Modeling and numerical analysis of nanoliquid (titanium oxide, graphene oxide) flow viscous fluid with second order velocity slip and entropy generation
The prime objective of the present communication is to examine the entropy-optimized second order velocity slip Darcy–Forchheimer hybrid nanofluid flow of viscous material between two rotating disks. Electrical conducting flow is considered and saturated through Darcy–Forchheimer relation. Both the...
Saved in:
Published in | Chinese journal of chemical engineering Vol. 31; no. 3; pp. 17 - 25 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2021
Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering,Changsha University of Science&Technology,Changsha 410114,China%NUTECH School of Applied Sciences and Humanities,National University of Technology,Islamabad 44000,Pakistan Department of Mathematics,Riphah International University,Faisalabad Campus,Faisalabad 38000,Pakistan%Department of Mathematics and Computer Science,Beirut Arab University,Beirut,Lebanon%Department of Mathematics,Huzhou University,Huzhou 313000,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The prime objective of the present communication is to examine the entropy-optimized second order velocity slip Darcy–Forchheimer hybrid nanofluid flow of viscous material between two rotating disks. Electrical conducting flow is considered and saturated through Darcy–Forchheimer relation. Both the disks are rotating with different angular frequencies and stretches with different rates. Here graphene oxide and titanium dioxide are considered for hybrid nanoparticles and water as a continuous phase liquid. Joule heating, heat generation/absorption and viscous dissipation effects are incorporated in the mathematical modeling of energy expression. Furthermore, binary chemical reaction with activation energy is considered. The total entropy rate is calculated in the presence of heat transfer irreversibility, fluid friction irreversibility, Joule heating irreversibility, porosity irreversibility and chemical reaction irreversibility through thermodynamics second law. The nonlinear governing equations are first converted into ordinary differential equations through implementation of appropriate similarity transformations and then numerical solutions are calculated through Built-in-Shooting method. Characteristics of sundry flow variables on the entropy generation rate, velocity, concentration, Bejan number, temperature are discussed graphically for both graphene oxide and titanium dioxide hybrid nanoparticles. The engineering interest like skin friction coefficient and Nusselt number are computed numerically and presented through tables. It is noticed from the obtained results that entropy generation rate and Bejan number have similar effects versus diffusion parameter. Also entropy generation rate is more against the higher Brinkman number. |
---|---|
AbstractList | The prime objective of the present communication is to examine the entropy-optimized second order velocity slip Darcy–Forchheimer hybrid nanofluid flow of viscous material between two rotating disks. Electrical conducting flow is considered and saturated through Darcy–Forchheimer relation. Both the disks are rotating with different angular frequencies and stretches with different rates. Here graphene oxide and titanium dioxide are considered for hybrid nanoparticles and water as a continuous phase liquid. Joule heat-ing, heat generation/absorption and viscous dissipation effects are incorporated in the mathematical mod-eling of energy expression. Furthermore, binary chemical reaction with activation energy is considered. The total entropy rate is calculated in the presence of heat transfer irreversibility,fluid friction irreversibility, Joule heating irreversibility, porosity irreversibility and chemical reaction irreversibility through thermo-dynamics second law. The nonlinear governing equations are first converted into ordinary differential equations through implementation of appropriate similarity transformations and then numerical solutions are calculated through Built-in-Shooting method. Characteristics of sundry flow variables on the entropy generation rate, velocity, concentration, Bejan number, temperature are discussed graphically for both gra-phene oxide and titanium dioxide hybrid nanoparticles. The engineering interest like skin friction coeffi-cient and Nusselt number are computed numerically and presented through tables. It is noticed from the obtained results that entropy generation rate and Bejan number have similar effects versus diffusion param-eter. Also entropy generation rate is more against the higher Brinkman number. The prime objective of the present communication is to examine the entropy-optimized second order velocity slip Darcy–Forchheimer hybrid nanofluid flow of viscous material between two rotating disks. Electrical conducting flow is considered and saturated through Darcy–Forchheimer relation. Both the disks are rotating with different angular frequencies and stretches with different rates. Here graphene oxide and titanium dioxide are considered for hybrid nanoparticles and water as