1177_14777606231201866 crossref_primary_10_1016_j_oceaneng_2023_113873 crossref_primary_10_3390_app11030938 crossref_primary_10_1016_j_kscej_2024_100007 crossref_primary_10_3390_jmse10060807 crossref_primary_10_1061_JMCEE7_MTENG_14800 crossref_primary_10_1016_j_oceaneng_2020_107803 crossref_primary_10_1080_09377255_2022_2029307 crossref_primary_10_1016_j_conbuildmat_2023_132649 crossref_primary_10_1016_j_istruc_2020_12_057 crossref_primary_10_1002_maco_202414781 crossref_primary_10_1016_j_conbuildmat_2024_136995 crossref_primary_10_1016_j_tws_2023_111466 crossref_primary_10_1016_j_conbuildmat_2020_121941 crossref_primary_10_1016_j_jobe_2023_107767 crossref_primary_10_1016_j_oceaneng_2022_111942 crossref_primary_10_1016_j_compgeo_2023_105269 crossref_primary_10_1016_j_jcsr_2018_01_023 |
Cites_doi | 10.1016/j.conbuildmat.2014.11.025 10.1016/j.wear.2013.08.007 10.1016/j.ijmecsci.2015.07.010 10.1016/j.triboint.2015.09.013 10.1016/j.tws.2010.10.002 10.1016/S0013-7944(98)00101-5 10.1016/j.corsci.2014.04.043 10.1016/S0141-0296(02)00080-9 10.1016/j.ijfatigue.2014.11.003 10.1016/j.engfailanal.2009.04.004 10.1007/s001700170119 10.1016/j.corsci.2012.10.028 10.1016/j.cad.2006.01.014 10.1061/(ASCE)0733-9445(1999)125:6(605) 10.1016/j.corsci.2005.05.039 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7SE 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.jcsr.2016.06.018 |
DatabaseName | CrossRef Corrosion Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Corrosion Abstracts METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5983 |
EndPage | 217 |
ExternalDocumentID | 10_1016_j_jcsr_2016_06_018 S0143974X16301808 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 D-I EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSM SST SSZ T5K VH1 WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SE 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c333t-2b345921489bd6e06402110a8afbb21e7db1ac31b903f98138aacda759cf31e93 |
IEDL.DBID | AIKHN |
ISSN | 0143-974X |
IngestDate | Fri Sep 05 00:00:38 EDT 2025 Tue Jul 01 03:38:10 EDT 2025 Thu Apr 24 23:01:09 EDT 2025 Fri Feb 23 02:20:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mechanical properties Constitutive model Numerical simulation Neutral salt spray Corroded steel Damage parameters |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-2b345921489bd6e06402110a8afbb21e7db1ac31b903f98138aacda759cf31e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1835584998 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1835584998 crossref_primary_10_1016_j_jcsr_2016_06_018 crossref_citationtrail_10_1016_j_jcsr_2016_06_018 elsevier_sciencedirect_doi_10_1016_j_jcsr_2016_06_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2016 2016-10-00 20161001 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
PublicationDecade | 2010 |
PublicationTitle | Journal of constructional steel research |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Stout, Sullivan, Dong (bb0035) 1993 Kalin, Pogačnik, Etsion, Raeymaekers (bb0040) 2016; 93 Lee, Woo, Suk (bb0090) 2001 Melchers, Wells (bb0015) 2006; 48 Caprili, Salvatore (bb0070) 2015; 76 Li, Li, Sun (bb0010) 1999; 55 Wang, Wharton, Shenoi (bb0085) 2014; 86 GB/T 10125 (bb0110) 2012 Xu, Wang (bb0045) 2015; 72 Cerit (bb0025) 2013; 67 Thomas (bb0125) 1999 Rodriguez, Botero, Villa (bb0065) 1999; 125 Dhakal, Maekawa (bb0075) 2002; 24 GB/T 24517 (bb0115) 2009 WHITE, WATKINS (bb0005) 1976 Hu, Lin, Yuan, He (bb0060) 2015; 101–102 GB/T2975 (bb0120) 1998 Liu, Pottmann, Wang (bb0100) 2006; 38 Cerit, Genel, Eksi (bb0055) 2009; 16 Rokhlin, Kim, Nagy (bb0050) 1999; 62 Várady, Martin (bb0095) 2002 Marcus (bb0030) 2002 Wood, Walker, Harvey (bb0020) 2013; 306 ANSYS (bb0105) 2005 Khedmati, Roshanali (bb0080) 2011; 49 Caprili (10.1016/j.jcsr.2016.06.018_bb0070) 2015; 76 Wang (10.1016/j.jcsr.2016.06.018_bb0085) 2014; 86 GB/T2975 (10.1016/j.jcsr.2016.06.018_bb0120) 1998 Lee (10.1016/j.jcsr.2016.06.018_bb0090) 2001 Várady (10.1016/j.jcsr.2016.06.018_bb0095) 2002 Liu (10.1016/j.jcsr.2016.06.018_bb0100) 2006; 38 Marcus (10.1016/j.jcsr.2016.06.018_bb0030) 2002 Rodriguez (10.1016/j.jcsr.2016.06.018_bb0065) 1999; 125 Cerit (10.1016/j.jcsr.2016.06.018_bb0055) 2009; 16 Wood (10.1016/j.jcsr.2016.06.018_bb0020) 2013; 306 Melchers (10.1016/j.jcsr.2016.06.018_bb0015) 2006; 48 WHITE (10.1016/j.jcsr.2016.06.018_bb0005) 1976 Xu (10.1016/j.jcsr.2016.06.018_bb0045) 2015; 72 Dhakal (10.1016/j.jcsr.2016.06.018_bb0075) 2002; 24 Khedmati (10.1016/j.jcsr.2016.06.018_bb0080) 2011; 49 Thomas (10.1016/j.jcsr.2016.06.018_bb0125) 1999 Rokhlin (10.1016/j.jcsr.2016.06.018_bb0050) 1999; 62 ANSYS (10.1016/j.jcsr.2016.06.018_bb0105) 2005 Stout (10.1016/j.jcsr.2016.06.018_bb0035) 1993 GB/T 10125 (10.1016/j.jcsr.2016.06.018_bb0110) 2012 Kalin (10.1016/j.jcsr.2016.06.018_bb0040) 2016; 93 Cerit (10.1016/j.jcsr.2016.06.018_bb0025) 2013; 67 Hu (10.1016/j.jcsr.2016.06.018_bb0060) 2015; 101–102 GB/T 24517 (10.1016/j.jcsr.2016.06.018_bb0115) 2009 Li (10.1016/j.jcsr.2016.06.018_bb0010) 1999; 55 |
References_xml | – start-page: 349 year: 2002 end-page: 398 ident: bb0030 article-title: Corrosion Mechanisms in Theory and Practice – volume: 72 start-page: 27 year: 2015 end-page: 41 ident: bb0045 article-title: Estimating the effects of corrosion pits on the fatigue life of steel plate based on the 3D profile publication-title: Int. J. Fatigue – volume: 86 start-page: 42 year: 2014 end-page: 60 ident: bb0085 article-title: Ultimate strength analysis of aged steel-plated structures exposed to marine corrosion damage: a review publication-title: Corros. Sci. – year: 1999 ident: bb0125 article-title: Rough Surfaces – year: 2012 ident: bb0110 article-title: Corrosion Tests in Artificial Atmospheres-Salt Spray Tests – start-page: 735 year: 2001 end-page: 743 ident: bb0090 article-title: Data Reduction Methods for Reverse Engineering publication-title: Int. J. Adv. Manuf. Technol. – year: 1993 ident: bb0035 article-title: The development of methods for characterization of roughness in three dimensions – volume: 101–102 start-page: 1 year: 2015 end-page: 9 ident: bb0060 article-title: Constitutive models for regression of various experimental stress–strain relations publication-title: Int. J. Mech. Sci. – year: 2005 ident: bb0105 article-title: ANSYS Contact Technology Guide – year: 2009 ident: bb0115 article-title: Corrosion of metals and alloys publication-title: Outdoors Exposure Test Methods for Periodic Water Spray – volume: 306 start-page: 254 year: 2013 end-page: 262 ident: bb0020 article-title: Influence of microstructure on the erosion and erosion-corrosion characteristics of 316 stainless steel publication-title: Wear – volume: 55 start-page: 498 year: 1999 end-page: 502 ident: bb0010 