a continuous phase liquid. Joule heating, heat generation/absorption and viscous dissipation effects are incorporated in the mathematical modeling of energy expression. Furthermore, binary chemical reaction with activation energy is considered. The total entropy rate is calculated in the presence of heat transfer irreversibility, fluid friction irreversibility, Joule heating irreversibility, porosity irreversibility and chemical reaction irreversibility through thermodynamics second law. The nonlinear governing equations are first converted into ordinary differential equations through implementation of appropriate similarity transformations and then numerical solutions are calculated through Built-in-Shooting method. Characteristics of sundry flow variables on the entropy generation rate, velocity, concentration, Bejan number, temperature are discussed graphically for both graphene oxide and titanium dioxide hybrid nanoparticles. The engineering interest like skin friction coefficient and Nusselt number are computed numerically and presented through tables. It is noticed from the obtained results that entropy generation rate and Bejan number have similar effects versus diffusion parameter. Also entropy generation rate is more against the higher Brinkman number. |
Author | Chu, Yuming Kadry, Seifedine Khan, M. Ijaz Waqas, M. |
AuthorAffiliation | Department of Mathematics,Riphah International University,Faisalabad Campus,Faisalabad 38000,Pakistan%Department of Mathematics and Computer Science,Beirut Arab University,Beirut,Lebanon%Department of Mathematics,Huzhou University,Huzhou 313000,China;Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering,Changsha University of Science&Technology,Changsha 410114,China%NUTECH School of Applied Sciences and Humanities,National University of Technology,Islamabad 44000,Pakistan |
AuthorAffiliation_xml | – name: Department of Mathematics,Riphah International University,Faisalabad Campus,Faisalabad 38000,Pakistan%Department of Mathematics and Computer Science,Beirut Arab University,Beirut,Lebanon%Department of Mathematics,Huzhou University,Huzhou 313000,China;Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering,Changsha University of Science&Technology,Changsha 410114,China%NUTECH School of Applied Sciences and Humanities,National University of Technology,Islamabad 44000,Pakistan |
Author_xml | – sequence: 1 givenname: M. Ijaz surname: Khan fullname: Khan, M. Ijaz organization: Department of Mathematics, Riphah International University, Faisalabad Campus, Faisalabad 38000, Pakistan – sequence: 2 givenname: Seifedine surname: Kadry fullname: Kadry, Seifedine organization: Department of Mathematics and Computer Science, Beirut Arab University, Beirut, Lebanon – sequence: 3 givenname: Yuming surname: Chu fullname: Chu, Yuming email: chuyuming@zjhu.edu.cn organization: Department of Mathematics, Huzhou University, Huzhou 313000, China – sequence: 4 givenname: M. surname: Waqas fullname: Waqas, M. organization: NUTECH School of Applied Sciences and Humanities, National University of Technology, Islamabad 44000, Pakistan |
BookMark | eNqFkE1vGyEQhjmkUvPRX9ALl0qtVG9h2bXZQw9VlH5IqXJJzgjDYM8KgwusHf-T_txgu6ce2hMaMc_MvM8VuQgxACFvOWs44_NPY2NGs4amZS1rmGwY6y_IJWesmw19x1-Tq5xHVj8ll5fk989owWNYUR0sDdMGEhrta6X9IWOm0dGgQ_T4a0JL3xcsOuC0ofEZLXykq6S3awhwrj9Q5-Oe7jCbOOVaHJk9ljXNYGJdEJOFRHfgo8FyoNnj9rQYQklxe6CrOirpgjHckFdO-wxv_rzX5Onr3ePt99n9w7cft1_uZ0YIUWbtHCRw2WnjRC-NNV3bL2BRk7bGdrpzbNBc9u0wiIVbagnzhexdr7mQ0iyXc3FN3p3n7nVwOqzUGKdUw2dVNUKVyJmo7mrfcO4zKeacwKma4HRpSRq94kwd9atRnfSro37FpKr6Kyv-YrcJNzod_kN9PlNQ4-8QksoGIRiwmMAUZSP-k38BRYinQA |
CitedBy_id | crossref_primary_10_1016_j_aej_2021_07_030 crossref_primary_10_1016_j_heliyon_2023_e21727 crossref_primary_10_3390_mi13091415 crossref_primary_10_1016_j_jics_2022_100504 crossref_primary_10_1038_s41598_023_39176_5 crossref_primary_10_1007_s12666_023_03039_4 crossref_primary_10_1108_MMMS_03_2024_0087 crossref_primary_10_1080_01932691_2021_1931291 crossref_primary_10_1016_j_padiff_2025_101111 crossref_primary_10_1080_10407782_2023_2195131 crossref_primary_10_1142_S021797922150199X crossref_primary_10_1515_phys_2022_0166 crossref_primary_10_1016_j_jrras_2024_101273 crossref_primary_10_1016_j_csite_2024_105603 crossref_primary_10_1016_j_cjche_2022_01_013 crossref_primary_10_1016_j_aej_2022_02_005 crossref_primary_10_1016_j_matcom_2020_12_004 crossref_primary_10_1016_j_sasc_2025_200202 crossref_primary_10_1016_j_cplett_2022_139742 crossref_primary_10_1140_epjs_s11734_021_00044_w crossref_primary_10_1177_09544089211057971 crossref_primary_10_1016_j_csite_2024_105591 crossref_primary_10_1016_j_molliq_2025_127449 crossref_primary_10_1016_j_triboint_2024_110431 crossref_primary_10_1016_j_cjac_2023_100286 crossref_primary_10_1016_j_padiff_2025_101148 crossref_primary_10_1016_j_ijft_2024_101006 crossref_primary_10_1016_j_padiff_2024_101067 crossref_primary_10_1177_16878140211070937 crossref_primary_10_1002_htj_22644 crossref_primary_10_1080_10407782_2023_2174222 crossref_primary_10_1007_s13204_022_02528_0 crossref_primary_10_1007_s41939_024_00704_z crossref_primary_10_1002_htj_22387 crossref_primary_10_1177_16878132221095425 crossref_primary_10_1016_j_mtcomm_2025_111508 crossref_primary_10_1016_j_cjph_2021_08_003 crossref_primary_10_1177_0958305X231196298 |
Cites_doi | 10.1016/j.ijthermalsci.2006.04.008 10.1016/j.cjph.2018.06.023 10.1016/j.jcis.2017.03.024 10.1016/j.ijheatmasstransfer.2018.06.124 10.1016/0142-727X(87)90062-2 10.1016/j.colsurfa.2018.06.017 10.1016/j.cmpb.2020.105362 10.1016/j.csite.2020.100660 10.1007/BF01379650 10.1017/S0305004100028437 10.1016/j.molliq.2016.09.069 10.1115/1.2150834 10.1016/j.ijthermalsci.2004.08.005 10.1007/BF01587695 10.1016/j.ijthermalsci.2009.07.015 10.1016/j.cmpb.2019.105294 10.1007/s11012-012-9677-4 10.1016/j.jnnfm.2006.01.009 10.1016/j.jpcs.2018.10.015 10.1016/j.rser.2010.11.035 10.1016/j.ijheatmasstransfer.2016.05.114 10.1016/j.cmpb.2020.105363 10.1016/j.molliq.2017.05.145 10.1016/j.egypro.2014.12.017 10.1016/j.ijheatmasstransfer.2012.06.086 10.1016/j.asej.2015.10.016 10.1016/j.ijheatmasstransfer.2009.07.023 10.1002/zamm.19210010401 10.1016/j.cmpb.2019.105298 10.1002/aic.690070108 10.1016/j.molliq.2018.11.148 10.1115/1.3451063 10.1504/IJEX.2010.031238 10.1016/j.euromechflu.2020.05.017 10.1016/j.powtec.2020.03.030 10.1016/j.jmrt.2020.04.019 |
ContentType | Journal Article |
Copyright | 2020 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2020 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/j.cjche.2020.08.005 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 25 |
ExternalDocumentID | cjce202103004 10_1016_j_cjche_2020_08_005 S1004954120304225 |
GrantInformation_xml | – fundername: The research was supported by the National Natural Science Foundation of China funderid: (Grant Nos,11971142,11871202,61673169,11701176,11626101,and 11601485) |
GroupedDBID | --K --M -SB -S~ .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 8RM 92H 92I AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABNUV ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFUIB AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC BNPGV CAJEB CCEZO CDRFL CHBEP CS3 CW9 DU5 EBS EFJIC EFKBS EJD ENUVR EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q-- Q38 RIG ROL SDC SDF SDG SDH SES SPC SPCBC SSG SSH SSZ T5K TCJ TGT U1G U5L ~G- AAYXX CITATION FA0 188 2B. 4A8 93N PSX UGNYK |
ID | FETCH-LOGICAL-c333t-26e8e184acf358cdc4257e79542cd4a4f09a18529937fba8e6785f5a1388cbb63 |
IEDL.DBID | .~1 |
ISSN | 1004-9541 |
IngestDate | Thu May 29 04:04:47 EDT 2025 Tue Jul 01 02:57:19 EDT 2025 Thu Apr 24 23:04:10 EDT 2025 Fri Jul 18 01:25:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Second order velocity slip Heat generation/absorption Darcy–Forchheimer porous medium Convective boundary condition Titanium dioxide and graphene oxide nanoparticles Activation energy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-26e8e184acf358cdc4257e79542cd4a4f09a18529937fba8e6785f5a1388cbb63 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_cjce202103004 crossref_citationtrail_10_1016_j_cjche_2020_08_005 crossref_primary_10_1016_j_cjche_2020_08_005 elsevier_sciencedirect_doi_10_1016_j_cjche_2020_08_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese journal of chemical engineering |
PublicationTitle_FL | Chinese Journal of Chemical Engineering |
PublicationYear | 2021 |
Publisher | Elsevier B.V Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering,Changsha University of Science&Technology,Changsha 410114,China%NUTECH School of Applied Sciences and Humanities,National University of Technology,Islamabad 44000,Pakistan Department of Mathematics,Riphah International University,Faisalabad Campus,Faisalabad 38000,Pakistan%Department of Mathematics and Computer Science,Beirut Arab University,Beirut,Lebanon%Department of Mathematics,Huzhou University,Huzhou 313000,China |
Publisher_xml | – name: Elsevier B.V – name: Department of Mathematics,Riphah International University,Faisalabad Campus,Faisalabad 38000,Pakistan%Department of Mathematics and Computer Science,Beirut Arab University,Beirut,Lebanon%Department of Mathematics,Huzhou University,Huzhou 313000,China – name: Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering,Changsha University of Science&Technology,Changsha 410114,China%NUTECH School of Applied Sciences and Humanities,National University of Technology,Islamabad 44000,Pakistan |
References | Ahmed, Mansour, Mahdy, Mohamed (bb0040) 2017; 20 Khan, Qayyum, Hayat, Alsaedi (bb0115) 2018; 56 Hayat, Khan, Farooq, Gull, Alsaedi (bb0120) 2016; 223 Akbar, Nadeem (bb0080) 2011; 67 Choi, Eastman (bb0130) 1995; 66 Karman (bb0205) 1921; 1 Srinivasacharya, Bindu (bb0030) 2018; 9 Liu, Li (bb0150) 2012; 55 Crane (bb0055) 1970; 21 Abbas, Khan, Kadry, Khan, Waqas, Khan (bb0180) 2020; 190 Imtiaz, Hayat, Alsaedi, Ahmad (bb0215) 2016; 101 Aly, Pop (bb0185) 2020; 3671 Kuznetsov, Nield (bb0160) 2010; 49 Ali (bb0070) 2007; 46 Abel, Prasad, Mahaboob (bb0075) 2005; 44 Khan, Alzahrani, Hobiny, Ali (bb0200) 2020; 9 Stewartson (bb0210) 1953; 49 Khan, Hayat, Khan, Waqas, Alsaedi (bb0045) 2019; 125 Salem, Fathy (bb0105) 2012; 26 Sobamowo, Akinshilo (bb0050) 2017; 241 Saidur, Leong, Mohammad (bb0145) 2011; 15 Ahmad, Khan, Hayat, Khan, Alsaedi (bb0125) 2018; 554 Buongiorno (bb0155) 2006; 128 Reveillere, Baytas (bb0015) 2010; 7 Chaim (bb0090) 1998; 129 Sakiadis (bb0060) 1961; 7 Jamaludin, Naganthran, Nazar, Pop (bb0175) 2020; 84 Rashid, Khan, Hayat, Khan, Alsaedi (bb0035) 2019; 276 Muhammad, Khan, Khan, Jameel (bb0025) 2020; 189 Khan, Waqas, Hayat, Alsaedi (bb0065) 2017; 498 Buongiorno, Hu, Kim, Hannink, Truong, Forrest (bb0140) 2008; 162 Bejan (bb0010) 1987; 8 Khan, Shafiq, Zaib, Baleanu (bb0195) 2020; 21 Hayat, Kayani, Alsaedi, Khan, Ahmad (bb0170) 2018; 127 Bejan (bb0005) 1979; 101 Cortell (bb0095) 2007; 184 Nandeppanavar, Vajravelu, Abel, Siddalingappa (bb0085) 2013; 48 Nagarajan, Subramani, Suyambazhahan, Sathyamurthy (bb0135) 2014; 61 Nield, Kuznetsov (bb0165) 2009; 52 Chen (bb0110) 2006; 135 Vyas, Ranjan (bb0100) 2010; 4 Muhammad, Khan, Jameel, Khan (bb0020) 2020; 188 Abbas, Khan, Kadry, Khan, Israr-Ur-Rehman, Waqas (bb0190) 2020; 190 Muhammad (10.1016/j.cjche.2020.08.005_bb0020) 2020; 188 Buongiorno (10.1016/j.cjche.2020.08.005_bb0155) 2006; 128 Salem (10.1016/j.cjche.2020.08.005_bb0105) 2012; 26 Abbas (10.1016/j.cjche.2020.08.005_bb0180) 2020; 190 Rashid (10.1016/j.cjche.2020.08.005_bb0035) 2019; 276 Crane (10.1016/j.cjche.2020.08.005_bb0055) 1970; 21 Chaim (10.1016/j.cjche.2020.08.005_bb0090) 1998; 129 Ahmad (10.1016/j.cjche.2020.08.005_bb0125) 2018; 554 Aly (10.1016/j.cjche.2020.08.005_bb0185) 2020; 3671 Ali (10.1016/j.cjche.2020.08.005_bb0070) 2007; 46 Cortell (10.1016/j.cjche.2020.08.005_bb0095) 2007; 184 Khan (10.1016/j.cjche.2020.08.005_bb0115) 2018; 56 Nield (10.1016/j.cjche.2020.08.005_bb0165) 2009; 52 Karman (10.1016/j.cjche.2020.08.005_bb0205) 1921; 1 Chen (10.1016/j.cjche.2020.08.005_bb0110) 2006; 135 Imtiaz (10.1016/j.cjche.2020.08.005_bb0215) 2016; 101 Ahmed (10.1016/j.cjche.2020.08.005_bb0040) 2017; 20 Abbas (10.1016/j.cjche.2020.08.005_bb0190) 2020; 190 Bejan (10.1016/j.cjche.2020.08.005_bb0010) 1987; 8 Hayat (10.1016/j.cjche.2020.08.005_bb0120) 2016; 223 Hayat (10.1016/j.cjche.2020.08.005_bb0170) 2018; 127 Nandeppanavar (10.1016/j.cjche.2020.08.005_bb0085) 2013; 48 Stewartson (10.1016/j.cjche.2020.08.005_bb0210) 1953; 49 Liu (10.1016/j.cjche.2020.08.005_bb0150) 2012; 55 Jamaludin (10.1016/j.cjche.2020.08.005_bb0175) 2020; 84 Srinivasacharya (10.1016/j.cjche.2020.08.005_bb0030) 2018; 9 Kuznetsov (10.1016/j.cjche.2020.08.005_bb0160) 2010; 49 Sakiadis (10.1016/j.cjche.2020.08.005_bb0060) 1961; 7 Reveillere (10.1016/j.cjche.2020.08.005_bb0015) 2010; 7 Sobamowo (10.1016/j.cjche.2020.08.005_bb0050) 2017; 241 Abel (10.1016/j.cjche.2020.08.005_bb0075) 2005; 44 Nagarajan (10.1016/j.cjche.2020.08.005_bb0135) 2014; 61 Khan (10.1016/j.cjche.2020.08.005_bb0195) 2020; 21 Muhammad (10.1016/j.cjche.2020.08.005_bb0025) 2020; 189 Akbar (10.1016/j.cjche.2020.08.005_bb0080) 2011; 67 Choi (10.1016/j.cjche.2020.08.005_bb0130) 1995; 66 Khan (10.1016/j.cjche.2020.08.005_bb0045) 2019; 125 Buongiorno (10.1016/j.cjche.2020.08.005_bb0140) 2008; 162 Khan (10.1016/j.cjche.2020.08.005_bb0200) 2020; 9 Khan (10.1016/j.cjche.2020.08.005_bb0065) 2017; 498 Bejan (10.1016/j.cjche.2020.08.005_bb0005) 1979; 101 Vyas (10.1016/j.cjche.2020.08.005_bb0100) 2010; 4 Saidur (10.1016/j.cjche.2020.08.005_bb0145) 2011; 15 |
References_xml | – volume: 66 start-page: 99 year: 1995 end-page: 105 ident: bb0130 article-title: Enhancing thermal conductivity of fluids with nanoparticles publication-title: Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition – volume: 21 start-page: 645 year: 1970 end-page: 647 ident: bb0055 article-title: Flow past a stretching plate publication-title: Zeitschrift für angewandte Mathematik und Physik (ZAMP) – volume: 162 start-page: 80 year: 2008 end-page: 91 ident: bb0140 article-title: Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues and research gaps publication-title: American Nuclear Society (ANS) – volume: 498 start-page: 85 year: 2017 end-page: 90 ident: bb0065 article-title: A comparative study of Casson fluid with homogeneous–heterogeneous reactions publication-title: J. Colloid Interface Sci. – volume: 15 start-page: 1646 year: 2011 end-page: 1668 ident: bb0145 article-title: A review on applications and challenges of nanofluids publication-title: Renew. Sustain. Energy Rev. – volume: 56 start-page: 1525 year: 2018 end-page: 1546 ident: bb0115 article-title: Entropy generation minimization and statistical declaration with probable error for skin friction coefficient and Nusselt number publication-title: Chin. J. Phys. – volume: 276 start-page: 441 year: 2019 end-page: 452 ident: bb0035 article-title: Entropy generation in flow of ferromagnetic liquid with nonlinear radiation and slip condition publication-title: J. Mol. Liq. – volume: 84 start-page: 71 year: 2020 end-page: 80 ident: bb0175 article-title: MHD mixed convection stagnation-point flow of Cu-Al publication-title: European J. Mech. - B/Fluids – volume: 189 start-page: 105294 year: 2020 ident: bb0025 article-title: Magnetohydrodynamics (MHD) radiated nanomaterial viscous material flow by a curved surface with second order slip and entropy generation publication-title: Comput. Methods Prog. Biomed. – volume: 129 start-page: 63 year: 1998 end-page: 72 ident: bb0090 article-title: Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet publication-title: Acta Mech. – volume: 190 start-page: 105362 year: 2020 ident: bb0190 article-title: Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy publication-title: Comput. Methods Prog. Biomed. – volume: 135 start-page: 128 year: 2006 end-page: 135 ident: bb0110 article-title: Effect of viscous dissipation on heat transfer in a non-Newtonian liquid film over an unsteady stretching sheet publication-title: J. Non-Newtonian Fluid Mech. – volume: 1 start-page: 233 year: 1921 end-page: 252 ident: bb0205 article-title: Uber laminare and turbulente reibung publication-title: Z. Angew. Math. Phys. – volume: 554 start-page: 197 year: 2018 end-page: 210 ident: bb0125 article-title: Entropy generation optimization and unsteady squeezing flow of viscous fluid with five different shapes of nanoparticles publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 49 start-page: 243 year: 2010 end-page: 247 ident: bb0160 article-title: Natural convective boundary-layer flow of a nanofluid past a vertical plate publication-title: Int. J. Therm. Sci. – volume: 101 start-page: 718 year: 1979 end-page: 725 ident: bb0005 article-title: A study of entropy generation in fundamental convective heat transfer publication-title: J. Heat Transf. – volume: 3671 start-page: 192 year: 2020 end-page: 205 ident: bb0185 article-title: MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: hybrid nanofluid versus nanofluid publication-title: Powder Technol. – volume: 9 start-page: 245 year: 2018 end-page: 255 ident: bb0030 article-title: Entropy generation due to micropolar fluid flow between concentric cylinders with slip and convective boundary conditions publication-title: Ain Shams Engineering Journal – volume: 7 start-page: 26 year: 1961 end-page: 28 ident: bb0060 article-title: Boundary-layer behavior on continuous solid surfaces: I. Boundary layer equations for two-dimensional and axisymmetric flow publication-title: AIChE J. – volume: 184 start-page: 864 year: 2007 end-page: 873 ident: bb0095 article-title: Viscous flow and heat transfer over a nonlinearly stretching sheet publication-title: Appl. Math. Comput. – volume: 241 start-page: 188 year: 2017 end-page: 198 ident: bb0050 article-title: Analysis of flow, heat transfer and entropy generation in a pipe conveying fourth grade fluid with temperature dependent viscosities and internal heat generation publication-title: J. Mol. Liq. – volume: 9 start-page: 6172 year: 2020 end-page: 6177 ident: bb0200 article-title: Modeling of Cattaneo–Christov double diffusions (CCDD) in Williamson nanomaterial slip flow subject to porous medium publication-title: J. Mater. Res. Tech. – volume: 44 start-page: 465 year: 2005 end-page: 476 ident: bb0075 article-title: Buoyancy force and thermal radiation effects in MHD boundary layer visco-elastic fluid flow over continuously moving stretching surface publication-title: Int. J. Therm. Sci. – volume: 26 start-page: 1 year: 2012 end-page: 11 ident: bb0105 article-title: Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation publication-title: Chinese Physics B, B – volume: 49 start-page: 333 year: 1953 end-page: 341 ident: bb0210 article-title: On the flow between two rotating coaxial disks publication-title: Math. Proc. Camb. Philos. Soc. – volume: 223 start-page: 1297 year: 2016 end-page: 1310 ident: bb0120 article-title: Unsteady three-dimensional mixed convection flow with variable viscosity and thermal conductivity publication-title: J. Mol. Liq. – volume: 55 start-page: 6786 year: 2012 end-page: 6797 ident: bb0150 article-title: A new frontier of nanofluid research-application of nano-fluids in heat pipes publication-title: Int. J. Heat Mass Transf. – volume: 8 start-page: 258 year: 1987 end-page: 276 ident: bb0010 article-title: The thermodynamic design of heat and mass transfer processes and devices publication-title: Int. J. Heat Fluid Flow – volume: 101 start-page: 948 year: 2016 end-page: 957 ident: bb0215 article-title: Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects publication-title: Int. J. Heat Mass Transf. – volume: 127 start-page: 422 year: 2018 end-page: 429 ident: bb0170 article-title: Mixed convective three-dimensional flow of Williamson nanofluid subject to chemical reaction publication-title: Int. J. Heat Mass Transf. – volume: 52 start-page: 5796 year: 2009 end-page: 5801 ident: bb0165 article-title: Thermal instability in a porous medium layer saturated by a nanofluid publication-title: Int. J. Heat Mass Transf. – volume: 21 start-page: 100660 year: 2020 ident: bb0195 article-title: Hybrid nanofluid on mixed convective radiative flow from an irregular variably thick moving surface with convex and concave effects publication-title: Case Stud. Therm. Eng. – volume: 7 start-page: 164 year: 2010 end-page: 177 ident: bb0015 article-title: Minimum entropy generation for laminar boundary layer flow over a permeable plate publication-title: Int. J. Exergy – volume: 4 start-page: 3133 year: 2010 end-page: 3142 ident: bb0100 article-title: Dissipative MHD boundary-layer flow in a porous medium over a sheet stretching nonlinearly in the presence of radiation publication-title: Appl. Math. Sci. – volume: 61 start-page: 2416 year: 2014 end-page: 2434 ident: bb0135 article-title: Nanofluids for solar collector applications: a review publication-title: Energy Procedia – volume: 125 start-page: 153 year: 2019 end-page: 164 ident: bb0045 article-title: Numerical simulation of hydromagnetic mixed convective radiative slip flow with variable fluid properties: a mathematical model for entropy generation publication-title: J. Phys. Chem. Solids – volume: 20 start-page: 1553 year: 2017 end-page: 1562 ident: bb0040 article-title: Entropy generation due to double diffusive convective flow of Casson fluids over nonlinearity stretching sheets with slip conditions publication-title: Eng. Sci. Technol. – volume: 48 start-page: 1451 year: 2013 end-page: 1464 ident: bb0085 article-title: MHD flow and heat transfer over a stretching surface with variable thermal conductivity and partial slip publication-title: Meccnica – volume: 67 start-page: 1818 year: 2011 end-page: 1832 ident: bb0080 article-title: Combined effects of heat and chemical reactions on the peristaltic flow of carreau fluid model in a diverging tube publication-title: Int. J. Nonlin. Mech. – volume: 188 start-page: 105298 year: 2020 ident: bb0020 article-title: Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation publication-title: Comput. Methods Prog. Biomed. – volume: 128 start-page: 240 year: 2006 end-page: 250 ident: bb0155 article-title: Convective transport in nanofluids publication-title: J. Heat Transf. – volume: 190 start-page: 105363 year: 2020 ident: bb0180 article-title: Entropy optimized Darcy–Forchheimer nanofluid (silicon dioxide, molybdenum disulfide) subject to temperature dependent viscosity publication-title: Comput. Methods Prog. Biomed. – volume: 46 start-page: 157 year: 2007 end-page: 163 ident: bb0070 article-title: The effect of lateral mass flux on the natural convection boundary layers induced by a heated vertical plate embedded in a saturated porous medium with internal heat generation publication-title: Int. J. Therm. Sci. – volume: 46 start-page: 157 year: 2007 ident: 10.1016/j.cjche.2020.08.005_bb0070 article-title: The effect of lateral mass flux on the natural convection boundary layers induced by a heated vertical plate embedded in a saturated porous medium with internal heat generation publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2006.04.008 – volume: 67 start-page: 1818 year: 2011 ident: 10.1016/j.cjche.2020.08.005_bb0080 article-title: Combined effects of heat and chemical reactions on the peristaltic flow of carreau fluid model in a diverging tube publication-title: Int. J. Nonlin. Mech. – volume: 56 start-page: 1525 year: 2018 ident: 10.1016/j.cjche.2020.08.005_bb0115 article-title: Entropy generation minimization and statistical declaration with probable error for skin friction coefficient and Nusselt number publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2018.06.023 – volume: 498 start-page: 85 year: 2017 ident: 10.1016/j.cjche.2020.08.005_bb0065 article-title: A comparative study of Casson fluid with homogeneous–heterogeneous reactions publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.03.024 – volume: 127 start-page: 422 year: 2018 ident: 10.1016/j.cjche.2020.08.005_bb0170 article-title: Mixed convective three-dimensional flow of Williamson nanofluid subject to chemical reaction publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.06.124 – volume: 8 start-page: 258 year: 1987 ident: 10.1016/j.cjche.2020.08.005_bb0010 article-title: The thermodynamic design of heat and mass transfer processes and devices publication-title: Int. J. Heat Fluid Flow doi: 10.1016/0142-727X(87)90062-2 – volume: 4 start-page: 3133 year: 2010 ident: 10.1016/j.cjche.2020.08.005_bb0100 article-title: Dissipative MHD boundary-layer flow in a porous medium over a sheet stretching nonlinearly in the presence of radiation publication-title: Appl. Math. Sci. – volume: 554 start-page: 197 year: 2018 ident: 10.1016/j.cjche.2020.08.005_bb0125 article-title: Entropy generation optimization and unsteady squeezing flow of viscous fluid with five different shapes of nanoparticles publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2018.06.017 – volume: 190 start-page: 105362 year: 2020 ident: 10.1016/j.cjche.2020.08.005_bb0190 article-title: Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2020.105362 – volume: 21 start-page: 100660 year: 2020 ident: 10.1016/j.cjche.2020.08.005_bb0195 article-title: Hybrid nanofluid on mixed convective radiative flow from an irregular variably thick moving surface with convex and concave effects publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2020.100660 – volume: 129 start-page: 63 year: 1998 ident: 10.1016/j.cjche.2020.08.005_bb0090 article-title: Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet publication-title: Acta Mech. doi: 10.1007/BF01379650 – volume: 49 start-page: 333 year: 1953 ident: 10.1016/j.cjche.2020.08.005_bb0210 article-title: On the flow between two rotating coaxial disks publication-title: Math. Proc. Camb. Philos. Soc. doi: 10.1017/S0305004100028437 – volume: 223 start-page: 1297 year: 