article-title: Development of an artificial climatic complex accelerated corrosion tester and investigation of complex accelerated corrosion test methods Corrosion – volume: 16 start-page: 2467 year: 2009 end-page: 2472 ident: bb0055 article-title: Numerical investigation on stress concentration of corrosion pit publication-title: Eng. Fail. Anal. – start-page: 10:33 year: 1976 end-page: 10:53 ident: bb0005 article-title: 10.3–Design for Prevention of Corrosion in Buildings and Structures Corrosion publication-title: Corrosion Control – volume: 24 start-page: 1383 year: 2002 end-page: 1396 ident: bb0075 article-title: Path-dependent cyclic stress–strain relationship of reinforcing bar including buckling publication-title: Eng. Struct. – volume: 48 start-page: 1791 year: 2006 end-page: 1811 ident: bb0015 article-title: Models for the anaerobic phases of marine immersion corrosion publication-title: Corros. Sci. – volume: 62 start-page: 425 year: 1999 end-page: 444 ident: bb0050 article-title: Effect of pitting corrosion on fatigue crack initiation and fatigue life publication-title: Eng. Fract. Mech. – start-page: 651 year: 2002 end-page: 681 ident: bb0095 article-title: Reverse engineering, Chapter 26 publication-title: Handbook of Computer Aided Geometric Design – volume: 38 start-page: 572 year: 2006 end-page: 583 ident: bb0100 article-title: Constrained 3d shape reconstruction using a combination of surface fitting and registration publication-title: Comput. Aided Des. – year: 1998 ident: bb0120 article-title: Steel and Steel Products—Location and Preparation of Test Pieces for Mechanical Testing – volume: 76 start-page: 168 year: 2015 end-page: 186 ident: bb0070 article-title: Cyclic behaviour of uncorroded and corroded steel reinforcing bars publication-title: Constr. Build. Mater. – volume: 125 start-page: 605 year: 1999 end-page: 612 ident: bb0065 article-title: Cyclic stress–strain behavior of reinforcing steel including effect of buckling publication-title: J. Struct. Eng. ASCE – volume: 93 start-page: 137 year: 2016 end-page: 141 ident: bb0040 article-title: Comparing surface topography parameters of rough surfaces obtained with spectral moments and deterministic methods publication-title: Tribol. Int. – volume: 67 start-page: 225 year: 2013 end-page: 232 ident: bb0025 article-title: Numerical investigation on torsional stress concentration factor at the semi elliptical corrosion pit publication-title: Corros. Sci. – volume: 49 start-page: 325 year: 2011 end-page: 342 ident: bb0080 article-title: Strength of steel plates with both-sides randomly distributed with corrosion wastage under uniaxial compression publication-title: Thin-Walled Struct. – volume: 76 start-page: 168 year: 2015 ident: 10.1016/j.jcsr.2016.06.018_bb0070 article-title: Cyclic behaviour of uncorroded and corroded steel reinforcing bars publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.11.025 – volume: 55 start-page: 498 issue: 5 year: 1999 ident: 10.1016/j.jcsr.2016.06.018_bb0010 article-title: Development of an artificial climatic complex accelerated corrosion tester and investigation of complex accelerated corrosion test methods Corrosion – volume: 306 start-page: 254 year: 2013 ident: 10.1016/j.jcsr.2016.06.018_bb0020 article-title: Influence of microstructure on the erosion and erosion-corrosion characteristics