2016 ident: 10.1016/j.cjche.2020.08.005_bb0120 article-title: Unsteady three-dimensional mixed convection flow with variable viscosity and thermal conductivity publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.09.069 – volume: 128 start-page: 240 year: 2006 ident: 10.1016/j.cjche.2020.08.005_bb0155 article-title: Convective transport in nanofluids publication-title: J. Heat Transf. doi: 10.1115/1.2150834 – volume: 44 start-page: 465 year: 2005 ident: 10.1016/j.cjche.2020.08.005_bb0075 article-title: Buoyancy force and thermal radiation effects in MHD boundary layer visco-elastic fluid flow over continuously moving stretching surface publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2004.08.005 – volume: 21 start-page: 645 year: 1970 ident: 10.1016/j.cjche.2020.08.005_bb0055 article-title: Flow past a stretching plate publication-title: Zeitschrift für angewandte Mathematik und Physik (ZAMP) doi: 10.1007/BF01587695 – volume: 162 start-page: 80 year: 2008 ident: 10.1016/j.cjche.2020.08.005_bb0140 article-title: Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues and research gaps publication-title: American Nuclear Society (ANS) – volume: 49 start-page: 243 year: 2010 ident: 10.1016/j.cjche.2020.08.005_bb0160 article-title: Natural convective boundary-layer flow of a nanofluid past a vertical plate publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2009.07.015 – volume: 189 start-page: 105294 year: 2020 ident: 10.1016/j.cjche.2020.08.005_bb0025 article-title: Magnetohydrodynamics (MHD) radiated nanomaterial viscous material flow by a curved surface with second order slip and entropy generation publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2019.105294 – volume: 48 start-page: 1451 year: 2013 ident: 10.1016/j.cjche.2020.08.005_bb0085 article-title: MHD flow and heat transfer over a stretching surface with variable thermal conductivity and partial slip publication-title: Meccnica doi: 10.1007/s11012-012-9677-4 – volume: 135 start-page: 128 year: 2006 ident: 10.1016/j.cjche.2020.08.005_bb0110 article-title: Effect of viscous dissipation on heat transfer in a non-Newtonian liquid film over an unsteady stretching sheet publication-title: J. Non-Newtonian Fluid Mech. doi: 10.1016/j.jnnfm.2006.01.009 – volume: 125 start-page: 153 year: 2019 ident: 10.1016/j.cjche.2020.08.005_bb0045 article-title: Numerical simulation of hydromagnetic mixed convective radiative slip flow with variable fluid properties: a mathematical model for entropy generation publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2018.10.015 – volume: 15 start-page: 1646 year: 2011 ident: 10.1016/j.cjche.2020.08.005_bb0145 article-title: A review on applications and challenges of nanofluids publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.11.035 – volume: 101 start-page: 948 year: 2016 ident: 10.1016/j.cjche.2020.08.005_bb0215 article-title: Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.05.114 – volume: 190 start-page: 105363 year: 2020 ident: 10.1016/j.cjche.2020.08.005_bb0180 article-title: Entropy optimized Darcy–Forchheimer nanofluid (silicon dioxide, molybdenum disulfide) subject to temperature dependent viscosity publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2020.105363 – volume: 241 start-page: 188 year: 2017 ident: 10.1016/j.cjche.2020.08.005_bb0050 article-title: Analysis of flow, heat transfer and entropy generation in a pipe conveying fourth grade fluid with temperature dependent viscosities and internal heat generation publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.05.145 – volume: 61 start-page: 2416 year: 2014 ident: 10.1016/j.cjche.2020.08.005_bb0135 article-title: Nanofluids for solar collector applications: a review publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.12.017 – volume: 55 start-page: 6786 year: 2012 ident: 10.1016/j.cjche.2020.08.005_bb0150 article-title: A new frontier of nanofluid research-application of nano-fluids in heat pipes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.06.086 – volume: 9 start-page: 245 year: 2018 ident: 10.1016/j.cjche.2020.08.005_bb0030 article-title: Entropy generation due to micropolar fluid flow between concentric cylinders with slip and convective boundary conditions publication-title: Ain Shams Engineering Journal doi: 10.1016/j.asej.2015.10.016 – volume: 52 start-page: 5796 year: 2009 ident: 10.1016/j.cjche.2020.08.005_bb0165 article-title: Thermal instability in a porous medium layer saturated by a nanofluid publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2009.07.023 – volume: 1 start-page: 233 year: 1921 ident: 10.1016/j.cjche.2020.08.005_bb0205 article-title: Uber laminare and turbulente reibung publication-title: Z. Angew. Math. Phys. doi: 10.1002/zamm.19210010401 – volume: 188 start-page: 105298 year: 2020 ident: 10.1016/j.cjche.2020.08.005_bb0020 article-title: Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2019.105298 – volume: 7 start-page: 26 year: 1961 ident: 10.1016/j.cjche.2020.08.005_bb0060 article-title: Boundary-layer behavior on continuous solid surfaces: I. Boundary layer equations for two-dimensional and axisymmetric flow publication-title: AIChE J. doi: 10.1002/aic.690070108 – volume: 66 start-page: 99 year: 1995 ident: 10.1016/j.cjche.2020.08.005_bb0130 article-title: Enhancing thermal conductivity of fluids with nanoparticles – volume: 276 start-page: 441 year: 2019 ident: 10.1016/j.cjche.2020.08.005_bb0035 article-title: Entropy generation in flow of ferromagnetic liquid with nonlinear radiation and slip condition publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.11.148 – volume: 26 start-page: 1 year: 2012 ident: 10.1016/j.cjche.2020.08.005_bb0105 article-title: Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation publication-title: Chinese Physics B, B – volume: 101 start-page: 718 year: 1979 ident: 10.1016/j.cjche.2020.08.005_bb0005 article-title: A study of entropy generation in fundamental convective heat transfer publication-title: J. Heat Transf. doi: 10.1115/1.3451063 – volume: 7 start-page: 164 year: 2010 ident: 10.1016/j.cjche.2020.08.005_bb0015 article-title: Minimum entropy generation for laminar boundary layer flow over a permeable plate publication-title: Int. J. Exergy doi: 10.1504/IJEX.2010.031238 – volume: 184 start-page: 864 year: 2007 ident: 10.1016/j.cjche.2020.08.005_bb0095 article-title: Viscous flow and heat transfer over a nonlinearly stretching sheet publication-title: Appl. Math. Comput. – volume: 84 start-page: 71 year: 2020 ident: 10.1016/j.cjche.2020.08.005_bb0175 article-title: MHD mixed convection stagnation-point flow of Cu-Al2O3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink publication-title: European J. Mech. - B/Fluids doi: 10.1016/j.euromechflu.2020.05.017 – volume: 3671 start-page: 192 year: 2020 ident: 10.1016/j.cjche.2020.08.005_bb0185 article-title: MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: hybrid nanofluid versus nanofluid publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.03.030 – volume: 20 start-page: 1553 year: 2017 ident: 10.1016/j.cjche.2020.08.005_bb0040 article-title: Entropy generation due to double diffusive convective flow of Casson fluids over nonlinearity stretching sheets with slip conditions publication-title: Eng. Sci. Technol. – volume: 9 start-page: 6172 year: 2020 ident: 10.1016/j.cjche.2020.08.005_bb0200 article-title: Modeling of Cattaneo–Christov double diffusions (CCDD) in Williamson nanomaterial slip flow subject to porous medium publication-title: J. Mater. Res. Tech. doi: 10.1016/j.jmrt.2020.04.019 |
SSID | ssj0020818 |
Score | 2.4205916 |
Snippet | The prime objective of the present communication is to examine the entropy-optimized second order velocity slip Darcy–Forchheimer hybrid nanofluid flow of... |
SourceID | wanfang crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17 |
SubjectTerms | Activation energy Convective boundary condition Darcy–Forchheimer porous medium Heat generation/absorption Second order velocity slip Titanium dioxide and graphene oxide nanoparticles |
Title | Modeling and numerical analysis of nanoliquid (titanium oxide, graphene oxide) flow viscous fluid with second order velocity slip and entropy generation |
URI | https://dx.doi.org/10.1016/j.cjche.2020.08.005 https://d.wanfangdata.com.cn/periodical/cjce202103004 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCHoQn7g-lhw8KGzdbpp0s8dFlFXRiwp7K2keUlnT1d26evF3-HPNpK0oiAePKUlbZibzSGa-QeggFoxI3uMBj4QLUJjqBFx0eKBUj1IwWUxBcfLVdTy4oxdDNpxDJ3UtDKRVVrq_1OleW1dP2hU12-Msa98A1lmP0Q6B2z0nllDBTrsg5cfvX2keBCDb_I1nSAOYXSMP-Rwv-eAo44JEEnocT-hh97t1WpwJa4S9_2Z7zlbRSuU04n75X2toTtt1tPwNSnADfUBTMygtx8IqbIvyImbkRiXoCM4NtsLmo-ypyBQ-hNoymxWPOH_NlG5hD1zt9F45PsJmlM_wSzaReTFxA1gDR7Z4AgG0wh6xE0O-kXRuPHbO6th_GM6K8_Ebvvdo1sD0TXR3dnp7MgiqrguBjKJoGpBYc-3iPiFNxLhUEna17jraEamooCbsCai4BsfGpIJrZ-6YYaITcS7TNI620LzNrd5GmDt3EjC-aCi547oGEGTaNV0JuHKpIQ1EamonsoIkh84Yo6TOPXtIPIsSYFEC_TJD1kCtr0XjEpHj7-lxzcbkh2Alzmb8vbBZMT2ptvUEJmkCUTLglO389827aAleUmay7aH56XOh951rM02bXnabaKF_fjm4_gRBEvkV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELa2VFXhgOgDFUq3PvTQSqSbdeys94gQaNsCl4LEzXL8QEFbZ2E3PC78Dn5uZ5wEUQlx6NGW7UQz9jzsmW8I-ZJrwYwcy0RmGhwUYYeJ1EOZWDvmHFWWsJicfHiUT074z1Nx2iO7XS4MhlW2sr-R6VFatz2DlpqDWVkOfiPW2VjwIcPXPdiWL8hLDscXyxh8v3uI82CI2RafPFOe4PAOeigGeZlzIA14iSyNQJ5YxO5p9fTqWgevw9kj5bO_RlZbq5HuND_2hvRceEtWHmEJviP3WNUMc8upDpaGunmJmUKrQR2hladBh2paXtSlpV8xuSyU9R9a3ZTWbdOIXA2Cr2l_o35aXdOrcm6qeg4NnIN3tnSOHrSlEbKTYsCRATuegrU6ix_Gy-JqdkvPIpw1cv09OdnfO96dJG3ZhcRkWbZIWO6kA8dPG58JaazBY-1GQDtmLNfcp2ONKddo2fhCSwf6Tnihh5mUpijybJ0shSq4D4RKsCcR5IunRgLbHaIg85EfGQSWKzzbIKyjtjItJjmWxpiqLvjsXEUWKWSRwoKZqdgg2w-TZg0kx_PD846N6p-dpUBpPD-x3zJdted6joMcQzcZgco2_3flz-T15PjwQB38OPr1kSzjgk1Y2xZZWlzW7hPYOYuiH_fxX-sn-qM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+numerical+analysis+of+nanoliquid+%28titanium+oxide%2C+graphene+oxide%29+flow+viscous+fluid+with+second+order+velocity+slip+and+entropy+generation&rft.jtitle=Chinese+journal+of+chemical+engineering&rft.au=Khan%2C+M.+Ijaz&rft.au=Kadry%2C+Seifedine&rft.au=Chu%2C+Yuming&rft.au=Waqas%2C+M.&rft.date=2021-03-01&rft.pub=Elsevier+B.V&rft.issn=1004-9541&rft.volume=31&rft.spage=17&rft.epage=25&rft_id=info:doi/10.1016%2Fj.cjche.2020.08.005&rft.externalDocID=S1004954120304225 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fcjce%2Fcjce.jpg |