of 316 stainless steel publication-title: Wear doi: 10.1016/j.wear.2013.08.007 – year: 1993 ident: 10.1016/j.jcsr.2016.06.018_bb0035 – volume: 101–102 start-page: 1 year: 2015 ident: 10.1016/j.jcsr.2016.06.018_bb0060 article-title: Constitutive models for regression of various experimental stress–strain relations publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2015.07.010 – volume: 93 start-page: 137 issue: A year: 2016 ident: 10.1016/j.jcsr.2016.06.018_bb0040 article-title: Comparing surface topography parameters of rough surfaces obtained with spectral moments and deterministic methods publication-title: Tribol. Int. doi: 10.1016/j.triboint.2015.09.013 – volume: 49 start-page: 325 year: 2011 ident: 10.1016/j.jcsr.2016.06.018_bb0080 article-title: Strength of steel plates with both-sides randomly distributed with corrosion wastage under uniaxial compression publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2010.10.002 – volume: 62 start-page: 425 year: 1999 ident: 10.1016/j.jcsr.2016.06.018_bb0050 article-title: Effect of pitting corrosion on fatigue crack initiation and fatigue life publication-title: Eng. Fract. Mech. doi: 10.1016/S0013-7944(98)00101-5 – volume: 86 start-page: 42 year: 2014 ident: 10.1016/j.jcsr.2016.06.018_bb0085 article-title: Ultimate strength analysis of aged steel-plated structures exposed to marine corrosion damage: a review publication-title: Corros. Sci. doi: 10.1016/j.corsci.2014.04.043 – volume: 24 start-page: 1383 issue: 11 year: 2002 ident: 10.1016/j.jcsr.2016.06.018_bb0075 article-title: Path-dependent cyclic stress–strain relationship of reinforcing bar including buckling publication-title: Eng. Struct. doi: 10.1016/S0141-0296(02)00080-9 – year: 1999 ident: 10.1016/j.jcsr.2016.06.018_bb0125 – start-page: 349 year: 2002 ident: 10.1016/j.jcsr.2016.06.018_bb0030 – year: 2005 ident: 10.1016/j.jcsr.2016.06.018_bb0105 – year: 2009 ident: 10.1016/j.jcsr.2016.06.018_bb0115 article-title: Corrosion of metals and alloys – start-page: 651 year: 2002 ident: 10.1016/j.jcsr.2016.06.018_bb0095 article-title: Reverse engineering, Chapter 26 – volume: 72 start-page: 27 year: 2015 ident: 10.1016/j.jcsr.2016.06.018_bb0045 article-title: Estimating the effects of corrosion pits on the fatigue life of steel plate based on the 3D profile publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2014.11.003 – volume: 16 start-page: 2467 year: 2009 ident: 10.1016/j.jcsr.2016.06.018_bb0055 article-title: Numerical investigation on stress concentration of corrosion pit publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2009.04.004 – start-page: 735 year: 2001 ident: 10.1016/j.jcsr.2016.06.018_bb0090 article-title: Data Reduction Methods for Reverse Engineering publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s001700170119 – year: 1998 ident: 10.1016/j.jcsr.2016.06.018_bb0120 – start-page: 10:33 year: 1976 ident: 10.1016/j.jcsr.2016.06.018_bb0005 article-title: 10.3–Design for Prevention of Corrosion in Buildings and Structures Corrosion – volume: 67 start-page: 225 issue: 0 year: 2013 ident: 10.1016/j.jcsr.2016.06.018_bb0025 article-title: Numerical investigation on torsional stress concentration factor at the semi elliptical corrosion pit publication-title: Corros. Sci. doi: 10.1016/j.corsci.2012.10.028 – year: 2012 ident: 10.1016/j.jcsr.2016.06.018_bb0110 – volume: 38 start-page: 572 issue: 6 year: 2006 ident: 10.1016/j.jcsr.2016.06.018_bb0100 article-title: Constrained 3d shape reconstruction using a combination of surface fitting and registration publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2006.01.014 – volume: 125 start-page: 605 year: 1999 ident: 10.1016/j.jcsr.2016.06.018_bb0065 article-title: Cyclic stress–strain behavior of reinforcing steel including effect of buckling publication-title: J. Struct. Eng. ASCE doi: 10.1061/(ASCE)0733-9445(1999)125:6(605) – volume: 48 start-page: 1791 year: 2006 ident: 10.1016/j.jcsr.2016.06.018_bb0015 article-title: Models for the anaerobic phases of marine immersion corrosion publication-title: Corros. Sci. doi: 10.1016/j.corsci.2005.05.039 |
SSID | ssj0008938 |
Score | 2.501762 |
Snippet | Degradation laws of mechanical properties of corroded steel plates were studied by experimental method and numerical simulation method based on surface... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 205 |
SubjectTerms | Computer simulation Constitutive model Corroded steel Corrosion Corrosion rate Damage parameters Killed steels Mathematical models Mechanical properties Neutral salt spray Numerical simulation Plates Steels Yield strength |
Title | Study on the degradation of mechanical properties of corroded steel plates based on surface topography |
URI | https://dx.doi.org/10.1016/j.jcsr.2016.06.018 https://www.proquest.com/docview/1835584998 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vehBfOL6IoI3qbtp-kiPIsqq4ElhbyGvgqLtso-DF3-7M20qKuLBYx8JZSaZ-ab58gXgVJTe5FwPIxtbHeGgkJFJU5p4WHs4I3RWNgTZ-2z0mNyO0_ESXHZ7YYhWGWJ_G9ObaB3uDII1B5OnpwHRkjCZJmNEFKRCJZdhJRZFlvZg5eLmbnT_GZAxJcuWySgiahD2zrQ0r2c7I1lQnjUynnT2x-_56UekbtLP9QasB9zILtpP24QlX23B2hc1wW0oiRP4xuqKIahjjlQg2gOTWF2yV09bfMkjbEL_36ckpEoPsPrEGOodQ3d7fPhC4JNRcnPU1WwxLbX1bF5Pgrj1DjxeXz1cjqJwjEJkhRDzKDYiSYsY657CuMzT0h1VfVrq0piY-9wZrq3gphiKspBcSK2t03la2FJwX4hd6FV15feAJUmuM8OdMITDhplMZFOi-Vw7hDa6D7wznrJBY5yOunhRHZnsWZHBFRlcEaOOyz6cfbaZtAobf76ddj5R38aJwhTwZ7uTzoEKJxCtiujK14uZwpiWIgrDsnP_n30fwCpdtRS_Q-jNpwt_hFBlbo5h-fydH4cB-QHj6ejg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUKHIADYhU7RuKGQus4i3NEFVWB0hNIvVneIrUqSdXlwIVvZyYLm1APXOPYijz2zJv4-Q0hVzx1Omaq5RnfKA8WhfB0GOLGg9zDaq6itCDI9qPuS_AwCAcN0q7vwiCtsvL9pU8vvHX1pFnNZnMyHDaRlgTBNBgAokAVKrFC1oKQx8jru3n_4nlAQBYlj5F7-Hp1c6YkeY3MDEVBWVSIeGLlj7-j0y8_XQSfzjbZqlAjvS0_bIc0XLZLNr9pCe6RFBmBbzTPKEA6alEDoiyXRPOUvjq84Iv2oBP8-z5FGVVsgNwTPKizFIztoHGM0JNiaLM41GwxTZVxdJ5PKmnrffLSuXtud72qiIJnOOdzz9c8CBMfsp5E28jhwR3mfEqoVGufudhqpgxnOmnxNBGMC6WMVXGYmJQzl_ADsprlmTskNAhiFWlmuUYU1opEIIoEzcXKArBRR4TVkydNpTCOhS7GsqaSjSROuMQJl8inY-KIXH_2mZT6GkvfDmubyB-rREIAWNrvsjaghO2DZyIqc_liJsGjhYDBIOk8_ufYF2S9-_zUk737_uMJ2cCWkux3Slbn04U7A9Ay1-fFovwA23fpqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+the+degradation+of+mechanical+properties+of+corroded+steel+plates+based+on+surface+topography&rft.jtitle=Journal+of+constructional+steel+research&rft.au=Qin%2C+Guang-chong&rft.au=Xu%2C+Shan-hua&rft.au=Yao%2C+Dao-qiang&rft.au=Zhang%2C+Zong-xing&rft.date=2016-10-01&rft.issn=0143-974X&rft.volume=125&rft.spage=205&rft.epage=217&rft_id=info:doi/10.1016%2Fj.jcsr.2016.06.018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-974X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-974X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-974X&client=summon |